? frontiers ‘ Frontiers in Psychology

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Igor Douven,
Université Paris-Sorbonne, France

REVIEWED BY

Shan Xu,

Beijing Normal University, China
Jodi Asbell-Clarke,

TERC, United States

*CORRESPONDENCE
Andrew J. Mertens
andrew.mertens@colorado.edu

RECEIVED 17 May 2024
ACCEPTED 27 February 2025
PUBLISHED 10 September 2025

CITATION

Mertens AJ and Colunga E (2025) Assessing
cognitive components of computational
thinking. Front. Psychol. 16:1434453.

doi: 10.3389/fpsyg.2025.1434453

COPYRIGHT

© 2025 Mertens and Colunga. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Psychology

TYPE Original Research
PUBLISHED 10 September 2025
Dol 10.3389/fpsyg.2025.1434453

Assessing cognitive components
of computational thinking

Andrew J. Mertens* and Eliana Colunga

Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, United States

Recent years have seen a dramatic increase in Computer Science (CS) education
programs implemented at the K-12 level. This emphasis on CS education comes
not only from the fact that computer skills are becoming an ever-more integral
part of modern life, but also from a notion that learning how to program facilitates
the development of a set of more general skills and strategies collectively
known as Computational Thinking (CT). What makes CT special is the fact that
it can be applied in an array of different contexts that are not limited to the
CS domain. The present work adapts tasks from established cognitive tests
in an attempt to capture some of the components specifically theorized to
comprise CT, namely decomposition, sequencing, and abstraction. To test this,
we conducted three studies to test the degree to which these measures relate
to proficiency and experience with computer programming. Study 1 examines
this relationship in 8-12 year-old children enrolled in STEM summer camps.
Study 2 examines the programming proficiency-CT relationship in a different
population and setting: fourth graders in a public elementary school. Study 3
aims to contribute converging evidence for the relationship by measuring CT and
programming experience in an online study in the 8—-12 year-old STEM summer
camp population. The results reveal that performance on the decomposition
measure consistently correlates with both proficiency and experience measures
of programming in young children. We discuss these findings in the context
of a potential progression for the emergence of CT-related skills throughout
development.

KEYWORDS

computational thinking, Computer Science, computer science education, cognition,
programming, decomposition, sequencing, abstraction

1 Introduction

Computational thinking (CT) is a method of reasoning and problem solving that
allows one to effectively interface with computers (Wing, 2014). The general nature of
the skills that CT encompasses has led some in the Computer Science Education (CSEd)
field to speculate that they may be beneficial in contexts extending beyond computer
competency (Wing, 2006; Resnick et al., 2009; Barr and Stephenson, 2011). This notion
that CSEd skills can have a wide influence outside of Computer Science is supported by
findings that computer programming training results in varying degrees of improvement
in domains such as mathematics, reasoning, and general academic achievement (Scherer
et al, 2019). However, the breadth of the measures used in these studies is often
incongruous with the specific components of CT that are discussed in the CSEd literature.
That is, there seems to be little collaboration between those who measure transfer
effects that might be attributed to CT and those who are concerned with defining and
measuring CT. In the present work, we identify cognitive tests as potential candidates for
measuring three specific CT components identified in the CSEd literature: decomposition,
sequencing, and abstraction. The measures we identify were not designed to measure CT

01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1434453
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1434453&domain=pdf&date_stamp=2025-09-10
mailto:andrew.mertens@colorado.edu
https://doi.org/10.3389/fpsyg.2025.1434453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1434453/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

components so their validity as measures of these components is
not known. We then evaluate how strongly these components relate
to programming proficiency in two learning settings: a children’s
STEM summer camp program and an extra-curricular program in
a fourth-grade classroom.

2 Background

Although the term “Computational Thinking” was originally
coined in Seymour Papert’s book, Mindstorms; Children, Computers
and Powerful Ideas (Papert, 1980), it was more recently popularized
and, to a degree, reconceptualized in Wing (2006). In the present
paper, the term CT will be used to refer to Wing’s reconceptualized
view of the construct, as it is most readily recognized today in CSEd.
Distinct from programming, the Wing (2006) conceptualization
of CT does not merely represent an individual’s ability to
create computer programs, but rather a more fundamental way
of thinking that arises from and, in turn, can facilitate the
development of skills like programming.

Wing (2006) describes three characteristics that will help guide
the present discussion of CT. First, CT consists of the fundamental
skills that allow for the creation of programs, not merely the
ability to write code. That is, CT is domain-independent. Second,
using computers as a programmer results in the development
of CT. Finally, everyone has, uses, and can further develop CT
to some degree, regardless of programming experience, again
highlighting the domain-independent nature of CT. Within the
CSEd community, this description prompted suggestions that such
fundamental skills learned through computer programming could
transfer to a broad array of contexts and disciplines (Resnick et al.,
2009; Barr and Stephenson, 2011).

In trying to understand and characterize Computational
Thinking, CSEd scholars and organizations such as Google and
the International Society for Technology in Education (ISTE)
have proposed different frameworks and a number of specific CT
components. For example, Brennan and Resnick (2012) provide
a framework of CT that includes three tiers of aspects of CT:
concepts (e.g., sequences, loops, parallelism, events, conditionals,),
practices (e.g., debugging, reusing, abstracting, and modularizing),
and perspectives (e.g., expressing, connecting, and questioning).
The International Society for Technology in Education (ISTE)
and the Computer Science Teachers Association (CSTA) made a
collaborative effort in 2011 to arrive at a description of CT in
the K-12 setting. A committee of higher education researchers,
K-12 administrators, and teachers identified skills and traits as
components of CT in the K-12 setting. These are skills such as
formulating problems in a way that enables us to use a computer to
solve them, representing data through abstractions such as models
and simulations, automating solutions through a series of ordered
steps, and generalizing and transferring the problem solving
process, (for full summary see ISTE and CSTA, 2011). In the present
work we select three fundamental components of computational
thinking that have both clear cognitive underpinnings and wide
representation within the proposed frameworks mentioned above
and we propose domain-independent measures for each of them.

Guided by these extensive descriptions, a number of studies
have been designed around the measurement of various CT

Frontiersin Psychology

10.3389/fpsyg.2025.1434453

components. Many of these studies infer CT through proficiency
in tasks directly related to Computer Science (CS); for example,
evaluating the diversity of functions in a childs code or asking
children to reflect on their thinking process as they wrote code in
an interview (Brennan and Resnick, 2012). That is, CT skills are
most often measured in the products of programming (i.e., code)
or through self-report about the programming experience itself,
(see Lye and Koh, 2014, for a review). It is also common practice
to assess CT by evaluating performance on tasks or problems that
closely resemble coding. For example, Grover et al. (2015) designed
a course that included programming assignments in Scratch, a
block-based programming language designed for children, and
assessed CT afterwards using test questions about snippets of
Scratch code. The majority, though not all, of the items on the
Computational Thinking Test described in Romdan-Gonzélez et al.
(2017) also include multiple choice options containing snippets of
Scratch-like code blocks. Simply put, CT often is not measured in
terms of the more fundamental, domain-independent skills that
(Wing, 2006) originally claimed make up the core construct that
is CT. It is precisely the development of such skills, however, that
may underlie the transfer effects proposed in the CSEd literature.

Even before (Wing, 2006) popularized the term Computational
Thinking, the idea that learning computer programming could
result in benefits to domains outside of CS had been examined
extensively. More specifically, a whole body of work measuring
improvement in a variety of cognitive and academic skills through
programming experience predates the recent resurgence of CT by
over a decade (for a review, see Liao and Bright, 1991). Scherer
etal. (2019) conducted a meta-analysis of this work, encompassing
105 published papers and theses (over 500 effect sizes) dating
from 1973 to 2017. This work looked at the effects of learning
different programming languages (e.g., logo, basic, scratch, etc)
on a variety of standardized and non standardized measures of
creativity and intelligence, as well as mathematics, science, and
language. The Scherer et al. (2019) meta-analysis provides evidence
that computer programming experience can, in fact, result in both
the improvement of a number of basic cognitive skills (e.g., fluid
intelligence and spatial skills) as well as other more specific domains
such as mathematics, with effect sizes ranging from -2.02 to 8.63.
Notably, the meta-analysis also found that experience in domains
such as literacy showed no effect of improving cognitive skills.

As Scherer et al. (2019) note, although distinct from CT, the
programming skills included in their analysis overlap considerably
with CT. That is, CT can be conceptualized as a set of skills
responsible for the observed benefits of learning how to program.
Based on this overlap, the transfer of programming proficiency
reported by Scherer et al. (2019) could be taken as partial support
for claims of CT transfer posited by the CSed literature. However,
it seems that these transfer studies do not make much contact
with the CSed literature, as evidenced by the fact that few of the
studies reviewed in Scherer et al. (2019) make any mention of the
term “computational thinking.” However, there are some examples
in which the relationship between cognitive abilities and CT is
assessed within the CSed literature. Roman-Gonzdlez et al. (2017),
for example, include an analysis of the relationship between their
Computational Thinking Test and three broad cognitive abilities:
fluid reasoning, visual processing, and short-term memory. In
other studies, cognitive assessment measures are used as direct

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

measures of CT components. For example, Rowe et al. (2021) uses
Raven’s Progressive matrices as an index of abstraction alongside
non-clinical puzzle formats to measure decomposition, pattern
recognition, and algorithm design.

One difficulty shared by all studies investigating the cognitive
aspects of CT, including this one, is that, generally, cognitive
constructs (e.g., fluid reasoning) are too broad to cleanly map onto
the relatively specific CT components described in the CT literature
(e.g., decomposition). Many of the studies surveyed in Scherer et al.
(2019), for example, measure transfer using tasks encompassing
similarly broad cognitive skills, (e.g., problem-solving; Dalton and
Goodrum, 19915 Degelman et al., 1986). The same can be said
of some of much of the work cited above that attempts to assess
the cognition-CT relationship, (i.e., Roman-Gonzalez et al., 2017;
Rowe et al,, 2021). Because of this, it is difficult to infer which
CT components suggested by the CSEd literature are involved
in the transfer effect and to what extent. In the present studies,
we aimed to adapt cognitive measures that selectively relate to
specific CT constructs. However, our measures are also susceptible
to this specificity issue to some degree (see Section 13 for further
discussion).

There are a few studies that do try to bridge this divide in
the literature by examining programming ability in association
with cognitive components that, to some degree, resemble those
identified in the CT literature. Swan et al. (1991), for example,
measures improvement in, among other constructs, subgoal
formation and trial and error, which might be considered akin
to the CT skills of decomposition and iterative design. Swan
(1991) found that 4-6 grade students who received
problem solving instruction in LOGO programming showed

et al.

more improvement in these skills than children in a control
condition that practiced the same problem solving strategies in
an activity involving paper cutouts. An example that adheres

more closely to using CT constructs is the work of Kazakoff

et al. (2012) on the development of Kindergarten and pre-K
children’s ability to order a set of pictures to form a narrative (i.e.,
sequencing). In their experiment, children were tested before and
after participating in a 1-week robotics curriculum, revealing a
significant improvement in sequencing skills. A group of children
receiving no robotics training showed no significant improvement
(Kazakoff et al., 2012). These works require replication and deserve
to be extended upon in a way that incorporates the modern
conceptualization of CT and expands the number of cognitive
components examined. The present work studies CT development
in elementary school age children using measures representing
multiple CSEd-recognized CT components with well-established
cognitive construct counterparts: decomposition, sequencing, and
abstraction.

3 Current studies

Given the literature reviewed above, we know that CS
experience should result in the improvement of certain abilities.
The cognitive components chosen to represent those abilities in
this work were selected based on their prevalence in the CSEd
literature on computational thinking. Once these components were
identified, we selected existing cognitive tasks developed for clinical

Frontiersin Psychology

10.3389/fpsyg.2025.1434453

assessment and adapted them to measure these CT components
and test their relationship with programming proficiency in
elementary school children. The three computational thinking
components we selected were decomposition, sequencing, and
abstraction. We conducted two studies to test the degree to
which these cognitive skills often associated with CT relate to CS
experience as measured through programming proficiency. We
then conduct one additional study to test the degree to which
these cognitive skills relate to a different but related measure of CS
experience, namely the number of different ways participants have
been exposed to programming.

Decomposition refers to an individual’s capacity to deconstruct
a complex problem or system into parts that make it easier
to solve or understand. Decomposition is commonly cited as
an integral part of CT. It is listed by name in the original
Wing (2006) conceptualization and in Barr and Stephenson
(2011), and indirectly referred to as “modularization” in Brennan
and Resnick (2012). The concept of decomposition is also
alluded to in a definition of CT developed by the International
Society for Technology in Education (ISTE) and the Computer
Science Teachers Association (CSTA), which includes “formulating
problems in a way that enables us to use a computer or other
tools to solve them” (ISTE and CSTA, 2011). In our decomposition
task, children are given a series of geometric pictures and asked to
reproduce them by putting together their component parts.

Sequencing is another skill referenced by Brennan and Resnick
(2012) in direct association to CT. Sequencing is crucial for
automation and algorithmic thinking, which are included in the
Barr and Stephenson (2011) description of CT and in the CT
definitions from ISTE and CSTA (2011). Sequencing, as it is used
in the present paper, is conceptualized as the skill required to make
inferences about cause and effect to logically order tasks or events.
In our sequencing tasks, children are given picture cards and asked
to put them in the right order.

Finally, abstraction refers to one’s ability to learn a general
concept from specific examples or instances and apply that concept
in distinct contexts. Abstraction is identified by Brennan and
Resnick (2012) as well as Wing (2006) as a critical aspect of CT.
Wing (2017) states that “the most important and high-level thought
process in computational thinking is the abstraction process.”
Abstraction is also referred to in the ISTE and CSTA definition
which includes “generalizing and transferring (the CT) problem
solving process to a wide variety of problems” (ISTE and CSTA,
2011). In our abstraction task, children are asked to find the rule
implicit in a pattern of geometric pictures.

All three studies examine these constructs—decomposition,
their
programming proficiency. Study 1 employs a pre-post design

abstraction, and sequencing—and relationship to
to measure the CT components reviewed above, before and after
participating in week-long summer camps focusing on topics in
either CS or other STEM fields. The pre-post nature of the design
allows the investigation of a secondary research question, namely
a direct examination of the claim that CT skills undergo more
change through CS experience than other types of experience.
If learning how to program improves CT, then we might expect
children to show more improvement in CT measures after a week
of CS instruction compared to other similarly enriching STEM
activities.

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

TABLE 1 A breakdown detailing the number of participants in each
specific camp, age range, and camp type that were included in analysis.

Camp type Agerange Camp name (n)
Control camps Grades 2-4 If you build it (3)
n = 33,20 male
(Not so) mad scientists (6)
Grades 3-5 Muggle magic: science of Harry Potter (4)
Paint and pixels: innovative iPad art (4)
Phun with physics (3)
Grades 4-6 Animation (3)
Amazing race (2)
Board game design (3)
Escape room (5)
Coding camps Grades 2-4 Robot playground (4)
n =13, 6 male
Grades 3-5 Kid coders: scratch stories and games (2)
Grades 4-6 Minecraft adventure (4)
Bloxels video game design (3)

Study 2 uses a single-visit design to replicate the relationship
between programming proficiency and performance on
the CT tasks in a different population: a class of fourth-
grade students. Unlike the participants in Study 1, the
children in this study are not self-selected by their interests
in STEM camps and have a relatively uniform level of
educational experience which includes little to no formal
CSEd instruction.

Study 3 is conducted online in a single session using
a separate programming measure of programming experience
rather than programming proficiency. It aims to contribute
converging evidence for the relationship between our CT
measures and programming in a sample of 8-12 year-old
STEM summer camp attendees drawn from the same population
as study 1.

4 Study 1 method
4.1 Participants

Fifty-three children (26 males, 27 females) between the ages
of 5 and 12 (M = 923, SD = 1.29) years were recruited
from 14 different week-long, STEM-focused summer camp
programs. Parental consent and child assent to participate
were both obtained in writing at the time of data collection.
These camps were focused on a number of topics, some
directly related to CS (e.g., robotics, video game design, coding)
and others related to other STEM fields (e.g., chemistry,
engineering, physics). Thirteen children were recruited from
CS-related camps and 33 were recruited from non-CS camps
(see Table 1 for more detailed summary). Participants were
given $10 USD and a children’s book as compensation for
their time.

Frontiersin Psychology

10.3389/fpsyg.2025.1434453

4.2 Measures

Computer versions of subtests from established cognitive
batteries, the WISC-IIT (Wechsler et al., 1992) and Leiter-R (Roid
and Miller, 2011), were used to evaluate the three components
of CT identified above (see Table 2 for a summary). We adapted
our decomposition measure from the “Block Design” task of
the WISC-III, which was designed to measure general visual-
spatial ability. The task requires one to recreate a pattern piece
by piece by arranging a set of squares with different color
patterns (see Figure 1). The need to break up the target pattern
in order to recreate it makes this task an appropriate measure
of decomposition.

The “Picture Arrangement” task, also adapted from the WISC-
ITI, was used to measure sequencing. In this task, participants are
asked to place scenes depicted on cards in chronological order
(see Figure 2). Being designed to measure reasoning ability and
requiring one to use an understanding of cause and effect, we
consider it to be a reasonable measure of sequencing.

The “Repeated Patterns” task from the Leiter-R, one of two
tasks included in the battery’s fluid reasoning composite score,
was adapted as our measure of abstraction ability. In this task,
participants are shown a sequence of objects or shapes that
establishes a pattern and are asked to continue the pattern using
an assortment of cards, some which fit the pattern and some that
do not. Some trials require the participant to apply rules gleaned
from existing parts of the pattern to missing parts of the pattern
that represent previously unobserved contexts. For example, one
trial requires the participant to recognize a pattern that consists of
sequences of different numbers of “+” and “o0” symbols (i.e., 2 0’
followed by 3 +, followed by 4 o’s, followed by 6 +7, followed by
2 0’s). However, this sequence wraps from one line to the next on
the test card, so the participant has to know to apply this pattern
even when groupings of symbols are divided in ways they have
never seen before (i.e., if a line ends with 4 +’s and the next begins
with 2 +7%, the participant much recognize that the next part of the
sequence must start with 2 0’s). Figure 3 depicts a screenshot of this
trial. This aspect of the task that involves abstracting pattern rules
to unfamiliar contexts makes it a reasonable measure of abstraction.
these tasks
administration to facilitate the simultaneous testing of multiple

Items from were adapted for computer
subjects within the relatively short period of time allotted before
and after the camps. Participants would arrange the virtual cards
in these computer adapted tasks by first clicking on a card to select
it and then clicking one of multiple outlined spaces on the screen
designating where cards can be placed to complete the task. These
computer versions of the tasks were administered using PsychoPy
behavioral testing software (Peirce et al., 2019).

Each of the measures described above consists of a series of
items of increasing difficulty. As such, to create separate versions
for this pre-post design, the items of each of the CT measures were
divided into two equal sets in alternating fashion (e.g., items 1, 3,
5...in one set and items 2, 4, 6... in the other). The order in which
the two sets were administered was counterbalanced across the two
testing sessions. Accuracy and response time data were collected for
each item of each CT measure. Scores of individual items from the
WISC-III subtasks were calculated by assigning a number of points

to correct responses depending on the response time, as directed

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga 10.3389/fpsyg.2025.1434453

TABLE 2 A table describing the cognitive measures used, their original sources, and the CT constructs they represent.

Construct = Subtest name Description Cognitive battery = Number of items
Decomposition | Block design A 2-D pattern must be replicated using a set of colored WISC-1IT 1 practice, 8 test

tiles
Sequencing Picture arrangement (Study 1) | A set of images, in a mixed-up order, must be WISC-IIT 1 practice, 14 test

rearranged to create a plausible story

Sequential order (Study 2) A logically progressing sequence of symbols must be Leiter-R 1 practice, 10 test
completed using a selection of symbols that includes
distractors
Abstraction Repeated patterns A partial pattern must be completed using a selection of | Leiter-R 1 practice, 6 test

symbols among distractors

N4dAhV B

An screenshot of a trial from the computer adaptation of the Block Design task. In these computer adaptations, participants arrange virtual cards by
clicking an image in the bottom row to select it and then clicking the black boxes above to move their selected image to that location. Stimulus
images adapted from Wechsler et al. (1992), with permission from Pearson PLC.

FIGURE 2
A screenshot of a trial from the computer adaptation of the Picture Arrangement task. Stimulus images adapted from Wechsler et al. (1992), with
permission from Pearson PLC.

Frontiersin Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

10.3389/fpsyg.2025.1434453

++

oo++++ ++00++

FIGURE 3

permission from Stoelting.

+00+++0000++++++00+++0

000++++++00+++0000++++

000+++++

A screenshot of a trial from the computer adaptation of the Repeated Patterns task. Stimulus images adapted from Roid and Miller (2011), with

00+++0 +00+++

in the WISC-IIT manual (Wechsler et al., 1992). Item scores were
then summed to create a single performance score for each version
of the measure. Item scores from the “Repeated Patterns” measure
were calculated by summing the number of pattern segments that
were correctly placed across all trials.

In addition to performance in our cognitive tasks, we measure
performance in Lightbot, a puzzle videogame designed to teach
programming concepts.! This measure was chosen partially for the
low floor of the game’s learning curve, allowing even children with
no programming experience to progress through the first few levels.
In it, players are tasked with navigating their avatar to specific
locations through terrain that becomes increasingly complex to
traverse as the game progresses through a series of levels. This
is achieved by arranging sequences of icons representing basic
actions for the avatar to perform such as moving, turning, and
jumping. Once a player has input a series of these commands,
they can run the sequence and see the avatar act them out. If the
avatar fails to complete the objective given the sequence dictated
by the player, the sequence stays on the screen and the player
is free to adjust the commands before trying again. The game
was designed to teach programming practices including planning,
testing, and debugging as well as programming concepts such as
sequencing, procedures, and loops (Yaroslavski, 2014). In their
evaluation of Lightbot, Gouws et al. (2013) reports that the game
succeeds in representing a number of programming concepts,
particularly processes, transformations, models, abstraction, and,
to a somewhat lesser degree, patterns and algorithms. Screen
recordings of participants’ gameplay were reviewed to measure
their total progression by the end of the session. Progression was
defined as the number of consecutive levels participants completed
within the first 4.8 minutes, the minimum amount of time that any
participant was allowed to play the game.

1 https://lightbot.com

Frontiersin Psychology

We include two additional measures of general cognition that
are not theorized to be directly related to CT in order to establish
the selectivity with which our measures capture CT skills. One
of these is the Test for Audible Comprehension of Language
(TACL)-Fourth Edition (Carrow-Woolfolk and Allen, 2014), a
measure of English comprehension. In each item of the TACL,
three pictures are presented and a sentence is read aloud by an
experimenter. Participants are asked to non-verbally indicate which
of the three pictures the sentence describes. In the present study
this was done in groups, with participants viewing the pictures
on a projector screen and marking the appropriate picture on
individual paper copies of the pictures while an experimenter read
the sentences. Accuracy was calculated by summing the number of
correct responses. The other measure we included is a version of
the Track-It task (Fisher et al., 2013), which measures sustained
attention. At the start of each trial of the Track-It task, a target
abstract shape is marked as the target among six different abstract
distractor shapes. Each shape is placed on a random space within
a grid, which remains visible for the duration of the trial. Once the
subject presses the spacebar to indicate they are ready, all of the
shapes move around on the grid for a minimum of five seconds
before disappearing. Subjects are then asked to specify the last grid
space in which the shape was seen before disappearing.

4.3 Procedure

Data collection occurred in two sessions totaling about one and
a half hours in duration. The first session was completed during
the 30 minutes immediately following check-in for the first day
of camp. During this session, participants were randomly assigned
to complete one of two versions of the CT measures individually
on computers using mouse and keyboard. At both time points,
participants were informed that they could skip any given trial

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://lightbot.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

10.3389/fpsyg.2025.1434453

TABLE 3 Analysis of variance using Satterthwaite’s method to examine influence on CT scores during STEM summer camp attendance.

Type Ill sum of squares df Num. df Denom. F p

Main effects

Age 14.96 1 42 24.19 <0.001
Test version 0.01 1 42 0.01 0.905
CT measure 0.13 2 217 0.11 0.897
Time point 0.97 1 214 1.56 0.212
Condition 0.50 1 42 0.80 0.375
Interactions

CT measure X time point 0.51 2 214 0.41 0.661
CT measure x condition 0.29 2 217 0.23 0.791
Time point x condition 1.80 1 214 291 0.090
CT measure X time point x condition 0.44 2 214 0.35 0.702

of a CT task by clicking on the button to go to the next trial.
Participants completed the second session immediately following
the final day of attending 5 days of STEM summer camp for 7 hours
per day. Participants individually completed the versions of the CT
tasks that they had not encountered in session one. Participants
were then asked to play the Lightbot game on Apple iPads for
the remaining duration of the session to measure programming
proficiency. Screen recordings of the Lightbot gameplay were saved.

5 Study 1 results
5.1 CT in STEM summer camps

Due to the strict time constraints imposed by the schedules of
the camps and a delay of testing due to some late arrivals, not all
participants were able to complete each measure of the experiment.
For this reason, children were excluded from some analyses and not
others on the basis of their completion of the measures included
in those analyses. Of the 53 participants recruited, seven were
excluded from analysis entirely: four completed only the first
visit, two completed the same measure version during both visits
due to experimenter error, and one (age 5.66 years) was outside
our target age range of 7-12 years. Time limitations prevented
an additional 17 participants from reaching the programming
proficiency measure at the end of the second session, leaving only
29 participants between 7 and 12 years of age (M = 9.58, SD =
1.23) to be included in the analysis described in Section 5.2. The
46 participants between 7 and 12 years of age (M = 9.37, SD = 1.2)
who completed at least one CT measure in both visits and were not
excluded from analysis for the reasons listed above are included in
the following analyses.

First, we fit an omnibus mixed effects regression model to
the data to examine whether CT scores differed between the
start of the camp week and the end of the camp week. Because
the scoring methods used in the WISC-III and Leiter-R differ,
CT scores were standardized within their respective subtask
before being combined into a single variable representing CT
scores across the three measures. This combined variable was

Frontiersin Psychology

regressed on fixed effects of age, version order (A-B/B-A), and
the main effects and interaction terms between CT measure
(decomposition/sequencing/abstraction), time-point (pre/post),
and condition (coding-related camp/non-coding camp) while
treating participants as a random effect (modeled using the R
ImerTest package; Kuznetsova et al., 2017). An analysis of variance
of this model using Satterthwaite’s method is shown in Table 3.
Including the sustained attention measure as a covariate yielded the
same pattern of results.

The interaction between time-point and condition was of
particular interest in this analysis, which would indicate whether
participants in coding-related camps exhibited a greater change
in CT performance than those in non-coding camps. However,
the results reveal that this interaction reaches only marginal
significance, F(1,214) = 2.91, p = 0.090. Mean CT measure z-scores
in the non-coding camp condition improve from visit one (M = -
0.21, SD = 0.96) to visit two (M = 0.11, SD = 1.00) while scores in
the coding camp condition decrease from visit one (M = 0.15, SD =
0.93) to visit two (M = 0.11, SD = 1.07; see Figure 4).

5.2 Relation between CT and programming
proficiency

Next, we investigate the relationship between measures of
cognitive CT constructs and programming proficiency by fitting
a multiple regression model. To this end, we conduct a multiple
regression analysis fitting programming experience to predictors
representing main effects for each of the CT measures as well
as a predictor for the main effect of age. The scores of each
CT measure were standardized using z-score transformations and
age was mean-centered. While holding fixed the main effects of
sequencing, abstraction, and age, the model reveals a significant
main effect of decomposition g = 1.23, #(24) = 2.14, p = 0.010
(see Figure5). No significant main effect of sequencing score
(p = 0.910), abstraction score (p = 0.194), or age (p = 0.184)
were revealed. Correlations between CT measures revealed no
relationship between decomposition scores and abstraction scores

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

10.3389/fpsyg.2025.1434453

21 2 2
1 14 11
7
o
Q
?
i Time Point
N
L 01 01 04 - Pre
>
@ - Post
[0}
=
|_
O
-1 -1 -1
-2 \ -2 -2 o
P:’e P(;st Plre Pclast cociing cor:trol
Coding Control
FIGURE 4
Plots demonstrating the interaction between condition and time point, characterized by an improvement in CT performance among attendees of
non-coding camps. Red diamonds represent group means.

95% confidence interval.

* * *
>
=
S 9 LR
© . . .
§ . o . .
i 6 . .0 * *
[@)]
= . *e e . . .
£
E * e * *
© 3
g * * * * *
o
0 e
-2 1 0 1 2 2 1 0 1 -2 1 0 1
Decomposition Score Sequencing Score Abstraction Score
FIGURE 5

Scatterplots showing relationships between programming proficiency and standardized CT measure scores in study 1. Gray shading represents the

r(27) = 0.318, p = 0.092 or between sequencing and abstraction
scores 1(27) = -0.03, p = 0.867. A moderate positive relationship
was revealed between decomposition and abstraction scores r(27)
=0.47,p=0.011.

Not every participant who completed the CT measures was able
to complete the non-CT cognitive tasks TACL and Track-It due
to time constraints. For this reason, main effect terms for TACL
and Track-it were excluded from this initial model. We conduct
an additional analysis using a model that includes these measures
and find that the main effect of decomposition score is maintained
with the variance explained by TACL and Track-It removed S
= 1.58, #(21) = 3.61, p = 0.002. Neither TACL nor Track-it, our
two general cognitive control conditions, are positively correlated

Frontiersin Psychology

with programming proficiency. In fact, we find a negative effect of
Track-It score f = -0.84, t(21) = -2.25, p = 0.035 and no effect of
TACL score (p = 0.595).

6 Study 1 discussion

In our investigation of changes in CT scores from visit one to
visit two, we observe that CT scores in the coding camp condition
stay about the same and CT scores in the non-coding camp
increase. Although this result did not match our expectations, given
that CT is not exclusive to coding experience and that many other
forms of activity are likely to draw on and improve CT skills, it

08 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

is not entirely surprising that CT skills among non-coding camp
attendees improves significantly over the course of one week of
summer camp sessions.

This set of findings indicates that, of those examined here,
decomposition is the only CT component that correlates with
programming proficiency across the various levels of prior
CS experience represented in the sample. The general lack of
improvement in CT ability as a result of attendance in STEM
summer camps is a possible indication that the time course of CT
development is relatively slow, resulting in a lack of observable
change in the relatively short instruction period of one week. A
second study is described in Section 7 which aims to extend these
findings by examining the same relationship between our cognitive
CT components and programming ability in a sample of public
elementary school students.

7 Study 2 method
7.1 Participants

Thirty-one children (14 males, 17 females) between the ages
of 9 and 11 (M = 9.83, SD = 0.36) were reruited from a class of
fouth grade students at a public elementary school in the Boulder
Valley School District. Prior to participation, parental consent
to participate was obtained via permission form. Child assent
to participate was also obtained in writing at the time of data
collection. In this school, 17.70% of students are in an English
Language Learner (ELL) program and 25.00% are eligible for free
or reduced-cost lunches. As compensation for participating in this
study, we offered the class a collection of children’s books for the
classroom.

7.2 Measures

The tasks used to measure decomposition and abstraction in
Study 1 (“Block Design” and “Repeated Patterns,” respectively)
were used once again in Study 2. In lieu of the WISC-III Picture
Arrangement task used to measure sequencing in Study 1, this
study employs a computer adaptation of the “Sequential Order”
subtask from the Leiter-R battery, which is the other measure
included in the fluid reasoning composite of the Leiter-R along
with “Repeated Patterns” (Roid and Miller, 2011). Like the “Picture
Arrangement” measure, the “Sequential Order” task requires the
participant to put a series of images into a logical order. The main
advantage of the “Sequential Order” task is that the images seen
on the cards are abstract designs rather than real-world scenes,
allowing one to complete the task with less prior world knowledge
than the WISC-III's “Picture Arrangement” task requires (see
Figure 6). The act of arranging sequences of these abstract designs
may appear quite different from arranging depictions of real-life
scenes (as in the Picture Arrangement task) on a surface level, but
at their core, these tasks capture the common skill of sequencing,
namely ordering items based on logical inference. Whether the
underlying logic relies on understanding of real-world cause and
effect or understanding an underlying rule governing a sequence,
the ability to order items based on that logic is the common

Frontiersin Psychology

10.3389/fpsyg.2025.1434453

ability that we intend to measure. Although we believe the WISC-
III’s “Picture Arrangement” task successfully captures this type of
logical inference, success in that task also depends heavily on an
understanding of the intentions of the agents involved and, in some
cases, cultural conventions and references, which might have been
less readily accessible to the participants of this study.

The three CT measures used in this study consist of the full
subtask, rather than being split into two versions as in Study
1. Scoring for the remaining subtask from the WISC-III, “Block
Design,” was conducted as described in Section 4.2 of Study 1. With
the measures consisting of the full subtask in this study, scaled
scores for the Leiter-R subtasks were determined by the number
of correct pattern segments and the participant’s age, as directed in
the Leiter-R manual (Roid and Miller, 2011).

The Lightbot programming game is administered once again,
and the progression measure is extracted from screen recordings
as a measure of programming proficiency. As in Study 1,
progression was defined as the number of consecutive levels that
participants completed within the minimum amount of time any
one participant spent playing the game, which coincidentally
matches the same cutoff used in Study 1: 4.8 minutes.

We include the Track-It task in study two in order to take into
account the variance within the ELL population of our sample. We
were forced to abandon the use of the Track-It task due to time
constraints.

7.3 Procedure

Due to scheduling constraints from collecting data in a school
setting, data for this study were collected in two sessions. In the first
session, participants completed the three CT measures on Windows
laptops using the keyboard and an external mouse. Participants first
completed the new sequencing task, followed by the decomposition
and abstraction tasks. In a separate session 1-2 weeks after the
first, participants completed the TACL language comprehension
task on pen and paper as an experimenter presented the items one-
by-one on a projector screen and read the sentences aloud to the
participants as a group. Finally, students were given the remainder
of the second session to play the Lightbot programming game on
Apple iPads.?

8 Study 2 results

As in Section 5.2 in Study 1, the analysis of data collected in
Study 2 consists of an examination of the relationship between
cognitive CT constructs and programming proficiency. Once again,
we conduct a multiple regression analysis fitting programming
experience to predictors representing main effects for each of
the CT measures as well as a predictors for the main effects of
language comprehension score and age. The scores of each CT
measure and the language comprehension score were standardized

2 This study was designed to replicate the pre-post analysis of Study 1
in elementary school students during a semester of CSEd. However, the
COVID-19 pandemic prevented collection of post-test data making pre-post

analysis impossible.

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

10.3389/fpsyg.2025.1434453

)

EoUev e

FIGURE 6

An screenshot of a trial from the computer adaptation of the Sequential Order task. Stimulus images adapted from Roid and Miller (2011), with

permission from Stoelting.

using z-score transformations and age was mean-centered. While
holding fixed the main effects of sequencing, abstraction, language
comprehension, and age, the model reveals a significant main effect
of decomposition 8 = 0.88, #(25) = 2.61, p = 0.015 (see Figure 7). No
significant main effect of sequencing score (p = 0.074), abstraction
score (p = 0.198), language comprehension (p = 0.378), or age
(p = 0.451) were revealed. Correlations between CT measures
revealed no significant relationship between decomposition scores
and sequencing scores r(29) = 0.30, p = 0.096, between sequencing
and abstraction scores r(29) = 0.26, p = 0.154, or between
decomposition and abstraction scores r(29) = 0.24, p = 0.198.

9 Study 2 discussion

These results indicate that decomposition correlates with
programming proficiency among fourth-graders with virtually no
previous CS experience, suggesting a similar pattern of results to
those observed in Study 1 but with a distinctly different population.
Despite the use of a different measure, sequencing ability still
appears not to be related to programming proficiency. The similar
pattern of results between the two studies represents compelling
support for the notion that decomposition is a prevalent part of CT
development, at least at the ages examined here.

10 Study 3 method
10.1 Participants

Participants were 25 children between the ages of 8 and 12 (M
=9.60, SD = 0.78) years who were current or previous participants
in at least one week-long STEM summer camp. All families with
children who were in our target age range and had signed up
to participate in a STEM summer camp were sent information
about the study. Those who expressed interest in having their child

Frontiersin Psychology

participate were sent links which directed them to the consent
and assent forms, and questionnaire, and behavioral tasks, all of
which were conducted online. We sent a $10 USD gift card to
each participant as compensation for their time. We did not collect
gender data for this sample.

10.2 Measures

The CT measures used in this task were the same ones used
in Study 2 adapted for online data collection. The same scoring
methods for the CT measures that were specified in study 2 were
used in this study. In addition to the CT measures, participants
answered questions about their previous programming experience
in a short questionnaire. In it, participants were asked to “select
all of the programming platforms, games, and languages” they
had previously used from a list that included Scratch, Bitsbox,
Hour of Code, Agent Cubes, Alice, Blockly, Code.org, Lightbot,
Code Combat, Bloxels, Python, and Javascript. They were also
permitted to write in other programming related activities that
were not listed. The programming experience measure we use
in the analysis of this experiment is calculated by summing the
total number of different programming platforms participants
reported using, including items in the list we provided and their
write-in answers.

10.3 Procedure

After completing parental consent and child assent forms,
children completed a short Qualtrics questionnaire about
their experience with programming with the help of their
parents. After
were directed to Pavlovia.org where the online CT measures

completing the questionnaire, participants

were conducted.

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
http://Pavlovia.org
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

10.3389/fpsyg.2025.1434453

FIGURE 7

95% confidence interval.

10.0 1 * * *
=
(&)
C
@ * * * * * *
© 751
= * * *
(o]
i— . .
(@)} * * * e e L
C
= R *
5 * * e
(@] * * * * *
o
o

0.0

2 -1 0 1 1 0 1 2 2 1 0 1 2
Decomposition Score Sequencing Score Abstraction Score

Scatterplots showing relationships between programming proficiency and standardized CT measure scores in study 2. Gray shading represents the

Decomposition Score
FIGURE 8

the 95% confidence interval.

. . .

8 * * *
C a
0 i . . .
8_
>
L
o
=
£
E
© 2
8)
d— * * .0 . .

0.0 . . .

-2 -1 0 1 -2 -1 0 1 -1 0 1

Sequencing Score

Scatterplots illustrating the relationship between programming experience and standardized CT measure scores in study 3. Gray shading represents

Abstraction Score

11 Study 3 results

The aim of this experiment was to examine the relationship
between programming experience and CT scores. Toward this
end, we use a multiple regression analysis fitting programming
experience to predictors representing main effects for each of
the CT measures as well as a predictor for the main effect of
age. The scores of each CT measure were standardized using z-
score transformations and age was mean-centered. One participant
was excluded from the analysis for missing data due to them
skipping an item in the CT measures. While holding fixed the
main effects of sequencing, abstraction, and age, the model reveals
a significant main effect of decomposition g = 1.18, #(19) = 2.14,
p = 0.045 (see Figure 8). No significant main effect of sequencing
score (p = 0.240), abstraction score (p = 0.774), or age (p = 0.621)
were revealed. Correlations between CT measures revealed no
relationship between decomposition scores and sequencing scores
r(23) = -0.07, p = 0.744 or between sequencing and abstraction
scores 7(23) = -0.07, p = 0.730. A moderate negative relationship

Frontiersin Psychology

was revealed between decomposition and abstraction scores r(23)
-0.41, p = 0.045.

12 Study 3 discussion

This final study reveals a similar pattern of results to the
previous two studies. Using a separate experience-based measure of
programming in place of an ability-based measure, we find that the
measure of decomposition is once again the only one that reliably
correlates. Together with the findings from the previous studies,
we interpret this result as converging evidence that decomposition
represents a prevalent cognitive component of CT development.

13 Implications and limitations

We set out to test the degree to which programming proficiency
correlates with cognitive measures theorized to index three skills
that are regularly used by the CS education community to

11 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

describe CT: decomposition, sequencing, and abstraction. The
present work reveals converging evidence over three studies that
decomposition, as measured by the “Block Design” task from
the WISC-III, correlates most reliably with both programming
proficiency and programming experience out of the three CT
components tested. One possible explanation for the fact that
our measures of sequencing and abstraction are not found to
significantly relate to programming proficiency is that they do not
successfully capture the targeted cognitive components of CT. That
is, the Picture Arrangement and Sequential Order measures may
not effectively index sequencing skill and the Repeated Patterns
task may not index abstraction as well as we theorized they might.
This was a possibility from the outset, given that validity of these
measures for capturing CT had not been established prior to this
study. Alternative measures attempting to isolate the cognitive
components of sequencing and abstraction might yield different
results. However, an additional limitation has to do with the fact
that the sources of our participants in these studies are families
associated with community partners, namely a local summer camp
and a class of fourth grade students at a local elementary school.
Therefore, our sample size is limited first by the finite number of
children who are involved in these programs, and second by the
number of families who opt into our study out of those who are
involved in these programs. These limitations result in small sample
sizes and relatively low statistical power. For this reason, we are
hesitant to draw strong conclusions about the lack of a relationship
between any cognitive components and programming proficiency
based on our results. Further, it is important to consider these
findings within the context of developmental change.

Cognitive components of CT may not develop in a
simultaneous or uniform manner as programming experience
is gained (Tsarava et al., 2022). The present studies examine
the relationship between CT components and programming
proficiency in children ages 7-12. Although abstraction and
sequencing were not found to correlate with programming
proficiency in these studies, it is possible that they emerge at
other stages of CT development. In the case of sequencing, for
example, children of this age have already spent years in school
learning sequencing skills through following instructions and
story-telling activities. That is, the development of sequencing
skills may reach a plateau by this stage, whereas children at earlier
stages of development may still be growing in their ability to
sequence, therefore being more likely to exhibit more variability
in sequencing skills reflecting their individual experiences. In
fact, Kazakoff et al. (2012) reports significant gains in sequencing
ability as a result of robotics training among kindergarten students,
a population much younger than the ones we draw from for
this work. Conversely, the abstraction skill may be somewhat
more developmentally advanced than the other two components
measured here, such that children at this developmental stage lie
at a relatively low plateau of abstraction ability that may precede a
substantial improvement in years to come. Thus, the correlation
revealed between decomposition and programming proficiency
could indicate an intermediate level of CT development within
our sample characterized by growth of decomposition skills and
relatively static sequencing and abstraction skills. This description
of subsequent stages of sequencing, decomposition, and abstraction
development represents just one possible way that various stages

Frontiersin Psychology

12

10.3389/fpsyg.2025.1434453

might progress. CT development would also likely include many of
the CT components that did not fall within the scope of this work.
The possibility of this complex development pattern highlights
the importance of measuring various cognitive components of CT
individually and at different stages of development.

The Lightbot game, having been designed as a teaching
tool rather than an assessment tool, also reflects the stages of
CT development detailed above in its level design. Sequencing
elements, for example, are present throughout the game from
the first level, wherein the player will learn that they need to
navigate their avatar to stand on a goal destination before using
the command to light the goal and complete the level. Soon after,
the game begins to place more emphasis on decomposition with
more complex levels that encourage the player to break down the
level space not only into individual spaces, but also sets of spaces,
in order to progress efficiently. For example, level five includes
two goal spaces, the second of which can be reached using a
sequence identical to that used to reach the first. A child with a
high level of decomposition ability will recognize that the problem
can be broken into two smaller, identical problems and progress
through this level more quickly than children with a lower degree
of decomposition skill. At this point in the game, both sequencing
and decomposition are needed, but if there were no problems
progressing through the first few levels, then decomposition is more
likely to be the limiting factor here. The abstraction elements of
the game come into play last according to the Gouws et al. (2013)
analysis, which concluded that abstraction is less prominently
represented until the introduction of functions, which does not
occur until the game’s ninth level. Few of the participants were
able to reach the ninth level within the relatively short time cutoff
used for the programming proficiency measure. Even among those
who were eventually able to reach it after the time cutoff, only
one progressed past level nine by more than three additional
levels. Thus, it seems that multi-stage development of CT-related
cognitive abilities is reflected in the progression chosen by Lightbot
game designers to teach crucial coding concepts to its players.

Further research examining the development of CT across an
extended period of programming training is required to directly
test this multi-stage theory of CT development. Initially, the
second study presented here was intended to do just that by using
a pre-post design to study programming and CT development
throughout a semester of CS education. Unfortunately, the
COVID-19 pandemic prevented the collection of post-test data.
Although we were unable to establish a causal relationship,
the finding that decomposition correlated with programming
proficiency in all three studies carries meaningful implications for
the assessment of CT, as well as the instruction of CS, on its
own. The existence of a programming-independent index of CT
would allow for its measurement whether the child in question
has a substantial amount of programming experience or not. It
would also be useful for comparing the CT ability of children
with experience in different programming languages or comparing
the contributions of specific CS education programs to the
development of different components of CT. From an educational
perspective, it may be beneficial for interventions aimed at
improving CT in this age range to incorporate programming as a
means to improve decomposition skills while other supplementary
activity may be required to target other CT components.

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

It is worth noting that this work revealed a relationship between
programming proficiency and a single measure of decomposition.
It is an open question as to whether the this relationship would
hold for other decomposition measures, specifically those that draw
less heavily on spatial reasoning. Previous work has shown that
certain general intelligence factors including spatial reasoning as
well as fluid reasoning and working memory correlate with CT
ability (Ambrésio et al.,, 2014; Roman-Gonzalez et al., 2017). As
mentioned in Section 2, these cognitive constructs are so broad that
it is difficult to say whether CT correlates with general intelligence
as a whole or if it selectively relates to narrower subdivisions
of it. Such broad constructs also inherently involve multiple CT
components, making them poor measures of individual aspects of
CT. Despite our attempt to adopt measures that more selectively
target specific components of CT, the studies reported here suffer
the same difficulties to some, though hopefully a somewhat lesser,
degree. For example, although we selected the “Block Design”
task for the fact that it requires decomposition-related problem-
solving strategies, it also requires spatial reasoning ability. In fact,
in the context of the WISC-III battery from which it was taken,
the “Block Design” task was designed to measure visuo-spatial
reasoning. Therefore, in the first two studies presented here, there
is no means to separate the contributions of decomposition and
spatial reasoning in the “Block Design"-Lightbot relationship. The
results of the third study, however, show that performance on
the “Block Design” task also correlates with an experience-based
programming measure that is independent of participants” spatial
reasoning abilities, suggesting that the results of the previous
studies do not solely reflect the shared spatial reasoning elements
of the two tasks.

14 Conclusions and further research

The present work builds on previous work testing the
theoretical claims of CT transfer effects by examining how
programming proficiency relates to specific cognitive components
of CT. We have identified at least one cognitive component that,
measured using a task from a cognitive testing battery, reliably
coincides with both programming proficiency and quantity of
programming experience. This work represents a first step toward
investigating CT transfer by examining CT at the level at which it is
described in the CSEd literature.

Future work should explore other cognitive measures as
indexes of abstraction and sequencing, given the possibility that
ours failed to capture those target cognitive CT skills. Other
measures of decomposition and programming proficiency should
also be tested. To extend on the work presented here, for example,
a measure of decomposition that is less reliant on spatial reasoning
could be used to tease apart the relationships between visuo-spatial
ability, decomposition skill, and programming proficiency in this
age range. In addition, for a clearer understanding of the nuances
of CT development, future research should extend this work by
examining a wider range of basic cognitive components and at
various stages of CT development. To understand the impact of the
ubiquity of CSEd in early school years, it is important to continue
to improve our understanding of the development of the basic
cognitive components that comprise Computational Thinking.

Frontiersin Psychology

13

10.3389/fpsyg.2025.1434453

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Institutional
Review Board, University of Colorado Boulder. The studies were
conducted in accordance with the local legislation and institutional
requirements. Written informed consent for participation in this
study was provided by the participants’ legal guardians/next
of kin.

Author contributions

AJM: Conceptualization, Formal analysis, Investigation,
Methodology, Visualization, Writing - original draft, Writing -
review & editing. EC: Conceptualization, Funding acquisition,

Methodology, Writing — original draft, Writing - review & editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
by an Outreach Award and a LEAP grant from the University of
Colorado Boulder awarded to EC. Publication of this article was
funded in part by the University of Colorado Boulder Libraries
Frontiers membership fund awarded to AJM.

Acknowledgments

We thank Dr. Akira Miyake (University of Colorado
Boulder) and Dr. Lei Yuan (University of Colorado Boulder) for
commentary on previous versions of this work and undergraduates
Rebecca Benjamin-Pollack, Stevie Spinelli, Alejandra Vargas, and
Kylie Hunter for their assistance with data collection. We would
also like to thank all of the families of the children that participated
in these experiments.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1434453
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

Mertens and Colunga

Ambrésio, A. P., Xavier, C., and Georges, F. (2014) “Digital ink for cognitive
assessment of computational thinking,” in 2014 IEEE Frontiers in Education Conference
(FIE) (Madrid: IEEE), 1-7. doi: 10.1109/FIE.2014.7044237

Barr, V., and Stephenson, C. (2011). Bringing computational thinking to K-12: what
is involved and what is the role of the computer science education community? ACM
Inroads 2, 48-54. doi: 10.1145/1929887.1929905

Brennan, K. and Resnick, M. (2012). “New frameworks for studying and assessing
the development of computational thinking,” in Proceedings of the 2012 Annual Meeting
of the American Educational Research Association, Vol. I (Vancouver: AERA), 25.

Carrow-Woolfolk, E. and Allen, E., (2014). TACL-4/TEXL Comprehensive Scoring
Supplement. Austin, TX: PRO-ED Inc.

Dalton, D. W., and Goodrum, D. A. (1991). The effects of computer programming
on problem-solving skills and attitudes. J. Educ. Comput. Res. 7, 483-506.
doi: 10.2190/762V-KV6T-D3D1-KDY2

Degelman, D., Free, J. U, Scarlato, M., Blackburn, J. M., and Golden, T. (1986).
Concept learning in preschool children: effects of a short-term Logo experience. J. Educ.
Comput. Res. 2, 199-205. doi: 10.2190/RH2K-4AQ7-2598-TVEA

Fisher, A., Thiessen, E., Godwin, K., Kloos, H., and Dickerson, J. (2013). Assessing
selective sustained attention in 3- to 5-year-old children: evidence from a new
paradigm. J. Exp. Child Psychol. 114, 275-294. doi: 10.1016/j.jecp.2012.07.006

Gouws, L., Bradshaw, K., and Wentworth, P. (2013). “Computational thinking in
educational activities: An evaluation of the educational game Light-Bot,” in Proceedings
of the 18th ACM conference on Innovation and technology in computer science education
(New York, NY: ACM), 10-15. doi: 10.1145/2462476.2466518

Grover, S., Pea, R., and Cooper, S. (2015). Designing for deeper learning in a blended
computer science course for middle school students. Comput. Sci. Educ. 25, 199-237.
doi: 10.1080/08993408.2015.1033142

ISTE and CSTA (2011). Operational Definition of Computational Thinking for K-12

Education. National Science Foundation. Available online at: https://cdn.iste.org/www-
root/Computational_Thinking Operational_Definition_ISTE.pdf

Kazakoff, E. R., Sullivan, A., and Bers, M. U. (2012). The effect of a classroom-
based intensive robotics and programming workshop on sequencing ability in
early childhood. Early Childhood Educ.]. 41, 245-255. doi: 10.1007/s10643-012-05
54-5

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017).
ImerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1-26.
doi: 10.18637/jss.v082.i13

Liao, Y.-k. C,, Bright, G. W. (1991). Effects of computer programming on cognitive
outcomes. J. Educ. Comput. Res. 7,251-268. doi: 10.2190/E53G-HH8K-AJRR-K69M

Lye, S. Y., and Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: what is next for K-122 Comput. Hum.
Behav. 41, 51-61. doi: 10.1016/j.chb.2014.09.012

Frontiersin

14

10.3389/fpsyg.2025.1434453

Papert, S. A. (1980). Mindstorms; Children, Computers and Powerful Ideas. New
York, NY: Basic Books.

Peirce, J., Gray, J. R., Simpson, S., Macaskill, M., Hochenberger, R., Sogo, H., et
al. (2019). PsychoPy2: experiments in behavior made easy. Behav. Res. Methods 51,
195-203. doi: 10.3758/s13428-018-01193-y

Resnick, M., Maloney, J., Monroy-Hernindez, A., Rusk, N., Eastmond, E.,
Brennan, K., et al. (2009). Scratch: programming for all. Commun. ACM 52, 60-67.
doi: 10.1145/1592761.1592779

Roid, G. H., and Miller, L. J. (2011). “Leiter international performance
scale, revised} in Encyclopedia of Clinical Neuropsychology, eds. J. S.
Kreutzer, J. DeLuca, and B. Caplan (New York, NY: Springer), 1448-1449.
doi: 10.1007/978-0-387-79948-3_1562

Romdn-Gonzalez, M., Pérez-Gonzélez,]. C., and Jiménez-Fernindez, C.
(2017). Which cognitive abilities underlie computational thinking? Criterion
validity of the Computational Thinking Test. Comput. Hum. Behav. 72, 678-691.
doi: 10.1016/j.chb.2016.08.047

Rowe, E., Asbell-Clarke, J., Almeda, M. V., Gasca, S., Edwards, T., Bardar, E., et
al. (2021). Interactive assessments of CT (IACT): Digital interactive logic puzzles to
assess computational thinking in grades 3-8. Int. J. Comput. Sci. Educ. Sch. 5, 28-73.
doi: 10.21585/ijcses.v5i1.149

Scherer, R., Siddig, F., and Viveros, B. S. (2019). The cognitive benefits of learning
computer programming: a meta-analysis of transfer effects. J. Educ. Psychol. 111,
764-792. doi: 10.1037/edu0000314

Swan, K., Albany, S., and Papert, S. (1991). Programming objects to think with:
logo and the teaching and learning of problem solving. J. Educ. Comput. Res. 7, 89-90.
doi: 10.2190/UX0M-NHM2-1G5X-01X4

Tsarava, K., Moeller, K., Roman-Gonzélez, M., Golle, J., Leifheit, L., Butz, M. V.,
et al. (2022). A cognitive definition of computational thinking in primary education.
Comput. Educ. 179, 1-14. doi: 10.1016/j.compedu.2021.104425

Wechsler, D., Kort, W., Schittekatte, M., Bosmans, M., Compaan, E., Dekker, P., et
al. (1992). WISC-III-NL| Wechsler Intelligence Scale for Children-III (San Antonio, TX:
Psychological Corporation).

Wing, J. M. (2006).
doi: 10.1145/1118178.1118215

Computational thinking. Commun. ACM 49:33.

Wing, J. M. (2014). “Computational thinking benefits society,” in 40th Anniversary
Blog of Social Issues in Computing (New York, NY: Academic Press), 26.

Wing, J. M. (2017). Computational thinking’s influence on research and education
for all. Ital. J. Educ. Technol. 25, 7-14.

Yaroslavski, D. (2014). How does lightbot teach programming? Available online at:
https://www lightbot.com/lightbot_howdoeslightbotteachprogramming.pdf (accessed
December 28, 2024).

https://doi.org/10.3389/fpsyg.2025.1434453
https://doi.org/10.1109/FIE.2014.7044237
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.2190/762V-KV6T-D3D1-KDY2
https://doi.org/10.2190/RH2K-4AQ7-2598-TVEA
https://doi.org/10.1016/j.jecp.2012.07.006
https://doi.org/10.1145/2462476.2466518
https://doi.org/10.1080/08993408.2015.1033142
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
https://doi.org/10.1007/s10643-012-0554-5
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.2190/E53G-HH8K-AJRR-K69M
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1007/978-0-387-79948-3_1562
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.21585/ijcses.v5i1.149
https://doi.org/10.1037/edu0000314
https://doi.org/10.2190/UX0M-NHM2-1G5X-01X4
https://doi.org/10.1016/j.compedu.2021.104425
https://doi.org/10.1145/1118178.1118215
https://www.lightbot.com/lightbot_howdoeslightbotteachprogramming.pdf
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Assessing cognitive components of computational thinking
	1 Introduction
	2 Background
	3 Current studies
	4 Study 1 method
	4.1 Participants
	4.2 Measures
	4.3 Procedure

	5 Study 1 results
	5.1 CT in STEM summer camps
	5.2 Relation between CT and programming proficiency

	6 Study 1 discussion
	7 Study 2 method
	7.1 Participants
	7.2 Measures
	7.3 Procedure

	8 Study 2 results
	9 Study 2 discussion
	10 Study 3 method
	10.1 Participants
	10.2 Measures
	10.3 Procedure

	11 Study 3 results
	12 Study 3 discussion
	13 Implications and limitations
	14 Conclusions and further research
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

