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Despite the interest in animacy perception, few studies have considered sensory 
modalities other than vision. However, even everyday experience suggests that 
the auditory sense can also contribute to the recognition of animate beings, for 
example through the identification of voice-like sounds or through the perception 
of sounds that are the by-products of locomotion. Here we review the studies 
that have investigated the responses of humans and other animals to different 
acoustic features that may indicate the presence of a living entity, with particular 
attention to the neurophysiological mechanisms underlying such perception. 
Specifically, we have identified three different auditory animacy cues in the existing 
literature, namely voicelikeness, consonance, and acoustic motion. While the first 
two characteristics are clearly exclusive to the auditory sense and indicate the 
presence of an animate being capable of producing vocalizations or harmonic 
sounds—with the adaptive value of consonance also being exploited in musical 
compositions in which the musician wants to convey certain meanings—acoustic 
movement is, on the other hand, closely linked to the perception of animacy in 
the visual sense, in particular to self-propelled and biological motion stimuli. The 
results presented here support the existence of a multifaceted auditory sense of 
animacy that is shared by different distantly related species and probably represents 
an innate predisposition, and also suggest that the mechanisms underlying the 
perception of living things may all be part of an integrated network involving 
different sensory modalities.
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1 Introduction

Why are some sounds perceived as coming from living things and others not? Is there a 
sense of auditory animacy in different animal species? It is well known that animacy perception 
plays a crucial role in the survival of animals from an early age, enabling individuals to 
automatically and effortlessly locate biological cues of animate beings and then react according 
to the nature of the perceived entity, predator, prey, conspecific, etc. However, most research 
in this area has focused on the visual domain, particularly exploring the role of biological 
motion (Lorenzi et al., 2024), face perception (Kobylkov and Vallortigara, 2024; Kobylkov 
et al., 2024), and changes in speed and direction of moving objects (Di Giorgio et al., 2017; 
Lorenzi et al., 2017; review in Lorenzi and Vallortigara, 2021), while few researchers have 
addressed the possibility of an auditory counterpart to animacy perception (but see Tremoulet 
and Feldman, 2000).

This relative paucity of studies should not be surprising, however, given that auditory 
perception is characterized by a completely different psychophysical nature compared to the 
visual modality. As a result, the features that might constitute an animacy cue in the auditory 
sense are not necessarily the same as those that have been identified in visual research. When 

OPEN ACCESS

EDITED BY

Hulusi Kafaligonul,  
Neuroscience and Neurotechnology Center 
of Excellence (NÖROM), Türkiye

REVIEWED BY

Vivian Ciaramitaro,  
University of Massachusetts Boston, 
United States

*CORRESPONDENCE

Stefano Gonan  
 stefano.gonan@phd.units.it  

Giorgio Vallortigara  
 giorgio.vallortigara@unitn.it  

Cinzia Chiandetti  
 cchiandetti@units.it

RECEIVED 19 September 2024
ACCEPTED 14 October 2024
PUBLISHED 25 October 2024

CITATION

Gonan S, Vallortigara G and 
Chiandetti C (2024) When sounds come alive: 
animacy in the auditory sense.
Front. Psychol. 15:1498702.
doi: 10.3389/fpsyg.2024.1498702

COPYRIGHT

© 2024 Gonan, Vallortigara and Chiandetti. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Mini Review
PUBLISHED 25 October 2024
DOI 10.3389/fpsyg.2024.1498702

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2024.1498702&domain=pdf&date_stamp=2024-10-25
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1498702/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2024.1498702/full
https://orcid.org/0009-0006-4149-1194
https://orcid.org/0000-0001-8192-9062
https://orcid.org/0000-0002-7774-6068
mailto:stefano.gonan@phd.units.it
mailto:giorgio.vallortigara@unitn.it
mailto:cchiandetti@units.it
https://doi.org/10.3389/fpsyg.2024.1498702
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2024.1498702


Gonan et al. 10.3389/fpsyg.2024.1498702

Frontiers in Psychology 02 frontiersin.org

we think about how animals, relying solely on their sense of hearing, 
are able to discriminate between living and non-living entities, the first 
feature that comes to mind is something unique to the auditory sense: 
the voice. Indeed, authors such as Patterson (2014) identify in the 
pulse-resonance structure of animal voices one of the key features at 
the basis of living organisms’ recognition through sound.

It follows that all those sounds that are sufficiently similar in their 
acoustical structure to that of the voice—the so-called voicelikeness—
should be able to elicit neurophysiological and behavioral responses 
similar to those of the voice (Broze, 2013). This was used by occultists 
at the turn of the 19th and 20th centuries, who argued for an ability 
allegedly demonstrated by certain people to perceive human voices in 
the noise produced by mechanical-electronic devices such as the 
radio, a phenomenon that became known as Electronic Voice 
Phenomena (Leary and Butler, 2015). They were actually documenting 
the auditory equivalent of pareidolia (a well-known phenomenon in 
vision), i.e., misperceiving or misinterpreting random noise or 
ambiguous acoustic stimuli as meaningful sounds, such as words or 
even sentences (Blom, 2015). This perceptual illusion suggests that the 
human species has a hypersensitivity to searching for and identifying 
voices within the auditory scene in which one is immersed, similar to 
what happens in the visual modality when faces are perceived in 
inanimate objects (Liu et  al., 2014) also by non-human primates 
(Taubert et  al., 2017). From a neuroanatomical perspective, the 
processing of voices of both conspecific and heterospecific individuals 
is supported by a dedicated extensive network of cortical areas 
(Broze, 2013).

In addition, another acoustic feature at the basis of the recognition 
of animate entities is consonance, i.e., sound frequencies that, when 
combined, produce the perception of a single sound and are therefore 
considered pleasant (Trulla et  al., 2018). Because this feature is 
prominent in all acoustic events characterized by a well-defined and 
clear harmonic structure—such as the vocalizations of many species 
of songbirds and human speech—it is considered a hallmark of sounds 
produced by animate beings, which would explain the attraction that 
consonance exerts from an early age in distantly related taxa such as 
humans, domestic chicks and chimpanzees (Chiandetti and 
Vallortigara, 2011).

Finally, the perception of animacy in the auditory sense also 
occurs because of another acoustic feature that is closely related to one 
of the most important visual cues to animacy, i.e., locomotory 
movement. When animals move through space, they frequently 
simultaneously produce characteristic sounds—just think of the 
buzzing of a flying insect—defined as motion-induced sounds (Clark, 
2016). These are involuntary acoustic events generated by the 
movement of anatomical parts of the body that are not specialized in 
producing communicative sounds, so that their conveyed 
information—i.e. the presence of a moving animal—is exploited by 
listeners rather than being transmitted directly and voluntarily (Clark, 
2016). Neuroscientific studies have also demonstrated the existence of 
brain areas dedicated to the detection of acoustic motion, similar to 
those devoted to motion perception in other sensory modalities, such 
as vision (Wagner et al., 1997).

This work offers one of the first reviews in the field of auditory 
animacy perception and aims to fill this gap by systematizing the 
existing knowledge into a coherent description, identifying the main 
lines of research and proposing a global interpretation of the 
results obtained.

2 Voicelikeness

In vertebrates, voice production and perception are phenomena 
with a long evolutionary history. Voice generation mechanisms are the 
output of a system, the vocal tract, whose functional and neural 
control components are highly conserved across species (Newman, 
2010; Fitch and Hauser, 2003). Furthermore, the ability to perceive 
conspecifics’ voice is encoded in species-specific auditory nuclei in the 
auditory forebrain of birds (Louder et al., 2019) and, in the mammalian 
brain, regions such as the superior temporal plane and auditory 
neurons in the ventrolateral prefrontal cortex are involved in all 
studied primate species (Petkov et al., 2008; Romanski and Averbeck, 
2009), with the anterior superior temporal sulcus specialized in 
humans (Belin et al., 2000; Fecteau et al., 2004). Moreover, the ability 
to recognize and approach the voice of a conspecific, especially if it is 
the mother’s, is an ability shown early in life in many avian species, 
such as domestic chicks (Gottlieb, 1965; Fält, 1981; Bolhuis and van 
Kampen, 1991), pekin ducklings (Gottlieb, 1965), wood ducklings 
(Gottlieb, 1965), willow grouses (Allen, 1977), Japanese quails (Park 
and Balaban, 1991) and bobwhite quails (Barrow Heaton et al., 1978), 
which prefer the voice of their own species to that of another taxon or 
noise. As shown by Long et  al. (2001), species-specific neural 
development underlies auditory preferences in taxa such as the 
domestic chicken and the Japanese quail: specifically, the authors 
transplanted developing neural tubes from embryonic quails to 
embryonic chickens and then tested the auditory preferences of the 
chimeric domestic chicks, finding that they began to prefer 
quail vocalizations.

However, voice-sensitive brain areas also recognize specific 
characteristics of the voice—such as fundamental frequency, call 
length and harmonic and phase-coupling content—regardless of the 
species. These neural correlates include the middle portions of the left 
and right superior temporal gyri, the right posterior superior temporal 
gyrus, the left Heschl’s gyrus and left planum temporale in humans 
(Lewis et  al., 2005; Bálint et  al., 2023) and the mid and caudal 
ectosylvian gyri in dogs (Bálint et al., 2023). It can thus be posited that 
there exists an ancient neural predisposition to perceive sounds that 
exhibit characteristics that are analogous to those observed in acoustic 
events produced by vocal folds vibrations, a feature called voicelikeness 
(Schubert and Wolfe, 2016; Bálint et al., 2023). Consequently, auditory 
stimuli characterized by vocal similarity to certain innately encoded 
acoustic features will elicit a preference/approaching response. For 
example, one- and three-day-old domestic chicks run faster toward 
pure tones or tapping sounds when their frequency (Fischer, 1972), 
duration (Fischer, 1972), intensity (Fischer and Gilman, 1969), and 
rate (Fischer, 1972) are similar to those of the ideal maternal attraction 
call (Collias and Joos, 1953; Collias, 1987; Kent, 1993). In addition, 
sounds that emphasize a particular fundamental feature may 
be  perceived as a superstimulus, and then be  preferred over the 
original natural vocalization, as is the case with three-day-old chicks 
that run faster toward stimuli with a higher rate than natural mother’s 
clucks (De Tommaso et al., 2019).

Most importantly, as demonstrated by Gilbert Gottlieb and 
colleagues in different auditory vs. visual choice experiments studying 
imprinting in domestic chicks (Gottlieb and Simner, 1969), pekin 
(Gottlieb and Klopfer, 1962; Klopfer and Gottlieb, 1962), mallard 
(Gottlieb, 1968) and wood ducklings (Gottlieb, 1968), the magnitude 
of attractiveness of vocal stimuli as animacy cues exceeds that of visual 
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stimuli, showing that—at least in the first days of life—the auditory 
recognition prevails, as ducklings prefer to follow a concealed moving 
loudspeaker broadcasting the species-specific maternal call instead of 
a silent moving visual replica of the hen, while domestic chicks are 
more attracted to an even simpler stimulus as an auditory flickering 
than to its visual version. Similarly, in the early stages of development, 
bobwhite quail chicks primarily rely on auditory cues for species 
identification and filial behavior, but as they mature, visual cues are 
integrated, with auditory stimuli remaining dominant (Lickliter and 
Virkar, 1989). Overall, these results support the cue hierarchy 
hypothesis proposed by Johnston and Gottlieb (1985), according to 
which sensory systems are organized hierarchically in early 
development, with the brain giving greater priority to auditory 
information as the auditory system matures faster than the visual 
system (Lickliter and Virkar, 1989).

3 Consonance

Analyses of the human voice have shown that when frequency and 
intensity values intersect, peaks corresponding to consonant melodic 
intervals emerge, suggesting that consonant intervals may represent 
the default state of human intonation (Schwartz et al., 2003). This 
phenomenon aligns with a distinctive characteristic of biological 
vocalizations: the presence of a well-defined harmonic structure, 
consisting of a fundamental frequency and harmonic overtones—a 
feature also shared by the sounds produced by musical instruments. 
This aspect was first noted in the 18th century by the French music 
theorist and composer Jean-Philippe Rameau, who observed that 
there was a connection between tonal sounds—often produced by 
living beings—and harmonic structure, particularly consonance 
(Christensen, 2004). Consonance is defined as the combination of two 
or more sound frequencies played simultaneously or consecutively 
that the brain perceives as stable, predictable and qualitatively 
pleasing. Conversely, dissonance results from the interaction of 
frequencies that when combined result as unstable, thus creating a 
perception of roughness or harshness in the auditory system.

This intuition has been confirmed by a number of studies of the 
vocalizations of different oscine species, such as the musician wren 
and the great tit, whose songs are characterized by a heavy use of 
consonant notes (Doolittle and Brumm, 2012; Richner, 2016), or, like 
the hermit thrush, which arranges its songs according to an overtone 
structure (Doolittle et al., 2014). Furthermore, in great tits, there is 
also a relationship between male fitness and the accuracy with which 
they produce consonant notes in their songs, showing that females 
prefer sounds characterized by stability and predictability (Richner, 
2016). However, it is not even necessary for an animal to sing in order 
to “speak” consonant, since domestic chicks, for instance, emit perfect 
consonances across all types of calls, highlighting that consonant 
sounds are inherently present in animal communication (Maldarelli 
et al., 2024). Not only that, but the tone of our species’ voice in dyadic 
interactions was shown preliminarily to be consonant when there is 
agreement between the speakers, and dissonant when disagreement 
arises (Okada et al., 2012).

Taken together, these results suggest a fundamental similarity 
between the harmonic structure of periodic sounds, whether the 
sound of the voice or that of musical instruments, thus making 
consonance a prominent aspect of vocalizations emitted by animate 

beings (Bowling and Purves, 2015; Wagner and Hoeschele, 2022). 
This conclusion is further supported by the evidence that, in studies 
employing a spontaneous preference paradigm, consonant sounds are 
favored over dissonant ones in newborns of distantly related species, 
including domestic chickens (Chiandetti and Vallortigara, 2011), 
chimpanzees (Sugimoto et al., 2010) and humans (Masataka, 2006; 
Perani et  al., 2010). This finding corroborates the idea that 
consonance is employed as a distinctive auditory cue for the presence 
of an animate object (Chiandetti and Vallortigara, 2011; Chiandetti, 
2016; Vallortigara, 2021), as opposed to an inanimate one. Moreover, 
it suggests that this discriminative capacity may be a shared trait 
among species and may constitute an acoustic unlearned 
predisposition before experience, culture and training shape our 
preferences (Lahdelma and Eerola, 2020; Prete et al., 2020; Lahdelma 
et al., 2022).

4 Acoustic motion

The world is full of things that move and produce sound as a 
by-product. Some of them are alive—and the acoustic events produced 
are then called motion-induced sounds—and some of them are not, 
like leaves rustling, rocks tumbling or ocean waves. So, how does the 
auditory system discriminate between sounds produced by moving 
biological entities and those produced by moving objects? The first 
study to attempt to answer this question is that of Bidet-Caulet et al. 
(2005), in which the authors used fMRI technique to investigate in 
humans the neural correlates of auditory biological motion, more 
precisely the perception of footsteps. The results showed that the 
superior temporal sulcus was mainly involved in the processing of 
human motion sounds, irrespective of the sensory modality. A few 
years later, Cottrell and Campbell (2014) investigated auditory 
sensitivity to footsteps compared to non-biological impact sounds, 
such as a bouncing ball or drumbeats. Contrary to expectations, they 
found no increased sensitivity to biological motion compared to 
non-biological sounds, a finding that seems to indicate a difference 
between sensory modalities, with the visual domain being more fine-
tuned when compared to the auditory domain. However, despite this 
discrepancy, both studies seem to converge on one aspect, namely the 
importance of temporal cues in the detection of human motion, 
especially if related to footsteps, a sound with high biological value 
(Bidet-Caulet et al., 2005; Cottrell and Campbell, 2014; Larsson, 2014).

The role of timing in the perception of auditory animacy was later 
taken up in the field of musical cognition, where there is a debate 
about the characteristics impacting the “aliveness” of a musical piece 
performance, an issue that, as some authors have noted (Blust et al., 
2016), overlaps with that of auditory animacy. In particular, the bridge 
linking music to animacy is rubato, a performance technique used to 
convey greater expressiveness consisting of slight changes in the 
timing of a musical piece by slowing it down or speeding it up, giving 
also an acoustic motion sensation. In their 2015 paper, Blust and 
colleagues investigated the role of rubato in making music sound 
animated, asking participants to rate on a Likert scale the perceived 
animacy of computerized and human performances, both varying in 
rubato level. Results showed that both fixed and excessive timing 
variations led to a decrease in perceived animacy, while minimal levels 
of rubato resulted in significantly higher ratings of animacy (Blust 
et al., 2016).
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The work of Nielsen et  al. (2015), instead, made a significant 
contribution to the advancement of the field by investigating the 
effects of cues such as changes in the speed and direction of acoustic 
motion on the perception of animacy in humans. To this end, they 
designed a study that represents the auditory analog of the previously 
conducted research in the visual domain by Tremoulet and Feldman 
(2000). This was done by using binaural spatialisation to generate 
acoustic stimuli that mimicked the motion in three-dimensional space 
of a synthesized mosquito sound, varying in speed and direction—
thus creating the impression of a living entity—or keeping the values 
constant in both dimensions. Participants were then asked to rate on 
a Likert scale their confidence that the perceived sound was lifelike or 
not, showing a significant difference between changes in speed and no 
changes, but unexpectedly also between changes in speed and changes 
in direction, suggesting the existence of a hierarchical organization of 
animacy cues with respect to acoustic motion. No study has yet 
addressed whether it is possible, in the acoustic domain, to distinguish 
causal interactions between inanimate and animate objects, as has 
been observed in the visual domain early in ontogenesis (Kominsky 
et al., 2022).

Finally, how do animals perceive acoustic motion? Even if 
animacy-related data are still absent, it is known that brain structures 
like the inferior colliculus are at the basis of the detection of acoustic 
motion direction, a process that is then refined in sensitivity through 
GABAergic inhibition, while motion information is then further 
processed by higher regions such as the auditory cortex (Wagner et al., 
1997). Some animal taxa specialized in hunting using auditory cues 
even possess auditory space maps that integrate and help localize 
motion information (Wagner et  al., 1997). (For a comprehensive 
review on this topic, see Carlile and Leung, 2016).

5 Discussion

This review has provided a full description of the area of auditory 
animacy, stressing the multifaceted nature of the acoustic mechanisms 
at the basis of animate beings’ perception, going from voice features 
to sounds emitted involuntarily during biological motion. As outlined 
here, parallels between auditory and visual animacy cues are striking, 
with the voice being the acoustic analog of the face, and voicelikeness—
resulting from the abstraction of vocal fundamental features—leading 
to a sensitivity comparable to that for face-like stimuli, causing the 
occurrence of phenomena such as auditory pareidolia, similar to face 
pareidolia. While the link between biological and acoustic movement 
is evident and very close, consonance as a feature of vocal prosody 
may instead fulfill a role akin to that of eyes and gaze, which are key 
characteristics in face and social perception.

Future research should consider whether face perception offers 
further analogies, such as in upside-down processing and backward 
speech, a domain where potential influences of rhythm, stress, and 

intonation can be examined (Toro et al., 2005). Studies should also 
address the potential effects of high-level cognition in modulating 
animacy perception—as done by Kim and Schachner (2021) who 
linked causal reasoning to animacy perception in music—and explore 
new potential cues, such as affective prosody (Zimmermann et al., 
2013), or auditory regularities like fractal structure in vocal emissions 
(Jermyn et al., 2023). Finally, more research should investigate the 
cross modality of perceptual animacy, which may be part of a larger 
integrated system of social perception that includes different sensory 
modalities such as vision and hearing, and maybe even other 
unexplored domains, such as touch or olfaction.
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