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To survive in nature, it is crucial for animals to promptly and appropriately

respond to visual information, specifically to animacy cues that pose a threat.

The subcortical visual pathway is thought to be implicated in the processing

of visual information necessary for these responses. In primates, this pathway

consists of retina-superior colliculus-pulvinar-amygdala, functioning as a visual

pathway that bypasses the geniculo-striate system (retina-lateral geniculate

nucleus-primary visual cortex). In this mini review, we summarize recent

neurophysiological studies that have revealed neural responses to threatening

animacy cues, namely snake images, in di�erent parts of the subcortical visual

pathway and closely related brain regions in primates. The results of these studies

provide new insights on (1) the role of the subcortical visual pathway in innate

cognitivemechanisms for predator recognition that are evolutionarily conserved,

and (2) the possible role of the medial prefrontal cortex (mPFC) and anterior

cingulate cortex (ACC) in the development of fear conditioning to cues that

should be instinctively avoided based on signals from the subcortical visual

pathway, as well as their function in excessive aversive responses to animacy

cues observed in conditions such as ophidiophobia (snake phobia).
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Introduction

Rapid defensive responses to animacy cues that indicate a threat (e.g., from predators),

such as escape and freezing, are particularly important for avoiding danger and therefore

significant for the survival of animals. The neural mechanisms underlying these defensive

responses are thought to be primarily innate and shared across various species (LeDoux,

2012). In primates, including humans, information processing through a well-developed

visual system is critical for detecting biologically relevant cues. Visual stimuli are conveyed

and processed through twomajor neuronal pathways: the canonical cortical visual pathway

and the subcortical visual pathway (Figure 1). The former, also known as the geniculo-

striate system, sends retinal information to the visual cortex through the lateral geniculate

nucleus (LGN). The information of an object that reached the visual cortex is processed in

detail through the temporal cortices for its shape and color, while its spatial location and
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FIGURE 1

Schematic of the visual pathway. LGN, lateral geniculate nucleus; V1, primary visual cortex; SC, superior colliculus; PUL, pulvinar; AMY, amygdala;

PFC, prefrontal cortex.

motion are mainly processed in the posterior parietal region of the

cortices (Goodale and Milner, 1992; Kravitz et al., 2013). These

pathways play important roles in recognizing, discriminating,

categorizing, and processing the movement of visual objects,

allowing for the perception and interaction with these objects

(Fujita et al., 1992; Tanaka, 1996; Rokszin et al., 2010; Setogawa

et al., 2021). The latter pathway, also known as the extrageniculate

visual system, consists of the retina-superior colliculus (SC)-

pulvinar-amygdala. Similar parallel visual systems can be seen in

the avian brain, namely the lemnothalamic (or thalamofugal) and

collothalamic (or tectofugal) pathways, which correspond to the

mammalian cortical and subcortical pathways, respectively (Clark

and Colombo, 2020). In many vertebrates, such as fishes and

amphibians, the majority of optic nerve fibers project to the SC (or

tectum), and visual circuits involving this pathway are considered

to play an important role in innate behaviors (Isa et al., 2021).

For example, numerous behavioral studies in frogs have shown

that the optic tectum is critical in evoking orienting responses

to biologically salient visual stimuli (Ingle, 1973; Masino and

Grobstein, 1989). In rodents, about 90% of the retinal ganglion

cell axons project to the SC and the circuit including the lateral

posterior thalamus (a rodent homolog of the pulvinar) sends

animacy cues critical for survival (Carr, 2015; Soares et al., 2017;

Isa et al., 2021). In primates, it is estimated that only about

10% of these neurons project to the SC (Perry and Cowey,

1984). Hence, the subcortical visual pathway in primates has long

been considered as a vestigial remnant of evolution. However,

recent neurophysiological and psychological studies in humans

and monkeys have proposed that the subcortical visual pathway is

deeply involved in the rapid processing required for the detection

of salient visual cues (Soares et al., 2017). The medial part of the

frontal cortex, especially the medial prefrontal cortex (mPFC) and

the anterior cingulate cortex (ACC), have reciprocal connections

with this subcortical visual pathway (Thompson and Neugebauer,

2017; Calderazzo et al., 2021), and this area is involved in the

allocation of attention to biologically relevant stimuli (Carretié

et al., 2004; Bar et al., 2006). Therefore, it is plausible that the

mPFC and ACC receive and integrate swift visual information

from the subcortical visual pathway to facilitate or modulate rapid

defensive responses. In the first section of this mini review, we

summarize the role of the subcortical visual pathway in innate

cognitive mechanisms related to threatening animacy cues. In the

second section, we discuss the potential role of the mPFC and ACC

in fear conditioning to instinctively avoid cues based on signals

from the subcortical visual pathway.

Rapid detection of snakes in the subcortical
visual pathway

Snakes, carnivores, and raptors are primary predators of

primates during the course of evolution. Among these hunters,

sightings or images of snakes evoke significant anxiety and fear

in many individuals, suggesting that snakes may have been a

particularly salient threat to primate survival in the past (Isbell,

2006). Many behavioral studies have reported that humans and

monkeys detect snakes faster than they detect other animals or

plants (LoBue and DeLoache, 2008; Masataka et al., 2010; Kawai

and Koda, 2016), and that monkeys who have no experience

seeing snakes before tend to avoid snake models (Weiss et al.,

2015). These findings suggest that primates have evolved to quickly

detect and instinctively avoid snakes. To escape from such threats,

it is necessary for the animal to promptly react to the relevant

visual stimuli even before they reach its consciousness. A likely

candidate for orchestrating such rapid response would be the

subcortical visual pathway consisting of the SC, pulvinar, and

amygdala (Öhman and Mineka, 2001; Johnson, 2005; Isbell, 2009).

Recent studies in mice show that this pathway is activated during

rapid defensive behaviors such as freezing and escape in response
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to looming visual stimuli which mimicked a predator, such as birds

of prey, approaching from above. Optogenetic activation of SC

neurons alone can evoke similar behaviors while inhibition of SC

impairs them (Shang et al., 2015, 2018). In monkeys, it has been

reported that bilateral lesion of SC impairs the avoidance behavior

to snakes (Maior et al., 2011). Furthermore, the population activity

of SC neurons in monkeys can discriminate between face-like and

non-face-like patterns as early as 50ms after stimulus onset (Le

et al., 2020). This processing seems to occur before the subject

recognizes what kind of visual stimuli are presented (Thorpe et al.,

1996; Kirchner and Thorpe, 2006). These results suggest that the

SC in mammals, including primates, plays a crucial role in rapidly

responding to biological salient stimuli that are either socially

significant or indicating threats.

The pulvinar is the largest nucleus in the primate thalamus,

receiving ascending inputs from the SC and the retina, and

projecting to the amygdala and prefrontal regions (Pessoa and

Adolphs, 2010; Bridge et al., 2016). One of the established

functions of pulvinar is to shift attention to salient visual stimuli

while suppressing responses to others, thereby enabling efficient

visual information processing (Soares et al., 2017). We previously

reported that single unit activity of monkey pulvinar neurons show

stronger and faster responses to snake images compared to other

images such as faces and hands of monkeys or simple geometric

shapes (Van Le et al., 2013; Le et al., 2016). The response latency

to snake images in these studies was very short (average latency
∼= 55ms). Furthermore, presentation of images with only the low

spatial frequency components of snake stimuli elicited a similar

response as the original images, whereas images with only high

spatial frequency components evoked a much reduced response.

Interestingly, coarse visual information of faces is also coded at

population level as well in pulvinar (Nguyen et al., 2016). These

results indicate that the pulvinar is involved in the coarse but rapid

processing of snake images transmitted through the subcortical

visual pathway.

Recently, we reported that amygdala neurons also exhibit

specific responses to snake stimuli (Dinh et al., 2022). In this

study, in addition to the four image categories used for the

experiment in pulvinar, we included images of non-predators,

raptors, and carnivores as well as emotional/neutral human and

monkey faces. We not only obtained results similar to those in

pulvinar, but amygdala neurons also showed faster and stronger

responses to snake images compared to other images with animacy

cues. Additionally, the response magnitudes to each stimulus image

was positively correlated between the amygdala and pulvinar,

which suggests that the amygdala receives information of snake

images from pulvinar. Interestingly, when emotional monkey

and human faces were presented, stronger and faster responses

were observed compared to neutral facial expressions. In human

neurophysiological studies, it has also been reported that the

subcortical visual pathway responds to low-resolution images of

fearful facial expressions (Vuilleumier et al., 2003), and that the

amygdala is activated rapidly (40–140ms) in response to fearful

faces (Luo et al., 2010). Additionally, it has been shown that

the subcortical visual pathway is activated when fearful facial

expressions are presented in the blind field of patients with

blindsight due to damage to the primary visual cortex (Morris

et al., 2001). These results imply that the subcortical visual pathway

processes visual information independently of the cortical visual

pathway and contributes to rapid and unconscious processing of

emotional visual stimuli in humans as well (Öhman and Mineka,

2001).

The role of the prefrontal cortex in
processing instinctive avoidance cues

It has been proposed that the prefrontal cortex is involved in

rapidly responding to aversive visual stimuli and in processing

coarse visual images (Kawasaki et al., 2001; Bar, 2003; Kawai and

Koda, 2016), with a crucial function in integrating information

of sensory input with memory to facilitate recognition. Previous

human functional magnetic resonance imaging (fMRI) studies

have reported that the mPFC is activated by the presentation of

snakes or emotional faces (Nili et al., 2010; Wu et al., 2016), while

the ACC is thought to be involved in directing attention to and

evaluating salient visual stimuli (Bush et al., 2000). In anatomical

studies using monkeys, in the medial part of the frontal cortex,

the mPFC including the ACC receive strong projections from the

pulvinar and amygdala (Porrino et al., 1981; Romanski et al., 1997).

Taken together, these findings indicate that the mPFC and ACC,

in cooperation with the subcortical visual pathway, are involved

in fast and coarse visual processing to facilitate the detection of

evolutionarily conserved predators and emotional faces.

To test this hypothesis, we recorded from mPFC and ACC in

monkeys and presented the same eight categories of images used

in the amygdala experiment (Dinh et al., 2018). Remarkably, many

neurons in these regions also responded more strongly and quickly

to snakes and emotional monkey faces compared to other images.

These responses decreased when high-pass filtered visual stimuli

were presented but did not decrease with low-pass filtered stimuli

(coarse images). Importantly, there was a positive correlation in

response magnitude and latency between the pulvinar and both the

mPFC and ACCwhen the same images were presented. The latency

of the pulvinar neurons was faster than that of the mPFC and

ACC neurons, indicating that the mPFC and ACC receive inputs

from the subcortical visual pathway. Furthermore, the rostral part

of the ACC showed strong and rapid responses to snakes with

striking postures compared to snakes with non-striking postures

(Figure 2) (Dinh et al., 2021). Striking postures are generally

followed by biting strikes, which makes it crucial to quickly identify

a snake’s posture to escape attacks from dangerous predators. These

results indicate that these cortical regions are likely to be involved

in processing threatening animacy cues conveyed through the

subcortical pathway. One intriguing hypothesis for their function

is that a well-balanced functional interplay of emotion-processing

regions such as the amygdala, mPFC, and ACC is important

for sufficient fear inhibition and control (Schiller and Delgado,

2010; Sylvester et al., 2012). Disfunction of this interplay may

lead to exaggerated anxiety symptoms in response to a specific

feared stimulus, often leading to defensive responses that disrupt

normal daily activities, as commonly observed in certain phobias.

Ophidiophobia (snake phobia), a type of animal-specific phobia,

is widely observed worldwide (Fredrikson et al., 1996; Polák et al.,

2016). Psychological studies have reported that over 50% of survey

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1462961
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Setogawa et al. 10.3389/fpsyg.2024.1462961

FIGURE 2

An example of ACC neuron sensitive to snake postures. (A) Neuronal responses to each snake image are shown by raster displays and peri-event

time histograms. The top three and bottom three graphs indicate the neuronal activity when snakes with striking or non-striking postures were

presented, respectively. The red horizontal bars above the raster display indicate the stimulus presentation period (500ms). Zero on the abscissa

indicates the stimulus onset. Calibration at the right bottom of the figure indicates the number of spikes per trial in each bin (Bin width = 50ms). (B)

Response magnitudes of this neuron to the six snake images. Histograms indicate mean ± SEM. *p < 0.05. From Dinh et al. (2021).

participants felt anxiety in response to snakes (Davey, 1994), and

2–3% of participants exhibited reactions similar to ophidiophobia

(Polák et al., 2016). A heightened attentional bias toward threat

that promotes anxiety has been proposed to be the underlying

cause in such phobias (Heeren et al., 2013; LoBue and Rakison,

2013); images of specific animals (such as snakes) are automatically

processed in a fear neurocircuitry regardless of attention (Öhman

and Soares, 1994), and when the activity for the specific animals

exceeds cognitive processing, it captures attention and induces

anxiety (i.e., phobia). A human MRI study suggested that

abnormalities in amygdala–mPFC connectivity during perception

of fearful faces explain phobia severity (Demenescu et al., 2013).

Additionally, it has been reported that presenting phobia-related

words, e.g., “snake,” to individuals with animal-specific phobias

increases activity in the amygdala and ACC compared to healthy

controls (Britton et al., 2009). It should be noted, however, that
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such increase in activity evoked by language-related stimuli is

not an innate response and it is unlikely to be caused by inputs

from the SC-pulvinar visual pathway described above. According

to a functional connectivity analysis based on human fMRI, there

was a positive coupling between these regions in phobia groups

while negative connectivity was observed in non-phobia groups

that might represent fear inhibition in the latter (Stefanescu et al.,

2018). These findings suggest that the failure of appropriate control

of amygdala activity via the mPFC and ACC when encountering

fearful stimuli may lead to exaggerated anxiety symptoms, thereby

potentially causing specific phobias.

Discussion

In this mini review, we summarized the findings indicating

functional significance of the evolutionarily conserved subcortical

visual pathway for innate mechanisms involved in predator

recognition in primates. We also discussed the potential role of

the mPFC and ACC, which have reciprocal connections with this

pathway, in processing of feared objects as instinctual avoidance

signals, as exemplified by ophidiophobia.

The neurocircuitry for the quick detection of threatening

animacy cues may be conserved across species. Rodents that have

a circuit analogous to the primate subcortical visual pathway,

also have regions homologous to the primates’ mPFC and ACC

(Barthas and Kwan, 2017; van Heukelum et al., 2020). In rodents,

in which specific neuronal connections between different brain

regions are amply examined by optogenetical approaches, it has

been shown that there is a reciprocal connection between the

mPFC and amygdala (Huang et al., 2020; Kim et al., 2022),

as well as between the ACC and amygdala (Kim et al., 2023).

Based on these findings, while neurons in rodents may not elicit

a specific response to snakes similar to that in primates, it is

conjectured that the subcortical visual pathway-PFC circuit shares a

common functional role with the evolutionarily conserved circuits

for detecting threats. Therefore, utilizing similar experimental

techniques to those employed in rodents may provide further

insights into how the subcortical visual pathway, mPFC, and ACC

coordinate to elicit rapid defensive responses to innate threats in

primates (Raper and Galvan, 2022; Merlin and Vidyasagar, 2023).

During the course of evolution, primates have relied on a

well-developed visual system to detect dangerous stimuli. Among

many theories regarding the development of the visual system,

a particularly interesting one from the point of innate defensive

behavior is the “snake detection theory” (Isbell, 2006, 2009). This

hypothesis suggests that snakes originated prior to early primates

and were their most significant predators, therefore individuals

who were adept at visually detecting snakes had a higher chance

of survival. Interestingly, studies using electroencephalography on

humans have shown that specific neural responses are observed

when presenting snake images compared to images of other animals

(Van Strien et al., 2014; Bertels et al., 2020). In our previous

electrophysiological studies, it was found that neurons in the

amygdala, mPFC, and ACC show faster and stronger responses

when snake images are presented compared to carnivores and

raptors (Dinh et al., 2018, 2022). These results are compatible with

the “snake detection theory.” However, it remains unclear which

visual aspects of snakes are involved in rapid detection process

in the subcortical visual pathway. Some studies have reported

that there is a population of pulvinar neurons that are activated

by flickering checkerboard patterns (Öhman and Mineka, 2001;

Kastner et al., 2004), which closely resemble the scale patterns of

snakes. These results suggest that rapid snake detection may also

rely on such visual features, but further studies are required to

address this point.

The significance of the role of the primate subcortical visual

pathway in detection of animacy cues continues to be debated,

in spite of the accumulation of neurophysiological evidence in

monkeys and humans as described above (Pessoa and Adolphs,

2010; Soares et al., 2017). A recent study in monkeys has reported

that the neuronal responses to facial images with short latency in

the SC are affected by a pharmacological inhibition of the LGN (Yu

et al., 2024), suggesting that inputs from the cortical visual pathway

may contribute to such rapid responses in the SC. Since there is no

evidence that LGN neurons directly project to the SC in primates,

it has been suggested by results obtained from computational

modeling that V1 might be the prime candidate to transmit such

information to the SC (Yu et al., 2024). It will be of great interest

to further examine the contribution of the cortical visual pathway

to the rapid detection of animacy cues and its interaction with

the subcortical visual pathway in primates. Applying state-of-the-

art optogenetic techniques mentioned above might be a powerful

experimental tool to address these questions in monkeys (Merlin

and Vidyasagar, 2023).

In addition, many of the studies in humans that are referred

to in the current review used fMRI, which monitors the blood

oxygenation level-dependent (BOLD) signal to visualize the activity

of the brain. BOLD signal is known to be an indirect measurement

of local neural activity and although it is shown to be related

with neuronal firings recorded by electrophysiological methods,

it is unlikely to directly reflect their temporal pattern (Logothetis

et al., 2001; Drew, 2019). Therefore, the interpretation of human

fMRI results and the comparison with single-unit recording in

monkeys in particular, requires caution. It has been shown that

fMRI measurements in behaving monkeys can be a powerful

approach to understand the function of the visual cortex (Tsao

et al., 2003; Vanduffel et al., 2014), and considering the difficulty of

systematic single-unit recordings in human subjects, further fMRI

studies addressing the response to animacy and threating cues in

the subcortical visual pathway in monkeys may help considerably

to bridge this methodological gap (Passingham, 2009).

At present the pathological mechanisms at circuit level

underlying specific phobias in humans including ophidiophobia,

remains unclear. It has been proposed that specific phobias may

have an evolutionary origin (Mineka and Öhman, 2002; Rakison,

2018). As mentioned above, the subcortical visual pathway is

evolutionarily conserved, and considering the specific neuronal

responses in this pathway, mPFC, and ACC to snake images, these

regions may be involved in the pathogenesis of ophidiophobia.

Pharmacological and lesion studies have revealed that the amygdala

plays a central role in the acquisition of fear conditioning,

formation and storage of fear memories, and their recall (Hitchcock

and Davis, 1986; Davis, 1992; Muller et al., 1997). Interestingly,

in humans, it is known that fear conditioning is more likely to

occur when snake images are used (Öhman and Mineka, 2003).

Frontiers in Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1462961
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Setogawa et al. 10.3389/fpsyg.2024.1462961

Studies using rodents have reported that neuronal inputs from

the ACC are necessary for fear conditioning in the amygdala

(Bissière et al., 2008; Jhang et al., 2018). From these findings, it is

suggested that fear conditioning to snakes, enhanced via the ACC-

amygdala circuit, may lead to exaggerated anxiety contributing to

the development of ophidiophobia. Further research in monkeys

might provide further insight into how such interaction between

cortical and subcortical circuits contributes to the pathogenesis of

specific phobias.
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