
TYPE Original Research

PUBLISHED 10 September 2025

DOI 10.3389/fpsyg.2025.1434453

OPEN ACCESS

EDITED BY

Igor Douven,

Université Paris-Sorbonne, France

REVIEWED BY

Shan Xu,

Beijing Normal University, China

Jodi Asbell-Clarke,

TERC, United States

*CORRESPONDENCE

Andrew J. Mertens

andrew.mertens@colorado.edu

RECEIVED 17 May 2024

ACCEPTED 27 February 2025

PUBLISHED 10 September 2025

CITATION

Mertens AJ and Colunga E (2025) Assessing

cognitive components of computational

thinking. Front. Psychol. 16:1434453.

doi: 10.3389/fpsyg.2025.1434453

COPYRIGHT

© 2025 Mertens and Colunga. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Assessing cognitive components
of computational thinking

Andrew J. Mertens* and Eliana Colunga

Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States

Recent years have seen a dramatic increase in Computer Science (CS) education

programs implemented at the K-12 level. This emphasis on CS education comes

not only from the fact that computer skills are becoming an ever-more integral

part ofmodern life, but also fromanotion that learning how to program facilitates

the development of a set of more general skills and strategies collectively

known as Computational Thinking (CT). What makes CT special is the fact that

it can be applied in an array of di�erent contexts that are not limited to the

CS domain. The present work adapts tasks from established cognitive tests

in an attempt to capture some of the components specifically theorized to

comprise CT, namely decomposition, sequencing, and abstraction. To test this,

we conducted three studies to test the degree to which these measures relate

to proficiency and experience with computer programming. Study 1 examines

this relationship in 8–12 year-old children enrolled in STEM summer camps.

Study 2 examines the programming proficiency-CT relationship in a di�erent

population and setting: fourth graders in a public elementary school. Study 3

aims to contribute converging evidence for the relationship bymeasuring CT and

programming experience in an online study in the 8–12 year-old STEM summer

camp population. The results reveal that performance on the decomposition

measure consistently correlates with both proficiency and experience measures

of programming in young children. We discuss these findings in the context

of a potential progression for the emergence of CT-related skills throughout

development.

KEYWORDS

computational thinking, Computer Science, computer science education, cognition,

programming, decomposition, sequencing, abstraction

1 Introduction

Computational thinking (CT) is a method of reasoning and problem solving that

allows one to effectively interface with computers (Wing, 2014). The general nature of

the skills that CT encompasses has led some in the Computer Science Education (CSEd)

field to speculate that they may be beneficial in contexts extending beyond computer

competency (Wing, 2006; Resnick et al., 2009; Barr and Stephenson, 2011). This notion

that CSEd skills can have a wide influence outside of Computer Science is supported by

findings that computer programming training results in varying degrees of improvement

in domains such as mathematics, reasoning, and general academic achievement (Scherer

et al., 2019). However, the breadth of the measures used in these studies is often

incongruous with the specific components of CT that are discussed in the CSEd literature.

That is, there seems to be little collaboration between those who measure transfer

effects that might be attributed to CT and those who are concerned with defining and

measuring CT. In the present work, we identify cognitive tests as potential candidates for

measuring three specific CT components identified in the CSEd literature: decomposition,

sequencing, and abstraction. The measures we identify were not designed to measure CT

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1434453
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1434453&domain=pdf&date_stamp=2025-09-10
mailto:andrew.mertens@colorado.edu
https://doi.org/10.3389/fpsyg.2025.1434453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1434453/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

components so their validity as measures of these components is

not known.We then evaluate how strongly these components relate

to programming proficiency in two learning settings: a children’s

STEM summer camp program and an extra-curricular program in

a fourth-grade classroom.

2 Background

Although the term “Computational Thinking” was originally

coined in Seymour Papert’s book,Mindstorms; Children, Computers

and Powerful Ideas (Papert, 1980), it was more recently popularized

and, to a degree, reconceptualized in Wing (2006). In the present

paper, the term CT will be used to refer to Wing’s reconceptualized

view of the construct, as it is most readily recognized today in CSEd.

Distinct from programming, the Wing (2006) conceptualization

of CT does not merely represent an individual’s ability to

create computer programs, but rather a more fundamental way

of thinking that arises from and, in turn, can facilitate the

development of skills like programming.

Wing (2006) describes three characteristics that will help guide

the present discussion of CT. First, CT consists of the fundamental

skills that allow for the creation of programs, not merely the

ability to write code. That is, CT is domain-independent. Second,

using computers as a programmer results in the development

of CT. Finally, everyone has, uses, and can further develop CT

to some degree, regardless of programming experience, again

highlighting the domain-independent nature of CT. Within the

CSEd community, this description prompted suggestions that such

fundamental skills learned through computer programming could

transfer to a broad array of contexts and disciplines (Resnick et al.,

2009; Barr and Stephenson, 2011).

In trying to understand and characterize Computational

Thinking, CSEd scholars and organizations such as Google and

the International Society for Technology in Education (ISTE)

have proposed different frameworks and a number of specific CT

components. For example, Brennan and Resnick (2012) provide

a framework of CT that includes three tiers of aspects of CT:

concepts (e.g., sequences, loops, parallelism, events, conditionals,),

practices (e.g., debugging, reusing, abstracting, and modularizing),

and perspectives (e.g., expressing, connecting, and questioning).

The International Society for Technology in Education (ISTE)

and the Computer Science Teachers Association (CSTA) made a

collaborative effort in 2011 to arrive at a description of CT in

the K-12 setting. A committee of higher education researchers,

K-12 administrators, and teachers identified skills and traits as

components of CT in the K-12 setting. These are skills such as

formulating problems in a way that enables us to use a computer to

solve them, representing data through abstractions such as models

and simulations, automating solutions through a series of ordered

steps, and generalizing and transferring the problem solving

process, (for full summary see ISTE and CSTA, 2011). In the present

work we select three fundamental components of computational

thinking that have both clear cognitive underpinnings and wide

representation within the proposed frameworks mentioned above

and we propose domain-independent measures for each of them.

Guided by these extensive descriptions, a number of studies

have been designed around the measurement of various CT

components. Many of these studies infer CT through proficiency

in tasks directly related to Computer Science (CS); for example,

evaluating the diversity of functions in a child’s code or asking

children to reflect on their thinking process as they wrote code in

an interview (Brennan and Resnick, 2012). That is, CT skills are

most often measured in the products of programming (i.e., code)

or through self-report about the programming experience itself,

(see Lye and Koh, 2014, for a review). It is also common practice

to assess CT by evaluating performance on tasks or problems that

closely resemble coding. For example, Grover et al. (2015) designed

a course that included programming assignments in Scratch, a

block-based programming language designed for children, and

assessed CT afterwards using test questions about snippets of

Scratch code. The majority, though not all, of the items on the

Computational Thinking Test described in Román-González et al.

(2017) also include multiple choice options containing snippets of

Scratch-like code blocks. Simply put, CT often is not measured in

terms of the more fundamental, domain-independent skills that

(Wing, 2006) originally claimed make up the core construct that

is CT. It is precisely the development of such skills, however, that

may underlie the transfer effects proposed in the CSEd literature.

Even before (Wing, 2006) popularized the term Computational

Thinking, the idea that learning computer programming could

result in benefits to domains outside of CS had been examined

extensively. More specifically, a whole body of work measuring

improvement in a variety of cognitive and academic skills through

programming experience predates the recent resurgence of CT by

over a decade (for a review, see Liao and Bright, 1991). Scherer

et al. (2019) conducted a meta-analysis of this work, encompassing

105 published papers and theses (over 500 effect sizes) dating

from 1973 to 2017. This work looked at the effects of learning

different programming languages (e.g., logo, basic, scratch, etc)

on a variety of standardized and non standardized measures of

creativity and intelligence, as well as mathematics, science, and

language. The Scherer et al. (2019) meta-analysis provides evidence

that computer programming experience can, in fact, result in both

the improvement of a number of basic cognitive skills (e.g., fluid

intelligence and spatial skills) as well as othermore specific domains

such as mathematics, with effect sizes ranging from –2.02 to 8.63.

Notably, the meta-analysis also found that experience in domains

such as literacy showed no effect of improving cognitive skills.

As Scherer et al. (2019) note, although distinct from CT, the

programming skills included in their analysis overlap considerably

with CT. That is, CT can be conceptualized as a set of skills

responsible for the observed benefits of learning how to program.

Based on this overlap, the transfer of programming proficiency

reported by Scherer et al. (2019) could be taken as partial support

for claims of CT transfer posited by the CSed literature. However,

it seems that these transfer studies do not make much contact

with the CSed literature, as evidenced by the fact that few of the

studies reviewed in Scherer et al. (2019) make any mention of the

term “computational thinking.” However, there are some examples

in which the relationship between cognitive abilities and CT is

assessed within the CSed literature. Román-González et al. (2017),

for example, include an analysis of the relationship between their

Computational Thinking Test and three broad cognitive abilities:

fluid reasoning, visual processing, and short-term memory. In

other studies, cognitive assessment measures are used as direct

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

measures of CT components. For example, Rowe et al. (2021) uses

Raven’s Progressive matrices as an index of abstraction alongside

non-clinical puzzle formats to measure decomposition, pattern

recognition, and algorithm design.

One difficulty shared by all studies investigating the cognitive

aspects of CT, including this one, is that, generally, cognitive

constructs (e.g., fluid reasoning) are too broad to cleanly map onto

the relatively specific CT components described in the CT literature

(e.g., decomposition). Many of the studies surveyed in Scherer et al.

(2019), for example, measure transfer using tasks encompassing

similarly broad cognitive skills, (e.g., problem-solving; Dalton and

Goodrum, 1991; Degelman et al., 1986). The same can be said

of some of much of the work cited above that attempts to assess

the cognition-CT relationship, (i.e., Román-González et al., 2017;

Rowe et al., 2021). Because of this, it is difficult to infer which

CT components suggested by the CSEd literature are involved

in the transfer effect and to what extent. In the present studies,

we aimed to adapt cognitive measures that selectively relate to

specific CT constructs. However, our measures are also susceptible

to this specificity issue to some degree (see Section 13 for further

discussion).

There are a few studies that do try to bridge this divide in

the literature by examining programming ability in association

with cognitive components that, to some degree, resemble those

identified in the CT literature. Swan et al. (1991), for example,

measures improvement in, among other constructs, subgoal

formation and trial and error, which might be considered akin

to the CT skills of decomposition and iterative design. Swan

et al. (1991) found that 4–6 grade students who received

problem solving instruction in LOGO programming showed

more improvement in these skills than children in a control

condition that practiced the same problem solving strategies in

an activity involving paper cutouts. An example that adheres

more closely to using CT constructs is the work of Kazakoff

et al. (2012) on the development of Kindergarten and pre-K

children’s ability to order a set of pictures to form a narrative (i.e.,

sequencing). In their experiment, children were tested before and

after participating in a 1-week robotics curriculum, revealing a

significant improvement in sequencing skills. A group of children

receiving no robotics training showed no significant improvement

(Kazakoff et al., 2012). These works require replication and deserve

to be extended upon in a way that incorporates the modern

conceptualization of CT and expands the number of cognitive

components examined. The present work studies CT development

in elementary school age children using measures representing

multiple CSEd-recognized CT components with well-established

cognitive construct counterparts: decomposition, sequencing, and

abstraction.

3 Current studies

Given the literature reviewed above, we know that CS

experience should result in the improvement of certain abilities.

The cognitive components chosen to represent those abilities in

this work were selected based on their prevalence in the CSEd

literature on computational thinking. Once these components were

identified, we selected existing cognitive tasks developed for clinical

assessment and adapted them to measure these CT components

and test their relationship with programming proficiency in

elementary school children. The three computational thinking

components we selected were decomposition, sequencing, and

abstraction. We conducted two studies to test the degree to

which these cognitive skills often associated with CT relate to CS

experience as measured through programming proficiency. We

then conduct one additional study to test the degree to which

these cognitive skills relate to a different but related measure of CS

experience, namely the number of different ways participants have

been exposed to programming.

Decomposition refers to an individual’s capacity to deconstruct

a complex problem or system into parts that make it easier

to solve or understand. Decomposition is commonly cited as

an integral part of CT. It is listed by name in the original

Wing (2006) conceptualization and in Barr and Stephenson

(2011), and indirectly referred to as “modularization” in Brennan

and Resnick (2012). The concept of decomposition is also

alluded to in a definition of CT developed by the International

Society for Technology in Education (ISTE) and the Computer

Science Teachers Association (CSTA), which includes “formulating

problems in a way that enables us to use a computer or other

tools to solve them” (ISTE and CSTA, 2011). In our decomposition

task, children are given a series of geometric pictures and asked to

reproduce them by putting together their component parts.

Sequencing is another skill referenced by Brennan and Resnick

(2012) in direct association to CT. Sequencing is crucial for

automation and algorithmic thinking, which are included in the

Barr and Stephenson (2011) description of CT and in the CT

definitions from ISTE and CSTA (2011). Sequencing, as it is used

in the present paper, is conceptualized as the skill required to make

inferences about cause and effect to logically order tasks or events.

In our sequencing tasks, children are given picture cards and asked

to put them in the right order.

Finally, abstraction refers to one’s ability to learn a general

concept from specific examples or instances and apply that concept

in distinct contexts. Abstraction is identified by Brennan and

Resnick (2012) as well as Wing (2006) as a critical aspect of CT.

Wing (2017) states that “themost important and high-level thought

process in computational thinking is the abstraction process.”

Abstraction is also referred to in the ISTE and CSTA definition

which includes “generalizing and transferring (the CT) problem

solving process to a wide variety of problems” (ISTE and CSTA,

2011). In our abstraction task, children are asked to find the rule

implicit in a pattern of geometric pictures.

All three studies examine these constructs—decomposition,

abstraction, and sequencing—and their relationship to

programming proficiency. Study 1 employs a pre-post design

to measure the CT components reviewed above, before and after

participating in week-long summer camps focusing on topics in

either CS or other STEM fields. The pre-post nature of the design

allows the investigation of a secondary research question, namely

a direct examination of the claim that CT skills undergo more

change through CS experience than other types of experience.

If learning how to program improves CT, then we might expect

children to show more improvement in CT measures after a week

of CS instruction compared to other similarly enriching STEM

activities.

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

TABLE 1 A breakdown detailing the number of participants in each

specific camp, age range, and camp type that were included in analysis.

Camp type Age range Camp name (n)

Control camps

n = 33, 20 male

Grades 2–4 If you build it (3)

(Not so) mad scientists (6)

Grades 3–5 Muggle magic: science of Harry Potter (4)

Paint and pixels: innovative iPad art (4)

Phun with physics (3)

Grades 4–6 Animation (3)

Amazing race (2)

Board game design (3)

Escape room (5)

Coding camps

n = 13, 6 male

Grades 2–4 Robot playground (4)

Grades 3–5 Kid coders: scratch stories and games (2)

Grades 4–6 Minecraft adventure (4)

Bloxels video game design (3)

Study 2 uses a single-visit design to replicate the relationship

between programming proficiency and performance on

the CT tasks in a different population: a class of fourth-

grade students. Unlike the participants in Study 1, the

children in this study are not self-selected by their interests

in STEM camps and have a relatively uniform level of

educational experience which includes little to no formal

CSEd instruction.

Study 3 is conducted online in a single session using

a separate programming measure of programming experience

rather than programming proficiency. It aims to contribute

converging evidence for the relationship between our CT

measures and programming in a sample of 8-12 year-old

STEM summer camp attendees drawn from the same population

as study 1.

4 Study 1 method

4.1 Participants

Fifty-three children (26 males, 27 females) between the ages

of 5 and 12 (M = 9.23, SD = 1.29) years were recruited

from 14 different week-long, STEM-focused summer camp

programs. Parental consent and child assent to participate

were both obtained in writing at the time of data collection.

These camps were focused on a number of topics, some

directly related to CS (e.g., robotics, video game design, coding)

and others related to other STEM fields (e.g., chemistry,

engineering, physics). Thirteen children were recruited from

CS-related camps and 33 were recruited from non-CS camps

(see Table 1 for more detailed summary). Participants were

given $10 USD and a children’s book as compensation for

their time.

4.2 Measures

Computer versions of subtests from established cognitive

batteries, the WISC-III (Wechsler et al., 1992) and Leiter-R (Roid

and Miller, 2011), were used to evaluate the three components

of CT identified above (see Table 2 for a summary). We adapted

our decomposition measure from the “Block Design” task of

the WISC-III, which was designed to measure general visual-

spatial ability. The task requires one to recreate a pattern piece

by piece by arranging a set of squares with different color

patterns (see Figure 1). The need to break up the target pattern

in order to recreate it makes this task an appropriate measure

of decomposition.

The “Picture Arrangement” task, also adapted from the WISC-

III, was used to measure sequencing. In this task, participants are

asked to place scenes depicted on cards in chronological order

(see Figure 2). Being designed to measure reasoning ability and

requiring one to use an understanding of cause and effect, we

consider it to be a reasonable measure of sequencing.

The “Repeated Patterns” task from the Leiter-R, one of two

tasks included in the battery’s fluid reasoning composite score,

was adapted as our measure of abstraction ability. In this task,

participants are shown a sequence of objects or shapes that

establishes a pattern and are asked to continue the pattern using

an assortment of cards, some which fit the pattern and some that

do not. Some trials require the participant to apply rules gleaned

from existing parts of the pattern to missing parts of the pattern

that represent previously unobserved contexts. For example, one

trial requires the participant to recognize a pattern that consists of

sequences of different numbers of “+” and “o” symbols (i.e., 2 o’s

followed by 3 +’s, followed by 4 o’s, followed by 6 +’s, followed by

2 o’s). However, this sequence wraps from one line to the next on

the test card, so the participant has to know to apply this pattern

even when groupings of symbols are divided in ways they have

never seen before (i.e., if a line ends with 4 +’s and the next begins

with 2 +’s, the participant much recognize that the next part of the

sequence must start with 2 o’s). Figure 3 depicts a screenshot of this

trial. This aspect of the task that involves abstracting pattern rules

to unfamiliar contexts makes it a reasonable measure of abstraction.

Items from these tasks were adapted for computer

administration to facilitate the simultaneous testing of multiple

subjects within the relatively short period of time allotted before

and after the camps. Participants would arrange the virtual cards

in these computer adapted tasks by first clicking on a card to select

it and then clicking one of multiple outlined spaces on the screen

designating where cards can be placed to complete the task. These

computer versions of the tasks were administered using PsychoPy

behavioral testing software (Peirce et al., 2019).

Each of the measures described above consists of a series of

items of increasing difficulty. As such, to create separate versions

for this pre-post design, the items of each of the CT measures were

divided into two equal sets in alternating fashion (e.g., items 1, 3,

5... in one set and items 2, 4, 6... in the other). The order in which

the two sets were administered was counterbalanced across the two

testing sessions. Accuracy and response time data were collected for

each item of each CT measure. Scores of individual items from the

WISC-III subtasks were calculated by assigning a number of points

to correct responses depending on the response time, as directed

Frontiers in Psychology 04 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

TABLE 2 A table describing the cognitive measures used, their original sources, and the CT constructs they represent.

Construct Subtest name Description Cognitive battery Number of items

Decomposition Block design A 2-D pattern must be replicated using a set of colored

tiles

WISC-III 1 practice, 8 test

Sequencing Picture arrangement (Study 1) A set of images, in a mixed-up order, must be

rearranged to create a plausible story

WISC-III 1 practice, 14 test

Sequential order (Study 2) A logically progressing sequence of symbols must be

completed using a selection of symbols that includes

distractors

Leiter-R 1 practice, 10 test

Abstraction Repeated patterns A partial pattern must be completed using a selection of

symbols among distractors

Leiter-R 1 practice, 6 test

FIGURE 1

An screenshot of a trial from the computer adaptation of the Block Design task. In these computer adaptations, participants arrange virtual cards by

clicking an image in the bottom row to select it and then clicking the black boxes above to move their selected image to that location. Stimulus

images adapted from Wechsler et al. (1992), with permission from Pearson PLC.

FIGURE 2

A screenshot of a trial from the computer adaptation of the Picture Arrangement task. Stimulus images adapted from Wechsler et al. (1992), with

permission from Pearson PLC.

Frontiers in Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

FIGURE 3

A screenshot of a trial from the computer adaptation of the Repeated Patterns task. Stimulus images adapted from Roid and Miller (2011), with

permission from Stoelting.

in the WISC-III manual (Wechsler et al., 1992). Item scores were

then summed to create a single performance score for each version

of the measure. Item scores from the “Repeated Patterns” measure

were calculated by summing the number of pattern segments that

were correctly placed across all trials.

In addition to performance in our cognitive tasks, we measure

performance in Lightbot, a puzzle videogame designed to teach

programming concepts.1 This measure was chosen partially for the

low floor of the game’s learning curve, allowing even children with

no programming experience to progress through the first few levels.

In it, players are tasked with navigating their avatar to specific

locations through terrain that becomes increasingly complex to

traverse as the game progresses through a series of levels. This

is achieved by arranging sequences of icons representing basic

actions for the avatar to perform such as moving, turning, and

jumping. Once a player has input a series of these commands,

they can run the sequence and see the avatar act them out. If the

avatar fails to complete the objective given the sequence dictated

by the player, the sequence stays on the screen and the player

is free to adjust the commands before trying again. The game

was designed to teach programming practices including planning,

testing, and debugging as well as programming concepts such as

sequencing, procedures, and loops (Yaroslavski, 2014). In their

evaluation of Lightbot, Gouws et al. (2013) reports that the game

succeeds in representing a number of programming concepts,

particularly processes, transformations, models, abstraction, and,

to a somewhat lesser degree, patterns and algorithms. Screen

recordings of participants’ gameplay were reviewed to measure

their total progression by the end of the session. Progression was

defined as the number of consecutive levels participants completed

within the first 4.8 minutes, the minimum amount of time that any

participant was allowed to play the game.

1 https://lightbot.com

We include two additional measures of general cognition that

are not theorized to be directly related to CT in order to establish

the selectivity with which our measures capture CT skills. One

of these is the Test for Audible Comprehension of Language

(TACL)-Fourth Edition (Carrow-Woolfolk and Allen, 2014), a

measure of English comprehension. In each item of the TACL,

three pictures are presented and a sentence is read aloud by an

experimenter. Participants are asked to non-verbally indicate which

of the three pictures the sentence describes. In the present study

this was done in groups, with participants viewing the pictures

on a projector screen and marking the appropriate picture on

individual paper copies of the pictures while an experimenter read

the sentences. Accuracy was calculated by summing the number of

correct responses. The other measure we included is a version of

the Track-It task (Fisher et al., 2013), which measures sustained

attention. At the start of each trial of the Track-It task, a target

abstract shape is marked as the target among six different abstract

distractor shapes. Each shape is placed on a random space within

a grid, which remains visible for the duration of the trial. Once the

subject presses the spacebar to indicate they are ready, all of the

shapes move around on the grid for a minimum of five seconds

before disappearing. Subjects are then asked to specify the last grid

space in which the shape was seen before disappearing.

4.3 Procedure

Data collection occurred in two sessions totaling about one and

a half hours in duration. The first session was completed during

the 30 minutes immediately following check-in for the first day

of camp. During this session, participants were randomly assigned

to complete one of two versions of the CT measures individually

on computers using mouse and keyboard. At both time points,

participants were informed that they could skip any given trial

Frontiers in Psychology 06 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://lightbot.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

TABLE 3 Analysis of variance using Satterthwaite’s method to examine influence on CT scores during STEM summer camp attendance.

Type III sum of squares df Num. df Denom. F p

Main e�ects

Age 14.96 1 42 24.19 <0.001

Test version 0.01 1 42 0.01 0.905

CT measure 0.13 2 217 0.11 0.897

Time point 0.97 1 214 1.56 0.212

Condition 0.50 1 42 0.80 0.375

Interactions

CT measure× time point 0.51 2 214 0.41 0.661

CT measure× condition 0.29 2 217 0.23 0.791

Time point× condition 1.80 1 214 2.91 0.090

CT measure× time point× condition 0.44 2 214 0.35 0.702

of a CT task by clicking on the button to go to the next trial.

Participants completed the second session immediately following

the final day of attending 5 days of STEM summer camp for 7 hours

per day. Participants individually completed the versions of the CT

tasks that they had not encountered in session one. Participants

were then asked to play the Lightbot game on Apple iPads for

the remaining duration of the session to measure programming

proficiency. Screen recordings of the Lightbot gameplay were saved.

5 Study 1 results

5.1 CT in STEM summer camps

Due to the strict time constraints imposed by the schedules of

the camps and a delay of testing due to some late arrivals, not all

participants were able to complete each measure of the experiment.

For this reason, children were excluded from some analyses and not

others on the basis of their completion of the measures included

in those analyses. Of the 53 participants recruited, seven were

excluded from analysis entirely: four completed only the first

visit, two completed the same measure version during both visits

due to experimenter error, and one (age 5.66 years) was outside

our target age range of 7–12 years. Time limitations prevented

an additional 17 participants from reaching the programming

proficiency measure at the end of the second session, leaving only

29 participants between 7 and 12 years of age (M = 9.58, SD =

1.23) to be included in the analysis described in Section 5.2. The

46 participants between 7 and 12 years of age (M = 9.37, SD = 1.2)

who completed at least one CT measure in both visits and were not

excluded from analysis for the reasons listed above are included in

the following analyses.

First, we fit an omnibus mixed effects regression model to

the data to examine whether CT scores differed between the

start of the camp week and the end of the camp week. Because

the scoring methods used in the WISC-III and Leiter-R differ,

CT scores were standardized within their respective subtask

before being combined into a single variable representing CT

scores across the three measures. This combined variable was

regressed on fixed effects of age, version order (A–B/B–A), and

the main effects and interaction terms between CT measure

(decomposition/sequencing/abstraction), time-point (pre/post),

and condition (coding-related camp/non-coding camp) while

treating participants as a random effect (modeled using the R

lmerTest package; Kuznetsova et al., 2017). An analysis of variance

of this model using Satterthwaite’s method is shown in Table 3.

Including the sustained attentionmeasure as a covariate yielded the

same pattern of results.

The interaction between time-point and condition was of

particular interest in this analysis, which would indicate whether

participants in coding-related camps exhibited a greater change

in CT performance than those in non-coding camps. However,

the results reveal that this interaction reaches only marginal

significance, F(1, 214) = 2.91, p = 0.090. Mean CTmeasure z-scores

in the non-coding camp condition improve from visit one (M = –

0.21, SD = 0.96) to visit two (M = 0.11, SD = 1.00) while scores in

the coding camp condition decrease from visit one (M = 0.15, SD =

0.93) to visit two (M = 0.11, SD = 1.07; see Figure 4).

5.2 Relation between CT and programming
proficiency

Next, we investigate the relationship between measures of

cognitive CT constructs and programming proficiency by fitting

a multiple regression model. To this end, we conduct a multiple

regression analysis fitting programming experience to predictors

representing main effects for each of the CT measures as well

as a predictor for the main effect of age. The scores of each

CT measure were standardized using z-score transformations and

age was mean-centered. While holding fixed the main effects of

sequencing, abstraction, and age, the model reveals a significant

main effect of decomposition β = 1.23, t(24) = 2.14, p = 0.010

(see Figure 5). No significant main effect of sequencing score

(p = 0.910), abstraction score (p = 0.194), or age (p = 0.184)

were revealed. Correlations between CT measures revealed no

relationship between decomposition scores and abstraction scores

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

FIGURE 4

Plots demonstrating the interaction between condition and time point, characterized by an improvement in CT performance among attendees of

non-coding camps. Red diamonds represent group means.

FIGURE 5

Scatterplots showing relationships between programming proficiency and standardized CT measure scores in study 1. Gray shading represents the

95% confidence interval.

r(27) = 0.318, p = 0.092 or between sequencing and abstraction

scores r(27) = –0.03, p = 0.867. A moderate positive relationship

was revealed between decomposition and abstraction scores r(27)

= 0.47, p = 0.011.

Not every participant who completed the CTmeasures was able

to complete the non-CT cognitive tasks TACL and Track-It due

to time constraints. For this reason, main effect terms for TACL

and Track-it were excluded from this initial model. We conduct

an additional analysis using a model that includes these measures

and find that the main effect of decomposition score is maintained

with the variance explained by TACL and Track-It removed β

= 1.58, t(21) = 3.61, p = 0.002. Neither TACL nor Track-it, our

two general cognitive control conditions, are positively correlated

with programming proficiency. In fact, we find a negative effect of

Track-It score β = –0.84, t(21) = –2.25, p = 0.035 and no effect of

TACL score (p = 0.595).

6 Study 1 discussion

In our investigation of changes in CT scores from visit one to

visit two, we observe that CT scores in the coding camp condition

stay about the same and CT scores in the non-coding camp

increase. Although this result did not match our expectations, given

that CT is not exclusive to coding experience and that many other

forms of activity are likely to draw on and improve CT skills, it

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

is not entirely surprising that CT skills among non-coding camp

attendees improves significantly over the course of one week of

summer camp sessions.

This set of findings indicates that, of those examined here,

decomposition is the only CT component that correlates with

programming proficiency across the various levels of prior

CS experience represented in the sample. The general lack of

improvement in CT ability as a result of attendance in STEM

summer camps is a possible indication that the time course of CT

development is relatively slow, resulting in a lack of observable

change in the relatively short instruction period of one week. A

second study is described in Section 7 which aims to extend these

findings by examining the same relationship between our cognitive

CT components and programming ability in a sample of public

elementary school students.

7 Study 2 method

7.1 Participants

Thirty-one children (14 males, 17 females) between the ages

of 9 and 11 (M = 9.83, SD = 0.36) were reruited from a class of

fouth grade students at a public elementary school in the Boulder

Valley School District. Prior to participation, parental consent

to participate was obtained via permission form. Child assent

to participate was also obtained in writing at the time of data

collection. In this school, 17.70% of students are in an English

Language Learner (ELL) program and 25.00% are eligible for free

or reduced-cost lunches. As compensation for participating in this

study, we offered the class a collection of children’s books for the

classroom.

7.2 Measures

The tasks used to measure decomposition and abstraction in

Study 1 (“Block Design” and “Repeated Patterns,” respectively)

were used once again in Study 2. In lieu of the WISC-III Picture

Arrangement task used to measure sequencing in Study 1, this

study employs a computer adaptation of the “Sequential Order”

subtask from the Leiter-R battery, which is the other measure

included in the fluid reasoning composite of the Leiter-R along

with “Repeated Patterns” (Roid and Miller, 2011). Like the “Picture

Arrangement” measure, the “Sequential Order” task requires the

participant to put a series of images into a logical order. The main

advantage of the “Sequential Order” task is that the images seen

on the cards are abstract designs rather than real-world scenes,

allowing one to complete the task with less prior world knowledge

than the WISC-III’s “Picture Arrangement” task requires (see

Figure 6). The act of arranging sequences of these abstract designs

may appear quite different from arranging depictions of real-life

scenes (as in the Picture Arrangement task) on a surface level, but

at their core, these tasks capture the common skill of sequencing,

namely ordering items based on logical inference. Whether the

underlying logic relies on understanding of real-world cause and

effect or understanding an underlying rule governing a sequence,

the ability to order items based on that logic is the common

ability that we intend to measure. Although we believe the WISC-

III’s “Picture Arrangement” task successfully captures this type of

logical inference, success in that task also depends heavily on an

understanding of the intentions of the agents involved and, in some

cases, cultural conventions and references, which might have been

less readily accessible to the participants of this study.

The three CT measures used in this study consist of the full

subtask, rather than being split into two versions as in Study

1. Scoring for the remaining subtask from the WISC-III, “Block

Design,” was conducted as described in Section 4.2 of Study 1. With

the measures consisting of the full subtask in this study, scaled

scores for the Leiter-R subtasks were determined by the number

of correct pattern segments and the participant’s age, as directed in

the Leiter-R manual (Roid and Miller, 2011).

The Lightbot programming game is administered once again,

and the progression measure is extracted from screen recordings

as a measure of programming proficiency. As in Study 1,

progression was defined as the number of consecutive levels that

participants completed within the minimum amount of time any

one participant spent playing the game, which coincidentally

matches the same cutoff used in Study 1: 4.8 minutes.

We include the Track-It task in study two in order to take into

account the variance within the ELL population of our sample. We

were forced to abandon the use of the Track-It task due to time

constraints.

7.3 Procedure

Due to scheduling constraints from collecting data in a school

setting, data for this study were collected in two sessions. In the first

session, participants completed the three CTmeasures onWindows

laptops using the keyboard and an external mouse. Participants first

completed the new sequencing task, followed by the decomposition

and abstraction tasks. In a separate session 1–2 weeks after the

first, participants completed the TACL language comprehension

task on pen and paper as an experimenter presented the items one-

by-one on a projector screen and read the sentences aloud to the

participants as a group. Finally, students were given the remainder

of the second session to play the Lightbot programming game on

Apple iPads.2

8 Study 2 results

As in Section 5.2 in Study 1, the analysis of data collected in

Study 2 consists of an examination of the relationship between

cognitive CT constructs and programming proficiency. Once again,

we conduct a multiple regression analysis fitting programming

experience to predictors representing main effects for each of

the CT measures as well as a predictors for the main effects of

language comprehension score and age. The scores of each CT

measure and the language comprehension score were standardized

2 This study was designed to replicate the pre-post analysis of Study 1

in elementary school students during a semester of CSEd. However, the

COVID-19 pandemic prevented collection of post-test data making pre-post

analysis impossible.

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

FIGURE 6

An screenshot of a trial from the computer adaptation of the Sequential Order task. Stimulus images adapted from Roid and Miller (2011), with

permission from Stoelting.

using z-score transformations and age was mean-centered. While

holding fixed the main effects of sequencing, abstraction, language

comprehension, and age, the model reveals a significant main effect

of decomposition β = 0.88, t(25) = 2.61, p = 0.015 (see Figure 7). No

significant main effect of sequencing score (p = 0.074), abstraction

score (p = 0.198), language comprehension (p = 0.378), or age

(p = 0.451) were revealed. Correlations between CT measures

revealed no significant relationship between decomposition scores

and sequencing scores r(29) = 0.30, p = 0.096, between sequencing

and abstraction scores r(29) = 0.26, p = 0.154, or between

decomposition and abstraction scores r(29) = 0.24, p = 0.198.

9 Study 2 discussion

These results indicate that decomposition correlates with

programming proficiency among fourth-graders with virtually no

previous CS experience, suggesting a similar pattern of results to

those observed in Study 1 but with a distinctly different population.

Despite the use of a different measure, sequencing ability still

appears not to be related to programming proficiency. The similar

pattern of results between the two studies represents compelling

support for the notion that decomposition is a prevalent part of CT

development, at least at the ages examined here.

10 Study 3 method

10.1 Participants

Participants were 25 children between the ages of 8 and 12 (M

= 9.60, SD = 0.78) years who were current or previous participants

in at least one week-long STEM summer camp. All families with

children who were in our target age range and had signed up

to participate in a STEM summer camp were sent information

about the study. Those who expressed interest in having their child

participate were sent links which directed them to the consent

and assent forms, and questionnaire, and behavioral tasks, all of

which were conducted online. We sent a $10 USD gift card to

each participant as compensation for their time. We did not collect

gender data for this sample.

10.2 Measures

The CT measures used in this task were the same ones used

in Study 2 adapted for online data collection. The same scoring

methods for the CT measures that were specified in study 2 were

used in this study. In addition to the CT measures, participants

answered questions about their previous programming experience

in a short questionnaire. In it, participants were asked to “select

all of the programming platforms, games, and languages” they

had previously used from a list that included Scratch, Bitsbox,

Hour of Code, Agent Cubes, Alice, Blockly, Code.org, Lightbot,

Code Combat, Bloxels, Python, and Javascript. They were also

permitted to write in other programming related activities that

were not listed. The programming experience measure we use

in the analysis of this experiment is calculated by summing the

total number of different programming platforms participants

reported using, including items in the list we provided and their

write-in answers.

10.3 Procedure

After completing parental consent and child assent forms,

children completed a short Qualtrics questionnaire about

their experience with programming with the help of their

parents. After completing the questionnaire, participants

were directed to Pavlovia.org where the online CT measures

were conducted.

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
http://Pavlovia.org
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

FIGURE 7

Scatterplots showing relationships between programming proficiency and standardized CT measure scores in study 2. Gray shading represents the

95% confidence interval.

FIGURE 8

Scatterplots illustrating the relationship between programming experience and standardized CT measure scores in study 3. Gray shading represents

the 95% confidence interval.

11 Study 3 results

The aim of this experiment was to examine the relationship

between programming experience and CT scores. Toward this

end, we use a multiple regression analysis fitting programming

experience to predictors representing main effects for each of

the CT measures as well as a predictor for the main effect of

age. The scores of each CT measure were standardized using z-

score transformations and age was mean-centered. One participant

was excluded from the analysis for missing data due to them

skipping an item in the CT measures. While holding fixed the

main effects of sequencing, abstraction, and age, the model reveals

a significant main effect of decomposition β = 1.18, t(19) = 2.14,

p = 0.045 (see Figure 8). No significant main effect of sequencing

score (p = 0.240), abstraction score (p = 0.774), or age (p = 0.621)

were revealed. Correlations between CT measures revealed no

relationship between decomposition scores and sequencing scores

r(23) = –0.07, p = 0.744 or between sequencing and abstraction

scores r(23) = –0.07, p = 0.730. A moderate negative relationship

was revealed between decomposition and abstraction scores r(23)

= –0.41, p = 0.045.

12 Study 3 discussion

This final study reveals a similar pattern of results to the

previous two studies. Using a separate experience-based measure of

programming in place of an ability-based measure, we find that the

measure of decomposition is once again the only one that reliably

correlates. Together with the findings from the previous studies,

we interpret this result as converging evidence that decomposition

represents a prevalent cognitive component of CT development.

13 Implications and limitations

We set out to test the degree to which programming proficiency

correlates with cognitive measures theorized to index three skills

that are regularly used by the CS education community to

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

describe CT: decomposition, sequencing, and abstraction. The

present work reveals converging evidence over three studies that

decomposition, as measured by the “Block Design” task from

the WISC-III, correlates most reliably with both programming

proficiency and programming experience out of the three CT

components tested. One possible explanation for the fact that

our measures of sequencing and abstraction are not found to

significantly relate to programming proficiency is that they do not

successfully capture the targeted cognitive components of CT. That

is, the Picture Arrangement and Sequential Order measures may

not effectively index sequencing skill and the Repeated Patterns

task may not index abstraction as well as we theorized they might.

This was a possibility from the outset, given that validity of these

measures for capturing CT had not been established prior to this

study. Alternative measures attempting to isolate the cognitive

components of sequencing and abstraction might yield different

results. However, an additional limitation has to do with the fact

that the sources of our participants in these studies are families

associated with community partners, namely a local summer camp

and a class of fourth grade students at a local elementary school.

Therefore, our sample size is limited first by the finite number of

children who are involved in these programs, and second by the

number of families who opt into our study out of those who are

involved in these programs. These limitations result in small sample

sizes and relatively low statistical power. For this reason, we are

hesitant to draw strong conclusions about the lack of a relationship

between any cognitive components and programming proficiency

based on our results. Further, it is important to consider these

findings within the context of developmental change.

Cognitive components of CT may not develop in a

simultaneous or uniform manner as programming experience

is gained (Tsarava et al., 2022). The present studies examine

the relationship between CT components and programming

proficiency in children ages 7–12. Although abstraction and

sequencing were not found to correlate with programming

proficiency in these studies, it is possible that they emerge at

other stages of CT development. In the case of sequencing, for

example, children of this age have already spent years in school

learning sequencing skills through following instructions and

story-telling activities. That is, the development of sequencing

skills may reach a plateau by this stage, whereas children at earlier

stages of development may still be growing in their ability to

sequence, therefore being more likely to exhibit more variability

in sequencing skills reflecting their individual experiences. In

fact, Kazakoff et al. (2012) reports significant gains in sequencing

ability as a result of robotics training among kindergarten students,

a population much younger than the ones we draw from for

this work. Conversely, the abstraction skill may be somewhat

more developmentally advanced than the other two components

measured here, such that children at this developmental stage lie

at a relatively low plateau of abstraction ability that may precede a

substantial improvement in years to come. Thus, the correlation

revealed between decomposition and programming proficiency

could indicate an intermediate level of CT development within

our sample characterized by growth of decomposition skills and

relatively static sequencing and abstraction skills. This description

of subsequent stages of sequencing, decomposition, and abstraction

development represents just one possible way that various stages

might progress. CT development would also likely include many of

the CT components that did not fall within the scope of this work.

The possibility of this complex development pattern highlights

the importance of measuring various cognitive components of CT

individually and at different stages of development.

The Lightbot game, having been designed as a teaching

tool rather than an assessment tool, also reflects the stages of

CT development detailed above in its level design. Sequencing

elements, for example, are present throughout the game from

the first level, wherein the player will learn that they need to

navigate their avatar to stand on a goal destination before using

the command to light the goal and complete the level. Soon after,

the game begins to place more emphasis on decomposition with

more complex levels that encourage the player to break down the

level space not only into individual spaces, but also sets of spaces,

in order to progress efficiently. For example, level five includes

two goal spaces, the second of which can be reached using a

sequence identical to that used to reach the first. A child with a

high level of decomposition ability will recognize that the problem

can be broken into two smaller, identical problems and progress

through this level more quickly than children with a lower degree

of decomposition skill. At this point in the game, both sequencing

and decomposition are needed, but if there were no problems

progressing through the first few levels, then decomposition ismore

likely to be the limiting factor here. The abstraction elements of

the game come into play last according to the Gouws et al. (2013)

analysis, which concluded that abstraction is less prominently

represented until the introduction of functions, which does not

occur until the game’s ninth level. Few of the participants were

able to reach the ninth level within the relatively short time cutoff

used for the programming proficiency measure. Even among those

who were eventually able to reach it after the time cutoff, only

one progressed past level nine by more than three additional

levels. Thus, it seems that multi-stage development of CT-related

cognitive abilities is reflected in the progression chosen by Lightbot

game designers to teach crucial coding concepts to its players.

Further research examining the development of CT across an

extended period of programming training is required to directly

test this multi-stage theory of CT development. Initially, the

second study presented here was intended to do just that by using

a pre-post design to study programming and CT development

throughout a semester of CS education. Unfortunately, the

COVID-19 pandemic prevented the collection of post-test data.

Although we were unable to establish a causal relationship,

the finding that decomposition correlated with programming

proficiency in all three studies carries meaningful implications for

the assessment of CT, as well as the instruction of CS, on its

own. The existence of a programming-independent index of CT

would allow for its measurement whether the child in question

has a substantial amount of programming experience or not. It

would also be useful for comparing the CT ability of children

with experience in different programming languages or comparing

the contributions of specific CS education programs to the

development of different components of CT. From an educational

perspective, it may be beneficial for interventions aimed at

improving CT in this age range to incorporate programming as a

means to improve decomposition skills while other supplementary

activity may be required to target other CT components.

Frontiers in Psychology 12 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

It is worth noting that this work revealed a relationship between

programming proficiency and a single measure of decomposition.

It is an open question as to whether the this relationship would

hold for other decompositionmeasures, specifically those that draw

less heavily on spatial reasoning. Previous work has shown that

certain general intelligence factors including spatial reasoning as

well as fluid reasoning and working memory correlate with CT

ability (Ambrósio et al., 2014; Román-González et al., 2017). As

mentioned in Section 2, these cognitive constructs are so broad that

it is difficult to say whether CT correlates with general intelligence

as a whole or if it selectively relates to narrower subdivisions

of it. Such broad constructs also inherently involve multiple CT

components, making them poor measures of individual aspects of

CT. Despite our attempt to adopt measures that more selectively

target specific components of CT, the studies reported here suffer

the same difficulties to some, though hopefully a somewhat lesser,

degree. For example, although we selected the “Block Design”

task for the fact that it requires decomposition-related problem-

solving strategies, it also requires spatial reasoning ability. In fact,

in the context of the WISC-III battery from which it was taken,

the “Block Design” task was designed to measure visuo-spatial

reasoning. Therefore, in the first two studies presented here, there

is no means to separate the contributions of decomposition and

spatial reasoning in the “Block Design"-Lightbot relationship. The

results of the third study, however, show that performance on

the “Block Design” task also correlates with an experience-based

programming measure that is independent of participants’ spatial

reasoning abilities, suggesting that the results of the previous

studies do not solely reflect the shared spatial reasoning elements

of the two tasks.

14 Conclusions and further research

The present work builds on previous work testing the

theoretical claims of CT transfer effects by examining how

programming proficiency relates to specific cognitive components

of CT. We have identified at least one cognitive component that,

measured using a task from a cognitive testing battery, reliably

coincides with both programming proficiency and quantity of

programming experience. This work represents a first step toward

investigating CT transfer by examining CT at the level at which it is

described in the CSEd literature.

Future work should explore other cognitive measures as

indexes of abstraction and sequencing, given the possibility that

ours failed to capture those target cognitive CT skills. Other

measures of decomposition and programming proficiency should

also be tested. To extend on the work presented here, for example,

a measure of decomposition that is less reliant on spatial reasoning

could be used to tease apart the relationships between visuo-spatial

ability, decomposition skill, and programming proficiency in this

age range. In addition, for a clearer understanding of the nuances

of CT development, future research should extend this work by

examining a wider range of basic cognitive components and at

various stages of CT development. To understand the impact of the

ubiquity of CSEd in early school years, it is important to continue

to improve our understanding of the development of the basic

cognitive components that comprise Computational Thinking.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional

Review Board, University of Colorado Boulder. The studies were

conducted in accordance with the local legislation and institutional

requirements. Written informed consent for participation in this

study was provided by the participants’ legal guardians/next

of kin.

Author contributions

AJM: Conceptualization, Formal analysis, Investigation,

Methodology, Visualization, Writing – original draft, Writing –

review & editing. EC: Conceptualization, Funding acquisition,

Methodology, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by an Outreach Award and a LEAP grant from the University of

Colorado Boulder awarded to EC. Publication of this article was

funded in part by the University of Colorado Boulder Libraries

Frontiers membership fund awarded to AJM.

Acknowledgments

We thank Dr. Akira Miyake (University of Colorado

Boulder) and Dr. Lei Yuan (University of Colorado Boulder) for

commentary on previous versions of this work and undergraduates

Rebecca Benjamin-Pollack, Stevie Spinelli, Alejandra Vargas, and

Kylie Hunter for their assistance with data collection. We would

also like to thank all of the families of the children that participated

in these experiments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Psychology 13 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

References

Ambrósio, A. P., Xavier, C., and Georges, F. (2014) “Digital ink for cognitive
assessment of computational thinking,” in 2014 IEEE Frontiers in Education Conference
(FIE) (Madrid: IEEE), 1–7. doi: 10.1109/FIE.2014.7044237

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to K-12: what
is involved and what is the role of the computer science education community? ACM
Inroads 2, 48–54. doi: 10.1145/1929887.1929905

Brennan, K. and Resnick, M. (2012). “New frameworks for studying and assessing
the development of computational thinking,” in Proceedings of the 2012 AnnualMeeting
of the American Educational Research Association, Vol. 1 (Vancouver: AERA), 25.

Carrow-Woolfolk, E. and Allen, E., (2014). TACL-4/TEXL Comprehensive Scoring
Supplement. Austin, TX: PRO-ED Inc.

Dalton, D. W., and Goodrum, D. A. (1991). The effects of computer programming
on problem-solving skills and attitudes. J. Educ. Comput. Res. 7, 483–506.
doi: 10.2190/762V-KV6T-D3D1-KDY2

Degelman, D., Free, J. U., Scarlato, M., Blackburn, J. M., and Golden, T. (1986).
Concept learning in preschool children: effects of a short-term Logo experience. J. Educ.
Comput. Res. 2, 199–205. doi: 10.2190/RH2K-4AQ7-2598-TVEA

Fisher, A., Thiessen, E., Godwin, K., Kloos, H., and Dickerson, J. (2013). Assessing
selective sustained attention in 3- to 5-year-old children: evidence from a new
paradigm. J. Exp. Child Psychol. 114, 275–294. doi: 10.1016/j.jecp.2012.07.006

Gouws, L., Bradshaw, K., and Wentworth, P. (2013). “Computational thinking in
educational activities: An evaluation of the educational game Light-Bot,” in Proceedings
of the 18th ACM conference on Innovation and technology in computer science education
(New York, NY: ACM), 10–15. doi: 10.1145/2462476.2466518

Grover, S., Pea, R., and Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Comput. Sci. Educ. 25, 199–237.
doi: 10.1080/08993408.2015.1033142

ISTE and CSTA (2011). Operational Definition of Computational Thinking for K-12
Education. National Science Foundation. Available online at: https://cdn.iste.org/www-
root/Computational_Thinking_Operational_Definition_ISTE.pdf

Kazakoff, E. R., Sullivan, A., and Bers, M. U. (2012). The effect of a classroom-
based intensive robotics and programming workshop on sequencing ability in
early childhood. Early Childhood Educ. J. 41, 245–255. doi: 10.1007/s10643-012-05
54-5

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017).
lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26.
doi: 10.18637/jss.v082.i13

Liao, Y.-k. C., Bright, G. W. (1991). Effects of computer programming on cognitive
outcomes. J. Educ. Comput. Res. 7, 251–268. doi: 10.2190/E53G-HH8K-AJRR-K69M

Lye, S. Y., and Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: what is next for K-12? Comput. Hum.
Behav. 41, 51–61. doi: 10.1016/j.chb.2014.09.012

Papert, S. A. (1980). Mindstorms; Children, Computers and Powerful Ideas. New
York, NY: Basic Books.

Peirce, J., Gray, J. R., Simpson, S., Macaskill, M., Höchenberger, R., Sogo, H., et
al. (2019). PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51,
195–203. doi: 10.3758/s13428-018-01193-y

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E.,
Brennan, K., et al. (2009). Scratch: programming for all. Commun. ACM 52, 60–67.
doi: 10.1145/1592761.1592779

Roid, G. H., and Miller, L. J. (2011). “Leiter international performance
scale, revised,” in Encyclopedia of Clinical Neuropsychology, eds. J. S.
Kreutzer, J. DeLuca, and B. Caplan (New York, NY: Springer), 1448–1449.
doi: 10.1007/978-0-387-79948-3_1562

Román-González, M., Pérez-González, J. C., and Jiménez-Fernández, C.
(2017). Which cognitive abilities underlie computational thinking? Criterion
validity of the Computational Thinking Test. Comput. Hum. Behav. 72, 678–691.
doi: 10.1016/j.chb.2016.08.047

Rowe, E., Asbell-Clarke, J., Almeda, M. V., Gasca, S., Edwards, T., Bardar, E., et
al. (2021). Interactive assessments of CT (IACT): Digital interactive logic puzzles to
assess computational thinking in grades 3–8. Int. J. Comput. Sci. Educ. Sch. 5, 28–73.
doi: 10.21585/ijcses.v5i1.149

Scherer, R., Siddiq, F., and Viveros, B. S. (2019). The cognitive benefits of learning
computer programming: a meta-analysis of transfer effects. J. Educ. Psychol. 111,
764–792. doi: 10.1037/edu0000314

Swan, K., Albany, S., and Papert, S. (1991). Programming objects to think with:
logo and the teaching and learning of problem solving. J. Educ. Comput. Res. 7, 89–90.
doi: 10.2190/UX0M-NHM2-1G5X-01X4

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V.,
et al. (2022). A cognitive definition of computational thinking in primary education.
Comput. Educ. 179, 1–14. doi: 10.1016/j.compedu.2021.104425

Wechsler, D., Kort, W., Schittekatte, M., Bosmans, M., Compaan, E., Dekker, P., et
al. (1992).WISC-III-NL| Wechsler Intelligence Scale for Children-III (San Antonio, TX:
Psychological Corporation).

Wing, J. M. (2006). Computational thinking. Commun. ACM 49:33.
doi: 10.1145/1118178.1118215

Wing, J. M. (2014). “Computational thinking benefits society,” in 40th Anniversary
Blog of Social Issues in Computing (New York, NY: Academic Press), 26.

Wing, J. M. (2017). Computational thinking’s influence on research and education
for all. Ital. J. Educ. Technol. 25, 7–14.

Yaroslavski, D. (2014). How does lightbot teach programming? Available online at:
https://www.lightbot.com/lightbot_howdoeslightbotteachprogramming.pdf (accessed
December 28, 2024).

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://doi.org/10.1109/FIE.2014.7044237
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.2190/762V-KV6T-D3D1-KDY2
https://doi.org/10.2190/RH2K-4AQ7-2598-TVEA
https://doi.org/10.1016/j.jecp.2012.07.006
https://doi.org/10.1145/2462476.2466518
https://doi.org/10.1080/08993408.2015.1033142
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1007/s10643-012-0554-5
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.2190/E53G-HH8K-AJRR-K69M
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/978-0-387-79948-3_1562
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.21585/ijcses.v5i1.149
https://doi.org/10.1037/edu0000314
https://doi.org/10.2190/UX0M-NHM2-1G5X-01X4
https://doi.org/10.1016/j.compedu.2021.104425
https://doi.org/10.1145/1118178.1118215
https://www.lightbot.com/lightbot_howdoeslightbotteachprogramming.pdf
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Assessing cognitive components of computational thinking
	1 Introduction
	2 Background
	3 Current studies
	4 Study 1 method
	4.1 Participants
	4.2 Measures
	4.3 Procedure

	5 Study 1 results
	5.1 CT in STEM summer camps
	5.2 Relation between CT and programming proficiency

	6 Study 1 discussion
	7 Study 2 method
	7.1 Participants
	7.2 Measures
	7.3 Procedure

	8 Study 2 results
	9 Study 2 discussion
	10 Study 3 method
	10.1 Participants
	10.2 Measures
	10.3 Procedure

	11 Study 3 results
	12 Study 3 discussion
	13 Implications and limitations
	14 Conclusions and further research
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

