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Task representation and individual 
differences affect strategy 
selection and problem-solving 
performance
Xinyu Xie  and Jarrod Moss *
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Introduction: While strategy selection theories generally posit that people will 
learn to prefer more successful task strategies, they often neglect to account for 
the impact of task representation on the strategies that are learned. The Represent-
Construct-Choose-Learn (RCCL) theory posits a role for how changing task 
representations influence the generation of new strategies which in turn affects 
strategy choices. The goal of this study was to directly replicate and extend the 
results of one experiment that was conducted to assess the predictions of this  
theory.

Methods: The predictiveness of a feature of the task was manipulated along with 
the base rates of success of two task strategies in the Building Sticks Task. A sample 
of 144 participants completed this task and three individual differences tasks.

Results: The results of the study replicated all prior results including: (1) a salient 

feature of the task influences people’s initial task representation, (2) people prefer 

strategies with higher base rates of success under a task representation, (3) 

people tend to drop features from the task representation that are found not to be 

useful, and (4) there are more representation and strategy changes when success 

rates are low. In addition to replication of these findings, individual differences 

in attentional control, working memory capacity, and inductive reasoning ability 

were measured and found to be related to BST problem-solving performance 

and strategy use. Critically, the effect of inductive reasoning and attentional 

control on solution time was found to be mediated by measures that tap into 

monitoring of problem attempts and more effective problem space exploration 

by avoiding repeating past attempts.

Discussion: The results support many of the predictions of RCCL, but they also 
highlight that other theories may better account for some details.
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1 Introduction

Problem solving is a ubiquitous human activity that requires individuals to identify a goal 
and determine the steps needed to achieve it. While there are many different strategies that 
can be used to solve a problem, individuals vary in the strategies they use (Lemaire and 
Lecacheur, 2010; Siegler and Lemaire, 1997), raising the question of how people develop and 
choose the strategies they use. Several theories of strategy selection explain how better 
performing strategies become preferred (Erev and Barron, 2005; Lieder and Griffiths, 2017; 
Rieskamp and Otto, 2006; Shrager and Siegler, 1998). Most of these theories start with some 
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kind of task representation and a set of available strategies. However, 
the Represent-Construct-Choose-Learn (RCCL; Lovett and Schunn, 
1999) theory posits a role for how changing task representations 
influence the generation of new strategies which in turn affects 
strategy choices. Given this theory’s relatively broad focus on the 
strategy selection problem from representation to strategy selection, 
the goal of the current study was to replicate and extend the results 
of one of only two studies that have been conducted to directly assess 
the predictions of the RCCL theory.

In the RCCL theory, the four main stages are as follows: (1) 
Represent the task, (2) Construct a set of strategies based on features 
in the task representation, (3) Choose from among those strategies 
based on rates of success, and (4) Learn or update success rates based 
on performance with experience (Lovett and Schunn, 1999). The 
interaction of the theorized processes is shown in the left half of 
Figure 1. This theory describes the process of how people use their 
task representations to learn to make choices and why people might 
change their task representations over time. A task representation in 
this theory is defined as a set of features that is used to encode the 
task environment. The salience of the features in a task impacts the 
initial task representation by determining which features might 
be  initially selected. Then the selected features of the task 
representation are used to generate different strategies for use. After 
constructing a set of strategies, individuals choose a strategy among 
them based on the strategy’s estimated success rate. The success rate 
of each strategy is learned from experience in the task. With more 
experience, people will learn the success rates of all strategies they 
have used in a task. This learning mechanism leads to gradual 
changes of the estimated success rate, and these changes in turn lead 
to strategy selection changes. In particular, the theory says that if all 
strategies available under the current task representation have low 

success rates, then individuals seek other features to re-represent the 
task by adding or removing task features from the representation. 
New strategies will be generated from this revised representation and 
their success rates will be learned through experience. Critically, only 
strategy-specific success rates are learned, and these strategies are 
based on the features incorporated into the task representation at the 
time the strategies are created.

One reason why the RCCL theory focuses on the role of task 
representations in strategy selection is because it was developed, in part, 
to explain why people exhibit base-rate neglect on some tasks but not 
others. Lovett and Schunn (1999) argue that the tendency to neglect 
base-rate information is due to the way people represent these tasks. 
RCCL explains that strategies are based on the task representation, and 
people can only learn base rates for strategy success. If the task 
representation does not include a feature critical for learning base rates 
in the task, then people will fail to learn these base rates because both 
the initial and any subsequent strategies are based on the 
task representation.

No other theory of strategy selection that we  are aware of 
incorporates the role of a changing task representation in creating 
and selecting strategies. Many other strategy selection theories focus 
primarily on learning which pre-existing strategy performs better on 
average (Erev and Barron, 2005; Rieskamp and Otto, 2006). The 
SCADS theory of strategy selection (Shrager and Siegler, 1998) also 
incorporates strategy generation mechanisms, but it assumes that the 
task representation does not change. The Rational Metareasoning 
(RM) theory (Lieder and Griffiths, 2017) provides an explanation for 
how people can adjust their strategy selection based on the feature-
based representation of individual problems based on success rates 
and the execution time of strategies on prior problems with similar 
features. The RCCL theory posits that people will develop an initial 

FIGURE 1

The left side describes the stages of the RCCL theory, and the right side shows how these processes would be instantiated in the biased-unpredictive 
condition in the current study using the Building Sticks Task, where the relative length cue is not predictive of the correct strategy.
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task representation from the available task features, generate 
strategies based on those features, and drop features from the 
representation that are not useful, and that strategies based on the 
current task representation are the only ones that will be selected and 
whose estimates of success will be updated. However, unlike SCADS 
or RM, RCCL is not a running mathematical or computational 
model. If the predictions that RCCL makes have empirical support, 
then it may be worth further developing this theory due to its focus 
on the importance of task representation changes impacting the 
generation and availability of strategies that can be  selected. The 
original paper supporting the RCCL theory provided support from 
two studies (Lovett and Schunn, 1999), but neither study appears to 
have been replicated since the original publication, nor does it appear 
that the predictions of this theory have been tested in other studies 
examining strategy selection.

Some of the predictions of the theory can be illustrated using the 
Building Sticks Task (BST) that was used in the first study of the 
original paper (Lovett and Schunn, 1999). As shown in Figure 2, in a 
BST problem there are three building sticks (black) and a target stick 
(green). The goal of the task is to add and subtract the lengths of the 
three sticks to match the target length. A participant’s strategy can 
be categorized as either the undershoot or overshoot strategy based 
on the first move made on each problem attempt. The undershoot 
strategy starts with the longest stick that is shorter than the target 
(i.e., stick B) and then adds additional sticks to reach the target length 
(as shown on the left half of Figure 2). In contrast, the overshoot 
strategy starts with the longest stick (i.e., stick C) and then subtracts 
other sticks to reach the target length (as shown on the left half of 
Figure 2). In either case, after the first move, additional moves must 
be made to solve the problem. For the problem shown in Figure 2, the 
correct strategy is overshoot, and after the first move, subtracting 
stick A twice from the blue stick will make it match the length of the 
green target stick.

The original study manipulated the predictiveness of one feature 
of the task in addition to manipulating the overall base rates of 
success for the overshoot and undershoot strategies. Specifically, the 

proportion of problems solved by one strategy was varied to 
manipulate the base rates of strategy success across conditions to 
create a biased condition (70% of problems solved by one strategy) 
or an unbiased condition (50% solved by each strategy). In BST 
problems, there is usually one stick closest to the target length, which 
is a salient feature of the task for participants, and they will select this 
stick in accordance with a hill-climbing heuristic (i.e., choosing 
moves based on which one decreases the distance to the goal the 
most; Lovett and Anderson, 1996). For example, in Figure 2, stick C 
is closer to the target than stick B, so participants using the relative 
length cue would be  more likely to use the overshoot strategy. 
However, using the relative length cue may or may not be the correct 
strategy for a given BST problem, and the success rate of the relative 
length cue was also manipulated as a second factor in the original 
study to create a predictive condition (80% predictive of a correct 
strategy) or an unpredictive condition (50% predictive of a 
correct strategy).

To illustrate how the task representation affects strategy selection, 
consider a participant in the biased-unpredictive condition that starts 
off by using the relative length cue as a task feature in generating a 
strategy. The strategies generated based on this feature would be in the 
format of if-then production rules according to RCCL. An example of 
such an overshoot strategy would be if the overshoot stick is much closer 
to the goal than the undershoot stick, then select the overshoot stick and 
try to reduce its length to match the target. An equivalent strategy could 
be constructed for undershoot as well from this feature. In general, these 
strategies will turn out to be  unsuccessful (50% success rate), and 
therefore the participant drops the relative length cue feature from the 
task representation according to the RCCL theory. The participant may 
identify other features of the task to help select between overshoot and 
undershoot, but eventually all unsuccessful features would be dropped. 
In this case, the only remaining strategies are to choose the overshoot or 
undershoot strategy without using any problem-specific features. At this 
point, the participant would learn the overall base rates of success for 
these two strategies resulting in choosing the strategy with the highest 
base rate most often. This process is illustrated in the context of the 
RCCL theory on the right side of Figure 1.

As an alternative to a discrete representation change like that 
posited by RCCL, the RM framework would suggest that the relative 
length cue could become less important to selection of existing 
strategies over time as learning occurs. The data and figures reported 
from the original study (Lovett and Schunn, 1999) make it difficult to 
assess whether a gradual shift has occurred or a discrete change has 
occurred when the relative length cue is unpredictive. An additional 
goal of the current study was to examine the data in more detail to see 
if evidence of a discrete shift was present.

With the manipulations of base rates and cue predictiveness, 
RCCL’s predictions are as follows: (1) the relative length cue will 
influence participants’ initial strategy selection because salient cues 
are more likely to be a part of the initial problem representation; (2) 
participants will eventually learn the base rates of success of each 
strategy in the biased conditions; (3) participants will stop using the 
relative length cue feature if it is not predictive of success; (4) more 
task representation and strategy changes will occur when the success 
rates of strategies are low. The relationship between strategy selection 
and problem representation in the RCCL theory also suggests possible 
links between individual differences that affect how people construct 
problem representations and select strategies.

FIGURE 2

Examples of the undershoot Strategy (left) and the overshoot strategy 
(right). Next to each building stick is a button (i.e., A, B, C). To add or 
subtract to the target stick length, participants simply click the button 
next to the stick. Sticks can be selected multiples times. These two 
BST problems give an example of building a stick starting with B or C, 
respectively. If the stick being built is shorter than the target stick, its 
color will be red (left), and the next selected stick will be added to the 
stick being built. If the stick being built is longer than the target stick, 
its color will be blue (right), and the next selected stick will 
be subtracted from the stick being built. When the stick being built is 
that same length as the target, the problem is done, and the next 
problem is presented. While solving a problem, the reset button will 
erase the stick being built so that a new attempt can be started.

https://doi.org/10.3389/fpsyg.2025.1445200
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Xie and Moss 10.3389/fpsyg.2025.1445200

Frontiers in Psychology 04 frontiersin.org

2 Individual differences related to 
problem solving and strategy 
selection

Individual differences in working memory capacity as well as 
attentional control processes are likely to affect strategy selection and 
problem-solving success. Working memory capacity has previously 
been linked to success in problem solving (Ash and Wiley, 2006; Wiley 
and Jarosz, 2012) at least partially because of its association with 
attentional control ability (Ash and Wiley, 2006; Draheim et al., 2021; 
Engle and Kane, 2004; Kane et al., 2004). Attentional control is thought 
to be  involved in selecting which representations to maintain in 
working memory (Unsworth, 2016; Unsworth et al., 2021). In addition, 
considering that generating the initial task representation requires 
attention to feature saliency, strategy selection might be correlated with 
individual differences in the ability to control attention. Attentional 
control may be  an important aspect of both problem-solving and 
strategy selection processes because it allows people to focus on 
relevant information and filter out distracting information.

Previous research examining strategy selection and individual 
differences has identified both working memory capacity and inductive 
reasoning as individual differences that are associated with strategy 
selection (Schunn et al., 2001; Schunn and Reder, 2001). In a task, 
inductive reasoning can play a role in finding an underlying pattern, 
which may drive both representation change and strategy selection to 
take advantage of this pattern. People with higher working memory 
capacity are able to hold more relevant information in working 
memory, which in turn can help them to choose correct strategies 
(Schunn and Reder, 2001). However, other work found there was not a 
relationship between working memory capacity and strategy selection, 
although both working memory capacity and inductive reasoning were 
related to the awareness of base rate changes in the task (Schunn et al., 
2001). The inconsistent findings on whether working memory capacity 
is related to strategy selection may be due to several factors, including 
differences in the tasks used to measure working memory capacity and 
the complexity of the problems being solved. One question is whether 
updating strategy success estimates is implicit or explicit. If the learning 
is implicit, it may not be affected by working memory capacity and 
inductive reasoning because implicit learning processes such as 
reinforcement learning may be governed by different neural systems 
than those associated with working memory (Collins and Frank, 2012). 
However, if learning strategy success rates is explicit, it is more likely to 
be associated with working memory capacity and inductive reasoning 
ability. Exploring these relationships can help clarify the underlying 
mechanisms involved in strategy selection and problem-solving.

Although individual differences in working memory capacity, 
attentional control, and inductive reasoning ability could be related to 
strategy selection processes, it is also important to understand the 
relationship of these individual differences to the problem-solving 
task itself. Doing so means that individual differences associated with 
task performance can be considered when examining the relationship 
of these individual differences with strategy selection in the task. For 
example, if working memory capacity is related to performing one of 
the strategies because it is more demanding on working memory 
resources, then individuals with lower working memory capacity may 
select other strategies that have lower success rates but that demand 
less of working memory (Beilock and DeCaro, 2007). Given the larger 
sample size required for examining individual differences and the four 

between-participant conditions in the original study, in the current 
study we chose to focus on primarily examining individual differences 
related to BST problem solving. The BST is a problem-solving task 
that allows individuals to experience multiple attempts on a single 
problem as they search for the correct solution. In addition, since 
most problem-solving actions are captured via the computer interface 
to the BST, it is possible to examine exploration of the problem space 
and its association with the overall outcome (i.e., time to solve) with 
respect to individual differences. Prior work has shown relationships 
between individual differences, such as working memory capacity, 
and time to solve a problem (Ash and Wiley, 2006), but in the current 
study we  examine more fine-grained measures of problem space 
exploration to examine whether these measures mediate the 
relationship between individual differences and solution time.

After selection of the initial move on a BST problem, the problem 
solver is either trying to add additional sticks to the first stick or to 
subtract sticks from the first stick. Each move involves a comparison of 
stick lengths to the difference between the target and current stick length. 
Either this attempt will succeed, the problem solver will eventually 
decide to reset the problem and start again, or a move limit is reached 
(set to six moves in the current study) and the task resets itself. Strategy 
selection will occur again followed by a similar set of moves and further 
problem attempts until the problem is solved. The current study explores 
whether measures of attentional control, inductive reasoning ability, and 
working memory capacity are related to this problem-solving process.

While these analyses were exploratory in nature, these measures 
were selected based on their prior use in problem-solving and strategy 
research and because of their plausible role in supporting the BST 
problem-solving process. For example, inductive reasoning and 
working memory capacity may affect an individual’s ability to reason 
about multiple moves in a BST problem before selecting a move. 
Reasoning ability and working memory capacity may also play a role 
in reasoning about the way in which prior attempts have failed when 
selecting moves on a subsequent problem attempt with working 
memory playing a role in how well people can maintain and access 
traces of prior attempts. Attentional control and working memory 
capacity could also play a role in maintaining a move count to assess 
progress on the problem and how close one is to the move limit.

In this study, we aim to replicate one of the studies that is the 
primary support for the RCCL theory and examine its predictions 
about how features in the problem environment and base-rate learning 
influence strategy selection. In addition to replicating the original 
analyses, the data can be used to examine whether there is evidence of 
a discrete representation change. We also extend this previous work 
to investigate whether individual differences in attentional control, 
inductive reasoning ability, and working memory capacity are related 
to BST problem solving and the use of the two primary strategies.

3 Materials and methods

3.1 Design

A 2 (relative length cue predictiveness: predictive – 80%/20%; 
unpredictive – 50%/50%) by 2 (base rate bias: biased – 70%/30%; 
unbiased – 50%/50%) design was used in this experiment. The study 
consisted of a pretest, training, and posttest phase. The pretest and 
posttest phases are designed to probe strategy preferences and are 
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identical across all conditions. The four experimental conditions only 
differed in the set of training BST problems that participants solved in 
the training phase. Table 1 shows the different proportion of problem 
types in each condition.

In the biased base rate conditions shown in Table 1, undershoot is 
the more successful strategy with 70% of the training problems being 
solved by undershoot. In the experiment, which of the two strategies had 
the higher base rate of success was counterbalanced across participants. 
So there actually were 8 experimental conditions when including this 
counterbalancing. For the unbiased conditions, which strategy was 
designated as the most successful strategy was also counterbalanced 
although this did not alter the composition of the training problems 
because the bast rates for each strategy were 50%. However, the 
designation of which strategy was most successful was used during 
analysis of the data where the primary measure was how often 
participants selected the most successful strategy based on the condition 
they were assigned to. Randomly assigning one of the two strategies as 
the most successful strategy in the unbiased conditions made it possible 
to collapse across the counterbalancing of overshoot and undershoot to 
analyze the differences in how often participants selected the most 
successful strategy for their condition for all four conditions.

A large pool of BST problems consisting of the four problem types 
shown in the columns of Table 1 was used to select the BST problems that 
each participant solved during the training phase. When a participant 
was randomly assigned to one condition, 80 BST problems were selected 
from the problem pool according to the number of different problem 
types for that condition as shown in Table  1. For example, if the 
participant was in the unbiased-predictive condition, 32 UC/US 
problems, 8 UC/OS problems, 32 OC/OS problems, and 8 OC/US 
problems were selected from the problem pool. Thus, the BST problem 
set for each participant is different but has the distribution of problem 
types specified by the condition. This problem selection process was used 
to sample relevant BST problems throughout the space of possible BST 
problems to avoid item-based effects in the data that might be caused by 
a particular “weird” problem that affects that condition’s mean.

3.2 Participants

A sample of 144 undergraduate students from Mississippi State 
University participated for course credit, and forty-four participants’ 
data was excluded from analyses because they did not meet the 

criterion of 80% accuracy on parity judgment in the complex span 
task (N = 38) or never responded correctly in complex span task 
(N = 4) or had more than five-time delays in the letter series task 
(N = 4). These exclusion criteria were established prior to 
data collection.

A power analysis was conducted based on the results reported by 
Lovett and Schunn (1999), with the partial eta square being 0.35 (from 
Experiment 1, ANOVA interaction effect reported on p. 116). This 
effect was selected because it was one of the smallest effect sizes 
reported in the paper. With a significance criterion of α = 0.05 and 
power = 0.90, the minimum sample size needed with this effect size is 
N = 98 for detecting this interaction. Thus, the target sample size was 
set to 100.

The study was reviewed and determined to be  exempt by the 
Mississippi State University Institutional Review Board (protocol 
number 19–349). Participants provided informed consent via an 
electronic consent form presented before the study began.

3.3 Procedure

In addition to the BST, participants were given three tasks 
designed to measure individual differences, including the antisaccade 
task (Kane et al., 2001), a complex span task (Barrouillet et al., 2007), 
and a letter series completion task (Simon and Kotovsky, 1963). The 
antisaccade task is designed to measure the ability to control attention, 
the complex span task was used to measure working memory capacity, 
and the letter series task measures the ability to acquire concepts by 
induction from examples, that is inductive reasoning ability. The entire 
session including all tasks took 70–80 min to complete with up to 6 
participants at a time completing the task during a single session. The 
order of the tasks was the antisaccade task, the BST, the complex span 
task, and the letter series task. The antisaccade task first because it 
required monitoring participants to ensure that they were seated at the 
correct distance from the screen for the visual angle requirements 
described below for that task. It was easier for the experimenter to 
monitor this requirement if all participants were completing the 
antisaccade at the same time. The remainder of the tasks were 
presented in the same order for each participant so that fatigue effects 
would be  similar across participants. At the beginning of the 
experiment, participants read the consent form on the computer and 
then moved to the antisaccade task if they consented.

3.3.1 Anti-saccade
This task assesses the ability of participants to control their 

attention and not look at a pro-saccade stimulus in order to identify a 
target stimulus presented on the opposite side of the screen with the 
task being adapted from Kane et al. (2001). Initially, the participants 
practiced mapping responses to the keys on the number pad (1, 2, and 
3) for the letters B, P, and R, respectively. They had to place their left 
hand on the spacebar and their right hand on the number pad. A 
“Ready?” prompt appeared on the screen, and participants started 
each trial by pressing the spacebar. Then after 400 ms a fixation cross 
appeared in the center of the screen. To avoid cue onset familiarity, 
fixation times were randomly selected from 200 ms, 600 ms, 1,000 ms, 
1,400 ms, 1800 ms, or 2,200 ms durations. Then the target letter was 
displayed for 100 ms and then replaced by a mask letter ‘H’ for 50 ms, 
followed by the number ‘8’ as a second mask that would remain on the 

TABLE 1 The proportion of problem types in each of the four conditions.

Condition UC/US UC/OS OC/OS OC/US

Unbiased-unpredictive 0.25 0.25 0.25 0.25

Unbiased-predictive 0.40 0.10 0.40 0.10

Biased-unpredictive 0.35 0.15 0.15 0.35

Biased-predictive 0.48 0.02 0.30 0.20

UC (undershoot closer) means that the undershoot stick is closest to the target. OC 
(overshoot closer) means that the overshoot stick is closest to the target. US (undershoot 
solved) means that the undershoot is the correct strategy. OS (overshoot solved) means that 
the overshoot is the correct strategy. This table shows the design for the case when the 
undershoot strategy was designated as the biased strategy, but which of the two strategies 
was selected as the biased strategy was counterbalanced across participants. A slight 
difference from the specified proportion of predictiveness and base rates in the biased-
predictive condition was used so that each condition had at least one problem for each 
problem type.
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screen until participants made a response. Participants would hear an 
audio tone for incorrect responses. There were 18 trials in the practice 
block. Participants had to reach 80% correct or higher during the 
practice block in order to proceed, otherwise, the practice block would 
continue in a loop until the criterion was met or participants 
completed 10 times. No participant failed to meet this criterion.

After practicing the response mappings, participants received 
instructions on the antisaccade trials and completed 18 warmup trials 
and 36 actual antisaccade trials. These trials were presented as a single 
block of 54 trials. The antisaccade trials followed a similar procedure 
as the response mapping trials that is shown in Figure  3, with a 
“Ready?” prompt, a fixation cross, and presentations of the pro-saccade 
cue and anti-saccade target. The pro-saccade cue and anti-saccade 
target appeared in opposite flanking positions, and the target was 
replaced by two masks (letter ‘H’ followed by number ‘8’) that 
remained on the screen until the participant made a response. The 
target appeared on each half of the screen an equal number of times. 
The distance between the fixation and the closest edge of each square 
where the target and cue appeared spanned 11.5 degrees of visual 
angle. An audio tone was played for incorrect responses. The 
dependent measure was the proportion of trials in which the 
participant correctly identified the target letter.

3.3.2 Building sticks task
Instructions for how to solve the problems by overshoot and 

undershoot strategy were shown on the computer, so that 
participants were aware of the two basic approaches to solving 
BST problems. The strategies were not given explicit names (e.g., 
undershoot) in the instructions. Participants completed a set of 
three practice problems. For the first practice problem, they were 
told to use start with the stick that was longer than the target 
(overshoot). For the second practice problem, they were told to 
use start with a stick that was shorter than the target (undershoot). 
For the third problem, they were not told to use a specific 

approach so that they had to figure out for themselves which of 
the strategies solved the problem (the problem was solved 
by undershoot).

The task has a pretest, training, and posttest phase. The pre-and 
posttest phases are a set of 10 test problems before and after the training 
phase in which participants only select the first move that they would 
make in attempting to solve it. The purpose of this format is to assess 
strategy performance without providing feedback about the success of 
the strategy. For these test problems, there were five levels of the relative 
length cue that were each sampled twice. There were two problems 
with a strong cue toward the undershoot strategy, two problems with 
a weak cue toward the undershoot strategy, two neutral problems (two 
sticks were equally close to the target length), two problems with a 
weak cue toward the overshoot strategy, and two problems with a 
strong cue toward overshoot the strategy. The distinction between a 
strong cue and a weak cue was based on the ratio of difference between 
stick B and the target stick to difference between stick C and the target 
stick or reversely. Specifically, if the ratio was greater than 3.5, then the 
cue was considered strong, while if the ratio was around 2, then the cue 
was considered weak. During the training phase, participants were 
given 80 training problems based on the condition they were assigned 
to as shown in Table 1. Participants were required to work on each of 
these problems until the length of the stick they were building matched 
the length of the desired stick or they used a “reset” button to start a 
new solution attempt. When a problem was presented, participants can 
click on each of the three available sticks to add it to the current 
attempt. Each stick can be selected as many times as needed. If the 
current attempt is longer than the target, then clicking on a building 
stick will subtract that stick from the current attempt. If the current 
attempt is shorter than a target, then the clicked stick is added to the 
current attempt. After each addition or subtraction, the current attempt 
stick is updated on that task interface.

Participants were told that all problems can be solved in 6 moves or 
less. The experiment automatically reset the problem after 6 moves (on 

FIGURE 3

The structure and timing of an antisaccade trial.
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their seventh move). At the end of the task, participants were asked to 
answer three questions: “How did you decide which stick to use on your 
first attempt at the problem?,” “Did you use any particular strategies to 
solve these problems?,” “Were there any strategies you tried that did not 
seem to work? If so, please describe what you tried.” Participants were 
not provided any instructions about proceeding as quickly as possible 
or to try to solve the problem in as few attempts as possible.

3.3.3 Complex span task
Next, participants completed a modified version of the complex 

span task used by Barrouillet et al. (2007). First, participants were asked 
to complete a training phase in which they would make judgments on 
the parity of the numbers 1–10. They had to achieve 80% accuracy to 
continue, otherwise, they would repeat the training. In the main task, 
participants were presented with a series of letters ranging in length 
from one to seven, with three series of each length. The series were 
presented in ascending order with all the one-length series presented 
before moving on to the two-length series and so on. The 21 series 
contained a total of 84 letters, each followed by a series of 4, 6, or 8 
integers from 1 to 10. The numbers appeared in a fixed random order, 
with as many even as odd numbers. Participants were required to 
remember the letters in order and judge the parity for digits. After 
“Recall” appeared on the screen, participants would press the keys 
corresponding to the letters they were to remember. Before the main 
task began, one example of how to respond to digits and recall a letter 
was shown to participants. Participants were instructed and prompted 
to keep parity judgment at or above 80% accuracy in the main trials 
(which was established as a data exclusion criterion prior to the study). 
Feedback on accuracy was presented after recall for each series of letters.

3.3.4 Letter series task
Finally, participants completed the letter series task (Simon and 

Kotovsky, 1963). Two examples of letter series with one rule and two 
rules were presented, and participants were presented with the letter 
series, rule(s), and answer for these examples. Then a practice trial was 
provided (e.g., “B, V, D, X, F, Z, H, B? “), and participants were guided 
to find the pattern within the letters. They were given feedback and 
taken back re-read the instructions if they did not respond correctly 
to this practice trial. There were 15 trials. The letters in each trial 
change according to a fixed pattern which could include more than 
one rule (e.g., “V, V, F, X, X, H, Z, Z, J, B, B, L, D, D?”). Participants 
were required to complete each trial in 1 min or less. Participants were 
not able to go back once they submitted an answer. If they responded 
too quickly (less than 10 s) and gave a wrong answer, a compulsory 
delay of 15 s would be triggered. Once participants triggered the delay 
more than 5 times, their data were excluded from data analyses. The 
delay was included to discourage answering quickly without 
attempting to figure out the answer.

4 Results

4.1 Data analysis

For the pre- and posttest data, participants only selected the first 
move. Analyses of these data focused on whether participants 
selected the move consistent with the overshoot or undershoot 
strategy. Problems in which participants selected stick A were not 

included in the analyses (2.8% of the data) because stick A was not 
considered to be using the undershoot strategy as described in the 
task instructions. Based on the base-rate bias condition to which 
participants were assigned, one of the two strategies was designated 
as the successful strategy. In the biased conditions, half of the 
participants were randomly assigned to experience more problems 
solved by undershoot, and the other half experienced more problems 
solved by overshoot. Therefore, the successful strategy for these two 
groups of participants was undershoot and overshoot, respectively. 
In the unbiased conditions, participants experienced half of the 
problems solved by each strategy. In this case, half of the participants 
were randomly assigned to have the undershoot strategy designated 
as the successful strategy, and the other half were assigned the 
overshoot strategy as the successful strategy. Coding the data in this 
manner made it possible to analyze the data across counterbalance 
conditions and is identical to how the data were analyzed in the 
original study (Lovett and Schunn, 1999). For example, it is possible 
to assess whether participants selected the strategy for which the 
base rate was higher in the biased condition without regard to 
whether the strategy with the higher base rate was undershoot 
or overshoot.

A separate set of analyses used the training phase data, during 
which participants had to solve each problem to move on to the next 
problem. Because it may take multiple attempts to solve a problem, it 
is possible to examine how many of the attempts that participants 
made were unique (as opposed to repeating a series of moves that was 
tried previously on that problem). In addition, unsuccessful attempts 
can be terminated by the participant clicking the reset button (i.e., 
manual reset) or by making more than 6 moves resulting in the system 
forcing the problem to be reset (i.e., forced reset). For the training 
phase data, dependent measures include the strategy that was first 
selected, solution time, proportion of the attempts that were unique, 
and the number of forced and manual resets.

The data were analyzed using generalized linear mixed effects 
models including participant and item random effects unless 
otherwise noted. Analyses were performed in R using the lme4 and 
lmerTest packages (Bates et al., 2015; Kuznetsova et al., 2017). The 
lmerTest package provides p-values for fixed effects based on the 
Satterthwaite approximation. Factor variables were coded using 
deviation contrast coding (e.g., −0.5/0.5). For all models, a maximal 
random effects model was initially used (Barr et  al., 2013), with 
participant random intercepts and any within-participant conditions 
modeled as random slopes for participant. If the model did not 
converge, then the random effects structure was reduced. While the 
power analysis determining sample size was based on an ANOVA as 
was used in the original paper, generalized linear mixed effects models 
were used because it is possible to formulate models that generally test 
the same effects as the original ANOVAs while also better representing 
that in many cases, the dependent measure is a binary outcome (e.g., 
was a certain strategy selected). In many cases in the original paper, a 
proportion measure was used in an ANOVA as if it were a 
continuous response.

The high rate of exclusion for the complex span task (N = 38) is 
discussed in the supplementary analyses available at https://osf.
io/8w4kd. Analyses with these participants included are presented 
there, and in all cases, there is no difference in the statistical 
significance of the results reported here with these participants 
excluded from analyses.
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4.2 Replication of original findings

4.2.1 Sensitivity to cue predictiveness
The first prediction from RCCL was that the relative length cue 

would influence participants’ initial strategy selection. In the BST, the 
stick that is closest to the target is a salient cue associated with 
strategy selection. As described, there were five types of problems on 
the pre- and posttest: strong cue toward overshoot, weak cue toward 
overshoot, neutral, weak cue toward undershoot, and strong cue 
toward overshoot. These problem types were recoded based on the 
most successful strategy as designated by the condition the 
participant was assigned to (e.g., strong cue toward the most 
successful strategy). For the pretest, if participants were sensitive to 
the length cue, there would be a higher proportion of successful 
strategy selection for those problems in which there is a more salient 
relative length cue predictive of a successful strategy. If not, the 
proportion of successful strategy selection would be a flat line around 
50%. The mean proportion of the time that the successful strategy 
was selected is shown in Figure 4 where it can be seen that participants 
were sensitive to the length cue in the predicted manner.

The trial-level data were analyzed in a logistic generalized linear 
mixed effects model, with the dependent measure being whether the 
successful strategy was selected for each problem. The relative length 
cue was coded from-2 = strong cue toward unsuccessful strategy to 
2 = strong cue toward successful strategy. The generalized linear 
mixed model showed that the relative length cue had a positive effect 
on the proportion of successful strategy [b = 1.03, SE = 0.29, 95% CI 
(0.46, 1.61), z = 3.52, p < 0.001], which is consistent with the original 
finding. Increasing one unit on the relative length cue scale therefore 
results in a 2.80 increase in the odds of selecting the successful strategy.

4.2.2 Sensitivity to base rates
The second prediction was that participants would learn the base 

rates of success of each strategy. If participants learned the biased base 

rate during training, they would show sensitivity to the base rates in 
their strategy selection on the posttest. The biased base rate conditions 
were compared to the unbiased base rate conditions to test if biased 
base rates influenced successful strategy selection. To examine this 
prediction, a generalized linear mixed model was used with the 
dependent measure being whether the most successful strategy was 
selected, and the predictors included the base rate bias condition 
(unbiased/biased), the cue predictiveness condition (unpredictive/
predictive), and test time (pre/posttest). The model fit is shown in 
Table 2, and the results demonstrated that participants in the biased 
base rates conditions chose the biased strategy more often than those 
in the unbiased conditions. This result is also consistent with the 
original findings. Critically, the differences between the base rate bias 
conditions (unbiased/biased) in the posttest were not caused by 
differences in pretest strategy selection because there is an interaction 
between the bias condition and test time. This interaction is driven by 
there being no difference in successful strategy selection at pretest 
between the biased and unbiased conditions (b = 0.07, SE = 0.15, 
z = 0.45, p = 0.97), but at posttest, the biased condition had a higher 
rate of successful strategy selection than the unbiased condition 
(b = 0.46, SE = 0.15, z = 3.16, p = 0.009). This interaction is shown in 
Figure  5, indicating that participants learned the base rates 
during training.

4.2.3 Irrelevant cues are dropped
The third prediction was that people would stop using task 

features that do not lead to successful strategies. According to the 
RCCL theory, if one feature was not useful, participants should drop 
it from their task representation. Consistent with this idea, 
participants were initially sensitive to the relative length cue during 
the pretest (see Figure  4). However, those in the unpredictive 
conditions—where the length cue did not reliably predict success—
would become less sensitive to that cue by the posttest. To test this, 
we fit a generalized linear mixed model of whether the successful 

FIGURE 4

Mean proportion of successful strategy selection based on the relative length cue during pretest. Error bars show one standard error of the mean.
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strategy was selected during the posttest with predictors of cue 
predictiveness, base rate bias, and the relative length cue (mean-
centered). The non-significant three-way interaction was dropped to 
aid in interpretation of lower-order effects and the final model is 
shown in Table 3. Specifically, the interaction between the relative 
length cue and whether that cue was predictive shows that the slope 
was greater in the predictive conditions than in the unpredictive 
conditions. As illustrated in Figure 6, these results support the idea 
that participants selectively drop unhelpful cues over time.

However, if participants had dropped the relative length cue from 
their representation, then the slope of the posttest line for the 
unpredictive-biased condition in Figure 6 should have been close to 
zero. The slope was significantly different from zero (b = 0.49, SE = 0.10, 
z = 4.86, p < 0.001), indicating that on average participants were still 
sensitive to the relative length cue. In order to examine whether this 
mean performance was a combination of some participants showing no 
sensitivity to the relative length cue and others still using the cue, a 
regression for each participant was performed using the relative length 
cue to predict the proportion of selecting the successful strategy. A 
histogram of the regression coefficients for the relative length cue 
predictor (i.e., slope of the line) for each participant is shown in Figure 7. 
A bimodal distribution with some participants showing a slope centered 
around 0 and others showing a positive slope may indicate a mixture of 
participants who had dropped the cue and others who had not, but the 
distribution appears to be  approximately a unimodal gaussian and 
centered on a positive slope around 0.1. The mean performance shown 
in Figure 6 for this unpredictive-biased condition therefore seems to 
be representative of participants’ strategy selection.

In addition to the posttest data, the responses to the questions 
about strategies asked at the end of the BST were coded according to 
the same coding scheme as in the original paper (Lovett and Schunn, 
1999). Based on the keywords in the responses, the responses were 
categorized into three major groups: Length, Exclusive, and Other. 
Participants who made comparisons between Stick B or C and the 
desired stick were classified as using a length-sensitive procedure 
(Length). Participants were categorized as using exclusive strategy if a 
participant said they “always” or “usually” used one single strategy 
(Exclusive). The remaining responses were categorized as 
miscellaneous (Other). The inter-rater reliability between two judges 
was acceptable with a Cohen’s Kappa value of 0.92.

The proportion of responses falling into each of these three 
categories for each condition is shown in Table 4. As some evidence 
that participants’ reported strategies corresponded to behavior, 

participants reporting using the length cue were more likely to select 
the strategy corresponding to the relative length cue in the training 
problems relative to the other two categories combined, F (1, 
98) = 5.45, p = 0.02. Participants in the unpredictive cue conditions 
had significantly fewer responses related to the length cue (45%, 
averaged over the levels of the base rate bias conditions) than 
participants in the predictive conditions (69%, averaged over the levels 
of the base rate bias conditions), χ2 = 10.79, p = 0.001. This result 
supports the prediction that irrelevant features will be dropped when 
they are not predictive of success.

4.2.4 More representation change
The fourth prediction was that there would be more representation 

change in conditions where success rates are low. To quantify the 
change in task representation, a matrix method was used, as in the 
original study, to calculate the degree to which a participant has 
shifted in a two-dimensional representation space during the training 
phase of the experiment. The training problems were broken up into 
four blocks of 20 problems each for this analysis. The horizontal 
dimension of the matrix represented participants’ sensitivity to the 
relative length cue during each block, with the proportion of choosing 
the closest stick determining the position on this axis. Participants 
who were further from zero were more sensitive to the relative length 
cue. The vertical dimension of the matrix represented participants’ 
sensitivity to the base rates, with the proportion of choosing the 
successful strategy corresponding to their assigned condition. 
Participants who were further from zero were more sensitive to the 
base rate. By dividing 80 training problems into four blocks, it is 
possible to see how participants’ choices changed over the course of 
training as four points in the matrix. The rationale underlying this 
analysis is that choices are made based on strategies which are in turn 
composed from the represented task features. The change in task 
representation over the course of training could be characterized as 
the distance between each point in the two-dimensional matrix. 
Figure 8 shows examples for the choice patterns of four participants 
during the training phase.

According to the RCCL theory, the unbiased-unpredictive 
condition should have limited success because there were no features 
such as the relative length cue that were predictive of strategy success 
and both strategies had the same base rate of success. Therefore, there 
should be more representation changes in this specific condition. The 
results showed that the representations of the participants in the 
unbiased-unpredictive condition (M = 0.71, SD = 0.16) covered more 

TABLE 2 Generalized linear mixed effects model fixed effects for the proportion of successful strategy selection.

Predictors b SE z p

(Intercept) 0.09 0.06 1.50 0.13

Base rate bias 0.26 0.11 2.33 0.02*

Cue predictiveness −0.13 0.11 −1.11 0.27

Test time 0.13 0.10 1.25 0.21

Base rate bias: cue predictiveness 0.19 0.23 0.84 0.40

Base rate bias: test time 0.39 0.19 2.13 0.03*

Cue predictiveness: test time −0.02 0.19 −0.13 0.90

Base rate bias: cue predictiveness: test time −0.27 0.37 −0.72 0.47

For the model, base rate bias includes the biased base rates condition (coded as 0.5) and the unbiased base rates condition (coded as-0.5), cue predictiveness includes the predictive (coded as 0.5) 
and unpredictive cue conditions (coded as-0.5), and test time includes the pretest (coded as-0.5) and posttest (coded as 0.5). Bolded entries with * denote values significant at the p < 0.05 level.

https://doi.org/10.3389/fpsyg.2025.1445200
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Xie and Moss 10.3389/fpsyg.2025.1445200

Frontiers in Psychology 10 frontiersin.org

distance than the other three conditions combined (M  = 0.58, 
SD = 0.21), F (1, 98) = 8.09, p = 0.005. While the original paper only 
examined contrasts between the unbiased-unpredictive condition and 
all other conditions combined (Lovett and Schunn, 1999), we also 
examined the distance traveled using the biased and predictive factors 
(each coded as −0.5, 0.5). The interaction was not significant, and 
neither was the biased factor. However, a greater distance was covered 
when the relative length cue was not predictive than when it was 
predictive (t = −3.23, p = 0.002).

To verify that there was overall less success in initial strategy 
selection for the unbiased-unpredictive condition, whether the correct 
initial stick (overshoot or undershoot) was selected as the first move 
for the first attempt on each training problem was examined in a 
generalized linear mixed effect model contrasting the success rates in 
all other conditions to the success rate for the unbiased-unpredictive 
condition. The results showed that success rates in the unbiased-
unpredictive condition (M = 0.64, SD = 0.10) were lower than the 
other three conditions combined (M = 0.69, SD = 0.10), z = −2.54, 
p = 0.01.

4.3 Individual differences results

Descriptive statistics for each of the individual difference 
measures are shown in Table 5. All individual differences measures 
were converted to z-scores prior to including them in any statistical 
models. To examine whether individual differences were related to 
initial strategy selection in BST problem solving, we first focused on 
the role of individual differences in initial cue use. The proportion of 
choosing the overshoot strategy during the pretest phase was 
examined using a linear mixed effects model with predictors for 
relative length cue and the three individual differences. The relative 
length cue was included to see if there was a difference in sensitivity 
to the relative length cue for individuals varying on any of the 
individual difference measures, as shown by an interaction between 
the relative length cue and one or more of the individual differences. 
No significant interactions were found, indicating no evidence for a 
role of these individual differences in initial cue use. However, 
individuals with higher inductive reasoning ability chose the 
overshoot strategy more often than those who were lower on the 

FIGURE 5

Mean proportion of successful strategy selection for each of the four conditions.

TABLE 3 Generalized linear mixed effects model fixed effects for the proportion of successful strategy selection at post-test.

Predictors b SE z p

(Intercept) 0.23 0.14 1.62 0.11

Base rate bias 0.67 0.21 3.26 0.001*

Cue predictiveness −0.24 0.16 −1.52 0.13

Relative length cue 0.81 0.33 2.43 0.02

Base rate bias: cue predictiveness 0.16 0.32 0.51 0.61

Base rate bias: relative length cue 0.01 0.16 0.04 0.97

Cue predictiveness: relative length cue 0.47 0.16 2.92 0.003*

For the model, base rate bias includes the biased base rates condition (coded as 0.5) and the unbiased base rates condition (coded as-0.5), cue predictiveness includes the predictive (coded as 
0.5) and unpredictive cue conditions (coded as-0.5), and the relative length cue is coded as (−2, −1, 0, 1, 2) for strong toward the unsuccessful strategy to strong toward the successful strategy. 
Bolded entries with * denote values significant at the p < 0.05 level.
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inductive reasoning measure (b = 0.03, SE = 0.01, t = 1.92, p = 0.05). 
There were no significant relationships between the proportion of 
choosing the overshoot strategy and attentional control (b = 0.02, 
SE = 0.01, t = 1.34, p = 0.18) or working memory capacity (b = 0.01, 
SE = 0.01, t = 1.09, p = 0.28). This result may indicate some differences 
between the overshoot and undershoot strategies where the overshoot 
strategy may be a bit more demanding of cognitive resources.

Problem-solving performance during the training phase was then 
examined in an exploratory analysis to identify individual differences 
related to BST problem solving. One of the goals of this set of analyses 
was to identify relationships that could be  explored in further 
hypothesis-driven research. In addition, the goal is to understand the 
role these individual differences may play in BST problem solving 
before conducting future research examining the relationship of these 
individual differences to strategy selection and representation 
change processes.

Solution time was first examined to determine if any individual 
differences had an influence on it. The model fit shown in Table 6 
showed that inductive reasoning ability and attentional control both 
had a significant effect on solution time, with higher attentional 
control and inductive reasoning ability associated with faster solution 
times. In addition, being in the predictive condition also led to faster 
solution times.

FIGURE 6

Mean proportion of successful strategy selection for each condition showing the change from pretest to posttest on the slope of effect of the relative 
length cue.

FIGURE 7

A histogram of the regression coefficients for the cue predictiveness 
predictor for each participant.

TABLE 4 Proportions of report categories in each condition.

Condition Report category

Length Exclusive Other

Unbiased-unpredictive 0.48 0.20 0.32

Unbiased-predictive 0.58 0.21 0.21

Biased-unpredictive 0.42 0.16 0.42

Biased-predictive 0.80 0.08 0.12
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To provide some further constraints on the mechanisms by which 
these individual differences influence solution time, the proportion of 
unique attempts and the proportion of resets that were forced resets 

were examined as mediators of the effect of the individual difference 
measures on solution time. The rationale was that measures such as 
the proportion of unique attempts provide indicators of how effectively 

FIGURE 8

Examples of choice patterns in each condition. Individual choice pattern matrix for one participant in each condition. Numbers 1–4 in each panel 
indicate the choice behavior in the four training blocks. The horizontal dimension of the matrix represents participants’ sensitivity to the relative length 
cue, and the vertical dimension of the matrix represents participants’ sensitivity to the base rates.

TABLE 5 Descriptive data and correlation matrix for the individual difference measures.

Individual differences M SD Min Max Skew Kurtosis α Correlation

1 2 3

1. Antisaccade score (attentional control) 27.22 6.00 9.00 36.00 −0.91 3.31 0.84 –

2. Complex span (working memory capacity) 4.24 1.68 1.00 6.67 −0.57 2.22 0.92 0.50 –

3. Letter series score (inductive reasoning) 0.65 0.22 0.07 1.00 −0.81 3.00 0.76 0.31 0.24 –

Antisaccade score is the number of trials for which participants gave a correct response. Letter series score is the proportion of correct trials. Descriptive statistics were calculated based on 
unstandardized scores. The rightmost three columns report the correlation matrix for the three measures.
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participants are searching the problem space, and individual 
differences may be affecting this search process, which in turn impacts 
solution time. In this study, we defined an “attempt” as the ordered set 
of moves a participant used to try to solve the problem on a given trial. 
If the participant had not previously used that exact sequence of 
moves in prior attempts, then the attempt was considered “unique.” 
For example, consider a participant with the following set of four 
attempts: “A + B + A,” “C-B-A,” “B + A + A,” and “A + B + A.” There 
were three unique attempts and one repeated attempt. The proportion 
of unique attempts in this example is then 3 / 4 = 0.75. An additional 
example of calculating this measure with actual data is provided in the 
Supplementary Analysis file on OSF.

The proportion of resets that were forced resets may indicate the 
degree to which participants are monitoring problem-solving progress 
on their own as compared to relying on the maximum moves built 
into the task interface. In addition, the condition that participants 
were assigned to was included in this analysis as a predictor of solution 
time and a predictor of the mediating variables because the problem 
distribution in each condition may have influenced these variables. 
Figure 9 displays the results of this mediation analysis excluding the 
condition predictors in the visualization for ease of interpretation. 
There was a significant path from inductive reasoning ability to the 
proportion of unique attempts to solution time (b = −0.02, z = −2.22, 
p = 0.03), and there was a significant path from attentional control to 
forced resets to solution time (b = −0.02, z = −2.31, p = 0.02).

5 Discussion

The goals of this experiment were to replicate a prior experiment 
examining how salient cues and base-rates influence strategy selection 
and to explore how individual differences in attentional control, 
inductive reasoning ability, and working memory capacity are related to 
BST problem-solving. The results can be summarized as follows: (1) 
people are sensitive to a salient feature of the task in their initial 
representation, (2) people are sensitive to the base rate of strategy 
success, (3) people tend to drop features from the task representation 
that are found not to be useful, (4) there are more representation changes 
when success rates are low, and (5) individual differences in attentional 
control and inductive reasoning ability are related to BST problem-
solving performance, in both direct and indirect ways. The first four of 
these results replicate prior results (Lovett and Schunn, 1999). The prior 
study was one of the few to directly test the RCCL theory.

The first prediction from the RCCL theory is that salient features 
in a task influence the initial task representation. For BST problems, 
the specific prediction was that the relative length cue would influence 
participants’ initial strategy selection because it is the most salient cue 
in the task, and it will be a part of the initial problem representation. 
The upward linear curve in Figure 4 is an indication of individuals’ 
sensitivity to the relative length cue. In other words, this salient feature 
influences individuals’ task representations and strategy selection, 
which is a replication of the original finding (Lovett and Schunn, 
1999). This finding is also in line with other work showing the role of 
salient features in strategy selection (Proctor et al., 1992).

The second prediction from the RCCL theory is that individuals 
will learn the success rate of each strategy. With more experience in 
the BST, participants will eventually learn the success rate of each 
strategy in the biased conditions, and they will show sensitivity to the 
biased base rates in their strategy selection in the posttest. Indeed, 
biased base rates influenced successful strategy selection, with 
individuals in the biased conditions selecting strategies having higher 
rates of success more often. This base-rate sensitivity was caused by 
learning in the training phase rather than any differences between 
condition in pretest strategy selection. One of the main reasons for 
developing the RCCL theory was a finding that base-rate neglect on 
problem-solving and decision-making tasks depends on whether the 
problem is presented as a text-based summary of frequencies or 
probabilities or whether people experience the trial-by-trial 
frequencies from which success rates can be learned (Bar-Hillel, 1980; 
Kahneman and Tversky, 1973). The current result showing sensitivity 
to base rates replicates the original finding (Lovett and Schunn, 1999).

The third prediction from the RCCL theory is that if current 
strategies have low success rates, then individuals will re-represent the 
task by adding or removing task features from the representation. In 
the BST, individuals will learn to drop the relative length cue from 
their task representation if it is not predictive of success. Both self-
report data and behavioral data were used to examine this prediction. 
First, the results of the self-reports showed that individuals were less 
likely to use length-based cues in the unpredictive conditions relative 
to the predictive conditions. In addition, individuals who reported 
using stick length showed more sensitivity to the relative length cue 
than individuals who reported using the other two categories of 
strategies (exclusivity and other reports). These findings are consistent 
with the original findings (Lovett and Schunn, 1999). Choice behavior 
in the posttest showed that participants were less sensitive to the 
relative length cue in the unpredictive conditions. Sensitivity was 
quantified as the slope of the individual’s choice proportions against 
the relative length cue (e.g., the slope of the curve in Figures 4, 6), and 
the slopes in the unpredictive conditions became flatter from pretest 
to posttest. These findings indicate that individuals are reducing their 
use of the relative length cue when it is not useful, supporting the 
prediction made by RCCL that people will remove useless features 
from the task representation.

However, other feature-based strategy selection theories, such as 
the rational metareasoning (RM) framework, can also be  used to 
interpret these results (Lieder and Griffiths, 2017). In RM’s account of 
strategy selection, the mapping from features to a strategy’s value is 
learned from experience via a set of weights between the features and 
the expected cost and reward of the strategy. This learning mechanism 
can transfer the learned weights from prior problem solving to pick 
effective strategies for novel problems that have similar feature values. 

TABLE 6 Effects of individual differences on solution time.

Predictors b SE t p

(Intercept) 1.67 0.02 90.80 <0.001***

Inductive reasoning −0.05 0.02 −2.77 <0.01**

Attentional control −0.06 0.02 −3.14 <0.01**

WMC 0.01 0.02 0.21 0.83

Base rate bias −0.04 0.04 −1.21 0.23

Cue predictiveness −0.14 0.04 −3.64 <0.001***

Base rate bias: cue 

predictiveness

0.05 0.07 0.75 0.46

All individual differences were converted to z scores. Solution time was log transformed. 
**indicates p < 0.01, and ***indicates p < 0.001.
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According to RM, people can learn that a feature is not predictive of 
success, not necessarily because they drop the feature from the 
representation, but the weight between the feature and the cost and 
reward of the strategy could be updated to be zero. Therefore, RM can 
also account for these results by simply learning that the feature is not 
relevant to strategy selection by decreasing the weight between this 
feature and the reward of the strategy.

It can be  difficult to ascertain whether a person’s mental 
representation, but the fact that the slopes in the unpredictive-biased 
condition were different from zero as shown in Figures 6, 7 seems 
more consistent with a gradual decrease in the weight of a relative 
length cue feature than a discrete change in representation resulting 
in dropping this feature from the representation as would occur in the 
RCCL theory. For example, if the relative length cue is removed from 
the task representation, then it is no longer possible to create or select 
strategies that rely on this feature. It will be  important for future 
research to further test this different between the RM and 
RCCL theories.

The fourth prediction from the RCCL theory is that there will 
be more representation change in tasks when strategy success rates are 
low. The task representation is used to generate strategies, and the 
success rate of each strategy is learned by experience in the task. This 
learning mechanism leads to gradual changes in the estimated success 
rate, and these changes in turn lead to representation changes which 
affect the available strategies. Thus, when success rates learned for 
used strategies are low, people will change the task representation by 
adding or removing features from the task representation. In the BST, 
more task representation changes are expected to occur in the 
unbiased-unpredictive condition because neither base rates nor the 
relative length cue lead to high success. The results did show that there 
was more representation change in the unbiased-unpredictive 
condition than in other conditions. However, a caveat should be made 
concerning the conclusion that there are more representation changes 
in low success rates. When testing if there are more strategy changes 
if the success rate is low, the unbiased-unpredictive condition was 
compared with all other conditions as was done in the original study. 

But taking both the predictive and biased factors into consideration, 
there was no interaction between biased base rates and cue 
predictiveness. It may be  that individuals in the unpredictive 
conditions have more representation changes, and there may not 
be more representation change in the unbiased-unpredictive condition 
than in the biased-unpredictive condition. A possible explanation for 
this result may be that the relative length cue is a salient cue in the 
task, and when it is not helpful, individuals tend to find other features 
to replace it. It may also be  that the current study did not have 
sufficient statistical power to detect the interaction.

The method used to examine representation change as shown in 
Figure 8 also has its limitations. This grid method intends to examine 
representation change reflected in choices that are controlled by 
strategies. The relative length cue does seem to be a feature that could 
be incorporated into the task representation. However, the rate of 
selecting the most successful of the overshoot/undershoot solution 
methods is more difficult to conceptualize as a representation change. 
According to RCCL, success rates of generated strategies are learned 
via experience, but the theory does not commit to whether these are 
explicitly represented or learned via some implicit mechanism (e.g., 
reinforcement learning). Even if the base rate is explicitly represented, 
it would be the base rate of specific strategies and not necessarily the 
overall base rate of success of the initial selection of the overshoot or 
undershoot stick. Therefore, the base rate dimension of the grid may 
not reflect representation change. This analysis is also limited in that 
it only considers one (or two) potential task features, and if people 
are searching for new features that are not these features, then the 
analysis does not capture this variation. While this analysis does 
replicate the original result, there are limitations to it which make it 
difficult to fully evaluate this prediction of RCCL. In summary, the 
current study replicates the findings of the previous experiment with 
respect to all four predictions of the RCCL theory with some 
important limitations, and other theories such as RM also seem 
compatible with the results.

Overall, this task did introduce different strategies by manipulating 
features across different conditions, leading to distinct choice behaviors 

FIGURE 9

The path diagram of the dediation. Regression coefficients between all variables are labeled on each line. The p-values are indicated in parentheses.
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based on participants’ task representation, such as whether they 
represented the match/mismatch feature. The results supported the 
RCCL theory’s prediction that different strategies are generated in terms 
of different task representation. Moreover, initial task representations 
were more obvious in this task, which could help identify the 
representation changes. As such, the predictions made by the RCCL 
were tested in two relatively straightforward tasks. Despite the tasks’ 
simplicity, the implications of the RCCL theory are not limited to the 
BST. It will be important to examine the generality of this theory in tasks 
that go beyond the original work including tasks with a larger space of 
possible strategies. One challenge with examining such tasks is that it is 
often difficult to know exactly what strategy a participant is using when 
the space of strategies is larger (Moss et al., 2022).

5.1 Individual differences related to BST 
problem solving

In addition to replicating prior results, another goal of the current 
study was to examine relationships between individual differences in 
working memory capacity, attentional control, and inductive reasoning 
ability to BST problem-solving. In this study, we used the proportion 
of unique attempts, the proportion of forced resets, and solution time 
as measures of problem-solving performance. Problem solution time 
is a less granular measure of problem-solving performance that can 
potentially be explained by the more granular measures related to 
problem space exploration such as the proportion of unique attempts 
and forced resets in the BST task. In this task, problem solving may 
consist of many attempts to solve the problem, but only one solution 
works. Across these attempts, participants sometimes repeat an attempt 
from earlier. In addition, this task was programmed to force a reset on 
participants’ seventh move during an attempt, and the instructions for 
the task stated that all problems can be solved within five moves. The 
proportion of unique attempts and forced resets reflect how effectively 
people explore the problem space for each problem (Newell and Simon, 
1972) and how they may be  monitoring their solution attempt. 
Specifically, a higher proportion of unique attempts indicates that 
participants are more likely to maintain the traces of prior attempts and 
avoid repeating prior attempts. Similarly, a lower proportion of forced 
resets may indicate that participants are monitoring how many moves 
have been made to evaluate their progress toward a solution such that 
avoid being forced to reset.

In the regression model relating the individual differences to 
solution time shown in Table 6, only attentional control and inductive 
reasoning are significant predictors of solution time. Considering that 
the proportion of unique attempts and forced resets could potentially 
explain solution time, we also included these two measures in the 
mediation model as mediators. Individual differences in attentional 
control and inductive reasoning ability influenced solution time but 
were mediated by the proportion of forced resets and the proportion 
of unique attempts, respectively. Higher inductive reasoning ability 
was associated with a higher proportion of unique attempts, leading 
to faster solution time. One interpretation is that participants are 
reasoning about the failure of past attempts to plan the next attempt, 
which helps to constrain search in a manner that reduces the chance 
of repeating an earlier attempt.

Participants with higher attentional control had fewer forced 
resets, leading to faster solution time. This mediation can be explained 

by the fact that attentional control resources are being used to 
monitor the number of moves made so that reaching a forced reset is 
less likely. Attentional control has been discussed as the ability to 
control the information that gets maintained in working memory in 
the face of distraction (Unsworth, 2016; Unsworth et al., 2021). In the 
antisaccade task, this control allows the goal of attending to the 
opposite side of the screen to be maintained and influence action 
selection in the face of the prepotent response to move one’s eyes to 
the blinking distractor. In the BST, this process may allow for a move 
counter to be maintained while also executing planned moved and 
planning future moves.

Finally, there was no effect of working memory capacity on 
problem-solving measures. This result is not aligned with other work, 
which found that individual differences in WMC are related to the 
ability to retrieve previous task experience which then contributes to 
task performance (Mattarella-Micke and Beilock, 2010; Wiley and 
Jarosz, 2012). One possibility for the nonsignificant result is that 
working memory capacity is correlated with attentional control, and 
the latter accounts for the effects on problem-solving performance 
(Ash and Wiley, 2006; Engle and Kane, 2004; Kane et al., 2001). As 
such, it is reasonable to suggest that solution time is not influenced 
by the unique variance of working memory capacity that is not shared 
with attentional control and inductive reasoning. As expected, all the 
task measures were somewhat correlated with the antisaccade and 
complex span measures sharing 25% of their variance. As shown in a 
supplemental material, when working memory capacity alone is used 
to predict solution time, then there is a significant relationship, but if 
either of the other two individual differences are included, then this 
relationship is not significant. Therefore, the lack of a relationship 
with working memory capacity in the current study could 
be  attributed to variance better accounted for by the inductive 
reasoning and attentional control measures.

The interpretation of the individual differences is also limited by 
the use of a single task to measure these three related latent 
constructs. There is always the concern that the correlations 
we observed could be due to task variance unassociated with the 
latent construct. In addition, the status of attentional control as a 
singular construct is very much an open question. We selected the 
antisaccade task because of its reliability and that it generally loads 
highly on an attentional control factor in other research (Draheim 
et  al., 2021). Traditional tasks that have been used to measure 
attentional control suffer from low reliability and do not correlate 
with each other (Hedge et al., 2018; Rouder and Haaf, 2019). There 
are different proposals on how best to measure attentional control 
given these concerns including relying on accuracy-based measures 
such as the antisaccade rather than on differences in response times 
such as in a Stroop task (Burgoyne et al., 2023; Draheim et al., 2021). 
Researchers examining the related construct of cognitive control have 
also noted that there are multiple mechanisms or dimensions by 
which individuals could adjust to task demands (Frömer and 
Shenhav, 2022; Ritz et al., 2022), but it remains to be seen whether it 
is possible to measure reliable individual differences along 
these dimensions.

Although the present results are consistent with the original 
findings, they also raise some new questions. For example, we found 
that participants showed sensitivity to the relative length cue in the 
pretest, but there was also a relationship between inductive reasoning 
ability and use of the overshoot strategy. It is not clear why this 
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relationship exists. In the BST, we can consider the overshoot strategy 
as subtraction and the undershoot strategy as addition. The 
preference for undershoot could be induced by the preference for 
addition rather than subtraction (Adams et  al., 2021). Inductive 
reasoning, a core component of fluid intelligence, is also closely tied 
to math performance (Kinshuk et al., 2006). And using a subtraction 
procedure has been found to be  more difficult than addition 
(Barrouillet et al., 2008; Campbell and Xue, 2001; Kamii et al., 2001). 
People with higher inductive reasoning ability might be better at 
using subtraction or more willing to engage in the reasoning required 
to plan a subtraction solution, which can be the reason why they 
choose overshoot strategy more.

It is noted that the individual difference analyses in the current 
paper were exploratory analyses, and it was not feasible to examine 
the relationships between individual differences and base-rate 
learning in only a subset of the conditions, such as in the biased-
unpredictive condition. Examination of individual differences in the 
rate at which people shift toward more useful task representations 
and strategies with that kind of comparison was not possible in the 
current study given that each cell of the design had only 25 
participants. Importantly, exploring the relationships between 
individual differences and problem-solving performance should 
provide a basis for examining how these individual differences play a 
role in strategy development and selection in future research using 
BST problems to explore strategy selection. Verifying that the results 
of prior research could be replicated was a prerequisite to conducting 
a higher-powered study examining the role of individual differences. 
This future work would also be better able to address the question of 
whether strategy success estimates are maintained and updated 
explicitly or implicitly by examining individual differences related to 
adapting to base rates.

To conclude, in spite of some limitations, we  have tested the 
predictions made by the RCCL theory and replicated the original 
findings from Lovett and Schunn (1999). However, the RCCL theory 
needs further development to test more specific predictions, and 
some of the results may be better explained by other strategy selection 
theories such as RM. Individual differences were also found to 
be related to BST strategy use and problem-solving performance. 
Based on the present findings, future research can focus on exploring 
strategy preferences and establishing a more thorough understanding 
of how individual differences are related to strategy development 
and selection.
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