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non-invariance
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Structural equation modeling (SEM) is commonly used to explore relations

between latent variables, such as beliefs and attitudes. However, comparing

structural relations across a large number of groups, such as countries or

classrooms, can be challenging. Existing SEM approaches may fall short,

especially when measurement non-invariance is present. In this paper, we

propose Mixture Multilevel SEM (MixML-SEM), a novel approach to comparing

relationships between latent variables across many groups. MixML-SEM gathers

groups with the same structural relations in a cluster, while accounting

for measurement non-invariance in a parsimonious way by means of

random e�ects. Specifically, MixML-SEM captures measurement non-invariance

using multilevel confirmatory factor analysis and, then, it estimates the

structural relations and mixture clustering of the groups by means of the

structural-after-measurement approach. In this way, MixML-SEM ensures that

the clustering is focused on structural relations and una�ected by di�erences in

measurement. In contrast, Multilevel SEM (ML-SEM) estimates measurement and

structural models simultaneously, and both with random e�ects. In comparison

to ML-SEM, MixML-SEM provides better estimates of the structural relations,

especially when (some of) the groups are large. This is because combining

information from multiple groups within a cluster leads to more accurate

estimates of the structural relations, whereas, in case of ML-SEM, these estimates

are a�ected by shrinkage bias. We demonstrate the advantages of MixML-SEM

through simulations and an empirical example on how social pressure to be

happy relates to life satisfaction across 40 countries.

KEYWORDS

structural equation modeling (SEM), measurement invariance (MI), multilevel modeling,

mixture modeling, multielvel SEM

Introduction

Social science research often aims to gain insight into complex human behavior by

studying the relations between constructs (e.g., satisfaction, emotions), often quantified

by regression coefficients. Comparing these relations across groups helps reveal how

they differ across populations, cultures, or contexts. For instance, Kuppens et al.

(2008) explored the association between life satisfaction and positive and negative
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emotions across 46 countries, while Pakarinen et al. (2020)

investigated how emotional support from teachers related to

the development of social competence in children across 47

preschool classrooms.

Structural EquationModeling (SEM; Bollen, 1989; Hoyle, 2012)

is the state-of-the-art technique for analyzing relations among

several constructs, referred to as “structural relations” in this

framework. In studies involving multiple groups, Multigroup SEM

allows researchers to estimate a SEM model for all groups and

test whether the structural relations are consistent across groups.

When many groups are involved, differences in structural relations

are more likely to emerge. Conducting pairwise comparisons of

the group-specific relations can help identify group differences and

similarities, but this quickly becomes infeasible as the number of

groups increases (e.g., 1,035 pairwise comparisons for 46 groups).

Multilevel SEM (ML-SEM) can parsimoniously capture differences

in structural relations across many groups by means of normally

distributed random effects, but this does not help in achieving our

primary goal of pinpointing which groups differ and how. Adding

group-level moderators to the structural relations may still fail to

explain the differences (e.g., Brandt et al., 2021).

In scenarios with many groups, some groups likely have

equivalent structural relations—for example, due to a shared

cultural background—so that “latent classes” or “clusters” of groups

with common relations arise. Identifying these clusters would thus

be an intuitive and efficient alternative to pairwise comparisons,

which can be done by means of mixture modeling (McLachlan and

Peel, 2000).

Before clustering groups on structural relations, we need to

consider whether these relations can be validly compared across the

groups. In social sciences, the constructs of interest are typically

“latent” variables that are measured indirectly through indicator

variables, like questionnaire items, which contain measurement

error. In SEM, the latent nature of the constructs—also called

“factors”—is accounted for by estimating a measurement model

(MM) for each construct (capturing how it is measured by observed

indicators), as well as the relations between the constructs—which

are part of the structural model (SM). For ensuring comparability

of constructs across groups, some degree of “measurement

invariance” (MI) should hold, meaning that the constructs are

measured equivalently across groups so that differences in the

(relations between) constructs are not due to differences in how

they are measured.

Different levels of MI pertain to different subsets of

measurement model parameters. Configural invariance concerns

equivalence of the factor loading structure (i.e., the number of

factors and the pattern of zero and non-zero loadings) across

groups, where factor loadings capture the factor-indicator relations

so that configural invariance implies that a construct is measured

by the same set of items in all groups. Metric invariance concerns

equality of the factor loadings (i.e., the strength and direction of

the factor-indicator relations). Scalar invariance requires equality

of item intercepts. Lastly, residual invariance implies equality of

the items’ residual or “unique” variances (i.e., not explained by

the factor). To make accurate between-group comparisons of

construct relations, metric invariance (Davidov et al., 2012) should

hold across groups. With many groups, however, measurement

non-invariance is often encountered (e.g., Boer et al., 2018;

Rutkowski and Svetina, 2014). If equality does not hold for

all factor loadings, partial metric invariance still enables valid

comparisons of structural relations, meaning that some loadings

are invariant while others differ (Byrne et al., 1989; Pokropek et al.,

2019). Non-invariance of item intercepts and unique variances

do not invalidate the comparison of structural relations. To avoid

incorrect (biased) estimates of structural relations, differences in

loadings, intercepts and unique variances must be accounted for

within the SEM model (Chen, 2008; Guenole and Brown, 2014;

Pokropek et al., 2019).

From this reflection on MI, we conclude that differences in

structural relations are not the only between-group differences

we can encounter in SEM, but they are the only differences we

want to capture by clustering. However, traditional mixture SEM

methods (Arminger and Stein, 1997; Dolan and van derMaas, 1998;

Jedidi et al., 1997) capture differences in all SEM parameters with

clustering—including MM parameters (loadings, intercepts, and

unique variances) as well as SM parameters (structural relations

and factor means)—except for parameters that are constrained

to be equal across clusters. As a result, this method may need

many clusters to capture both measurement non-invariances and

structural differences, or it may mix up the two sources of

differences or capture the most dominant differences only, failing

to isolate differences in structural relations.

To solve this shortcoming, Perez Alonso and colleagues

(Perez Alonso et al., 2024) proposed Mixture Multigroup SEM

(MixMG-SEM), which uses mixture modeling to cluster groups

based on their structural relations while accounting for potential

measurement non-invariance by keeping the MM partially group-

specific. Unlike other mixture SEM approaches, MixMG-SEM

ensures that the clustering is solely based on structural relations

rather than (also) on differences in how the constructs are

measured. However, when the sample size per group is small

(say 50 or less, or barely higher than the number of variables),

taking a multigroup approach to capturing measurement non-

invariance may not converge or result in less accurate and

inefficient estimates of the group-specificmeasurement parameters,

which may propagate into the SM and affect the estimates of

the structural relations as well as the clustering based on these

relations. Therefore, in this paper, we propose a more parsimonious

alternative: Mixture Multilevel SEM (MixML-SEM). It uses the

multilevel approach to capturing measurement non-invariance,

while comparing structural relations across groups by means

of a mixture clustering. Hence, it accounts for between-group

differences in measurement parameters by means of random effects

at the group-level, reducing the number of parameters and thus

resulting in more efficient estimates (Hox et al., 2017). Note that

at least 30 or 50 groups are needed to obtain valid estimates of the

random effects (Leitgöb et al., 2023), however.

While the multilevel approach is commonly favored for

modeling differences among many groups, in MixML-SEM, we

employ it specifically for the MM but not for the structural

relations. This distinguishes MixML-SEM from ML-SEM. As

mentioned above, modeling variance in structural relations does

not help in pinpointing similarities and differences across groups.

Furthermore, group-specific estimates derived from random effects
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are systematically biased toward the overall mean parameter value,

especially when the sample size per group are small (Hox et al.,

2017), impairing the comparisons of group-specific regression

coefficients resulting from ML-SEM. In contrast, MixML-SEM

provides more accurate estimates of the structural relations by

combining information from multiple groups within a cluster

when estimating the regression coefficients (i.e., they are directly

estimated as cluster-specific parameters), which alleviates the effect

of having small sample size per group (as long as the clusters are

still sufficiently separated).

For estimatingMixML-SEM, we build on the “Structural-After-

Measurement” (SAM) framework presented by Rosseel and Loh

(2024), which decouples the estimation of the measurement and

structural parts of the SEM model. For the estimation of MixML-

SEM, we adopt a tailored variant of the local SAM approach,

where the estimation of structural relations operates directly on

the covariances between factors and, thus, no longer involves

the measurement parameters. Specifically, a multilevel factor

analysis is performed per factor, while accounting for potential

measurement non-invariances with random effects. Factor scores

(i.e., estimated latent variable scores) are extracted for each factor.

Then, these factor scores are used as scores on a single indicator

for the factor, for which measurement parameters are derived,

and Croon’s correction (Croon, 2002) is applied to compute the

factor covariances. These factor covariances are the input for the

final step, which boils down to a mixture multigroup path model,

estimating the mixture clustering of the groups and the cluster-

specific regression relations among the factors.

To conclude, this paper presents MixML-SEM for efficiently

comparing structural relations across many groups (by means of

mixture modeling), while handling measurement non-invariances

with a low number of parameters (by means of multilevel

modeling). The paper is organized as follows: Firstly, we provide

a comprehensive description of the specification and estimation

of MixML-SEM. Next, we present simulation studies assessing the

performance of MixML-SEM in terms of model estimation and

model selection, comparing it to ML-SEM. We then demonstrate

the empirical value of MixML-SEM using data on how the

perceived social pressure to be happy relates to people’s life

satisfaction. Finally, we summarize the main findings and discuss

limitations of the study as well as directions for future research.

Specification and estimation of
MixML-SEM

In Step 1 of MixML-SEM, the measurement model (MM) is

estimated by performing aMultilevel Confirmatory Factor Analysis

(ML-CFA) per factor (i.e., per construct). In Step 2, the factor

scores obtained in Step 1 are used as scores on a single indicator

(with fixed measurement parameters) for each respective factor

and Croon’s correction (Croon, 2002) is applied to obtain bias-

corrected factor covariances. In Step 3, the structural model

(SM)—including the clustering of the groups and the cluster-

specific structural relations—is estimated using an Expectation-

Maximization (Dempster et al., 1977) algorithm. Below, we

elaborate on each step, including the relevant model specifications.

Then, we discuss how to determine an essential aspect of the model

specification: the number of clusters.

Step 1: ML-CFA with measurement
non-invariances

TheMMcaptures how the indicators (observed variables) relate

to the constructs of interest (latent variables). For each construct

(factor) q (q = 1, . . . ,Q), xng denotes the observed scores on the

Jq indicator items for individual n nested within group g (g =
1, . . . ,G), which are modeled as follows:

xng = τg + λgηng + ǫng with ǫng ∼ MVN
(
0,2g

)
(1)

where τg is a Jq-dimensional vector of intercepts for group g,

λg denotes a Jq-dimensional vector of factor loadings for group

g, quantifying the expected change in the item scores due to a

one-unit change in the latent variable score ηng , and ǫng is a Jq-

dimensional vector of residuals, where the diagonal of 2g contains

the items’ unique variances in group g, representing variance that

is unexplained by the underlying construct. To set the scale of the

latent variables, we adopt the marker variable approach, where one

loading per factor is fixed to one for each group, so that a one-unit

change of a factor has the same meaning in all groups.

Note that we formulated the MM for each factor separately,

in line with the “measurement blocks” concept introduced by

Rosseel and Loh (2024) in their SAM approach. They recommend

estimating the MM of each latent variable separately, which

corresponds to having one factor within each measurement block.

This strategy streamlines computational efficiency by avoiding

estimating one larger model with more parameters and it enhances

the model’s robustness against potential misspecifications, such as

unmodeled cross-loadings.

Multigroup confirmatory factor analysis (MG-CFA; Meredith

and Teresi, 2006; Sörbom, 1974) allows fitting MMs for multiple

groups and determining which parameters are invariant. The

invariance of a subset of measurement parameters holds when

imposing their equality across groups (e.g., λg=λ for g =
1, . . . ,G) does not significantly worsen the fit of the model. In

MG-CFA, a non-invariant measurement parameter is estimated

separately for each group, which results in a large number of

parameters to be estimated. In multilevel terminology, this is

referred to as the “fixed effect approach,” which is known to

result in less efficient parameter estimates, meaning that the

group-specific parameters are estimated with greater uncertainty,

especially for small groups. Small-sample bias may also make

the group-specific parameter estimates less accurate. Therefore,

ML-CFA has gained prominence as a parsimonious alternative

for capturing heterogeneity in parameters across many groups

(Kim et al., 2016; Muthén, 1991, 1994), a trend supported by the

availability of statistical software like Mplus (Muthén and Muthén,

1998). Instead of estimating separate measurement parameters for

each group, ML-CFA estimates a single MM for all groups, allowing

measurement parameters to vary randomly across groups. This

variation is modeled through random effects, which essentially

impose a certain distribution on the variation in parameters. For
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these random effects, only the mean and variance are estimated as

parameters, which results in more efficient estimation (Hox et al.,

2017). As mentioned in the Introduction, group-specific estimates

can be derived from the random effects; however, these estimates

are subject to shrinkage bias toward the overall mean.

When estimating MixML-SEM, we start by performing a

separate ML-CFA for each factor using the Bayes estimator

(Asparouhov and Muthén, 2012). Note that, since our primary

focus is the comparison of structural relations and not of latent

means, the mean structure of the data (i.e., the group-specific

means) is removed by centering the observed scores per itemwithin

each group (therefore, τg = 0 for g = 1, . . . ,G). This also lowers

computational demands. For individual n in group g, the ML-CFA

model for a single factor with random loadings is then expressed

as follows:

Level-1 Model:

xng = λgηng + ǫng with ǫng ∼ MVN
(
0,2g

)
(2)

Level-2 Model:

λjg = γλj + uλjg with uλjg ∼ N
(
0, σλj

)
(3)

θjg = γθj + uθjg with log(θjg) ∼ N
(
γθj , σθj

)
(4)

φqg = γφq + uφqg with log(φqg) ∼ N
(
γφq , σφq

)
(5)

At Level-1, λg refers to the Jq-dimensional vector of factor

loadings for group g, ηng is the latent variable score and ǫng

the within-level error term for individual ng . At Level-2, random

effects are included for each non-invariant parameter (i.e., for each

random loading λjg , random unique variance θjg , and random

factor variance φqg). Random effects for loadings are also referred

to as “random slopes.” Random loadings λjg are assumed to

be normally distributed. In Equation 3, γλj refers to the average

slope, and uλjg
is the group-specific deviation from the average

slope. While only the mean (γλj ) and the variance (σλj ) of the

random slopes are estimated as parameters, it is possible to obtain

group-specific loading estimates from the posterior distributions

when using the Bayes estimator (i.e., posterior mean estimates,

e.g., Asparouhov and Muthén, 2012). For an invariant loading,

uλjg becomes 0 and λjg=λj for all groups. As highlighted in the

Introduction, at least partial metric invariance should hold for the

between-group comparisons of structural relations to be valid. This

implies that at least some loadings should be invariant across the

groups, so that the vector of loadings contains both invariant and

non-invariant ones. If full metric invariance holds, no random

slopes are needed and the vector of loadings is fully equal across

groups, so that λg = λ for g = 1, . . . , G.

Differences in unique variances should also be captured by

random effects (Equation 4), so that 2g can also contain a

combination of invariant and non-invariant unique variances—

depending on the results of the MI testing. Additionally, it is

reasonable to expect differences in factor variances across groups.

Thus, one should also specify random factor variances, φqg , when

necessary (Equation 5). Since it is not suitable to assume random

variances (i.e., unique variances θjg and factor variances φqg)

following a normal distribution, the log of the variance is modeled

by a normal distribution (e.g., “logv,” see Muthén and Asparouhov,

2023). Throughout the paper, we assumed the factor loadings and

unique variances to be partially group-specific and factor variances

to be fully group-specific, so we always refer to them with a

subscript g.

As mentioned above, it is necessary to determine beforehand

which measurement parameters should be specified as non-

invariant (i.e., with random effects) and which ones as invariant

(i.e., without random effects). Hence, MI testing should precede

MixML-SEM. Even though MG-CFA is the most commonly used

method, the MI test can also be performed with ML-CFA (Kim

et al., 2017; Leitgöb et al., 2023). To evaluate MI, one can use

the random effects directly. To assess whether (partial) metric

invariance holds, the factor loadings are specified as random

across groups (as in Equation 3) and, then, one can test—for

each loading—whether the variance of the random loadings σλj

is non-zero (Asparouhov and Muthén, 2012; Leitgöb et al., 2023),

which implies that the corresponding loading is non-invariant. For

unique variances and factor variances, one can also test whether

the variance of their random effect is non-zero. Note that the

MI testing method from Jak et al. (2013) is not applicable in our

context, as we removed the mean structure and thus the between-

level (co)variances.

Once the non-invariant parameters are identified and

accounted for by random effects, we obtain the ML-CFA model

that corresponds to the first step of MixML-SEM. Throughout

this paper, Step 1 of MixML-SEM is performed by means of

Mplus and the R-package MplusAutomation (Hallquist and Wiley,

2018), using the Bayes estimator with default, non-informative

priors. Upon estimating the MM for each factor, the posterior

distributions (i.e., posterior means and standard deviations) of the

factor scores (i.e., estimated latent variable scores) are appended to

the data file. These values are used in Step 2. For more details, see

Supplementary material S1.

Step 2: single-indicator approach to obtain
group-specific factor covariances

The goal of Step 2 is to obtain group-specific factor covariances,

denoted as 8s2
g . Factor scores are estimates of the true latent

variable scores that contain error, so when they are used in

regression or path analysis as if they were the true latent variable

scores, the regression estimates may be biased (Devlieger and

Rosseel, 2017, 2020). Croon developed a method to correct

for the bias (Croon, 2002). In a multigroup setting, Croon’s

formula describes the relation between the factor score covariances

(cov
(
Fg

)
) and the true latent variable covariances (cov

(
ηg

)
)

as follows:

cov
(
Fg

)
= Ag3gcov

(
ηg

)
3g

′
Ag

′
+Ag2gAg

′ (6)

where Fg is the matrix containing the factor scores for all

individuals of group g, Ag is the group-specific factor score matrix,

containing the coefficients needed to convert the item scores into
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factor scores, 3g is the factor loading matrix for group g, and 2g is

the unique variance matrix for group g.

As mentioned in the Introduction, random effect estimates for

the group-specific factor loadings in 3g and unique variances in

2g can be biased, especially when the within-group sample size

is small. Therefore, we opt to use only the estimated factor scores

from Step 1, which contain all necessary information to proceed

(Vermunt, 2024). The factor scores can serve as a single “observed”

indicator of the factor, which reduces the data’s dimensionality. We

can derive the measurement parameters of these single indicators

from the estimated factor scores and their standard deviations

(see below). The single-indicator approach is similar to the factor

score regression approach with Croon’s correction (Croon, 2002;

Vermunt, 2024), with the difference that we now no longer use

the measurement parameters of the observed indicators to perform

the correction in Equation 6. To make sure that the mean of the

estimated factor scores is exactly zero per group, we centered them

per group.

The group-specific loading for factor q in group g, denoted as

λqg , is equal to the reliability of the factor scores. The reliability is

defined as the ratio of the variance of the factor scores within group

g (i.e., the variance explained by the items) to the group-specific

factor variance (i.e., total variance of the factor):

λqg =
var

(
E

(
fqng

))

φqg
(7)

In the Bayesian framework, the factor score for each individual

ng is considered a random variable with a distribution. For factor

q, E(fqng ) represents the posterior mean of this distribution for

individual ng (i.e., the mean of the posterior distribution)—and

corresponds to the estimated factor score—and var
(
E

(
fqng

))

stands for the variance of the estimated factor scores across all

individuals n within group g. The group-specific unique variance

for factor q is set to φqgλqg(1 − λqg). The group-specific factor

variance φqg can be obtained using the posterior means and

variances of the factor scores as follows:

φqg = var
(
E

(
fqng

))
+ E

(
var

(
fqng

))
(8)

where var
(
fqng

)
represents the variance of this distribution (i.e.,

the square of the estimated standard deviation obtained from Step

1) for individual ng and E
(
var

(
fqng

))
represents the mean of the

variance across all individuals n within group g. Technically, the

group-specific factor variance φqg can also be obtained directly

from the random effects of the factor variances in Step 1, but when

using these random effects estimates in Equation 7, λqg can become

larger than one, leading to a negative unique variance. Therefore,

we use Equation 8 to derive group-specific factor variances, φqg .

By gathering these parameters for all factors, we obtain the

Q× Q group-specific factor loadings 3̂g and Q× Q group-specific

unique variances 2̂g for the factor scores as single indicators. Note

that 3̂g and 2̂g are equivalent toAg3g andAg2gAg in Equation 6,

respectively (Vermunt, 2024). The group-specific factor covariance

matrices 8s2
g = cov

(
ηg

)
, which serve as the input for Step 3, can

thus be derived as follows:

8s2
g = 3̂g

−1 (
cov

(
Fg

)
−2̂g

) (
3̂g

′)−1
(9)

Note that, instead of these factor covariances, it is theoretically

possible to use the factor scores themselves as the input for Step 3,

with measurement parameters that are fixed to 3̂g and 2̂g . This

would be a global SAM version of Step 3, which is computationally

slow despite the dimension reduction due to the single-indicator

approach. Therefore, we apply this intermediate Step 2 to obtain

group-specific factor covariance matrices so that we no longer need

to work with the measurement parameters in Step 3 (i.e., the local

SAM approach).

Step 3: structural model with mixture
clustering of the groups

This step corresponds to the second step of the MixMG-SEM

method introduced by Perez Alonso et al. (2024). It aims to find the

underlying clusters of groups and their cluster-specific structural

relations. Thus, the SM is conditional on the cluster membership

zgk, which indicates whether group g belongs to cluster k:

[
ηng

∣∣∣zgk = 1
]
= Bkηng+ζ ng (10)

where Bk contains the cluster-specific regression coefficients

between latent variables, and ζ ng indicates the disturbances

of these regressions. Under the assumption E
(
ζ ng

)
=0 and

cov
(
ζ ng

)
=9g , the model-implied factor covariance matrix is

computed as:

8gk = (I− Bk)
−1 9gk (I− Bk)

−1′ (11)

Note that the residual factor covariances 9gk are specified as

both group- and cluster-specific as they depend on the cluster-

specific regression coefficients Bk but should not affect the

cluster memberships. Estimating the SM involves minimizing the

discrepancy between the group-specific factor covariance matrices

obtained in Step 2, 8s2
g , and their corresponding model-implied

reconstructions,8gk. Note that the latter will differ from the former

when the SM is not saturated.

MixML-SEM assumes that latent variable scores ηng are

sampled from a mixture of K multivariate normal distributions

where all latent variable scores of a group (gathered in Hg)

are assumed to be sampled from the same distribution. More

specifically, the MixML-SEM for group g is written as follows:

f
(
Hg; υ

)
=

K∑

k=1

πk

Ng∏

ng=1

MVN
(
ηng ;αg ,8gk

)
(12)

Here, f represents the total population density function, υ is

the set of population parameters. πk stands for the prior probability

of a group g belonging to cluster k (with
∑K

k=1 πk = 1). The

mean vector αg is 0 due to centering and covariance matrix 8gk

is decomposed as in Equation 11.
The unknown parameters υ are estimated by maximizing the

following log-likelihood function:
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log Lη = log




G∏

g=1

K∑

k=1

πk
1

(2π)
Q
2 |(8gk)|

1
2

exp

(
−
1

2
tr

(
8s2
g 8gk

−1
))Ng




=
G∑

g=1

log




K∑

k=1

πk
1

(2π)
Q
2 |(8gk)|

1
2

exp

(
−
1

2
tr

(
8s2
g 8gk

−1
))Ng




(13)

where 8s2
g is the group-specific factor covariance matrix from

Step 2 (Equation 9), and 8gk is the group- and cluster-specific

factor covariance matrix from Step 3 (Equation 11). We use an

Expectation-Maximization (EM; Dempster et al., 1977) algorithm

to optimize this log-likelihood function. In the E-step, the

algorithm estimates the expected values of the cluster memberships

of the groups given the current parameter estimates; that is,

the classification probabilities ẑgk. In the M-step, the algorithm

maximizes the unknown parameters υ given the expected cluster

memberships from the E-step by calling lavaan (Rosseel, 2012).

Note that the M-step includes a bias correction procedure to get

9gk. Readers can consult Perez Alonso and colleagues’ paper (Perez

Alonso et al., 2024), Appendix A, for a deeper dive into the technical

details of Step 3. The E- and M-steps are iterated until convergence

is reached, which is when the change in log-likelihood between

iterations becomes sufficiently small (e.g., < 1 × 10−6). A multi-

start procedure, starting from multiple random partitions, is used

to avoid convergence to localmaxima. The solutionwith the highest

log-likelihood is selected as the final result.

Model selection

Because the number of clusters underlying the data is unknown

in real life, we compare models with different numbers of clusters

using the following methods: Bayesian Information Criterion (BIC;

Schwarz, 1978), Akaike Information Criterion (AIC; Akaike, 1974),

and the convex hull procedure (CHull; Ceulemans and Kiers, 2006).

BIC combines the model’s log-likelihood with a penalty based on

the number of parameters:

BIC = −2logL+ P log (SS) (14)

Here, P is the number of free parameters and SS is the sample

size. The model with the smallest BIC value is selected. For

MixML-SEM, P is the sum of the number of mixing proportions

(minus one restriction), the number of cluster-specific regression

coefficients, the number of group- and cluster-specific factor (co-

)variances (counting only one set per group, since the model

assumes each group to belong to one cluster only), and the number

of measurement parameters. Recall that, from Step 2 onwards, the

factor scores are used as single indicators for the latent variables.

Therefore, we include the number of loadings 3̂g and unique

variances 2̂g for the factor scores as the number of measurement

parameters in P. In simulation studies involving the mixture

multigroup approach (De Roover, 2021; De Roover et al., 2022;

Perez Alonso et al., 2025), it was found that the BIC performed

better when SS is equal to the number of groups G (BICG) rather

than the total number of observations N (BICN), which is why we

focus on BICG throughout the paper.

In case of small sample sizes and low cluster separation, AIC

was found to outperform BIC for some relatedmethods (De Roover

et al., 2022; Kim et al., 2017), but not all (De Roover, 2021). AIC

penalizes model complexity as follows:

AIC = −2logL+ 2P (15)

Moreover, the CHull has been shown to be a valuable alternative

to BIC and AIC (Bulteel et al., 2013; De Roover, 2021; De Roover

et al., 2022). It balances the logL and the number of free parameters

by means of a generalized scree test, selecting the model with

the highest scree ratio. Note that a limitation of CHull is that it

always selects at least two clusters, because the scree ratio cannot

be computed for a one-cluster solution, but visual inspection of the

CHull plot can help identify whether a clear elbow is present. If not,

an underlying clustering is less likely.

Since we use the estimated factor scores as the single “observed”

indicator in Steps 2 and 3, we use the following loglikelihood in BIC,

AIC, and CHull:

log L = log




G∏

g=1

K∑

k=1

πk

Ng∏

ng=1

1

(2π)
Q
2 |(6̂gk )|

1
2

exp

(
−
1

2

(
fng − fg

)
′6̂gk

−1
(
fng − fg

))


=
G∑

g=1

log




K∑

k=1

πk

Ng∏

ng=1

1

(2π)
Q
2 |(6̂gk )|

1
2

exp

(
−
1

2

(
fng − fg

)
′6̂gk

−1
(
fng − fg

))
 (16)

where fng refers to the Q-dimensional vector of estimated factor

scores of individual ng , fg refers to the mean of the estimated factor

scores for each group, which equals zero due to centering, 6̂gk refers

to the model-implied covariance matrix of the Q single indicators,

which is equal to:

6̂gk = 3̂g8gk3̂g + 2̂g = 3̂g (I− Bk)
−1

9gk (I− Bk)
−1′ 3̂g + 2̂g

(17)

Note that using the loglikelihood for the observed items

would be too complicated since obtaining a valid loglikelihood

requires integrating out the random effects for the non-invariant

measurement parameters and the factor variances (see Step 1).

Simulation studies

In Simulation Study 1, we evaluated the performance of

MixML-SEMwhen the number of clusters is assumed to be known,

and compared it to ML-SEM. Then, in Simulation Study 2, we

investigated whether the correct number of clusters is selected for

MixML-SEM by BICG, AIC, and/or CHull.
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Simulation study 1

The goal of the Simulation Study 1 was two-fold: Firstly,

we aimed to evaluate the performance of MixML-SEM in terms

of parameter and cluster recovery when the number of clusters

is known. Secondly, we compared it to ML-SEM, where group-

specific regression coefficients were derived from random effects.

Specifically, we performedML-SEM with Mplus and the R-package

MplusAutomation (Hallquist and Wiley, 2018), where the SM

and MM were estimated simultaneously with random effects for

capturing differences. The following factors were manipulated:

1. Total number of groups G (2 levels): 48, 96;

2. Number of clusters K (2 levels): 2, 4;

3. Small groups Ng (2 levels): 25, 50;

4. Small groups proportion (5 levels): 0, 0.25, 0.5, 0.75, 1;

5. Large groups Ng (2 levels): 100, 200;

6. Size of regression parameters β (3 levels): 0.2, 0.3, 0.4;

7. Reliability (2 levels): high, low;

8. Within-group samples: fixed, random.

We included two levels of the total number of groups G, with a

minimum of 48 groups, based on the recommendation that at least

30 or 50 groups are needed to obtain valid estimates of random

effects (Leitgöb et al., 2023). Because more groups imply more

information on cluster-specific regression estimates (i.e., a larger

within-cluster sample size), we hypothesize that the performance

of MixML-SEM will improve with a higher number of groups.

We considered two levels of the number of clusters K

underlying the groups: two or four. A higher number of clusters

lowers the within-cluster sample size and is thus expected to

lower the performance of MixML-SEM. Additionally, it raises the

complexity of determining the cluster memberships (i.e., more

posterior classification probabilities) for each group, making the

recovery of clusters more intricate. Here, we focused on balanced

cluster sizes, where all clusters contained an equal number of

groups. In practice, cluster recovery is likely to be more challenging

when cluster sizes are unbalanced, as was demonstrated by Perez

Alonso et al. (2024).

As mentioned in the Introduction, an advantage of MixML-

SEM is combining information from multiple groups within

a cluster when estimating the (cluster-specific) regression

coefficients. In this way, the regression estimates for small groups

benefit from the presence of large groups within the same cluster, if

any. If only small groups are combined in a cluster and their cluster

memberships are very uncertain (i.e., classification probabilities

<1), this may affect the estimation of the cluster-specific regression

estimates. Therefore, we generated data with a mix of small and

large groups, which is also a realistic setting. To this end, we

initially randomly selected a specific number of groups per cluster

which were assigned a small Ng of either 25 or 50, where this

number of groups was determined by the small groups proportion

of 0, 0.25, 0.5, 0.75, or 1. Note that this proportion is applied

to each cluster, so that the equality of the within-cluster sample

sizes is preserved. Subsequently, the other groups were assigned

a large Ng of either 100 or 200. A larger proportion of small

groups lowers the within-cluster sample size, and is thus expected

to lower the performance. To summarize, the group sizes are

determined by three factors: the large Ng , the small Ng , and the

small groups proportion. Note that the within-cluster sample sizes

are determined by all the abovementioned factors.

The data were generated by a SEM model with four latent

variables, each measured by five items (see Figure 1), as was also

used by Perez Alonso et al. (2024). As mentioned above, we assume

the latent variable scores for group g follow a multivariate normal

distribution with covariance matrix 6gk, which is determined by

the parameters: Bk, 9gk, 3g and 2g . We first defined the cluster-

specific regression parameters Bk. As illustrated in Figure 2, for

each cluster, one of them was set to zero, while the other regression

parameters were set equal to the size of regression parameters β .

Therefore, for each pair of clusters, the difference between them

pertains to two regression coefficients and the size of each difference

is equal to β . We considered three levels of regression parameters.

The larger the size of regression parameters β , the more separated

the clusters become and the easier the cluster recovery will be.

Secondly, we generated the group- and cluster-specific residual

factor covariances 9gk. For the exogenous variables F1 and F2,

we sampled the group-specific covariances (Cov(F1, F2)g) from a

Wishart distribution, with variances (Var (F1)g , Var (F2)g) varying

around 1 and their covariance varying around 0. Across groups

within simulated data sets, Var(F1) and Var(F2) varied from 0.608

to 1.389 (mean = 0.952, SD = 0.166), whereas Cov(F1, F2)

varied across groups from −0.279 to 0.279 (mean = 0.000, SD

= 0.117). For the endogenous variables F3 and F4, the total

variances (Var (F3)g , Var (F4)g) were sampled separately from a

log-normal distribution (with the mean on the log scale set to 0).

Their residual variances depended on the regression parameters.

For F3, it was Var (F3)g − (β2
2,k
Var (F1)g + β2

3,k
Var (F2)g +

2β2,kβ3,kCov(F1, F2)g). For F4, it wasVar (F4)g − (β2
1,k
Var (F1)g +

β2
4,k
Var (F3)g + 2β1,kβ4,k

(
β2,kVar (F1)g + β3,kCov (F1, F2)g

)
).

Thirdly, we specified the group-specific loading matrices 3g

and unique variances 2g , based on the reliability. The first loading

of each latent variable was fixed to 1 to set the scale of the latent

variable. Per latent variable, the loadings and unique variances

of the second and third indicator were set to be non-invariant.

When the reliability level was high, the invariant loadings were

set to
√
0.6 and their unique variances to 0.4; when the reliability

was low, the invariant loadings were set to
√
0.4 and their unique

variances to 0.6. Meanwhile, the non-invariant loadings were

sampled from a normal distribution with a mean of either
√
0.6 or√

0.4 and a variance of 0.1 for all groups. The non-invariant unique

variances were sampled from a log-normal distribution (with the

standard deviation on the log scale set to 0.25 and the mean to

−0.948 or −0.542 to generate unique variances around 0.4 and

0.6, respectively, for the high and low reliability conditions). When

the reliability is higher, we expect a better recovery of the MM in

MixML-SEM, potentially leading to a better cluster recovery.

Finally, after defining all the necessary parameters, data were

sampled from a multivariate normal distributionMVN(0, 6gk) for

each group, either with fixed or random within-group samples.

This was operationalized using the “empirical” argument in the

mvrnorm function from the MASS package (Venables and Ripley,

2002). With empirical = TRUE, the covariance matrix of the

sampled data exactly matches the specified 6gk. This setting

corresponds to the empirical situation where all individuals nested
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FIGURE 1

The model used for the data generation. F1 and F2 are exogenous variables, F3 and F4 are endogenous variables.

within groups are included in the sample (e.g., including all pupils

of a classroom), or when only the specific set of individuals in

the sample is of interest, without intending to draw conclusions

about the broader population of individuals within a group. In

contrast, with empirical = FALSE, the within-group samples are

regarded as a random sample from a larger population within

a certain group (e.g., inhabitants of a country) and one intends

to draw conclusions about that entire population. In the latter

case, the sample’s covariance matrix will differ from 6gk due to

sampling fluctuations, and more so for smaller group sizes. Thus,

we expect the recovery of the clusters and parameters to be more

challenging in the random conditions, especially when (more)

groups are smaller.

We generated 50 replications per cell of the design, yielding

48,000 data sets in total, using R version 4.4 (R Core Team, 2022).

All data sets were analyzed using MixML-SEM with 50 random

starts, and ML-SEM. For both methods, the measurement non-

invariances were correctly specified as group-specific parameters.

The analyses were performed on a supercomputer consisting of 2

Intel Xeon Platinum 8468 CPUs (Sapphire Rapids). The average

computation time for MixML-SEM with the correct number of

clusters was 1.8min for Step 1, 0.4 s for Step 2 and 4.6min for Step 3

(with 50 random starts). Note that the average computation time of

Step 1 was mainly influenced by the number of groups: 1.5min for

48 groups, 2.0min for 96 groups. For Step 3, the computation time

varied depending on all simulation conditions. The lowest average

was 0.4min for “easy” conditions (e.g., K = 2, β = 0.4, with only

large groups and fixed within-group samples), while the highest

average was 24.5min for “hard” conditions (e.g., K = 4, β = 0.2,

with only small groups and random within-group samples).

Results
MixML-SEM results

Recovery of the measurement model

For the invariant loadings (excluding the fixed marker variable

loadings), on average across simulated data sets, the estimated

values amounted to 0.775 (SD= 0.005) and 0.634 (SD= 0.007) for

the two reliability levels, closelymatching the data generating values

of
√
0.6 and

√
0.4, respectively. Recall that, for the non-invariant

loadings, only the mean and variance of the random effects are

estimated as parameters. In case of high reliability, on average

across simulated data sets (and the two non-invariant loadings),

the estimated mean of the loadings was 0.775 (SD = 0.021), with

a variance of 0.100 (SD= 0.012). For the low reliability conditions,

the estimated mean was 0.634 (SD= 0.021) with the same variance

of 0.100 (SD = 0.013). This closely matches the data generating

values for the random loadings’ distribution, with a mean of
√
0.6

or
√
0.4 and a variance of 0.1. No large effects were found for the

other manipulated factors.
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The regression parameters between the latent variables depending on the cluster.

For the non-invariant loadings, we also assessed the accuracy

of the group-specific loading estimates derived from the random

effects. To this end, we computed the Root Mean Squared

Error (RMSE):

RMSEλ =

√√√√
∑G

g=1

∑J
j=1

(̂
λjg − λjg

)2

GJ
(18)

where λjg is the true group-specific loading of item j, and λ̂jg
is the corresponding estimate. Only non-invariant loadings are

included in this computation. On average across all data sets,

RMSEλ amounted to 0.079 (SD = 0.041). It was mainly influenced

by group sizes and whether within-group samples were fixed or

random. In particular, for fixed within-group samples, the largest

average RMSEλ was 0.080 when Ng = 25 for all groups, and

the smallest average was 0.019 when Ng = 200 for all groups.

For random within-group samples, the largest average RMSEλ was

0.162 when Ng = 25 for all groups, decreasing to 0.064 when

Ng = 200 for all groups.

For the invariant unique variances, the mean parameter values

were 0.395 (SD = 0.005) and 0.593 (SD = 0.008) for the two

reliability levels, closely matching the data generating values of

0.4 and 0.6, respectively. For the non-invariant, random unique

variances, the estimated means were, on average, equal to −0.968

and −0.563 (SD = 0.025) on the log scale, closely matching the

data generating values of−0.948 and−0.542. Again, no large effects

were found for the other manipulated factors. We also evaluated

the group-specific estimates derived from the random effects, with

a similar RMSE as for the non-invariant loadings. Across all data

sets, RMSEθ amounted to 0.073 (SD = 0.024) on average, mainly

affected by group sizes and whether within-group samples were

fixed or random: In fixed conditions, the average RMSEθ was 0.089

with Ng = 25 for all groups, and 0.026 with Ng = 200 for

all groups. In random conditions, RMSEθ was on average 0.113

when Ng = 25 for all groups and 0.058 when Ng = 200 for

all groups.

To conclude, the invariant measurement parameters and the

random effects for the non-invariant ones were recovered very
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well. As expected, for the non-invariant parameters, the group-

specific estimates derived from the random effects were biased for

smaller groups, especially in case of random within-group samples,

indicating the shrinkage of the group-specific estimates toward

the mean.

Sensitivity to local maxima

To check how often (Step 3 of) MixML-SEM converged to

a local maximum, we compared the final log-likelihood to a

“proxy” of the global maximum likelihood solution. This proxy was

obtained by starting Step 3 with the true clustering instead of a

random clustering (Perez Alonso et al., 2024). When the final log-

likelihood (i.e., the highest one resulting from the 50 random starts)

was more than 0.001 smaller than the log-likelihood of the proxy, it

was considered a local maximum. By this definition, MixML-SEM

converged to a local maximum for 0.1% of all data sets.

Cluster recovery

To evaluate the cluster recovery, we made use of the Adjusted

Rand Index (ARI; Hubert and Arabie, 1985), which measures the

agreement between two partitions, where 1 indicates complete

agreement and 0 the level of agreement one would find for two

random partitions. For computing the ARI, we transformed the

estimated cluster memberships into a hard partition, by assigning

each group to the cluster with the highest classification probability,

and then compared it to the true clustering. To get a better

feeling of how many of the groups were clustered (in)correctly,

we also evaluated the correct clustering rate (%CC), defined as

the percentage of correctly clustered groups for each data set. To

evaluate whether a worse cluster recovery concurred with a higher

classification uncertainty, we inspected the highest classification

probability for each group (̂zmax
gk

), where this probability being

smaller than 1 would indicate uncertainty. Hence, classification

uncertainty was quantified as (1 − ẑmax
gk

) for each group, which

was then averaged across groups per data set. The ARI, %CC, and

classification uncertainty are reported in Table 1.

On average, across all simulated conditions, the ARI amounted

to 0.745 and the correct clustering rate was 88.1% (Table 1). To

check which main and interaction effects of the manipulated

factors significantly influenced the ARI, we performed an analysis

of variance (ANOVA) by means of the aov function in R.

To keep the results comprehensible, we only included two-way

interaction effects. The ANOVA results table is provided in

Supplementary material S2. Firstly, we see that all main effects were

significant at the α = 0.01 level, and that the effects of K, β ,

small groups proportion and fixed/random within-group samples

each had partial η2 values larger than 0.10, indicating that each of

them accounted for a relatively large proportion of variance in the

ARI after accounting for all other effects. From Table 1, we see that

largerG, smaller K, larger groups (and a larger proportion thereof),

larger β (and, thus, larger differences between clusters), higher

reliability, and fixed (rather than random) within-group samples

all contributed to a better recovery of the clusters. Secondly, we see

that all two-way interaction effects involving β or fixed/random

within-group samples were significant and that most interaction

effects involving the small groups proportion or K were significant.

The interaction between these four manipulated factors is thus

TABLE 1 MixML-SEM cluster recovery.

Factor Level ARI %CC Uncertainty

G 48 0.735

(0.339)

0.876

(0.192)

0.088

(0.132)

96 0.755

(0.319)

0.887

(0.182)

0.092

(0.137)

K 2 0.805

(0.280)

0.937

(0.104)

0.053

(0.075)

4 0.685

(0.363)

0.826

(0.230)

0.127

(0.167)

Large Ng 100 0.714

(0.345)

0.864

(0.200)

0.098

(0.142)

200 0.776

(0.310)

0.898

(0.172)

0.083

(0.126)

Small Ng 25 0.698

(0.358)

0.856

(0.206)

0.113

(0.148)

50 0.791

(0.291)

0.907

(0.162)

0.067

(0.115)

Small groups

proportion

0 0.899

(0.186)

0.961

(0.083)

0.021

(0.033)

0.25 0.839

(0.228)

0.938

(0.102)

0.052

(0.052)

0.5 0.779

(0.277)

0.911

(0.130)

0.084

(0.084)

0.75 0.693

(0.345)

0.858

(0.194)

0.122

(0.139)

1 0.512

(0.412)

0.738

(0.268)

0.171

(0.216)

β 0.2 0.571

(0.397)

0.785

(0.240)

0.175

(0.171)

0.3 0.776

(0.288)

0.902

(0.160)

0.071

(0.110)

0.4 0.887

(0.181)

0.957

(0.080)

0.023

(0.030)

Reliability high 0.760

(0.321)

0.889

(0.183)

0.092

(0.135)

low 0.729

(0.337)

0.874

(0.191)

0.088

(0.134)

Within-group

samples

fixed 0.916

(0.275)

0.942

(0.193)

0.107

(0.180)

random 0.573

(0.287)

0.820

(0.160)

0.073

(0.056)

Total 0.745

(0.329)

0.881

(0.187)

0.090

(0.135)

The average ARI, correct clustering rate (%CC), and classification uncertainty for MixML-

SEM per level of each manipulated factor. The standard deviation is shown in brackets.

interesting to inspect further and, given the inclusion of the small

groups proportion, including the sample size of the small and large

groups is also informative. Therefore, the interaction effect of these

six manipulated factors is shown in Figure 3 for ARI. Specifically,

the combination of group sizes of 200 and 50 showed the best

recovery of clusters, while 100 and 25 showed the worst. In case

of fewer clusters, fixed within-group samples and a β of 0.3 or 0.4,

the performance was less sensitive to the group sizes. According to

Steinley (2004), ARI values >0.80 indicate a good recovery of the
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clusters. Using this rule-of-thumb, for fixed within-group samples,

the cluster recovery was good when β = 0.4, or when β = 0.3 and

at least 25% of the groups were large, or when β = 0.2 and at least

50% of the groups were large. For random within-group samples,

the cluster recovery was (generally) good when β = 0.4 and at least

75% of the groups were large, or when β = 0.3 and at least 75% of

the groups were large with Ng = 200.

From Figure 3, it is clear that the cluster recovery was the worst

when the proportion of small groups was 1, and that the effect

of the small groups proportion was different for fixed (Figure 3,

top) than for random (Figure 3, bottom) within-group samples. For

fixed within-group samples, when the proportion of small groups

was 1, the average ARI was 0.670, but decreasing the proportion

from 1 to 0.75 already resulted in a remarkable improvement in

cluster recovery, with an average ARI of 0.919. We get a better

picture of what this implies in terms of correctly clustered groups

by linking this to the %CC. Specifically, the %CC was 77.3%, when

all groups were small and 94.2% when 75% of the groups were

small. For random within-group samples, the average ARI was

only 0.354 when all groups were small, which still corresponds

to 70.3% of the groups being clustered correctly. Decreasing the

proportion from 1 to 0.75 improved the ARI to 0.467 and the %CC

to 77.5%, which is a less dramatic improvement than for the fixed

within-group samples. Indeed, in the bottom panel of Figure 3, we

see a more gradual improvement when the proportion of small

groups decreases.

Note that, in the hard partition, it can occur that all (or most)

groups are clustered into one cluster, which results in a very low

ARI. In our simulations, all groups ended up in one cluster for 1,736

data sets. All of these cases occurred in fixed within-group samples,

1,348 occurred in case of four clusters, 1,547 occurred when the

proportion of small groups was 1, and 1,374 occurred when this

proportion was combined with β = 0.2. For the remaining 3,253

data sets with a small groups proportion of 1 in fixed within-group

samples (where the groups did not end up in one cluster), the

average ARI was 0.988, which indicated that the much lower ARI

for a small groups proportion of 1 (as opposed to 0.75) is largely

explained by the one-cluster solutions. This one-cluster issue may

be explained by a high classification uncertainty. Throughout the

iterative estimation process of Step 3, high classification uncertainty

results in more similar cluster-specific regression coefficients,

because then all groups—to some extent—affect their estimation,

which is based on a weighted sum of the group-specific factor

covariances with the cluster memberships serving as the weights

(Perez Alonso et al., 2024). This may re-enforce the uncertainty in

the next iteration. As such, it may happen that the cluster-specific

regression coefficients become nearly identical, eventually resulted

in one cluster after hard partitioning.

We also checked whether a worse cluster recovery (i.e.,

lower ARI and %CC) concurred with a higher classification

uncertainty. From Table 1, we see that the main effects of the

following factors on classification uncertainty were opposite to

their main effects on ARI and CC%: G, reliability, and within-

group samples. Note that the effects of G and reliability varied

depending on the within-group samples being fixed or random.

For fixed within-group samples, increasing G slightly reduced

classification uncertainty (from 0.108 at G = 48 to 0.106 at

G = 96), which concurred with a slight increase in ARI (from

0.915 to 0.917) and %CC (from 0.942 to 0.943). Classification

uncertainty remained the same across the two reliability levels

(0.107), as did ARI (0.916) and %CC (0.942). In contrast, for

random within-group samples, classification uncertainty was lower

in general, but increased with both larger G (from 0.069 to

0.077) and higher reliability (from 0.069 to 0.078), whereas both

larger G and higher reliability led to a better cluster recovery

(i.e., a better ARI and %CC). A possible explanation is that,

in random within-group samples, additional differences were

introduced across groups due to sampling fluctuations, making

the groups appear more separated (even within clusters), which

can lead to lower classification uncertainty, even when it leads to

groups being misclassified at the same time. Conversely, a larger

G and higher reliability help to recover the clustering, but the

sampling fluctuations still lead to (slightly more) classification

uncertainty. The other factors showed main effects that were

consistent with expectations, with a lower classification uncertainty

concurring with a better cluster recovery. Smaller K, larger groups,

and larger β all contributed directly to a lower classification

uncertainty, since less clusters imply less cluster memberships to

estimate, larger groups lower the sampling fluctuations and larger

β implies larger between-cluster differences that stand out over

sampling fluctuations. In Supplementary material S3, Figure 1, we

depicted the same interaction effect as the one we explored

for the ARI. It clearly shows that classification uncertainty was

generally higher for fixed within-group samples. Specifically, for

fixed within-group samples, the classification uncertainty was the

highest when the proportion of small groups was 1. Decreasing

the proportion of small groups to 0.75 not only improved

cluster recovery (as mentioned above), but also lowered the

mean uncertainty from 0.252 to 0.143. Since the classification

uncertainty was generally lower in random than fixed within-

group samples, it does not explain poor cluster recovery in these

conditions. For random within-group samples, the poor cluster

recovery is instead explained by sampling fluctuations and the

fact that sampling fluctuations tend to be larger especially for

smaller groups, which means that the observed data are less

representative of the larger population. Therefore, a larger group

size is required for better cluster recovery in random within-

group samples.

Regression parameter recovery

To evaluate the recovery of the regression parameters, we

computed the Root Mean Squared Error (RMSE) for each

regression parameter (i.e., for β1, β2, β3, and β4) separately:

RMSEβ =

√∑K
k=1

(
β̂k − βk

)2

K
(19)

where βk and β̂k are the true and estimated values of the regression

coefficient in cluster k, respectively. The main effects of the

manipulated factors on each RMSEβ are summarized in Table 2.

On average, RMSEβ was 0.033, 0.030, 0.028, and 0.040 for β1, β2,

β3, and β4, respectively. Note that differences in β1 and β2 were

manipulated across all conditions while differences in β3 and β4
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FIGURE 3

The ARI for MixML-SEM. The ARI and associated error bars for MixML-SEM in function of the within-group sample sizes for large and small groups,

proportion of small groups, number of clusters, and size of regression parameters. (Top) Fixed within-group samples. (Bottom) Random

within-group samples. Note that the standard errors are too small for the error bars to be clearly visible in the plots, the largest observed standard

error was 0.020, corresponding to ARI values ranging from 0.850 to 0.890 for conditions with a sample size of 25 for half of the groups and 100 for

the other half, K = 4, β = 0.2, and fixed within-group samples. “combN” refers to the combination of large and small groups.

were only manipulated when K = 4. When K = 2, the average

RMSEβ was 0.022, 0.021, 0.017, and 0.028 for β1, β2, β3, and β4,

respectively; when K = 4, the average RMSEβ was 0.044, 0.040,

0.039, 0.052 for these regression coefficients respectively. Thus, the

parameter recovery of β1 and β4 was generally worse than that

of β2 and β3. This is consistent with previous findings that the

further away the parameters are from the exogenous latent variables

(i.e., F1 and F2), the worse their recovery (Devlieger and Rosseel,

2017; Guenole and Brown, 2014; Perez Alonso et al., 2024). In

our model, β4 is not directly connected to any of the exogenous
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TABLE 2 MixML-SEM regression parameter recovery: RMSEβ .

Factor Level β1 β2 β3 β4

G 48 0.038

(0.055)

0.035

(0.050)

0.032

(0.049)

0.045

(0.051)

96 0.028

(0.040)

0.026

(0.037)

0.024

(0.035)

0.035

(0.038)

K 2 0.022

(0.030)

0.021

(0.028)

0.017

(0.024)

0.028

(0.026)

4 0.044

(0.059)

0.040

(0.054)

0.039

(0.053)

0.052

(0.056)

Large Ng 100 0.038

(0.052)

0.035

(0.047)

0.032

(0.044)

0.044

(0.048)

200 0.028

(0.043)

0.026

(0.041)

0.024

(0.041)

0.036

(0.042)

Small Ng 25 0.040

(0.059)

0.037

(0.054)

0.033

(0.052)

0.045

(0.056)

50 0.026

(0.031)

0.024

(0.030)

0.023

(0.030)

0.034

(0.031)

Small

groups

proportion

0 0.016

(0.017)

0.014

(0.017)

0.014

(0.016)

0.026

(0.017)

0.25 0.018

(0.022)

0.016

(0.020)

0.016

(0.020)

0.028

(0.020)

0.5 0.024

(0.030)

0.021

(0.027)

0.021

(0.027)

0.032

(0.030)

0.75 0.035

(0.045)

0.032

(0.041)

0.030

(0.040)

0.042

(0.045)

1 0.073

(0.075)

0.068

(0.069)

0.059

(0.070)

0.071

(0.073)

β 0.2 0.045

(0.058)

0.043

(0.054)

0.037

(0.054)

0.043

(0.055)

0.3 0.030

(0.047)

0.027

(0.044)

0.026

(0.041)

0.038

(0.045)

0.4 0.024

(0.033)

0.020

(0.028)

0.020

(0.027)

0.038

(0.032)

Reliability high 0.030

(0.041)

0.027

(0.039)

0.025

(0.038)

0.036

(0.039)

low 0.037

(0.054)

0.034

(0.049)

0.031

(0.047)

0.043

(0.051)

Within-

group

samples

fixed 0.017

(0.026)

0.015

(0.026)

0.012

(0.023)

0.026

(0.023)

random 0.049

(0.058)

0.046

(0.053)

0.044

(0.051)

0.054

(0.056)

Total 0.033

(0.048)

0.030

(0.044)

0.028

(0.043)

0.040

(0.045)

The average RootMean Squared Error (RMSE) forMixML-SEMper level of eachmanipulated

factor for each of the four estimated regression parameters. The standard deviation is shown

in brackets.

factors and the estimation of β1 relies on that of β4 since they

both pertain to regression effects on the same variable (F4). This

may explain why β1 and β4 were less accurately recovered than β2

and β3.

Figure 4 displays the same interaction effect for RMEβ1 as

the one previously explored for the ARI. Specifically, the largest

RMSEβ1 values were found when the proportion of small groups

was 1, small group sample size was 25, K = 4, and β =

0.2, in random within-group samples. The interaction plots for

RMSEβ2 to RMSEβ4, showing similar patterns, are provided in

Supplementary material S3, Figures 2–4. The worse recovery of

the regression coefficients in these conditions is explained by the

worse cluster recovery in these conditions, since the estimation

of the cluster-specific regression coefficients is directly affected

by groups being clustered incorrectly and/or clustered with more

classification uncertainty. For fixed within-group samples, the

average RMSEβ values were 0.045, 0.043, 0.031 and 0.042 when

all groups were small, which dropped to 0.018, 0.015, 0.012, and

0.026, respectively, when the proportion of small groups decreased

from 1 to 0.75. For random within-group samples, RMSEβ was on

average 0.101, 0.093, 0.088, and 0.102 when all groups were small,

which dropped to 0.053, 0.049, 0.047, and 0.057, when the small

groups proportion was 0.75. Other than that, we see that larger

K, smaller β values, and smaller group sizes (i.e., the large group

sample size being 100 and/or the small group sample size being 25),

led to higher RMSEβ values.

Comparison to ML-SEM

ML-SEM estimates the MM and SM at the same time, with

random effects for the four regression parameters, in addition to

the random effects for the non-invariant measurement parameters.

In comparison to MixML-SEM, the recovery of the measurement

parameters was very similar, so we focus on the recovery of

the regression coefficients. For each regression parameter, we

computed the RMSEβ as follows:

RMSEβ =

√∑G
g=1

(
β̂g − βk

)2

G
(20)

where we compared the group-specific estimates (β̂g) to the

cluster-specific true values (βk) for the cluster the group truly

belongs to.

On average, the RMSEβ values were 0.098, 0.096, 0.055,

and 0.059 for β1, β2, β3, and β4, respectively (see Table 3). In

comparison to MixML-SEM, we thus observed larger RMSEβ

values, especially for β1 and β2. This is due to the random

effects being normally distributed so that the derived group-

specific estimates are biased toward the overall mean parameter

value. Indeed, when looking at the estimated parameter values, for

example, for a data set with β1,k=1 = 0 and β1,k=2 = 0.3, the

mean of the regression coefficients across the groups belonging to

cluster one (k = 1) was 0.138 (SD = 0.010), and for cluster two

(k = 2), it was 0.171 (SD = 0.011). The group-specific estimates

were thus close to the mean true value of β1 across clusters, which

was 0.15.

We see that the RMSEβ values for ML-SEM were larger with

smaller G, smaller groups, lower reliability, and random within-

group samples (Table 3), as was also the case for MixML-SEM. The

only differences were the effects of factors β and K. Specifically,

RMSEβ was larger for larger β due to the shrinkage effect toward

the overall mean parameter. Since the latter is a weighted average of

β and zero, it deviates more from the true value of either β or 0 in

case of a larger β value. Regarding the number of clusters, for fixed

within-group samples, RMSEβ1 increased with more clusters, while
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FIGURE 4

The RMSEβ for MixML-SEM. The RMSEβ1 for MixML-SEM in function of the within-group sample sizes for large and small groups, proportion of small

groups, number of clusters, and size of regression parameters. (Top) Fixed within-group samples. (Bottom) Random within-group samples. “combN”

refers to the combination of large and small groups.

RMSEβ2 decreased. For β2, in case of more clusters, the group-

specific estimates gravitate toward a larger overall mean parameter,

resulting in a smaller deviation between the estimated and true

value for most groups and thus in a smaller RMSE value. For

example, when G = 48, K = 2, and β = 0.4, the overall mean

parameter for β2 is the weighted average of β2,k=1 = 0.4 and

β2,k=2 = 0, where each value applies to 24 groups. When K = 4,

the overall mean parameter is larger, because, in that case, 36 groups

(in Clusters 1, 3, and 4) have a β2 of 0.4, whereas only 12 groups (in

Cluster 2) have a β2 of 0, resulting in smaller differences between

estimates and true values for the former 36 groups. For β1, the

overall mean parameter is the same as for β2, but its estimation is
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TABLE 3 ML-SEM regression parameter recovery: RMSEβ .

Factor Level β1 β2 β3 β4

G 48 0.098

(0.027)

0.096

(0.026)

0.057

(0.042)

0.060

(0.042)

96 0.098

(0.026)

0.095

(0.026)

0.053

(0.043)

0.057

(0.044)

K 2 0.098

(0.028)

0.098

(0.027)

0.018

(0.016)

0.021

(0.016)

4 0.098

(0.025)

0.093

(0.024)

0.092

(0.024)

0.097

(0.025)

Large Ng 100 0.104

(0.024)

0.102

(0.023)

0.059

(0.044)

0.063

(0.045)

200 0.092

(0.028)

0.089

(0.028)

0.051

(0.041)

0.055

(0.041)

Small Ng 25 0.102

(0.029)

0.100

(0.029)

0.057

(0.045)

0.061

(0.045)

50 0.094

(0.023)

0.091

(0.022)

0.052

(0.040)

0.057

(0.041)

Small

groups

proportion

0 0.076

(0.019)

0.072

(0.019)

0.043

(0.032)

0.048

(0.033)

0.25 0.087

(0.017)

0.085

(0.016)

0.048

(0.037)

0.053

(0.037)

0.5 0.098

(0.019)

0.095

(0.017)

0.054

(0.041)

0.058

(0.042)

0.75 0.108

(0.021)

0.106

(0.020)

0.060

(0.045)

0.063

(0.046)

1 0.121

(0.028)

0.120

(0.027)

0.070

(0.051)

0.073

(0.050)

β 0.2 0.081

(0.010)

0.081

(0.011)

0.047

(0.033)

0.048

(0.032)

0.3 0.102

(0.022)

0.100

(0.022)

0.057

(0.044)

0.060

(0.043)

0.4 0.111

(0.033)

0.106

(0.033)

0.060

(0.049)

0.068

(0.050)

Reliability high 0.095

(0.026)

0.092

(0.025)

0.053

(0.042)

0.057

(0.042)

low 0.101

(0.027)

0.099

(0.026)

0.057

(0.044)

0.061

(0.044)

Within-

group

samples

fixed 0.096

(0.029)

0.092

(0.028)

0.047

(0.046)

0.053

(0.046)

random 0.101

(0.024)

0.099

(0.023)

0.063

(0.038)

0.065

(0.039)

Total 0.098

(0.027)

0.096

(0.026)

0.055

(0.043)

0.059

(0.043)

The average RMSE for ML-SEM per level of each manipulated factor for each of the four

estimated regression parameters. The standard deviation is shown in brackets.

also influenced by that of β4, which may explain why the RMSE was

slightly larger in case of more clusters. For random within-group

samples, both RMSEβ1and RMSEβ2 decreased with more clusters,

likely influenced by the sampling variability and the fact that the

within-cluster sample size is smaller when K is larger. For β3 and

β4, the RMSE values were larger when K = 4 in both fixed and

random within-group samples, because they were only different

across clusters in these conditions.

Simulation study 2

In Simulation Study 2, we evaluated MixML-SEM in terms of

model selection. Specifically, we ran (Step 3 of) MixML-SEM with

one to six clusters for the first 10 replications of each cell of the

design of Simulation Study 1, excluding conditions with “high”

reliability (i.e., for a total of 4,800 data sets). Then, the number of

clusters was selected based on BICG, AIC, and CHull.

Results
For each data set, we verified whether the correct number of

clusters was selected for MixML-SEM. BICG correctly selected the

number of clusters for 64.8% of the data sets whereas AIC did so for

69.1% and CHull for 71%. Note that for 5.0% of the data sets, CHull

did not provide a solution and they were classified as incorrect.

This occurred because the “observed” single-indicator logL did not

increase monotonically with more clusters, which is attributed to

the fact that, during Step 3 of the model estimation, we maximized

log Lη (Equation 13) rather than the “observed” single-indicator

logL (Equation 15). This causes the CHull procedure to exclude the

concerned models from the selection. In practice, visual inspection

of the CHull plot would alleviate the problem, since a clear elbow

may still be present.

Both BICG and AIC had a tendency to underestimate the

number of clusters. Specifically, BICG underestimated the number

of clusters for 35.1% of the data sets and selected one cluster for

26.3%. Similarly, AIC selected too few clusters for 24.4% of the

data sets and selected only one cluster for 17.6%. Note that these

selections of one-cluster or too-few-clusters models could not be

fully explained by MixML-SEM’s tendency to assign all groups to

one cluster in specific conditions when using the true K, which

would make it harder to select the correct K. This occurred in only

11.0% and 14.2% of the data sets for which BICG or AIC selected

one cluster, respectively; and in only 8.7% and 11.4% of the data sets

where BICG or AIC selected too few clusters. Since CHull selects

at least two clusters, we also examined the performance of BICG

and AIC when only considering two or more clusters, to make the

comparison more fair. In this case, the overall accuracy of BICG

increased to 74.4%, and that of AIC increased to 79.4%, which are

slightly better than CHull.

The main effects of the simulated conditions on the model

selection accuracy are given in Table 4. For BICG and AIC, larger

regression coefficients, fewer clusters, a lower proportion of small

groups, and random within-group samples, all contributed to

a more accurate model selection. The worse performance for

fixed within-group samples can only be partially explained by the

occurrence of solutions where all groups were modally assigned to

one cluster when using the true K, even though this only occurred

in case of fixed within-group samples. After excluding the data sets

for which one-cluster solutions occurred for fixed within-group

samples (177 out of 2,400 data sets), the model selection accuracy

increased to 0.630 for BICG (which is still lower than the BICG for

random within-group samples), and 0.717 for AIC (which is now

higher than the AIC for random within-group samples). Another

potential explanation for the better performance in case of random

within-group samples is that the tiny differences due to sampling
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TABLE 4 The percentage of data sets for which the correct number of

clusters for MixML-SEM was selected using BICG, AIC and CHull, per level

of each manipulated factor.

Factor Level BICG AIC CHull

G 48 0.591 (0.492) 0.658 (0.475) 0.691 (0.462)

96 0.705 (0.456) 0.724 (0.447) 0.729 (0.444)

K 2 0.783 (0.412) 0.801 (0.400) 0.781 (0.413)

4 0.510 (0.500) 0.579 (0.494) 0.638 (0.481)

Large Ng 100 0.547 (0.498) 0.615 (0.487) 0.646 (0.478)

200 0.748 (0.434) 0.765 (0.424) 0.773 (0.419)

Small Ng 25 0.602 (0.490) 0.653 (0.476) 0.699 (0.459)

50 0.689 (0.463) 0.725 (0.447) 0.720 (0.449)

Small groups

proportion

0 0.846 (0.361) 0.809 (0.394) 0.756 (0.430)

0.25 0.793 (0.405) 0.811 (0.391) 0.831 (0.375)

0.5 0.722 (0.448) 0.758 (0.429) 0.815 (0.389)

0.75 0.568 (0.496) 0.663 (0.473) 0.708 (0.455)

1 0.280 (0.449) 0.391 (0.488) 0.424 (0.495)

β 0.2 0.334 (0.472) 0.456 (0.498) 0.551 (0.498)

0.3 0.734 (0.442) 0.765 (0.424) 0.748 (0.435)

0.4 0.904 (0.294) 0.871 (0.335) 0.846 (0.361)

Reliability low 0.648 (0.478) 0.691 (0.462) 0.710 (0.454)

Within-group

samples

fixed 0.600 (0.490) 0.686 (0.464) 0.718 (0.450)

random 0.702 (0.457) 0.696 (0.460) 0.701 (0.458)

Total 0.648 (0.478) 0.691 (0.462) 0.710 (0.454)

fluctuations counter the tendency of BICG and AIC to select too

few clusters. Note that having a few large groups led to a marked

increase of the model selection accuracy. Specifically, for BICG,

the correct selection rate increased from 28.0% to 56.8% when the

proportion of small groups decreased from 1 to 0.75. For AIC, it

increased from 39.1% to 66.3%.

The model selection performance of CHull showed similar

trends to that of BICG and AIC, but a difference is that CHull

performed slightly better for fixed within-group samples (fixed:

71.8%, random: 70.1%). For random within-group samples, the

correct model selection rate increased with a larger proportion

of larger groups, while, for fixed within-group samples, the best

performance occurred when the proportion of small groups was

0.5 rather than 0. This may be attributed to CHull selecting overly

complex models when a more complex model barely resulted in a

better model fit, leading to an artificially inflated scree ratio because

the denominator approaches zero (Wilderjans et al., 2013). An

infinite scree ratio occurred only in fixed within-group samples

(144 data sets), which is explained by the group-specific covariances

being unaffected by sampling fluctuations. Also, it occurred more

frequently with fewer clusters (125 data sets), more groups (81

data sets) and a smaller proportion of small groups (107 data sets).

All 144 data sets with an infinite scree ratio selected an incorrect

number of clusters. Recall that, in practice, researchers can visually

inspect the CHull plot to identify the elbow and avoid an overly
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FIGURE 5

The CHull plot of an example of selecting an overly complex model

for MixML-SEM based on the scree ratio’s. The data set contained 48

groups, two clusters, balanced, a fixed sample of size 200 per group

and β = 0.3.

complex model being selected based on the scree ratio’s alone. As

an example, consider the scree ratio’s and scree plot (Figure 5) for

one of the simulated data sets. This data set contained two clusters,

48 groups, a fixed sample of 200 per group and β = 0.3. CHull

suggests three clusters with a ratio of infinity, whereas a very clear

elbow is visible for two clusters (the only elbow in the plot), which

is captured by the second largest scree ratio (8.292e+12). Given the

impracticality of checking the CHull plot for each simulated data

set, we examined the second largest scree ratio for all data sets with a

maximal scree ratio of infinity and an incorrect model selection. By

selecting the model with the second largest scree ratio, the number

of clusters was correctly identified for all these data sets. In this

way, the model selection accuracy for fixed within-group samples

improved from 41.3%, 77.5%, 87.1%, 85.2%, and 67.9% to 41.9%,

78.3%, 88.8%, 89.8% and 90.2% for the proportion of small groups

ranging from 1 to 0, respectively, indicating an improvement in

model selection accuracy with a larger proportion of larger groups.

Conclusion

We assessed the performance of MixML-SEM and compared

it to ML-SEM when the measurement non-invariances were

correctly specified. When the true number of clusters was specified

(Simulation Study 1), MixML-SEM performed well when the

cluster separation was sufficiently large (for example β = 0.3)

and/or when more large groups were involved, outperforming
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ML-SEM in terms of regression parameters recovery. The results

suggest that the required group sizes for reliable performance

depend on the degree of cluster separation and whether one wants

to learn about structural relations for the specific within-group

samples (fixed within-group samples) or aims to make inferences

about a larger population with the groups (random within-group

samples). In more challenging conditions with very small cluster

differences (e.g., β = 0.2), a minimum of 50% group sizes of 100

was needed to achieve good performance under the current model

setup in case of fixed within-group samples, while only 25% or

even 0% of large groups was needed with better cluster separation

(e.g., β = 0.3 or 0.4). For random within-group samples, larger

group sizes (e.g., 200 or larger) and/or a larger proportion of large

groups were required. Thus, applied researchers should keep in

mind that, when (some) group sizes are smaller than 100, small

differences in structural relations may not be captured, especially

when they are masked by sampling fluctuations and one wants to

draw conclusions about the larger population if the samples are

not representative.

Despite difficulties in recovering the clustering when having

only small groups combined with a low cluster separation, we

observed a notable improvement in the performance of MixML-

SEM when more larger groups were included alongside the

small groups. This confirms the main advantage of MixML-SEM:

combining information frommultiple groups within a cluster leads

to a better regression parameter (and cluster) recovery.

In contrast, in ML-SEM, the group-specific regression

parameter estimates, derived from the random effects, were biased

toward the overall mean parameter value. Hence, if researchers

compare the group-specific estimates to draw conclusions about

differences and similarities in structural relations, the differences

are obfuscated due to the shrinkage bias. If they would opt for a

mixture clustering based on such biased estimates to make the

comparisons, the clustering will not be accurate either. Even when

the clustering would be accurately recovered, the comparison of

the corresponding cluster-specific regression coefficients would

still be affected by the bias.

When it comes to selecting the number of clusters for MixML-

SEM (Simulation Study 2), we conclude that BICG, AIC, and

CHull have comparable performance. BICG and AIC tend to be

more conservative, preferring models with fewer clusters, but they

have the advantage over CHull that they can select one cluster.

However, violations of distributional assumptions may lead to

overselection in case of the BIC (and AIC) (e.g., Bauer, 2007;

McNeish and Harring, 2017), making CHull potentially more

suitable for empirical data. In CHull, an artificially inflated scree

ratio may lead to overselection as well, but we can consider the

two best models and/or visually inspect the CHull plot to confirm

the presence of an elbow. Therefore, in empirical practice, we

recommend combining BICG, AIC, and CHull, along with visual

inspection of the CHull scree plot.

Empirical application

In this section, we demonstrate the empirical value of MixML-

SEM using data from Dejonckheere et al. (2022), where they

investigated how the perceived social emotion norm—i.e., the

social pressure to feel positive, and not to feel negative—relates

to people’s subjective wellbeing across 40 countries and territories.

For this illustration, we focus on the relation between participants’

perceived social pressure to be happy and life satisfaction. The

perceived social pressure to be happy was assessed using the

nine-item Social Expectancies about Happiness Scale (SEHS;

Dejonckheere et al., 2022), with items such as “I often feel a

great deal of pressure from those around me to feel Happy.”

Participants rated each item on a Nine-point Likert scale ranging

from strongly disagree (one) to strongly agree (nine). Life

satisfaction was assessed with the Five-item Satisfaction with

Life Scale (SWLS; Diener et al., 1985), including items like

“The conditions of my life are excellent,” rated on a Seven-

point Likert scale from strongly disagree (one) to strongly agree

(seven). Dejonckheere et al. (2022) conducted multilevel regression

analysis with random intercepts and slopes, based on mean scores

computed for each construct. They found a fixed effect of −0.05

and a random effect standard deviation of 0.11 for the regression

coefficient of SEHS on SWLS, indicating substantial variability

of this relations across the countries. Specifically, five countries

had significantly positive relations between SEHS and SWLS, 10

had significantly negative relations, and 25 had null-relations.

They used the world happiness index (WHI) as a country-level

predictor to explain the between-country variability and concluded

that SEHS was linked to lower SWLS in high WHI countries

(β = − 0.08).

By using mean scores, Dejonckheere et al. ignored (1) that

the constructs are measured by items containing measurement

error, and (2) that this measurement may be non-invariant across

countries, both of which can result in biased regression estimates.

Moreover, as mentioned in the Introduction, multilevel modeling

is not ideal for identifying specific differences between the 40

countries. Specifically, it requires 780 pairwise comparisons of

country-specific regression estimates, which are biased by the

shrinkage toward the overall mean—in addition to the bias by

measurement error and potential non-invariances.

To solve all these issues, we applied MixML-SEM to the data.

After removing observations with missing data for the variables

of interest, we retained a sample of 6,775 participants from 40

countries. The mean structure was removed by centering the items

per group. Before applying MixML-SEM, we evaluated MI for each

construct separately using ML-CFA in Mplus. We first examined

the variances of the measurement parameters when all of them

were set to be random to see which ones have the largest variance.

Then, we estimated several ML-CFA models, each time adding a

random measurement parameter in the order of the magnitude of

the random effect variance in the model where all measurement

parameters were random. We compared these models by means of

the deviance information criterion (DIC; Spiegelhalter et al., 2002),

which balances model fit and complexity for Bayesian models,

based on the posterior mean estimate. The MI testing revealed

three non-invariant factor loadings (of items 1, 6, and 9) for

SEHS, in addition to the need to include residual covariances

between certain items (items 1 and 2, and items 7 and 8), and no

non-invariant loadings for SWLS, with both constructs modeled

with random unique variances and factor variances. The testing
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TABLE 5 The clustering of the countries based on the regression

parameters between social pressure to be happy and life satisfaction

(3-cluster model).

Model Countries

Cluster 1 (8) Chile (0.73), China, Hong Kong, Nigeria, Pakistan, Senegal,

Uganda (0.84), Ukraine (0.83)

Cluster 2 (15) Brazil (0.88), Costa Rica (0.89), England, France, Germany,

Latvia, Macedonia, Netherlands, Northern Ireland, Peru

(0.66), Philippines, Poland, Scotland (0.70), South Korea

(0.51), Wales

Cluster 3 (17) Australia, Belgium, Canada, Colombia (0.85), Estonia (0.71),

Italy, Japan (0.86), Malaysia, New Zealand, Portugal (0.84),

Singapore (0.84), Slovakia (0.74), South Africa, Spain,

Thailand (0.89), Turkey, USA

The countries with a ẑgk lower than 0.90 are presented along with their corresponding

posterior probabilities, enclosed in parentheses. For those countries with classification

uncertainty, each consisted of a mix of either Cluster 1 or Cluster 2 with Cluster 3. For

example, South Korea had the largest classification uncertainty: ẑgk = 0.51 for Cluster 2 and

0.49 for Cluster 3, and Peru: ẑgk = 0.66 for Cluster 2 and 0.34 for Cluster 3.

procedure and final model specification for both constructs (Step

1 of MixML-SEM) can be found in Supplementary material S4.

Given that we do not know the true underlying number of

clusters, we ran (Step 3 of) MixML-SEM with one to six clusters.

The BICG (Figure 6, left) suggests that the model with three clusters

provides the best model fit, and CHull (Figure 6, right) also suggests

three clusters (i.e., the plot levels off completely after three clusters).

Therefore, we present the results for the Three-cluster model

(Table 5).

The Three-cluster model consists of Cluster 1 with a regression

coefficient of 0.184 and including 8 countries, Cluster 2 with a

coefficient of −0.254 and comprising 15 countries, and Cluster

3 with a coefficient of −0.038 and including 17 countries.

Geographically, most European countries were classified in either

Cluster 2 or Cluster 3 except for Ukraine (̂zgk = 0.83 for Cluster

1 and 0.17 for Cluster 3). Asia was also mainly distributed across

two clusters, Cluster 1 and Cluster 3, except for Philippines and

South Korea. South Korea was classified with a high classification

uncertainty, however (̂zgk = 0.51 for Cluster 2 and 0.49 for Cluster

3). Of the four African countries, three were classified into Cluster 1

and one (South Africa) in Cluster 3. For South-American countries,

all of them exhibited a classification uncertainty>0.1 (each country

comprised a mix of either Cluster 1 or Cluster 2 with Cluster 3). For

North America, Canada and the USA were in Cluster 3, whereas

Costa Rica was in Cluster 2. For Oceania, both Australia and New

Zealand were in Cluster 3.

To some extent, our findings resemble those of Dejonckheere

et al. (2022), where five countries showed positive relations

(Senegal, Hong Kong, Nigeria, Pakistan, and China, all found in

Cluster 1 of MixML-SEM), 10 negative (Northern Ireland, Peru,

Latvia, Philippines, France, Macedonia, Germany, Netherlands,

England, Poland, all found in Cluster 2), while the remaining 25

were close to 0 (17 countries in Cluster 3, three in Cluster 1, and

five in Cluster 2). Note that the classification by Dejonckheere et al.

(2022) was solely based on whether the regression coefficient was

significantly positive or negative (disregarding the actual values

of the coefficient), whereas, with MixML-SEM, we assume all

countries in the same cluster to have the same values for the

regression coefficients.

To explore the potential influence of country-level predictors

on the relation between social pressure to be happy and life

satisfaction, we examined two variables: World happiness index

(WHI; as in Dejonckheere et al., 2022) and individualism (from

Hofstede, 2001). Figure 7 (left) presents boxplots of WHI scores

for the Three-cluster model. Countries in Cluster 1 generally

exhibited lower WHI values compared to the other clusters, with

the exception of Chile. Clusters 2 and 3 had relatively higher WHI

values, but there were exceptions (e.g., Macedonia, in Cluster 2, and

South Africa, in Cluster 3, have a low WHI). In conclusion, there

was considerable overlap between the three clusters, suggesting that

WHI may not be the only predictor of the relation. Note that the

interaction effect found by Dejonckheere et al. (2022), where SEHS

was linked to lower SWLS in high WHI countries (β = −0.08),

was also a weak one. To further examine whether this relation

depends on individualism, Figure 7 (right) presents boxplots of the

individualism scores for the three clusters, which was available for

31 of the countries. Overall, countries in Cluster 1 exhibited lower

individualism, followed by countries in Clusters 2 and 3. However,

the overlap between the clusters (especially between Clusters 2 and

3) suggests that other variables may also contribute to the relation

between social pressure to be happy and life satisfaction.

In summary, MixML-SEM revealed cross-national differences

in the relation between social pressure to be happy and

life satisfaction, captured by assigning the 40 countries to

three clusters. Compared to the multilevel regression analysis,

MixML-SEM allowed us to avoid a large number of pairwise

comparisons of biased group-specific regression estimates, while

taking the measurement error and the measurement non-

invariances into account.

Discussion

MixML-SEM is a novel method for comparing structural

relations between latent variables across many groups, while

parsimoniously addressing potential measurement non-

invariances with random effects. Specifically, after accounting

for measurement non-invariances with ML-CFA, MixML-SEM

uses mixture clustering to gather groups with equivalent structural

relations, thereby reducing the need for pairwise comparisons

of the relations. For instance, in the empirical example on social

pressure to be happy and life satisfaction, comparing only three

cluster-specific regression coefficients efficiently exposed the

differences among 40 countries.

One would expect the parsimonious measurement model of

MixML-SEM to be especially advantageous in case of (some) small

groups. Small groups are more prone to sampling fluctuations,

however. The simulation study demonstrated a strong effect of

the fixed vs. random within-group samples on MixML-SEM’s

performance. Thus, a critical question is whether the analysis

aims to capture clusters regarding the regression relations in

the observed within-group samples or regarding the relations

in the larger within-group populations. Since smaller samples

are more vulnerable to sampling variability, the observed data

are less representative of the population, especially when the

underlying population is relatively large. Thus, when applying

MixML-SEM to empirical data on small groups, researchers should
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The BICG and CHull plot (based on the logL as a function of the number of parameters) for models with 1 to 6 clusters for the empirical data.
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The WHI and individualism scores for the three clusters obtained by MixML-SEM.

be cautious when generalizing the captured differences in structural

relations to larger within-group populations, unless there is a

strong justification that the observed samples are representative

(for instance, when within-group samples are obtained within

stratified sampling). Unlike ML-SEM, MixML-SEM does not adopt

the multilevel approach for the structural model, which avoids

comparing biased group-specific regression estimates derived from

random effects. The added value of MixML-SEM over ML-SEM

was demonstrated in simulation studies. Of course, the simulation

studies were limited to conditions where a clustering was indeed

underlying the structural relations. Future research could evaluate

how MixML-SEM performs when this is not the case. For instance,

it would be interesting to see how many and which clusters are

captured with MixML-SEM when the differences in structural

relations are in fact gradual and normally distributed.

Furthermore, in our simulation studies, we examined a model

with four latent variables and four regressions among them,

whereas, in the empirical study, we applied MixML-SEM to cluster

on only one regression coefficient. In practice, more variables and

thus more relations can be involved. Depending on the research
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question and the structural model, researchers can choose to cluster

all relations together or separately. Note that clustering on multiple

relations may require more clusters to capture all the differences,

whereas clustering on each regression coefficient separately does

not allow for one relation to be estimated conditional on another

one. Note that the advantage of MixML-SEM is greater in case

of more complex structural models, where multiple relations may

vary across clusters. That is, a clustering based on one regression

coefficients might also be found by ordering the group-specific

relations in terms of their direction and size, but a clustering based

on multiple regression coefficients is much harder to find based on

comparisons of group-specific coefficients. When clustering groups

on multiple relations, it would be interesting to combine MixML-

SEM with hypothesis testing on the cluster-specific regressions

to determine which relations are significantly different across

which clusters.

A key feature of MixML-SEM is its stepwise estimation

process, which should provide robustness against local model

misspecifications, as was demonstrated for the SAM approach

in general (Rosseel and Loh, 2024). In contrast, simultaneous

estimation of all parameters may allow misfit or uncertainty in

one part of the model (e.g., the structural model) to propagate

and distort estimation in another part (e.g., the measurement

model), and vice versa. Future research could investigate the

robustness of MixML-SEM against different forms of measurement

model misspecification. This could involve scenarios such as

disregarding cross-loadings or residual covariances between items,

or ignoring measurement non-invariances. In the first step of

MixML-SEM, the measurement model is estimated per latent

variable, which corresponds to the “measurement block approach”

recommended by Rosseel and Loh (Rosseel and Loh, 2024). This

approach drastically reduces computation time, but requires a

sufficient number of (strong) indicators for each factor. It may

thus be infeasible or inadvisable when the number of indicators is

insufficient and/or when their reliability is low. In such cases, the

ML-CFA needs to be estimated for all (or some) latent variables

simultaneously (which corresponds to combining them in one

measurement block), before continuing with the estimation of

MixML-SEM as usual. In the future, it would be valuable to

compare the performance of MixML-SEM when starting from one

vs. multiple measurement blocks in different conditions and under

different misspecifications.

The stepwise approach allows for a lot of flexibility, such as

using a different estimator in each step. In particular, Bayesian

estimation was applied in Step 1 for estimating ML-CFA, whereas

maximum likelihood estimation was applied in Steps 2 and 3.

Existing mixture-based SEM methods, like multilevel mixture

SEM in Mplus (where “multilevel” indicates that the mixture

operates at the group level), lack such flexibility. In fact, multilevel

mixture SEM does not support including random loadings for

the measurement model due to the unavailability of Bayesian

estimation for this model type. Consequently, differences in the

measurement model are either disregarded or captured by the same

clustering along with the differences in structural relations. This

limitation undermines the ability to disentangle different sources

of variability across groups, making it impossible to cluster on the

structural relations specifically.

The stepwise estimation also facilitates extensions of the

method. One possible extension involves replacing the first

step by alternative approaches for handling measurement non-

invariances. In MixML-SEM, we used the multilevel approach

to account for measurement non-invariances, but an interesting

alternative is the Multigroup Bayesian CFA approach with

approximate measurement invariance (Muthén and Asparouhov,

2013) which captures differences in measurement parameters

by small-variance priors. The key difference between the two

approaches lies in their underlying assumptions. For the invariant

measurement parameters, ML-CFA assumes exact invariance,

meaning identical parameters across all groups, whereas the non-

invariant measurement parameters are captured with random

effects with an unrestricted variance. Especially when dealing with a

large number of groups, achieving exact invariance may not always

be realistic, not even for some of the measurement parameters.

Approximate invariance allows for small differences across groups

for many, or even all, of the measurement parameters, where

these differences are kept small by restricting their variance.

The fact that the differences across groups are kept small

maintains the comparability of structural relations across groups.

In the future, it would be interesting to investigate the interplay

between exact measurement invariance, approximatemeasurement

invariance, and measurement non-invariance within the Mixture

Multigroup/Multilevel SEM framework.

Currently, MixML-SEM combines Bayesian and maximum

likelihood estimation, assuming continuous items. In empirical

practice, we often encounter ordinal data like questionnaire items

with a specific number of response categories. Having enough

response categories (say five or more) allows for the items to

be considered as continuous (Dolan, 1994), but binary items or

items with three or four response categories are common (e.g., in

the Programme for International Student Assessment). Therefore,

adapting the method to ordinal data would be another useful

extension. To this end, the first step ofMixML-SEM, using Bayesian

estimation, should be adjusted to deal with ordinal data, whereas

the rest of the estimation procedure remains unchanged, since the

factor scores derived from the first step are still continuous.

As our primary focus was on comparing structural relations,

our current approach disregarded the mean structure (i.e., the

data were centered per group). Another possible extension is to

incorporate the mean structure into the model. In addition to

clustering based on regressions, we could also cluster groups based

on their factor means if this is relevant to the research question.

Note that comparing factor means across (clusters of) groups

requires a higher level of MI—that is, at least (partial) scalar

invariance—and thus a modification to the measurement model as

well. Differences in factor means and structural relations will then

be captured by the clusters, whereas differences in themeasurement

model are captured by random intercepts and/or random loadings.

This combination of mixture modeling and random effects cannot

be attained by existing mixture SEM methods in Mplus, because

they do not allow for the required Bayesian estimation (as

mentioned above).

To conclude, MixML-SEM provides a parsimonious way for

accounting for measurement non-invariance (with random effects)

while comparing structural relations across many groups (with
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mixture modeling). The combination of random effects and

mixture modeling is handled in a stepwise manner, building on the

SAM approach. This stepwise estimation approach is very flexible,

which makes it easy to extend the method in many ways, including

the use of alternative methods for addressing measurement non-

invariances. MixML-SEM is thus not only a novel method for

comparing structural relations among many groups, but also an

important step toward a realm of possibilities for handling different

types of measurement non-invariance while clustering the groups

on their structural relations.
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