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Modeling the arousal potential of
epistemic emotions using
Bayesian information gain: a
framework for inquiry cycles
driven by free energy fluctuations

Hideyoshi Yanagisawa* and Shimon Honda

Graduate School of Engineering, The University of Tokyo, Tokyo, Japan

Epistemic emotions, such as curiosity and interest, drive the inquiry process.

This study proposes a novel formulation of these emotions using two types

of information gain derived from the principle of free energy minimization:

Kullback–Leibler divergence (KLD), representing free energy reduction through

recognition, and Bayesian surprise (BS), representing free energy reduction via

Bayesian updating. Conventional Gaussian models predict an infinite divergence

in information gain (KLD and BS) as prediction error increases, which contradicts

the known limits of human cognitive resources. The key novelty of this

study lies in a simple yet impactful modification: incorporating a uniform

distribution into the Gaussian likelihood function to model neural activity under

conditions of large prediction error. This modification yields an inverted U-

shaped relationship between prediction error and both KLD and BS, producing

a finite peak in information gain that better reflects cognitive realism. Based

on this convexity, we propose that alternating the maximization of BS and KLD

generates an ideal inquiry cycle that fluctuates around an optimal arousal level,

with curiosity and interest driving this process. We further analyze how prediction

uncertainty (prior variance) and observation uncertainty (likelihood variance)

a�ect the peak of information gain. The results suggest that greater prediction

uncertainty (reflecting open-mindedness) and lower observation uncertainty

(indicating focused observation) promote higher information gains through

broader exploration. This mathematical framework integrates the brain’s free

energy principle with arousal potential theory, providing a unified explanation of

the Wundt curve as an information gain function and proposing an ideal inquiry

process driven by epistemic emotions.

KEYWORDS

emotion, free energy, Bayes, arousal, curiosity, interest, inquiry

1 Introduction

Inquiry is an essential cognitive process in human activities such as scientific research,

creation, and education. American philosopher Charles Sanders Peirce defines inquiry

as a cycle of three inferences: abduction, deduction, and induction (Peirce, 1974). In the

observation of surprising phenomena, abduction infers a possible cause of the observation,

deduction predicts unknown effects based on the inferred cause, and induction tests

the prediction and updates causal knowledge. A voluntary inquiry process is facilitated
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by epistemic emotions such as surprise, curiosity, interest, and

confusion (Kashdan and Silvia, 2009; Vogl et al., 2020). Epistemic

emotions drive exploratory behavior to obtain new information

rather than pursue rewards. For example, psychologist Berlyne

proposed epistemic curiosity, which promotes information-seeking

behavior. He defined two types of epistemic curiosity: diversive

and specific (Berlyne, 1966; Silvia, 2012). Diversive curiosity seeks

novelty; thus, in this type of curiosity, surprise triggers abductive

reasoning. On the other hand, specific curiosity drives induction,

which seeks evidence of deductive reasoning to resolve confusion.

Emotions are generally mapped onto a dimensional space

(Lang, 1995; Russell, 1980). The most commonly used dimensions

are arousal and valence, termed the core affect (Russell, 2003).

Arousal is the intensity of emotions, whereas valence is the

dimension of the positive and negative poles. A recent functional

magnetic resonance imaging (fMRI) study showed that arousal

and valence are correlated with neural activity in the orbitofrontal

cortex and amygdala, respectively (Wilson-Mendenhall et al.,

2013). The emotional dimensions are not independent, and arousal

affects valence. Berlyne’s arousal potential theory suggests that an

appropriate level of arousal potential induces a positive hedonic

response, whereas extreme arousal induces a negative response

(Berlyne, 1960). Thus, valence forms an inverse U-shaped function

of the arousal potential, termed the Wundt curve (see Figure

4 in Berlyne, 1970). Berlyne suggests that epistemic curiosity

approaches the optimal arousal potential, where the hedonic

response (or positive valence) is maximized (Berlyne, 1960, 1966;

Silvia, 2012).

Berlyne also illustrated a number of arousal potential factors,

such as novelty, complexity, and uncertainty (Berlyne, 1960).

Yanagisawa mathematically explains that the free energy, which is

information on the brain’s prediction error or Shannon’s surprise

(hereafter, surprise; Friston et al., 2006), represents the arousal

potential because free energy is decomposed into information

quantity terms representing perceived novelty, complexity, and

uncertainty (Yanagisawa, 2021). This free-energy arousal model

suggests that an appropriate level of free energy or surprise induces

a positive emotional valence based on Berlyne’s Wundt curve,

which is supported by experimental evidence (Honda et al., 2022;

Sasaki et al., 2024).

By contrast, the free energy principle (FEP; Friston et al., 2006),

known as the unified brain theory (Friston, 2010), suggests that the

brain must minimize its free energy during perception and action.

Previous studies have proposed that decreasing and increasing

free energy (or expected free energy) correspond to positive and

negative valence, respectively (Clark et al., 2018; Hesp et al., 2021;

Joffily and Coricelli, 2013; Seth and Friston, 2016; Wager et al.,

2015; Yanagisawa et al., 2023), and that high and low free energies

indicate uncertain and certain states, respectively. Reducing free

energy resolves uncertainty and produces positive emotions.

The FEP argument that minimizing free energy corresponds

to a positive valence seems to contradict the argument of arousal

potential theory that an appropriate level of arousal potential

[represented by free energy (Yanagisawa, 2021)] maximizes positive

valence. To resolve this contradiction and integrate the FEP-based

valence and arousal potential theories, we propose a novel valence

framework based on the theory that a decrement in free energy

and its expectation explains the valence of epistemic emotions.

A decrease in free energy represents information gain and an

epistemic value (Friston et al., 2017; Parr et al., 2022). The more

information gain (epistemic value) one obtains or expects, themore

positive the valence one experiences.

Based on this framework, we formulated emotion valence

functions of arousal potential using reduction in free energy (i.e.,

information gains). Conventional Bayesian models (Section 3.1)

that rely solely on Gaussian distributions predict infinite emotion

valence as prediction error increases—an outcome that contradicts

the known limits of human cognitive resources (Sweller, 2011;

Taylor et al., 2022; Paas et al., 2003). The key novelty of this study

lies in a simple modification: adding a uniform distribution to

the likelihood function in a Gaussian generative model (Section

3.2). This modification models the influence of spontaneous neural

firing activity (Raichle, 2006), which is thought to dominate in

regions far from the mode of the likelihood function, where the

Laplace approximation should not be applied. With this modeling,

we show that the emotion valence function exhibits an inverted U-

shape with respect to surprise, yielding a finite peak that aligns with

the cognitive constraint of limited resources.

Furthermore, we analyzed the effects of prediction error and

uncertainties on the peaks of the valence functions (Section 3.3).

We associated epistemic emotions such as curiosity and interest

with the free-energy-based valence model. Based on these analyses,

we proposed an inquiry cycle model grounded in epistemic

emotions derived from the free energy principle (Section 4.1).

The hypothesis of this study is as follows:

Hypothesis: By adding a uniform distribution to the

likelihood function of a Gaussian generative model, the

epistemic valence function exhibits an inverted U-shape with

respect to surprise.

2 Materials and methods

2.1 Free energy formulations

FEP suggests that the brain must minimize its free energy

through recognition, action, and learning (Friston et al., 2006).

Assume an agent recognizes a hidden state s as a cause of a

given observation o. We assume that the agent has a generative

model p(s, o) as its knowledge about the probabilistic relationship

between hidden states and observation and a recognition density

q(s) of hidden states. The free energy is defined as a function of

an observation representing the difference between a recognition

density and a generative model averaged by the recognition density

in terms of their energies (negative log probability).

F=
〈

ln q (s)− ln p (s,o)
〉

q(s)
(1)

The free energy represents the prediction error of recognition

from the knowledge, i.e., the generative model. It refers to

uncertainty and the prediction error of signals in a Bayesian

brain theory (Knill and Pouget, 2004). The first and second terms

on the right-hand side denote the negative-state entropy and
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internal energy, respectively. Thus, the definition corresponds to

the Helmholtz free energy when the temperature is one.

With the definition of conditional probability, the generative

model is factorized into true posterior and evidence: p (s, o) =
p(s|o)p(o). With this factorization, the free energy is expanded to

the summation of a Kullback–Leibler (KL) divergence and Shannon

surprise (hereafter referred to as surprise).

F = DKL

[

q(s)||p (s|o)
]

− ln p(o) (2)

The first-term KL divergence forms the true posterior

to the recognition density, which represents a statistical

difference between the two distributions: DKL[q(s)|
∣

∣p (s|o)
]

=
〈

ln q (s) − ln p (s|o)
〉

q(s)
. When the recognition approximates the

true posterior to minimize free energy by the belief updating, the

KL divergence becomes zero, and the free energy is approximated

to the second term, i.e., surprise. Thus, the lower bound of free

energy is surprise. Surprise is a negative log of the model evidence,

p(o), and refers to the information content used to process given

observations, representing cognitive load (Yanagisawa, 2021).

The generative model is decomposed to a state prior p(s) and a

likelihood function p (o|s ).

p(s, o) = p(s)p (o|s) (3)

With this decomposition, free energy is expanded to another

two terms.

F = DKL

[

q(s)||p (s)
]

−
〈

ln p (o|s)
〉

q(s)
(4)

The first term is a KL divergence of state prior to recognition.

This term represents the complexity of the generative model. The

second term is the difference between likelihood and recognition.

This term indicates negative model accuracy. Thus, minimizing the

free energy signifies minimizing the complexity and maximizing

the accuracy of the model.

2.2 Information gain in recognition

Assume that an initial recognition density before Bayesian

belief-updating is approximated to the state prior p(s). The initial

free energy F0 is a summation of KL divergence and surprise.

Fo =
〈

ln p (s) − ln p (s, o)
〉

p(s)
= DKL

[

p(s)||p (s|o)
]

− ln p(o) (5)

The recognition density approximates the true posterior by

minimizing the free energy. The KL divergence becomes zero,

and the free energy reaches its lower bound FR, corresponding

to surprise.

q(s) : p(s) → p(s|o), FR = − ln p(o) (6)

The decrease in free energy from before to after belief-updating

in the recognition process is equivalent to the KL divergence from

the true posterior to the initial recognition, KLD. Herein, KLD

denotes the information gain from recognizing the causal state of

a given observation.

1FR = F0 − FR = KLD = DKL

[

p(s)||p (s|o)
]

(7)

A greater KLD indicates that the recognition of an observation

under a policy provides greater information gain. Thus, KLD

represents the epistemic value of recognizing an observation.

This suggests that an agent prefers to recognize observations

with a greater KLD. Therefore, we infer that KLD increases

positive valence by increasing information gain (epistemic value)

in recognition.

2.3 Information gain expected from
Bayesian updating prior belief: Bayesian
surprise

The free energy minimized by a recognition, FR, approximates

surprise. The minimized free energy equals the sum of complexity

and inverse accuracy with a recognition approximated to the true

posterior, q (s) ≈ p (s|o ).

FR = − ln p (o) = BS+ U (8)

BS = DKL

[

p(s|o)||p(s)
]

(9)

U = −
〈

ln p (o|s)
〉

p(s|o) (10)

The complexity and inverse accuracy terms represent the

Bayesian surprise BS and perceived uncertainty U, respectively,

and their summation (surprise) denotes the arousal potential

(Yanagisawa, 2021). The Bayesian surprise, BS, is a KL divergence

from posterior to prior, i.e., the deviation of recognition from

prior expectation of states. The difference between surprise and

BS is that the former is information about observation, whereas

BS is information gain about states. BS represents the novelty

of the recognized observation and is correlated with the human

surprise response to novel stimuli (Yanagisawa et al., 2019). This

may be because states are perceivable, but observations are not.

The surprise response decreases with repeated exposure to the same

novel stimuli. Such habituation is formulated as a decrease in BS in

the Bayesian update of the prior (Ueda et al., 2021).

When handlingmultiple, sequential, observations o1, o2, which

are assumed to be independent and identically distributed (i.i.d.)

and generated from the same hidden state, s, the computation of the

posterior distribution p (s | o1, o2) can be approached in two ways.

The first approach is to compute the posterior in a single stem as:

p (s | o1, o2) = p(s) p(o1 | s) p(o2 | s)/p(o1, o2). Alternatively, this
process can be interpreted as a two-step update. In the first step, the

posterior based on the initial observation is computed: p (s | o1) =
p(s) p(o1| s)/p(o1). Subsequently, the posterior is updated based on

the second observation: p (s| o1, o2) = p (s | o1) p(o2 | s)/p(o2 | o1).
In this formulation, the posterior distribution obtained from the

first observation effectively serves as the prior for the second

update. In this study, we adopt the latter, sequential interpretation.

This perspective implies that following the first update—prior to

observing o2–the initial prior p(s) is effectively replaced by the

posterior p(s | o1). Furthermore, the KL divergence associated with

this update becomes zero, since the approximate posterior q(s) is

identical to the true posterior after the first update: (i.e., BS =
DKL[q(s)||p (s|o1)] = 0, where q(s) = p(s|o1)). Consequently, the
free energy decreases to the inverse accuracy term. We refer to this

term as uncertainty because it refers to the perceived uncertainty
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(Yanagisawa, 2021). Thus, the lower bound of free energy after the

prior updating is the uncertainty, FL ≤ U, whereas the upper

bound of the free energy decrease is the Bayesian surprise, BS.

1FL = FR − FL ≤ BS (11)

Herein, BS is equivalent to the maximum information gain

expected from the prior update based on i.i.d observations. A

greater BS denotes a greater information gain expected from

the update. Thus, BS represents the expected epistemic value

given by the model (prior) update or learning. This suggests

that an agent prefers novel observations with a greater BS,

which is expected to provide a chance to learn new information

(update its own generative model). Therefore, we infer that BS

increases emotional valence in anticipation of information gain

from updating prior beliefs.

2.4 Linking free energy reduction,
information gain, and arousal potential

The free energy given an observation o decreases by KLD as

the first information gain when one succeeds in recognizing the

state as a cause of the observation. The minimized free energy

approximates surprise. The surprise is a summation of BS and U.

When one’s prior is updated to the posterior, the free energy is

decreased by BS, which is the expected second information gain.

The upper bound of the total free energy reduction (or

information gain) from recognizing and updating state beliefs,

given an observation, is a summation of the two KL divergences,

i.e., information gain.

1FR + 1FL ≤ KLD+ BS = DKL

[

p(s)||p (s|o)
]

+ DKL

[

p(s|o)||p (s)
]

≡ IG (12)

We consider that the total information gain represents the

epistemic values that explain the emotional valence of the arousal

potential. Figure 1 shows the link between the two types of KL

divergences (KLD and BS), as well as the total information gains

(IG) and inverse-U-shaped function of arousal potential (F).

The two types of KL divergence denote the difference between

the prior and posterior. When the posterior given observation

is the same as the prior, the KL divergences are zero, and

the observation provides minimum free energy and minimum

surprise (or maximum evidence). Hence, an observation that

provides minimal free energy does not provide any KL divergence

or information gain. When the prediction error and surprise

(minimized free energy) are small, both KLD and BS are small,

and thus, the information gain or epistemic value-based valence is

small [Figure 1 (a)]. To provide epistemic value with an emotional

valence, given information gain, a certain level of surprise

representing arousal potential (Yanagisawa, 2021) is required by

observing unexpected outcomes that give certain KL divergences

[Figure 1 (b)]. However, if the likelihood of an observation is far

from the prior distribution, where the likelihood does not provide

any information, the posterior is not updated from the prior.

In this case, the KL divergences are small, and the observation

provides little information [Figure 1 (c)]. Therefore, we consider

that an appropriate level of surprise maximizes the KL divergences

(information gains) and that an appropriate level represents the

optimal arousal potential that maximizes the positive valence for

its epistemic value.

KL divergence is an asymmetric operation. Hence, although

both KL divergences, KLD and BS, denote differences between

the prior and posterior, they are different from each other.

This suggests that the two KL divergences as functions of

surprise are different. KLD signifies information gain due to

recognition, whereas BS signifies maximum information gain

expected from updating prior beliefs based on i.i.d. observations.

This suggests that maximizing KLD and BS are different strategies

for approaching the optimal arousal level that maximizes the total

epistemic value with a positive valence.

2.5 Analytical methodology

We modeled the two information gains, KLD and BS, as

functions of surprise using a Gaussian-like generative model with

a flat likelihood of uniform noise and demonstrated that the two

functions, KLD and BS, form an inverse-U shape and have different

peaks. Using the function model, we analyzed the effect of Gaussian

parameters, the difference between the prior mean and likelihood

peak as prediction error (Yanagisawa, 2016), variance of prior as

prediction uncertainty, and variance of likelihood as observation

uncertainty on the peaks of the information gain functions. From

the analysis, we elucidated the conditions for optimal prediction

errors and uncertainties of prediction and observation to maximize

the information gains in an ideal inquiry process.

3 Results

3.1 Gaussian model of information gains

In this section, we derive the standard expressions of

information gain without applying the key assumption of this

study, adding a uniform distribution to the likelihood function.

The results with the uniform distribution added are presented in

Section 3.2.

In our analysis, we adopted the Gaussian Bayesian model. The

Gaussian Bayesian model has been used in past research studies

to analyze the characteristics of free energy and Bayesian surprise

(Buckley et al., 2017; Yanagisawa et al., 2023; Yanagisawa, 2021).

The Laplace approximation suggests that a Gaussian distribution is

applied around the mode of unknown distributions. Furthermore,

the Gaussian form allows independent manipulation of the mean

and variance of the distribution, making it well-suited for the

purpose of this analysis, which aims to examine how the mean and

variance affect the KL divergence.

The distance between the prior mean and likelihood peak, δ,

represents prediction error; the variance of prior σ 2
p , represents

prior uncertainty; and the variance of likelihood σ 2
l
, represents

observation uncertainty. With a Gaussian likelihood function

p (o|s) = N(o, σ 2
l
) and a Gaussian prior distribution p (s) =

N
(

η, σ 2
p

)

≡ Npri, the posterior distribution is p (s|o) =
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FIGURE 1

Relationship between information gain as epistemic value and surprise as arousal potential. An appropriate level of surprise provides a large

information gain that decreases free energy potential.

N
(

ηpost , spost
)

≡ Npost , where spost =
σ 2
p σ 2

l

σ 2
p+σ 2

l

and ηpost =
σ 2
p o+σ 2

l
η

σ 2
p+σ 2

l

[see Equation 5 in Yanagisawa et al. (2019)].

The evidence p (o) is a marginal likelihood:

p (o) =
∫ ∞

−∞
p (o|s) p (s) ds = exp

[

−
δ2

2(σ 2
p + σ 2

l
)

]

≡ e(δ), (13)

where δ = η − o is a prediction error. The evidence e (δ)

is an inverse exponential function of the square of the prediction

error. The evidence exponentially decreases as the prediction error

increases. Surprise, the lower bound of free energy, is a negative

log function of evidence, i.e., − log p (o) = − log e (δ). Thus, the

surprise is a quadratic function of a prediction error.

Using this Gaussian model, we derive the information gains,

KLD and BS, as quadratic functions of the prediction error δ with

the coefficients of variance:

KLDN = DKL

(

p (s) ||p(s|o)
)

= AKLDδ2 + BKLD, (14)

where the coefficients are AKLD =
σ 2
p

2σ 2
l

(

σ 2
p+σ 2

l

) and BKLD =

− ln
σ 2
p+σ

2

l

σ 2
l

+
σ 2
p

σ 2
l

; and

BSN = DKL

(

p (s|o) ||p(s)
)

= ABSδ
2 + BBS, (15)

where the coefficients are ABS =
σ 2
p

2
(

σ 2
p+σ

2

l

)2 and BBS =

ln
σ 2
p+σ

2

l

σ 2
l

−
σ 2
p

σ 2
p+ σ

2

l

.

Since both AKLD and ABS are positive, prediction error always

increases both KLD and BS.

3.2 Convexity of information gain function
by considering uniform noise

This section presents the analytical results based on the

hypothesis of this study, in which a uniform distribution is added

to the Gaussian likelihood function.

The results in Section 3.1 suggest that, under the assumption

of a Gaussian likelihood function, information gain continues

to increase indefinitely as prediction error grows. However,

this prediction appears unrealistic when we consider the widely

accepted view that human cognitive resources are limited (Sweller,

2011; Taylor et al., 2022; Paas et al., 2003).

This unrealistic outcome stems from applying the Laplace

approximation even in regions with large prediction errors, that is,

areas far from the mode of the likelihood function.

The Laplace approximation approximates the shape of a

probability distribution near its mode (the most frequent value)

using a Gaussian distribution. Researchers should, therefore,

restrict its use to analyses around the mode. In fact, many active

inference studies (Baioumy et al., 2021; Lanillos et al., 2021; Priorelli

and Stoianov, 2023) apply this approximation based on the implicit

assumption that neural activity concentrates near the mode.

In contrast, this study focuses on information gain in

conditions with large prediction errors—that is, regions far
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from the mode—where the assumptions behind the Laplace

approximation may no longer hold.

The model used in Section 3.1, which assumes a Gaussian

likelihood function, has limitations when viewed considering

neuroscientific theories and empirical findings. According to the

rate-coding hypothesis, the likelihood function is encoded by the

distribution of neuronal firing rates. As the input moves away

from the mode, the value of the likelihood decreases exponentially,

approaching zero. If we align this behavior with the rate-coding

hypothesis, we must conclude that in regions far from the mode,

neurons almost completely stop firing—their firing rates approach

zero. However, empirical research in neuroscience (Raichle, 2006;

Destexhe et al., 2003) shows that neurons fire spontaneously at

low frequencies, even without external stimuli. In other words,

spontaneous spiking activity continues in the brain even when

no external input is present. Therefore, a model that uses only

a Gaussian likelihood function fails to reflect this spontaneous

neural activity.

This observation leads us to believe that, in regions far

from the mode, spontaneous activity—independent of external

stimuli—plays a more dominant role than stimulus-driven neural

responses, which tend to vanish. In this section, we aim to describe

information gain under large prediction errors more realistically.

To do so, we must better model the influence of neural activity in

regions where the Laplace approximation breaks down. Specifically,

following the approach of Jones (2016), we added an independent

uniform distribution with a very small constant probability ε

to the likelihood function to capture the effect of spontaneous

neural activity.

pε (o|s) = α(p (o|s) + ε), (16)

where α = 1/(1+ ε) is a coefficient for standardization.

This uniform likelihood addition flattens the tail of the

Gaussian likelihood function, as shown in Figure 2. The effect of the

Gaussian tail becomes negligible as the prediction error increases.

Therefore, we infer that adding uniform likelihood is the simplest

modelingmethod to represent the likelihood of spontaneous neural

activity and to ignore the effect of the Gaussian likelihood tail.

The evidence with the likelihood function is the Gaussian

evidence and the constant probability.

pε (o) =
∫ ∞

−∞
pε (o|s) p (s) ds = α(e (δ) + ε) (17)

Prediction error 

Prior Likelihood

Posterior

FIGURE 2

Gaussian Bayesian model with uniform likelihood. σ 2
p : prior variance,

σ 2
l : Gaussian likelihood variance, δ: prediction error, and ε:

probability of uniform likelihood.

Notably, surprise increases monotonically with respect to the

prediction error. We find that the posterior distributions with the

likelihood function form a weighted linear model of the Gaussian

posterior and prior.

pε (s|o) =
p (s) pε (o|s)

pε (o)
=

α(e (δ)Npost + εNpri)

α(e (δ) + ε)

= wpostNpost + wpriNpri, (18)

where wpost = e(δ)
e(δ)+ε

and wpri = ε
e(δ)+ε

are the standardized

linear weights. When the prediction error is small, the term εNpri

is negligible because ε is very small compared to e (δ). In this case,

the posterior is approximated to the Gaussian posterior, pε (s|o) ≈
Npost . Thus, the prediction error increases both information gains,

KLD and BS. By contrast, when the prediction error increases

toward infinity, the evidence converges to zero, lim
δ→∞

e (δ) = 0

because the evidence is the inverse exponential function of the

prediction error. In this case, the Gaussian posterior is negligible,

and thus, the posterior is approximated to the Gaussian prior,

lim
δ→∞

pε (s|o) = Npri. When the posterior is equal to the prior, both

information gains, KLD and BS, are zero. Thus, in the case of a large

prediction error, where e (δ) is very small compared to ε, and εNpri

is dominant in the posterior, the information gains decrease to zero

as prediction error increases toward infinity. We use ε = 10−3 for

the following analysis.

The standardized linear weights wpost and wpri represent the

dominance of the Gaussian posterior and prior, respectively, in the

mixed posterior distribution. Figure 3 shows the dominances as

functions of prediction error δ. When the prediction error is zero or

small, the Gaussian posterior is dominant. For a certain prediction

error, the Gaussian prior becomes dominant as the prediction

error increases. In the switching over area of prediction errors, the

Gaussian posterior and prior are mixed with certain weights, wpost

and wpri.

Using the posterior function, we derive KLD and BS (see

Appendix). Since the computed results include integrals that

cannot be solved analytically, we used a computational approach

for further analysis.

Figure 4a shows the information gains and their total value,

IG = KLD + BS, as functions of the prediction errors. All

information gains are upward-convex functions of the prediction

errors. This convexity is general because when the prediction

error is small, the Gaussian posterior is dominant in the posterior,

and information gains increase as the prediction error increases;

whereas when the prediction error is larger than a certain level,

the prior becomes dominant, and the information gains decrease

to zero as the prediction error increases.

The surprise obtained by taking the negative logarithm of

Equation 17 was found to increase monotonically with prediction

errors. Thus, the information gains are also upward-convex

functions of surprise, and the total information gain IG that induces

positive emotions by reducing free energy is an upward-convex

function of surprise (and prediction error). We infer that the

upward-convex function of the total information gain represents

the arousal potential function (i.e., the Wundt curve). Figure 4b

shows an example of information gain as a function of surprise.

Information gain functions are upward-convex and have a

peak. We define the prediction errors that maximize information
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FIGURE 3

Dominance of Gaussian posterior and prior in posterior distribution as functions of prediction error. The dominances switch over at a certain

prediction error level (Variances: σ 2
p=10.0, σ 2

l =1.0.).

FIGURE 4

Example of information gain functions of (a) prediction error and (b) surprise using Gaussian model with uniform noise. KLD and BS represent free

energy reduction in recognition and prior updating (learning), respectively. Total information gain IG is a summation of KLD and BS (Variances:

σ 2
p=10.0, σ 2

l =1.0.).

gains KLD, BS, and IG as optimal prediction errors δKLD, δBS and

δIG, respectively. Similarly, we define the surprises that maximize

information gains KLD, BS, and IG as optimal surprises SKLD,

SBS, and SIG, respectively. We use the term “optimal” because it

represents the optimal arousal level that maximizes information

gain (epistemic value) that evokes emotional valence. When the

prediction errors are greater than δKLD and smaller than δBS, KLD

and BS have a negative relationship, where KLD decreases as BS

increases, and vice versa. The prediction error that maximizes the

total information gain δIG always falls into this area. Alternate

maximizations of KLD and BS by decreasing and increasing

the prediction error and surprise in this area iteratively reach

the optimal surprise SIG. This alternation generates fluctuations

of surprise. The magnitude of fluctuation is determined by the

difference between KLD and BS in the optimal prediction error

Dδ = δBS−δKLD and surpriseDS = SBS−SKLD. In the next section,

we analyze the effects of uncertainties on the optimal prediction

errors and surprise, together with their differences.

3.3 E�ects of uncertainties on information
gains

The optimal prediction error and surprise change depending on

uncertainties. We found the optimal prediction error and optimal

surprise for all combinations of likelihood variances σ 2
l
[1.0, 50]

and prior variance σ 2
p [1.0, 50] in steps of 0.1 using the MATLAB

fminbnd.m function, which is based on golden section search and

parabolic interpolation.
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FIGURE 5

Maximum information gains as functions of (a) likelihood variance when σ 2
p=10 and (b) prior variance when σ 2

l =1.0.

FIGURE 6

Di�erence in optimal surprise DS as a function of observation and prediction uncertainties.

Figure 5 shows examples of the maximum information gains as

a function of σ 2
l
and σ 2

p . The maximum information gains increase

exponentially as σ 2
l
decreases. Thus, the sensitivity of σ 2

l
to the

maximum information gains increases as σ 2
l
decreases. By contrast,

the sensitivity of σ 2
p to information gain is significant when σ 2

p is

small (e.g., from 1.0 to 10.0 in this example).

We omit the figure for the analysis in which both σ 2
l

and

σ 2
p were varied simultaneously, but we describe the outline of

the results below. While σ 2
p approaches zero, the sensitivity of

σ 2
l

to the maximum information gains is low. The sensitivity

of σ 2
l

increases as σ 2
p increases. The peak of the maximum

information gain is observed when σ 2
l
is small, and σ 2

p is large.

The maximum information gain of a large σ 2
l

and large σ 2
p is

greater than that of a small σ 2
l
and small σ 2

p . These trends are

similar to those shown in Figure 6 (the difference in the optimal

surprise DS).
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FIGURE 7

Optimal prediction errors as functions of uncertainties, (a) likelihood variance when σ 2
p =10.0 and (b) prediction variance when σ 2

l =1.0.

FIGURE 8

Optimal surprises as functions of (a) likelihood variance when σ 2
p=10.0 and (b) prediction variance when σ 2

l =1.0.

Figure 6 shows the difference in the optimal surprise DS =
SBS − SKLD. The difference DS is always positive, and thus, SBS >

SKLD. DS increases as σ 2
l
decreases and σ 2

p increases. Thus, the

larger the σ 2
p , and the smaller the σ 2

p , the larger DS. σ 2
l
has the

greatest sensitivity to increase DS when σ 2
p is large. DS is larger

when both σ 2
l
and σ 2

p are small than when both σ 2
l
and σ 2

p are large.

Figure 7 shows the optimal prediction errors as a function of

each variance. All functions are monotonically increasing convex.

δKLD is more sensitive to σ 2
l
than δBS. Thus, the difference between

δKLD and δBS decreases as σ 2
l
increases. By contrast, δKLD is less

sensitive to σ 2
p than δBS. Thus, the difference between δKLD and δBS

increases as σ 2
p increases.

Figure 8 shows examples of optimal surprises as functions of

each variance. σ 2
l
monotonically increases all optimal surprises.

However, the effects of σ 2
p are different. σ 2

p decreases SKLD and

increases SBS.

4 Discussions

4.1 Arousal potential functions and
curiosities

The results of the analysis using a Gaussian generative model

with an additional uniform likelihood suggest that the two

information gains, KLD and BS, form upward-convex functions

of surprise and prediction errors (i.e., the distance between

the prior mean and likelihood peak). The prediction error

monotonically increases surprise. Figure 9 shows a schematic of the

information gain functions that conceptualize the analytical results,

as shown in Figure 4b and the related emotions. Surprise,− ln p (o),

corresponds to free energy minimized in recognition. A previous

study argued that surprise represents arousal potential because

minimized free energy consists of the summation of information
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Schematic of arousal potential functions and related emotions. The

valence of epistemic emotions represented by information gains

forms the upward function of arousal potential represented by free

energy or surprise. Diversive and specific curiosity drive to maximize

KLD and BS, respectively. These alternate maximizations achieve

optimal arousal levels with fluctuation of surprise. Emotions such as

boredom, pleasure, interest, and confusion are induced by free

energy and its fluctuations (see main text for detailed discussion).

content provided by novelty and perceived complexity, which

are collative variables and dominant factors of arousal potential

(Yanagisawa, 2021).

Berlyne suggested that an appropriate level of arousal potential

induces a positive hedonic response, termed the optimal arousal

level (Berlyne, 1960). Extreme arousal level caused by novel and

complex stimuli may cause confusion. By contrast, a low arousal

level with familiar and simple stimuli results in boredom. Thus,

emotional valence shapes the upward-convex function of the

arousal potential, termed the Wundt curve.

Berlyne also suggested that two epistemic curiosities, diversive

and specific, drive the approach to the optimal arousal level

(Berlyne, 1966). Diversive curiosity drives the pursuit of novelty,

whereas specific curiosity drives the search for evidence of one’s

model predictions. Consequently, diversive curiosity increases the

arousal potential to climb the Wundt curve on the left, from a low

level of arousal (boredom). By contrast, specific curiosity motivates

a decrease in the arousal potential to climb the Wundt curve on

the right side from a high arousal level (confusion). The alternation

between the two curiosity-driven activities approaches the optimal

arousal level.

KLD is a free energy reduction in recognition of a state s

given an observation o that increases model evidence, p (o) =
〈

p (o|s)
〉

q(s)
, where recognition q (s) is updated from a prior p (s)

to true posterior p (s|o). BS is the expected information gain given

by novel stimuli that correspond to human surprise response to

novelty (Itti and Baldi, 2009; Sekoguchi et al., 2019; Ueda et al.,

2021; Yanagisawa et al., 2019). Therefore, we consider that specific

curiosity drives an increase in KLD, whereas diversive curiosity

drives an increase in BS.

4.2 Inquiry process and epistemic emotions

The analytical result shown in Figure 6 demonstrates that the

optimal surprise for BS is always greater than that of KLD, i.e.,

SBS > SKLD. This result suggests that maximizing information gain

through novelty seeking (driven by diversive curiosity) requires a

higher level of surprise compared to maximizing information gain

through evidence seeking (driven by specific curiosity).

When surprise is less than SKLD, both KLD and BS

monotonically increase as surprise increases. By contrast, when

surprise is greater than SBS, both KLD and BS monotonically

decrease as surprise increases. Thus, the two curiosities respectively

increase and decrease prediction errors in the former and latter

areas of surprise, respectively. However, when surprise is greater

than SKLD and less than SBS, KLD decreases, and BS increases

as surprise increases. Thus, in this area of surprise, maximizing

both the KLD and BS at the same time is impossible. We infer

that the two types of curiosity alternately maximize KLD and

BS. This alternating maximization of information gains generates

fluctuations of surprise. The optimal arousal level, as a maximum

summation of KLD and BS, falls into this area. Therefore, the

optimum arousal level, SIG, involves fluctuations in surprise by

alternately seeking novelty and evidence, driven by the two types

of curiosity.

We consider that alternating the two kinds of curiosity by

increasing and decreasing prediction errors represents an ideal

inquiry process that achieves optimal arousal. This process provides

continuous positive emotions through the continuous acquisition

of maximum information gain (i.e., epistemic value). For example,

“interest” is defined as disfluency reduction in fluency–disfluency

theory (Graf and Landwehr, 2015). We previously formalized

disfluency reduction as free energy reduction in recognition (i.e.,

KLD) from increased free energy (Yanagisawa et al., 2023). This

corresponds to an increase in KLD from the high-surprise state

shown in Figure 9. Thus, “interest” is achieved by specific curiosity

(i.e., climbing a hill of KLD from the right side in Figure 9). By

contrast, increasing KLD from the low-surprise state (i.e., climbing

a hill of KLD from the left side in Figure 9) may explain “pleasure”

defined as an increase in fluency (Graf and Landwehr, 2015).

We have previously formalized fluency as KLD in recognition

(Yanagisawa et al., 2023).

BS denotes the expected information gain, as discussed in the

Methods section. Active inference suggests that an agent infers an

optimal policy of action that minimizes expected free energy. The

expected free energy includes the negative expected information

gain as an epistemic value. This epistemic value drives curious

behavior (Friston et al., 2017). Thus, diversive curiosity, formalized

as maximizing the BS, corresponds to curiosity in active inference.

We discuss the mathematical interpretations of KLD and BS in

terms of the expected free energy in a later section.

4.3 E�ect of uncertainties on optimal
arousal level and epistemic values

We analyzed the effects of prediction and observation

uncertainties, manipulated using prior and likelihood variances, on
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optimal information gains. Table 1 summarizes the effects of the

two uncertainties in four quadrants for combinations of small and

large uncertainties. A small prediction variance σ 2
p indicates that

the prior belief is certain because of, for example, prior experience

and knowledge. However, prior beliefs are not always correct. The

prediction error represents the error of prior belief from reality.

Thus, a case with small σ 2
p and large prediction error indicates

a preconceived notion. By contrast, a large σ 2
p denotes that the

prior belief is uncertain, owing to, for example, a lack of prior

knowledge and experience. Thus, observation variance σ 2
l
indicates

the precision of observations.

We evaluate the condition of uncertainties using four indices:

maximum information gain (maxIG), optimal prediction errors

(δKLD, δBS), optimal surprises (SKLD, SBS), difference in optimal

prediction errors (Dδ), and difference in optimal surprises (Ds).

The condition with a small σ 2
l
and large sp provides the largest

maxIG with the largestDδ between small δKLD and moderate δBS. A

largerDδ signifies a wider exploration range through alternations of

diversive and specific curiosities. Smaller SKLD and SBS indicate less

surprise as a cognitive load in the inquiry process. Therefore, the

condition combining a small σ 2
l
and large σ 2

p is the best solution

to achieve the ideal inquiry process with the largest epistemic value

(information gain; maxIG) and the largest range of exploration (Dδ)

under less cognitive load (SKLD and SBS).

The condition combining a small σ 2
l
and small σ 2

p is expected

to yield the second largest epistemic value (information gain) under

less cognitive load (SKLD, SBS); however, the range of exploration

(Dδ) is small. The condition with a large σ 2
l
and large σ 2

p is expected

to result in a small information gain with a moderate range of

exploration at the largest prediction error level. The condition

combining a large σ 2
l
and small σ 2

p is the worst case, corresponding

to the smallest information gain and the smallest exploration range.

TABLE 1 Summary of the e�ects of likelihood variance (observation

uncertainty) σ
2
l and prior variance (prediction uncertainty) σ

2
p on

maximum information gain, max IG, optimal prediction errors, δKLD, δBS,

optimal surprises, SKLD, SBS, the di�erence in optimal prediction errors,

Dδ , and di�erence in optimal surprises, Ds.

σ 2
p : ⇒ Dδ Small σ 2

p : Large σ 2
p :

σ 2
l
: ⇒ max IG, Ds small Dδ

Small σ 2
l : Small σ 2

l and small σ 2
p : Small σ 2

l and large σ 2
p :

large maxIG Large maxIG, Largest maxIG,

Small δKLD smallest δKLD , δBS , small δKLD , moderate δBS ,

Small SKLD , SBS smallest SKLD , SBS , small SKLD , SBS ,

large Ds . small Dδ , large Ds . largest Dδ , Ds .

Large σ 2
l : Large σ 2

l and small σ 2
p : Large σ 2

l and large σ 2
p :

small maxIG smallest maxIG, small maxIG,

moderate δKLD , δBS , largest δKLD , δBS ,

large SKLD largest SKLD ,

moderate SBS ,

large SKLD , largest SBS ,

smallest Dδ , Ds . moderate Dδ , Ds .

X:⇒ Y signifies that X dominantly affects Y. Solid and broken underlines denote positive and

negative effects on epistemic emotions, respectively.

As an overall trend, an increase in prediction variance σ 2
p

expands the range of exploration (Dδ). This suggests that highly

certain prior beliefs, such as preconceived notions or strong

assumptions, tend to suppress the range of exploration, whereas an

open mind involving a flat prior belief facilitates a range broader

of exploration. The observation variance σ 2
l
decreases the expected

maximum information gain (max IG). This suggests that precise

observation increases expected information gains (epistemic value)

with positive emotions. σ 2
l
can be decreased in different ways, for

example, by increasing the precision of stimuli, paying attention to

stimuli, and improving the accuracy of the observation models.

4.4 Expected free energy and information
gains in action

Free energy before updating belief is decomposed into a

summation of KLD and surprise. Furthermore, surprise (− ln p(o))

is factorized into BS and inverse accuracy:

F =
〈

ln q (s) − ln p (s, o)
〉

q(s)
= DKL

[

q(s)||p (s|o)
]

− ln p(o)

= DKL

[

q(s)||p (s|o)
]

+ DKL

[

p(s|o)||p (s)
]

−
〈

ln p (o|s)
〉

p(s|o) .

(19)

Consider predictive free energy of a predictive distribution

q(o|π) given by future action under a policy π as free energy

averaged over the predictive distribution.

pFπ =
〈

ln q (s|π) − ln q (s, o|π)
〉

q(s|π)q(o|π)
(20)

where q (s, o|π) consists of a product of a prior belief under a

policy and a likelihood, q (s|π) p(o|s). The predictive observation

is defined as a marginal likelihood q (o|π) =
∫ ∞
−∞ q (s|π) p(o|s)ds.

By applying the two-step decompositions of Equations 19, 20, we

obtain the following two formulas (also see Figure 10).

pFπ =
〈

DKL[q(s|π)||q(s|o,π)]− ln q (o|π)
〉

q(o|π)

=
〈

DKL

[

q(s|π)||q (s|o,π)
]

+ DKL

[

q(s|o,π)||q (s|π)
]

−
〈

ln p (o|s)
〉

q(s|o,π)

〉

q(o|π)
(21)

The first line of Equation 21 is a summation of predictive KLD

(pKLD) and predictive entropy, H(o|π). The first term, pKLD,

indicates the information gain of a predictive belief update averaged

over predictive distribution. pKLD is the expected information gain

when recognizing predictive observations given under a policy. The

second term, predictive entropy, is decomposed into predictive BS

(pBS) and ambiguity (Am). pBS equals the mutual information of

states and observations under a policy.

pBS =
〈

DKL[q(s|o,π)||q(s|π)]
〉

q(o|π)

=
〈

ln q (s, o|π) − ln q (s|π) q (o|π)
〉

q(s,o|π)
= I (s; o|π)(22)

Mutual information indicates a measure of interdependence

between states and observations. The greater the mutual

information, the more precise the generative model’s knowledge

of the relationships between states and observations. Hence, pBS
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FIGURE 10

Expected and predictive free energy and their decompositions. Epistemic curiosity in action may link to the two predictive information gains, pKLD

and pBS. These predictive information gains decrease ambiguity, which is equivalent to non-risk expected free energy.

represents predictive information gain by the expected learning

of the relationship between states and observations. By applying

the link between the two types of curiosities and KLD and BS in

recognition, we consider that the pKLD and pBS correspond to

specific and diversive curiosities in action, respectively, and the

summation of pKLD and pBS is thought to represent epistemic

curiosity as a drive to minimizing predictive free energy.

Ambiguity is the information potential that is expected to

remain after the recognition and learning process regarding the

predictive observations under a policy. Ambiguity equals inverse

predictive accuracy. It indicates an expected likelihood of entropy

under a policy.

Amgibuity =
〈

− ln p (o|s)
〉

q(s,o,π)
= 〈H (o|s)〉q(s|π) (23)

An active inference framework suggests that an agent’s action

policy is selected so as to minimize expected free energy (Friston

et al., 2017; Parr et al., 2022; Smith et al., 2022). The expected free

energy is reshaped to the summation of risk and ambiguity.

Gπ =
〈

ln q (s|π) − ln p (s, o|π)
〉

q(s,o|π)
= risk+ ambiguity

(24)

risk = DKL

[

q(o|π)||p (o|C)
]

(25)

where p(o|C) is a desired observation distribution called

preference. It is an observation prior as a component of a

generative model, i.e., p (s, o|π) = p(o|C)q(s|o,π).When predictive

distinction approximates the preference, q (o|π) ≈ p(o|C), the
risk becomes zero, and thus expected free energy approximates

ambiguity. In this case, the summation of pKLD and pBS indicates

the potential difference from predictive free energy to expected

free energy without risk or ambiguity. As the expected information

gain increases by recognition and learning processes about the

states given predictive observation under certain policies, the

potential gap increases, and as a result, ambiguity decreases.

Therefore, selecting a curious action policy that is expected to

maximize the predictive information gains is likely to minimize

ambiguity (uncertainty about relations of states and observations).

This corresponds to active inference without risk or preference.

Such an agent, like an ideal researcher, would act solely out of

epistemic curiosity.

4.5 Limitations and further discussions

The analytical results are based on a Gaussian generativemodel.

A Gaussian model was used to independently manipulate the

prediction errors and uncertainties and to analyze their effects on

information gains. Although the Laplace approximation and the

principle of maximum entropy reasonably support the Gaussian

assumption, true distributions can be more complex than Gaussian

distributions. For specific applications with complex distributions,

further analysis is based on the method proposed in this study.

This study focuses on emotions induced by epistemic values

(epistemic emotions), such as curiosity and interest. However,

emotions are affected by individual preferences and appraisals of

the situation against objectives (Ellsworth and Scherer, 2003). We

may expand the emotion model to include such preference-based
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emotions by introducing the pragmatic value formalized as a risk

term in expected free energy (Parr et al., 2022). The model does not

consider the individual capacity to process information. Surprise

(free energy) exceeding the capacity may lead to negative emotions.

This study was limited to analyzing two types of information

gain linked to epistemic emotions as functions of surprise in

a context-independent manner. Epistemic emotions based on

epistemic values, such as curiosity, can be observed through

the agent’s behavior. Active inference, where an action policy is

inferred to minimize expected free energy, can be used to simulate

agent behavior based on epistemic emotions in a specific context

(Friston et al., 2017). As discussed, the expected free energy

comprises two types of information gain. In future studies, it will be

necessary to accumulate evidence of the model predictions based

on correspondence between agent simulations and actual human

behavior across various specific contexts.

5 Conclusion

This study mathematically formulates the arousal potential

functions of epistemic emotions, such as curiosity and interest, that

drive inquiry processes based on information gains. Decrements

in free energy in Bayesian recognition and prior belief updates

correspond to two types of information gain, i.e., KLD and BS,

respectively. Free energy reduction induces positive emotions

by diminishing the surprise caused by prediction errors and

uncertainty, which provide information gains (i.e., epistemic

value). We demonstrate that the two types of information gain

form upward-convex curve functions of surprise using a Gaussian

generative model with a uniform noise likelihood and define

epistemic emotions as information gains (or decrements of free

energy). An exhaustive analysis using the model reveals the

effects of prediction and observation uncertainties on the peak of

information gain functions as the optimal arousal level. Specifically,

the analytical results suggest that the greater the prediction

uncertainty and the lower the observation uncertainty, the greater

the information gained through a larger exploration range.

These results provide broad and fundamental insights into

enhancing the valence of epistemic emotions that facilitate the

inquiry process. This model is derived from the synthesis of

free energy minimization, proposed as the first principle of brain

function, and the well-established arousal potential theory. As such,

this modeling framework is applicable across various domains

concerned with epistemic emotions and motivation, including

education, creativity, aesthetics, affective computing, and related

areas within the cognitive sciences. Further studies are needed to

empirically validate this principle-based model and to deepen our

understanding of the relationship between the inquiry process and

emotional dynamics in diverse and complex situations.
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Appendix

We show the results of the KLD and BS calculations in

Section 3.2 when the likelihood function in the form of a uniform

distribution added to a normal distribution (pε (o|s)) is used. Using
the posterior function (pε (s|o)), we derived KLD and BS:

KLD = DKL[p(s)||pε (s|o)] = KLDN + ln

(

1+
ε

e (δ)

)

− I, (26)

where KLDN is a KLD using only the Gaussian likelihood (see

Equation 14), and I is an improper integral:

I =
∫ ∞

−∞
Npri ln

(

1+
εNpri

e (δ)Npost

)

ds

=
∫ ∞

−∞
NPri ln

[

1+ ε
√
2πσl exp

{

(s− o)2

2σ 2
l

}]

ds. (27)

Using the KLD, we derived BS as follows:

BS = DKL[pε(s|o)||p (s)]

=
1

e (δ) + ε

[

e (δ)

{

BSN − ln

(

1+
ε

e (δ)

)

+ J

}

− εKLD

]

,

(28)

where BSN is the BS of using only the Gaussian likelihood (see

Equation 15), and J is an improper integral:

J =
∫ ∞

−∞
Npost ln

(

1+
εNpri

e (δ)Npost

)

ds

=
∫ ∞

−∞
Npost ln

[

1+ ε
√
2πσl exp

{

(s− o)2

2σ 2
l

}]

ds. (29)
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