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profile clustering
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Noemi Mazzoni, Matilde Spinoso and Mariagrazia Benassi

Department of Psychology, University of Bologna, Bologna, Italy

Introduction: Understanding individual cognitive profiles is crucial for

developing personalized educational interventions, as cognitive di�erences can

significantly impact how students learn. While traditional methods like factor

mixture modeling (FMM) have proven robust for identifying latent cognitive

structures, recent advancements in deep learning may o�er the potential to

capture more intricate and complex cognitive patterns.

Methods: This study compares FMM (specifically, FMM-1 and FMM-2 models

using age as a covariate) with a Conditional Gaussian Mixture Variational

Autoencoder (CGMVAE). The comparison utilizes six cognitive dimensions

obtained from the PROFFILO assessment game.

Results: The FMM-1 model, identified as the superior FMM solution,

yielded two well-separated clusters (Silhouette score = 0.959). These clusters

represent distinct average cognitive levels, with age significantly predicting

class membership. In contrast, the CGMVAE identified ten more nuanced

cognitive profiles, exhibiting clear developmental trajectories across di�erent

age groups. Notably, one dominant cluster (Cluster 9) showed an increase

in representation from 44 to 54% with advancing age, indicating a normative

developmental pattern. Other clusters displayed diverse profiles, ranging from

subtle domain-specific strengths to atypical profiles characterized by significant

deficits balanced by compensatory abilities.

Discussion: These findings highlight a trade-o� between the methodologies.

FMM provides clear, interpretable groupings suitable for broad classification

purposes. Conversely, CGMVAE reveals subtle, non-linear variations in cognitive

profiles, potentially reflecting complex developmental pathways. Despite

practical challenges associated with CGMVAE’s complexity and potential cluster

overlap, its capacity to uncover nuanced cognitive patterns demonstrates

significant promise for informing the development of highly tailored educational

strategies.

KEYWORDS

variational autoencoders, clustering, machine learning, cognitive profiles, factor

mixture modeling

1 Introduction

Individual cognitive profiles, encompassing unique strengths and weaknesses in

domains such as memory, attention, processing speed, and reasoning, play a pivotal

role in shaping the learning process (Altun, 2016; Nesayan et al., 2018; Webster,

2002). Research indicates that personalized instructional strategies aligned with these
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cognitive differences can significantly enhance educational

outcomes. For instance, adaptive learning strategies that cater

to individual modalities, such as employing diagrams for visual

learners or discussion-based approaches for verbal learners, have

been shown to be effective (Swanson and Hoskyn, 2001). Similarly,

learners with robust working memory capacities tend to excel

in multitasking and complex problem-solving, whereas those

with deficits benefit from structured and sequential methods

(Gathercole et al., 2008). In addition, differences in processing

speed suggest that traditional time-constrained assessments may

disadvantage some students, highlighting the need for flexible

pacing and differentiated instruction (Kail and Hall, 1994).

Moreover, when learners are aware of their own cognitive strengths

and limitations, they can leverage metacognitive strategies to

improve self-regulated learning and academic performance

(Zimmerman and Schunk, 2011). Finally, recognizing and

addressing individual cognitive profiles enables the development of

personalized teaching strategies that optimize learning experiences,

thereby fostering academic success and increased self-efficacy

(Orsoni et al., 2023). Clustering constitutes a pivotal domain

within unsupervised pattern recognition and can be a relevant

approach in finding suitable students cognitive profile (Orsoni

et al., 2023). Its fundamental purpose is to partition a collection of

unlabeled samples into distinct subsets according to a predefined

objective function. The primary aim is to minimize inter-partition

similarity while concurrently enhancing intra-partition similarity

(Jayanth Krishnan and Mitra, 2022). However, the effectiveness of

clustering solutions depends on multiple factors, including data

characteristics and algorithm selection. Recently, confirmatory

factor analysis (CFA) combined with latent profile analysis

(LPA) (Schuster and Krogh, 2021) and factor mixture modeling

(FMM) (Lubke and Muthén, 2005) has emerged as a robust

approach for classifying learners’ cognitive profiles by identifying

underlying cognitive constructs and grouping individuals into

latent classes based on their performance data. This methodology

has been applied in various domains, including gifted education

(Mammadov et al., 2016), in the analysis of self-regulated learning

strategies in university students (Ning and Downing, 2014),

and in the identification of preclinical cognitive phenotypes for

Alzheimer’s disease (Hayden et al., 2014). FMM, by following

this line, merges continuous factor structures with categorical

latent class distinctions. A work of Gomez and Vance (2014)

presented the application of this method in the classification of

cognitive heterogeneity in the co-occurrence of the childhood

syndromes. Overall, the integration of CFA, LPA, and FMM

facilitates a nuanced understanding of cognitive heterogeneity,

thereby informing the development of personalized educational

and psychological interventions. However, recent advances in

deep unsupervised learning have significantly advanced latent

class analysis, with methods such as autoencoders (AEs) and

variational autoencoders (VAEs) proving particularly effective

at enhancing clustering performance. These techniques encode

high-dimensional data into compact, interpretable latent spaces

that clarify intrinsic group structures (Lin et al., 2020; Yan et al.,

2023). For instance, Eskandarnia et al. (2022) demonstrated the

utility of combining dimensionality reduction with clustering

algorithms for smart meter load profiling, while Peng et al. (2018)

employed a structured autoencoder framework to map data into

non-linear latent spaces optimized for subspace clustering. Further

refinements to these architectures include Jiang et al. (2017), who

introduced variational deep embedding (VaDE), integrating VAE

with Gaussian mixture models to improve cluster separability.

Subsequent innovations in VAE-based models, such as Kopf et al.

(2021) mixture-of-experts (MoE), and Sarkar et al. (2020) Gaussian

Mixture Variational Autoencoder and hybrid Conditional GMVAE

for game design applications, have expanded the methodological

toolkit for domain-specific clustering challenges.

This study compares factor mixture modeling (FMM)

and Conditional Gaussian Mixture Variational Autoencoder

(CGMVAE) as methods for analyzing cognitive profiles derived

from six cognitive dimensions across multiple age groups. Notably,

this research presents the first application of the CGMVAE

architecture within the domain of cognitive profile analysis.

Our core objectives are to (1) evaluate how effectively FMM

and CGMVAE identify underlying latent cognitive structures, (2)

characterize the distinct cognitive profiles eachmethod reveals, and

(3) analyze age-related trends in the distribution of these profiles.

2 Methods

2.1 Participants and instrument

All procedures adhered to the ethical standards established

by national committees on human experimentation and were in

accordance with the Helsinki Declaration of 1975, as revised in

2008. Approval for the study was obtained from the University of

Bologna Bioethics Committee. Both parents and youths provided

written and online informed consent to participate in the study.

A total of n = 2570 participants with an age range between 4

and 16 years old were considered eligible for subsequent analyses.

Figure 1 displays the distribution of sample ages. Due to the

presence of a trimodal pattern in age variable, both the FMM

and CGMVAE methodologies employed a binned approach for

the conditioned variable. Participant ages were then grouped into

three categories: [0–8), [8–12), and [12–100), containing n = 670,

n = 821, and n = 1, 079 samples, respectively.

The cognitive abilities of all paticipants were evaluated using

an online digital game called PROFFILO, specifically designed for

assessing students’ cognitive profiles (Orsoni et al., 2023). The

instrument convergent validity and specifications were already

included in other published studies (Orsoni et al., 2021, 2023).

In brief, the PROFFILO assessment comprised six distinct sub-

tests (games), each tailored to evaluate a specific cognitive

function, namely, logical reasoning, visuospatial attention, motion

perception, phonological awareness, verbal comprehension, and

working memory, and lasted 20–25 min per participant. A total

of 54 items have been administered to all the participants divided

as follows:

• Logical reasoning: 15 items. The test consists of a series of

visual pattern matrices, each with one missing part. The task

for the test taker is to identify the missing piece from multiple

choices. The data are binary, representing 0 for incorrect and

1 for correct answers.

• Visuospatial attention: 3 items. The task requires the

individual to focus their attention to specific visual elements

in space, by responding to specific cues while ignoring
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FIGURE 1

Bar chart of the sample age distribution.

distractions. The data is continuous in a range between 0

and 1.

• Motion perception: 5 items. In the current task, participants

have to recognize directions of moving stimuli, obtained from

white dots moving against a black background. This task

allows to assess the subject’s motion perception skills. The

data are binary, representing 0 for incorrect and 1 for correct

answers.

• Phonological awareness: 13 items. In the tasks, the test taker

is presented with two auditory stimuli, and the task requires

selecting the word that corresponds to a word that actually

exist, while disregarding the non-word counterpart. The data

are binary, representing 0 for incorrect and 1 for correct

answers.

• Verbal comprehension: 17 items. The test involves the

presentation of spoken sentences or phrases to the test taker,

who is then required to select a corresponding picture that

accurately represents the meaning of the presented linguistic

content. The data are binary, representing 0 for incorrect and

1 for correct answers.

• Working memory: 1 item. The test involves presenting a

participant with a sequence of numbers and then asking them

to recall the items in reverse order. The length of the sequence

increases proportionally with the participant’s performance

improvement. The test is interrupted after two consecutive

errors. The data is continuous, ranging from aminimum value

of 0.

2.2 Factor mixture modeling

Following the seminal work by Lubke and Muthén (2005),

factor mixture modeling (FMM) combines factor analysis and

latent class analysis to identify latent cognitive structures and

classify individuals into distinct subgroups. In this study, we

employed a FMM approach to investigate the underlying structure

of the students cogntive profiles. By following the work of Clark

et al. (2013), two FMM specifications were estimated: FMM-

1 and FMM-2. In FMM-1, or the latent class factor analytic

(LCFA) model, the item thresholds and factor loadings were

constrained to be invariant across latent classes, with the only class-

specific parameter being the factor mean α. In this specification,

the factor covariance matrix 9 was fixed at zero, thereby

assuming no within-class heterogeneity beyond differences in

factor location.

By contrast, FMM-2, or mixture factor analysis, allowed for

a more flexible representation of the latent structure. Although

it maintained invariant item thresholds and factor loadings as in

FMM-1, instead of setting the factor variances and covariances

to zero, they are now freely estimated in each of the classes.

This modification enabled the model to capture also non-normal

distributions of the latent variable, thus accommodating variability

both between and within diagnostic categories.

As discussed in Clark et al. (2013), we adopted a systematic,

multi-step approach to develop the FMM-1 and FFM-2, drawing

from latent class analysis (LCA) and factor analysis (FA) as

foundational paradigms. Initially, LCA models with an increasing

number of classes and FA models with an increasing number of

factors were fitted. This dual fitting strategy provided baseline

solutions against which the more complex FMM could be

compared, thereby informing decisions about model complexity

and indicating when further increases in the number of classes

or factors might be unnecessary. The next phase involved fitting

a simple FMM with two latent classes and one latent factor.

Subsequent models were estimated by gradually increasing the

number of classes. This step allowed for an initial exploration of

how class heterogeneity is captured in the presence of a single

factor and served as a starting point for progressively building

model complexity. Building on the simple FMM, the number of

latent factors was increased from one to two, and the number

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1474292
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Orsoni et al. 10.3389/fpsyg.2025.1474292

of classes was again systematically increased in parallel. This

iterative process, first varying the number of classes, then the

number of factors, aimed to identify the point at which the

model best captured the underlying structure of the data. The

same pattern of complexity escalation was applied for both FMM-

1 and FMM-2 models. To determine when to stop increasing

the number of classes and factors was guided by the optimal

number of classes from the LCA and the optimal number of

factors from the FA, ensuring a parsimonious yet explanatory

solution. After exploring different combinations of classes and

factors, the best-fitting FMM was selected based on Bayesian

information criteria (BIC), and Akaike information criterion (AIC)

indices. Finally, the best FMM was compared with the optimal

LCA and FA models. This comparison was essential to ensure

that the integrated FMM solution provided superior fit and a

more parsimonious representation of the data relative to the

simpler models.

Moreover, we incorporated the binned age covariate in the

models. This approach, as outlined by Lubke and Muthén (2005),

allowed us to model the effect on latent class membership

via a multinomial logistic regression framework. Specifically,

the covariate is used to predict class probabilities through

regression parameters, which are updated during the M-step of the

Expectation-Maximization (EM) algorithm. This approach enables

us to account for observed heterogeneity by directly influencing

latent class assignments while retaining the overall structure of

the FMM.

2.3 Conditional gaussian mixture
variational autoencoder

Variational autoencoders (VAEs) have emerged as a principled

approach to learning deep latent-variable models, enabling flexible

data representations in both generative and semi-supervised

contexts (Kingma and Welling, 2014, 2019). Building on

this foundation, we employ a Conditional Gaussian Mixture

Variational Autoencoder (CGMVAE), which extends the

standard VAE framework by integrating (1) a conditional

variable (binned age in our case) alongside the primary input

and (2) a Gaussian mixture prior to capture inherently multi-

modal latent distributions (Jiang et al., 2017; Sarkar et al.,

2020).

2.3.1 Model architecture
Figure 2 provides an overview of the CGMVAE architecture.

The encoder or recognition model maps the concatenation of

the input vector x and the conditional variable c into hidden

representations via a sequence of fully connected layers with non-

linear activations. Specifically, the encoder outputs:

(i) mixture probabilities qy, obtained through a softmax

layer, representing a categorical distribution over K Gaussian

components, and

(ii) component-wise Gaussian parameters, t̃he means µk and

log-variances log σ
2
k for each component k ∈ {1, . . . ,K}.

Hence, each data point x is associated with a conditional

distribution over z:

q(z|x, c) =

K
∑

k=1

q(y = k | x, c) N
(

µk(x, c), σ 2
k (x, c)I

)

. (1)

Using the reparameterization trick, we draw latent samples z

from each component in a differentiable manner (Kingma et al.,

2015). The final latent representation is computed as the weighted

sum of samples across all K components, weighted by q(y = k |

x, c).

The decoder or generative model receives the latent sample z

(combined with the same conditional variable c) to reconstruct the

original input x. In particular, z and c are concatenated and passed

through a symmetric stack of fully connected layers, culminating in

a final output layer with either:

• a Sigmoid for binary and normalized data or

• a linear output for continuous-valued features.

The decoder thus models p(x | z, c) = N (x̂, σ 2I) for the

continuous case or a Bernoulli-based parameterization for the

binary/normalized data case (Kingma and Welling, 2019).

2.3.2 Loss function and training
The total objective is to minimize the negative evidence

lower bound (ELBO), augmented to handle the mixture and

conditional terms:

L(x, c) = Eq(z|x,c)

[

− log p(x|z, c)
]

︸ ︷︷ ︸

Reconstruction Loss

+ β DKL

[

q(z|x, c)
∥
∥ p(z|c)

]

︸ ︷︷ ︸

Regularization Term

,

(2)

where the KL divergence DKL is computed between the

encoding distribution q(z|x, c) and the mixture prior p(z|c), itself

represented by learnable µprior, for each mixture component. The

scalar β ∈ (0, 1] is a hyperparameter that balances the KL term

and the reconstruction accuracy regulating the emphasis placed on

disentangled latent representations and subpopulation discovery

(Higgins et al., 2016).

The reconstruction loss is implemented as the minimization

of the mean squared error (MSE). Each training iteration

thus optimizes:

Total Loss = Reconstruction Loss+ β DKL, (3)

where the gradient of the loss is backpropagated through the

latent sampling by means of the reparameterization trick (Kingma

et al., 2015):

z = µz + σ z ⊙ ǫ, ǫ ∼ N (0, I). (4)

2.3.3 Implementation details
We developed the CGMVAE in PyTorch. The encoder

combines the original input (x) and condition vector (c), passing
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FIGURE 2

Graphical illustration of the Conditional Gaussian Mixture Variational

Autoencoder. The input x is concatenated with condition c and then

mapped to mixture probabilities and per-component Gaussian

parameters. A latent sample z is drawn via the reparameterization

trick and combined again with c for the reconstruction in the

decoder.

them through fully connected layers (each comprising linear

transformations, ReLU activations, and batch normalization).

The final shared layer outputs (i) logit scores for the mixture

probabilities qy, (ii) µ, and (iii) log σ
2 for each of the K mixtures,

reshaped for convenience as (batch_size, n_components,

latent_dim). The decoder mirrors this structure by mapping

(sampled) latent variables back to input space, producing the

reconstructed x̂.

A notable extension of our CGMVAE is the mu_prior and

logvar_prior parameters, which are learned for each mixture

component, providing a flexible Gaussian mixture prior that can

adapt to complex, multi-modal latent structures in real-world data,

a relevant aspect due to the nature of datasets that often have

subpopulation heterogeneity.

2.3.4 Training pipeline and hyperparameter
optimization

We trained the CGMVAE using:

• Data loaders:Mini-batched training and validation sets.

• Optimization: Adam is configured via a learning rate, weight

decay, and an optional gradient clipping that prevent the

gradients from excessively large values.

• Scheduler: A ReduceLROnPlateau to automatically

adjust the learning rate upon plateauing validation losses.

• Checkpointing: Periodic saving of model weights and

optimizer states.

Validation performance is monitored by computing the

reconstruction and KL terms on a held-out set, and the best model

weights are saved based on minimal validation loss. In addition,

we implemented a hyperparameter optimization routine leveraging

Optuna framework to systematically explore a search space for

latent dimensions, number of mixture components, learning rate,

and free bits parameter. This latter parameter helps to prevent

the model from over-regularizing the latent space by ensuring

that each latent variable contributes at least a minimal amount of

information. The final model is retrained on the full training set

using the best hyperparameters and stored for subsequent analyses.

2.4 Feature focused interpretation of
cluster solution and cluster quality
assessment

The cluster interpretation was performed using a feature-

focused analysis approach on the trained CGMVAE model and the

winner FMM solution. For each cluster, we performed statistical

analyses including univariate feature analysis computing means,

standard deviations, along with normalized differences from global

statistics using z-scores.

Cluster quality has been assessed on both methods by

computing standard and fuzzy cluster quality indices on the

latent space representations. In the CGMVAE solution, we derived

the latent features via the model’s encoder and determined hard

assignments on the fuzzy membership matrix. The Silhouette Score

(Rousseeuw, 1987) (which measures the cohesion and separation

of clusters), the Calinski-Harabasz Index (Calinski and Harabasz,

1974) (which quantifies the ratio of between-cluster dispersion to

within-cluster dispersion), and the Davies-Bouldin Score (Davies

and Bouldin, 1979) (which assesses average cluster similarity, with

lower values reflecting better separation) were then estimated

in both CGMVAE and FMM solution. In addition to these, we

computed fuzzy clustering metrics to capture the uncertainty in

cluster membership for CGMVAE. The Xie-Beni Index (XB) (Xie

and Beni, 1991) provides an assessment of the compactness and

separation of fuzzy clusters. The fuzzy partition coefficient (FPC)

(Wu and Yang, 2005), which averages the squared membership
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degrees over all samples, indicates the crispness of the clustering,

while the partition entropy (PE) (Bezdek, 1981) quantifies the

fuzziness of the assignment by measuring the entropy of the fuzzy

membership values.

2.5 Software and packages

The analyses were conducted using a system equipped with

an NVIDIA GeForce RTX 2060 graphics card and an Intel i7-

10750H CPU operating at 2.60GHz. Python v3.9.16 (Van Rossum

and Drake, 2009) was used for the analyses. The FMM and

CGMVAE were performed on Python by using the scikit-learn

library (Pedregosa et al., 2011). The Pytorch library v.2.0.0 (Paszke

et al., 2019) was used for CGMVAE model computation, Optuna

for hyperparameter optimization (Akiba et al., 2019), and Weight

& Biases for experiment tracking (Biewald, 2020).

3 Results

3.1 Factor mixture modeling

The investigation of the underlying structure of students’

cognitive profiles by using factor mixture modeling (FMM),

comparing specifications with class-invariant (FMM-1) and class-

specific (FMM-2) factor structures, followed the approaches

outlined by Lubke andMuthén (2005) and Clark et al. (2013). Prior

to fitting FMMs, baseline LCA and FA models were estimated to

guide the FMM specification process. The best-fitting FA model

yielded a BIC of 110,749.98 with five latent factors, while the

best LCA model resulted in a BIC of 117,211.73 with two latent

classes. Based on these analyses and theoretical considerations,

subsequent FMM analyses explored models with up to two latent

classes and five latent factors. As outlined in the Methods section,

we systematically fitted FMM-1 and FMM-2 models, incorporating

the binned age covariate to predict latent class membership. The

complexity of themodels was increased incrementally, starting with

two classes and one factor for both the models.

Based on the BIC values showed in Table 1, the FMM-1 model

with 2 classes and 1 factor provided themost parsimonious fit to the

data (BIC = 94,285.72). This model outperformed the best-fitting

FMM-2 model (BIC = 94,439.41 for the 2-class, 1-factor solution)

and was considerably better than the optimal baseline LCA (BIC

= 117,211.73) and FA (BIC = 110,749.98) models. The selected

FMM-1 model identified two latent classes with distinct profiles

characterized by different means on a single underlying cognitive

factor. The estimated class proportions were 29.14% for Class 1 and

70.86% for Class 2.

The selected best-fitting model posits that the underlying

cognitive factor structure (defined by item intercepts and factor

loadings) is invariant across classes. Differences between the classes

arise solely from variations in the mean of the single latent factor.

The estimated factor means for the two classes were Class 1 Mean

(α1): -1.451 and Class 2 Mean (α2): 0.657. These means present

a clear separation between the classes on the latent cognitive

dimension captured by the factor. Class 1 exhibits a significantly

lower mean factor score compared to Class 2. As shown in

TABLE 1 Model comparison between FMM-1 and FMM-2 models.

Model specification Factors BIC AIC

FMM-1

1 94,285.72 93,519.15

2 96,140.41 95,046.15

3 100,594.34 99,172.39

4 108,745.80 106,996.15

5 102,263.78 100,186.44

FMM-2

1 94,439.41 93,661.14

2 95,124.53 93,995.16

3 96,447.74 94,955.57

4 97,587.32 95,720.64

5 98,186.11 95,933.22

Best factor analysis (FA) 110,749.98 –

Best latent class analysis (LCA) 117,211.73 –

BIC, Bayesian information criterion; AIC, Akaike information criterion. Lower values

indicate better model fit relative to complexity. The best-fitting model based on BIC is shown

in bold. BIC values for the best comparison FA and LCA models are provided.

Figure 3, Class 1 represents a subgroup generally expected to

perform lower across the assessed cognitive tasks, while Class 2

represents a subgroup expected to perform higher. The expected

response profile for each class on each item can be derived using

the estimated item intercepts, the invariant factor loadings, and

the class-specific factor means. The magnitude of the difference

between the two classes on any given item is proportional to

the magnitude of that item’s factor loading; items with stronger

positive loadings (e.g., Logical_6 [loading=0.73], Logical_11 [0.72],

Logical_12 [0.69], Phonological Comprehension_9 [0.65]) show

the largest expected performance gap favoring Class 2. Conversely,

for items with negative loadings, this pattern is reversed. Based

on the invariant loadings, the items 1 and 4 of Phonological

task showed loadings equal to −0.41, and −0.21, respectively, are

expected to show higher average responses for Class 1 compared to

Class 2.

By focusing on the covariance role of binned age variable,

the analysis revealed a significant association between age and the

probability of belonging to Class 1 relative to Class 2. The estimated

regression coefficient for Age_C predicting membership in Class

1 versus Class 2 was equal to −0.963. This negative coefficient

indicates that as the binned age variable increases, the log-odds

of being classified into Class 1 (the lower-performing profile)

compared to Class 2 decrease. Exponentiating the coefficient yields

an odds ratio (OR) of approximately 0.382. This suggests that for

each one-unit increase in the binned age variable, the odds of an

individual belonging to Class 1 rather than Class 2 are multiplied by

0.382, representing a decrease of approximately 61.8%. Therefore,

higher values on the covariate are strongly associated with a

reduced likelihood of membership in the lower-performing Class 1

relative to the higher-performing Class 2. The intercept term for the

comparison of Class 1 versus Class 2 was−0.048, corresponding to

an odds ratio of approximately 0.953. This suggests that when the

binned age is at its mean (value of 0), the baseline odds of being in
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FIGURE 3

Expected response profiles for the two latent classes derived from the Factor Mixture Model (FMM). The blue line (circles) represents Class 1 (factor

mean ≈ −1.45), and the orange line (squares) represents Class 2 (factor mean ≈ 0.66). Profiles are calculated using class-specific factor loadings and

the respective class factor means, illustrating how expected item responses vary. Items exhibiting the largest absolute di�erences between classes

are highlighted with gray dashed vertical lines and labels. Items with negative factor loadings (based on Class 1 loadings, indicated by red dotted

vertical lines) show reversed patterns where Class 1 has higher expected responses.

Class 1 vs. Class 2 are nearly the same, although slightly lower for

Class 1.

3.2 CGMVAE

The CGMVAE architecture achieved an optimal performance

after 15 epochs with a validation loss equal to 1.516. The

encoder architecture comprised a fully connected layer followed

by ReLU activation and batch normalization, branching into

separate networks for computing mixture components q(y|x),

means (µ), and log-variances (log σ 2). The decoder reconstructed

the input features through a mirror architecture, maintaining

the same hidden dimension while incorporating the conditional

information. The winner parameters showed an encoder hidden

layer of 201 units feeding into a latent space of 58 dimensions,

structured as a mixture of 10 Gaussian components. Training

employed the Adam optimizer with a learning rate of 9.68 × 10−4

and a weight decay of 4.00 × 10−5, with the variational objective

tuned via a β of 0.051 and a free bits threshold of 0.048. Gradient

clipping at 0.644 further ensured stable parameter updates during

training. Figures 4a, b showed graphically the reconstruction error

by binned ages and the latent space of the two dimensions

by applying the t-SNE visualization analysis (van der Maaten

and Hinton, 2008). As depicted in Figure 4a, the reconstruction

error analysis demonstrates the model’s capability to preserve

essential data features across all age bins, with reconstructed

samples closely matching their original counterparts. However,

subtle variations in reconstruction quality are observed across the

age spectrum, suggesting age-specific patterns in data complexity

and representational characteristics.

3.3 Cluster characteristics by ages and
features

Figure 5 illustrates the distribution of binned age groups across

the proposed cluster solution, where Cluster 9 emerges as the most

representative across all age intervals, with its representativeness

progressively increasing from 44% in the [0–8) age group to

48% in [8–12) and peaking at 54% for individuals older than

12 years.
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FIGURE 4

Model performance evaluation: (a) Reconstruction errors across binned age groups and (b) t-SNE projection of latent representations, with colors

denoting the 10 Gaussian mixture components.

FIGURE 5

Proportion of samples within each cluster across binned age intervals. The bar plot highlights the representation of age groups [0–8), [8–12), and

12+ within the cluster solution.
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In contrast, the proportion of subjects in Cluster 5 decline with

age, starting at 27% in the [0–8) age group, dropping to 16% in

[8–12), and further decreasing to 8% in the [12–100] age group.

Meanwhile, Cluster 0 shows an almost homogeneous distribution

across the age groups with proportions of 15%, 13%, and 11%,

respectively, and Cluster 4 exhibits an increasing trend with age,

from 7% in [0–8) to 13% in [8–12) and 21% in [12–100]. All

remaining clusters have a homogeneous representation and are less

than 10% across all age ranges.

We focused our detailed analysis on clusters with statistically

meaningful sample sizes (n≥ 10 subjects). Following this criterion,

Clusters 3, 7, and 8 were excluded from further investigation due to

insufficient sample representation. Complete z-scores and detailed

cluster characteristics for all features are provided in Appendix A.

Cluster 9. It is the most representative of the entire sample. It

exhibits a balanced cognitive profile with performances classified as

average across various domains. Among these, motion perception

and logical reasoning demonstrated subtle but consistent strengths,

with slight positive deviations in verbal and phonological abilities.

By investigating z-scores, motion perception showed minor

enhancements across tasks, with the strongest observed in tasks 5

(Z = +0.24) and 3 (Z = +0.23) of the test. Logical reasoning tasks

followed a similar trend, with task 1 (Z = +0.21) performing the

best. Verbal comprehension (e.g., task 17, Z= +0.20), phonological

awareness (task 5, Z = +0.16), and working memory (Z =

+0.04) also showed slight improvements, albeit within the average

performance range. Overall, the cluster reflects a cognitively stable

and homogeneous group, with average performance across tasks

and minor variability in specific domains, such as phonological

awareness, which included only a slight underperformance in task

8 (Z= –0.13).

Cluster 5. It demonstrates a distinctive cognitive pattern

characterized by pronounced strengths in visuospatial attention

(task 3: Z = +0.45), above average logical reasoning abilities (e.g.,

task 15: Z = +0.34; task 11: Z = +0.29), and working memory

processing (Z = +0.18), while exhibiting some weaknesses in

phonological processing (task 6: Z = –0.52; task 4: Z = –0.48).

The cluster’s profile is further distinguished by average motion

perception capabilities and verbal comprehension.

Cluster 4. It exhibits a cognitive profile characterized by below-

average performance in perceptual-motor domains, with consistent

reductions across all motion perception variables (ranging from Z

= -0.51 to Z = -0.36) and mild impairments in logical reasoning,

accompanied by modest difficulties in visuospatial information

integration, and in several verbal comprehension subdimensions

(e.g., tasks 8, 15, 2, and 9, with reductions ranging from Z = –

0.39 to Z = –0.19). However, strengths emerge in the phonological

domain, particularly evidenced in task 4 (Z = +0.41), task 5 (Z =

+0.18), and task 9 (Z= +0.11).

Cluster 2. It presents a distinctive cognitive pattern

characterized by average global performance with specific

vulnerabilities and strengths across different domains. In the

domains of phonological awareness and verbal comprehension,

the subjects have average performances in mostly all domains with

few exceptions of vulnerabilities (e.g., phonological awareness, task

5: Z = –0.84; verbal comprehension, task 3: Z = –0.72; task 11:

Z = –0.64). However, these limitations are counterbalanced by

strengths in logical reasoning tasks (task 5: Z = +0.39; task 13: Z

= +0.29) and motion perception (task 2: Z = +0.34; task 1: Z =

+0.27 SD). The working memory ability is slight below average (Z

= –0.22). This cluster indicates a cognitive profile characterized

by local specialization rather than integrated processing. The

cluster’s performance suggests compensatory mechanisms where

visual-perceptual and logical abilities potentially offset weaknesses

in phonological and verbal domains, pointing to alternative

cognitive processing strategies.

Cluster 0. It exhibits a distinctive cognitive profile

characterized by slight but systematic reductions across several

domains, with the most marked deficits observed in verbal

comprehension, logical reasoning, and motion perception.

Specifically, verbal comprehension tasks such as task 17 show a

significant drop (Z = −0.62), while logical reasoning measures

and motion perception variables consistently fall below the

global average. Visuospatial attention is also modestly affected,

with reductions approximately −0.28 to −0.33 in the z-scores,

whereas phonological awareness remains comparatively preserved.

Working memory showed a slight below performance (Z =

−0.12). Overall, the profile of Cluster 0 reflects uniform mild

reductions in cognitive performance, particularly in logical and

perceptual-motor tasks, with potential localized compensations in

verbal and phonological processing.

Cluster 1. With a small sample size (n = 17), it demonstrates

a highly distinctive cognitive profile characterized by severe

deficits coupled with isolated compensatory mechanisms.

The most pronounced impairments are observed in verbal

comprehension (task 3: Z 0 −2.05), logical reasoning (task 9:

Z = −1.09), visuospatial attention (task 1 and 2: Z = −0.59

and −0.41, respectively), and slight in working memory (Z =

−0.37). However, the cluster exhibits remarkable compensatory

strengths in phonological awareness (task 4: Z = +0.70) and

motion perception (task 2 and 3: Z = +0.33 and 0.30). This

profile suggests a severe deficits in core verbal and logical

domains potentially driving compensatory developments in

phonological and perceptual processing. The small sample size

warrants careful interpretation, but the consistent pattern of

extreme polarization across multiple measures suggests a distinct

neurocognitive phenotype.

Cluster 6. With a small sample size (n = 37) exhibits a

highly atypical cognitive profile characterized by severe deficits

across multiple domains, particularly in verbal comprehension

(task 17: Z = −1.42), logical reasoning (task 9: Z = −1.06),

and phonological awareness (task 13: Z = −0.99). Working

memory shows moderate impairment (Z = −0.46), potentially

contributing to broader cognitive difficulties. However, the cluster

demonstrates remarkable isolated strengths in motion perception

(task 4: Z = +0.55; task 3: Z = +0.37). The profile aligns

with potential neurodevelopmental conditions characterized by

significant language and executive function impairments alongside

isolated areas of preserved or enhanced abilities.

3.4 Comparing FMM and CGMVAE cluster
quality

The cluster quality showed very different results in the

two proposed solutions. By focusing on FMM, the solution in

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1474292
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Orsoni et al. 10.3389/fpsyg.2025.1474292

the model’s latent factor space demonstrates exceptionally good

separation between classes based on the three metrics. First, the

Silhouette score of 0.959 is very close to the maximum possible

value of 1.0, indicating that observations within each cluster are

tightly grouped while remaining well separated from other clusters.

Next, the Davies-Bouldin Index registers at an extremely low of

0.074, reinforcing the notion that clusters are highly distinct; as this

index approaches zero, the average distance between clusters grows

relative to their internal dispersion. Finally, the Calinski-Harabasz

Index reaches 113,432.648, a notably high value that further

confirms well-defined cluster structure. Together, these metrics

lend strong support to the conclusion that the Factor Mixture

Model has partitioned the data into clear latent classes in the

factor space. Conversely, the solution proposed by the CGMVAE

algorithm indicates that the clusters are relatively weak overall. A

negative silhouette score (–0.008) and low Calinski-Harabasz index

(7.005), together with high Davies-Bouldin (4.244) and Xie-Beni

(32.783) indices, showed that the clusters are not highly distinct

and that there is considerable overlap between them. In addition,

the fuzzy partition coefficient value (0.109) and the high partition

entropy (2.257) suggest that membership probabilities are large,

which aligns with the need for cautious interpretation of clusters

with small sample sizes (e.g., Clusters 1 and 6). Then, even though

the detailed profiles and age distributions offer rich insights into

cognitive heterogeneity, the overall clustering solution appears to

be less sharply delineated, pointing out that the differences, while

present, may reflect subtle gradations rather than clear separations.

4 Discussion

This study presents a comparative analysis between a factor

mixture modeling (FMM) and a deep clustering based approach,

a Conditional Gaussian Mixture Variational Autoencoder

(CGMVAE) in cognitive profile analysis. These two methods

have been evaluated in their effectiveness across six cognitive

dimensions assessed through the PROFFILO game (Orsoni et al.,

2021) and multiple age groups. Our results indicate that the FMM,

particularly the simpler two-class, one-factor solution (FMM-1),

produced exceptionally clear separations between classes, while

the CGMVAE uncovered more nuanced but less well-delineated

cluster structures.

From a model-fitting perspective, the FMM excelled by

identifying two broadly distinct latent classes. The solution’s

robustness was evidenced by near-ideal clustering metrics. Its

Silhouette Score (0.959) approached the upper limit of 1.0,

signifying minimal overlap between classes and tight intra-class

homogeneity. Similarly, a low Davies-Bouldin Index (0.074) and

high Calinski-Harabasz Index provided strong convergent evidence

for well-defined class boundaries. This clarity suggests that the

single latent factor effectively captured most of the individual

differences in our data. Class membership probabilities similarly

showed clear differences, implying that each subgroup reflected a

meaningful cognitive profile, one with lower overall performance

and one with higher overall performance on the six different

cognitive tasks. The covariance effect showed an effect of binned

age. Higher ages are strongly associated with a reduced likelihood

of membership in the lower performing Class 1 relative to the

higher-performing Class 2.

By contrast, the CGMVAE, which is designed to handle

complex, non-linear relationships, identified multiple clusters with

overlapping features and fuzzy boundaries. While this suggests

deeper insight into potentially subtle cognitive differences, cluster

quality metrics pointed to weaker overall separability. Negative

Silhouette Scores (–0.008) underscore difficulty in distinguishing

unique cluster identities; a high Davies-Bouldin Index (4.244)

and small Calinski-Harabasz Index (7.005) further reveal limited

divergence across the identified clusters. In addition, the fuzzy

partition coefficient (0.109) and elevated partition entropy (2.257)

highlight considerable uncertainty in assigning individuals to

specific clusters. These results implies that the CGMVAE captures

more complex patterns but may be inappropriate when the

research or intervention context demands a clear separation

between groups. By investigating the reconstruction error analysis,

it showed robust performance across all age bins, suggesting

effective preservation of essential cognitive characteristics. The

analysis of cluster distributions revealed distinct developmental

trajectories, with Cluster 9 emerging as predominant and showing

increased representation with age (44% to 54%). Contrasting

patterns were observed in Cluster 5 (declining from 27% to

8%) and Cluster 4 (increasing from 7% to 21%), while Cluster 0

remained relatively stable across age groups. By looking at the

cluster characteristics, the analysis revealed distinct cognitive

profiles that suggest different patterns of strengths, weaknesses,

and potential compensatory mechanisms across neurocognitive

domains. Cluster 9, representing the normative profile, displayed

consistently average performance with subtle strengths in motion

perception and logical reasoning (Z-scores approximately +0.20),

serving as a baseline for comparison. In contrast, Clusters 1 and 6

exhibited the most atypical profiles, characterized by severe deficits

in verbal comprehension (Z = –2.05 and –1.42, respectively)

and logical reasoning, coupled with remarkable compensatory

strengths in specific domains such as motion perception and

phonological awareness. Three intermediate patterns emerged:

Cluster 5 showed enhanced visuospatial attention (Z = +0.45)

and logical reasoning abilities despite phonological processing

weaknesses; Cluster 4 demonstrated consistent perceptual-motor

deficits offset by phonological strengths; and Cluster 2 exhibited

a profile of selective vulnerabilities in phonological and verbal

domains counterbalanced by logical and motion perception

strengths. Cluster 0 presented a unique pattern of mild but

systematic reductions across multiple domains, particularly

affecting verbal comprehension (Z = –0.62) and logical reasoning.

These distinct profiles suggest different underlying neurocognitive

profiles, potentially reflecting various developmental trajectories

or compensatory mechanisms. The presence of both severe

deficits and domain-specific strengths within the same clusters

(particularly in Clusters 1 and 6) points to the possibility

of neural reorganization and the development of alternative

processing strategies.

In general, these results present a key methodological trade-off.

FMM excels in parsimony and interpretability, generating a small

number of highly distinct groups. This makes FMM particularly

valuable for applications requiring clear categorical distinctions.
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Differently, the CGMVAE’s flexible architecture can model richer

interactions among variables, potentially unveiling hidden facets

of cognitive variation that are not captured within simpler factor

solutions. However, the cost is weaker cluster separation and

greater membership ambiguity, which may complicate direct

intervention or classification efforts.

5 Conclusion

This study compared factor mixture modeling (FMM)

and Conditional Gaussian Mixture Variational Autoencoders

(CGMVAE) for identifying cognitive profiles. The evidence showed

that both methods offer unique advantages. The FMM provides

clear, readily interpretable clusters, while CGMVAE reveals more

complex, non-linear patterns in cognitive abilities.

The results highlighted how FMM analysis successfully

identified two distinct and well-separated cognitive classes,

with binned age significantly predicting class membership. This

highlights FMM’s strength in producing a parsimonious and

statistically robust partition based on cognitive dimensions.

Conversely, the CGMVAE uncovered multiple, more nuanced

cognitive profiles characterized by specific combinations of

strengths and weaknesses across domains. These profiles exhibited

clear developmental trajectories linked to age. However, this

increased granularity came at the cost of cluster quality; the

CGMVAE clusters showed considerable overlap and lacked sharp

boundaries, indicating weaker separation compared to the FMM

solution. However, several limitations warrant consideration.

Our FMM analysis did not extend to FMM-3 and FMM-4

models (Clark et al., 2013), which allow for class specific item

parameters and could potentially capture more subtle forms of

measurement non-invariance. The CGMVAE approach, despite

its modeling power, presents practical hurdles. Its complexity (58

latent dimensions, 10 components) and high-dimensional latent

space hinder interpretability and hidden the direct link between

cognitive features and cluster assignments.

Furthermore, methodological constraints included binning

age into broad categories due to a trimodal distribution,

potentially masking finer developmental changes, and a lack of

demographic data, limiting the examination of socioeconomic or

cultural factors. The generalizability of the CGMVAE findings

needs confirmation across different cognitive assessment tools

as performance might be tool-specific. Finally, the significant

computational resources and the inherent “black-box” nature of the

CGMVAE could hinder its adoption and trust among practitioners

in educational settings.

Future research should focus on validating these findings

across diverse populations and assessment instruments. Integrating

the strengths of both approaches, using FMM for initial broad

classification and CGMVAE for subsequent refinement of subtle,

non-linear variations within those classes, could offer a powerful

hybrid strategy. Moreover, translating these complex analytical

findings into actionable educational interventions remains a

key objective.

In conclusion, FMM and CGMVAE serve different but

complementary roles in cognitive profiling. FMM excels at

providing clear, practical classifications, whereas CGMVAE offers

a deeper lens into the subtle complexities and developmental

dynamics of cognitive performance.
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Appendix

Clustering features characteristics

TABLE 2 z-Scores across cognitive domains and clusters.

Cognitive domain Cluster 0 Cluster 1 Cluster 2 Cluster 4 Cluster 5 Cluster 6 Cluster 9

Motion perception

Task 1 –0.51 +0.18 +0.27 –0.46 +0.21 +0.13 +0.17

Task 2 –0.49 +0.33 +0.34 –0.51 +0.10 +0.13 +0.20

Task 3 –0.53 +0.30 +0.20 –0.49 +0.05 +0.37 +0.23

Task 4 –0.29 +0.06 +0.12 –0.38 +0.02 +0.55 +0.16

Task 5 –0.37 +0.07 –0.01 –0.36 –0.11 +0.04 +0.24

Logical reasoning

Task 1 –0.12 –0.28 –0.37 –0.37 –0.01 –0.81 –0.21

Task 2 –0.28 +0.08 +0.27 –0.13 +0.18 +0.30 +0.02

Task 3 –0.49 –0.40 +0.17 +0.11 +0.18 –0.34 +0.10

Task 4 –0.57 –0.10 +0.17 +0.00 –0.18 –0.26 +0.19

Task 5 –0.27 –0.86 +0.39 –0.43 +0.04 –0.01 +0.16

Task 6 –0.47 +0.27 +0.24 –0.08 +0.12 –0.48 +0.10

Task 7 +0.04 –0.13 +0.08 –0.25 +0.11 +0.01 +0.03

Task 8 –0.34 –0.02 +0.00 –0.34 +0.20 +0.01 +0.13

Task 9 –0.37 –1.09 +0.24 –0.10 +0.08 –1.06 +0.12

Task 10 +0.02 –0.24 –0.45 –0.36 +0.06 –0.61 +0.16

Task 11 –0.29 –0.33 +0.01 +0.07 +0.29 –0.42 –0.02

Task 12 –0.32 –0.10 +0.19 +0.03 +0.13 –0.19 +0.02

Task 13 –0.15 –0.31 +0.29 +0.15 +0.10 –0.25 –0.06

Task 14 –0.28 –0.86 –0.04 –0.07 +0.07 –0.77 +0.11

Task 15 –0.26 –0.13 +0.02 –0.12 +0.34 +0.09 –0.01

Verbal comprehension

Task 1 +0.11 –1.01 +0.09 –0.11 +0.10 –0.56 +0.05

Task 2 –0.04 –0.91 –0.19 –0.21 +0.12 –0.56 +0.09

Task 3 –0.25 –2.05 –0.72 –0.05 +0.16 –0.86 +0.16

Task 4 +0.14 –0.60 –0.16 –0.02 +0.03 –0.12 –0.01

Task 5 +0.07 –0.81 +0.11 –0.22 +0.10 –0.60 +0.03

Task 6 –0.05 –0.29 +0.14 –0.02 +0.15 –0.48 –0.02

Task 7 +0.03 –0.32 +0.05 –0.04 +0.13 –0.40 –0.02

Task 8 +0.08 –0.50 +0.09 –0.39 +0.14 –0.67 +0.07

Task 9 +0.08 –0.25 +0.06 –0.19 +0.01 –0.39 +0.04

Task 10 –0.19 +0.44 +0.02 –0.06 –0.24 +0.08 +0.13

Task 11 +0.25 –0.33 –0.64 +0.02 +0.24 –0.44 –0.06

Task 12 –0.12 –0.11 +0.18 –0.07 +0.22 –0.08 –0.03

Task 13 –0.24 –0.29 +0.14 –0.00 +0.08 –0.24 +0.03

Task 14 +0.01 –0.49 –0.07 +0.02 +0.09 –0.34 –0.01

(Continued)
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TABLE 2 (Continued)

Cognitive domain Cluster 0 Cluster 1 Cluster 2 Cluster 4 Cluster 5 Cluster 6 Cluster 9

Task 15 –0.05 –0.23 +0.05 –0.24 +0.19 –0.55 +0.04

Task 16 +0.03 –0.32 +0.02 –0.12 +0.06 –0.40 +0.03

Task 17 –0.62 +0.01 –0.40 +0.01 +0.12 –1.42 +0.20

Phonological awareness

Task 1 +0.09 +0.35 –0.03 –0.13 –0.16 +0.46 +0.05

Task 2 –0.05 +0.25 –0.03 +0.06 +0.06 –0.55 –0.01

Task 3 +0.03 +0.09 –0.10 +0.08 +0.04 +0.27 –0.04

Task 4 –0.10 +0.70 +0.04 +0.41 –0.48 +0.30 +0.03

Task 5 –0.23 –0.05 –0.84 +0.18 –0.19 –0.23 +0.16

Task 6 +0.12 –0.09 +0.05 –0.07 –0.52 +0.23 +0.14

Task 7 +0.11 –0.39 +0.11 +0.01 –0.02 +0.18 –0.04

Task 8 –0.01 +0.40 +0.35 +0.03 +0.25 +0.16 –0.13

Task 9 +0.08 +0.10 +0.20 +0.11 +0.16 –0.27 –0.12

Task 10 –0.00 –0.80 +0.11 +0.01 +0.04 –0.12 –0.01

Task 11 –0.12 +0.07 –0.15 –0.00 +0.02 –0.22 +0.05

Task 12 +0.11 +0.04 +0.06 –0.09 +0.21 –0.42 –0.06

Task 13 –0.10 –0.05 +0.00 +0.08 +0.13 –0.99 +0.01

Visuospatial attention

Task 1 –0.10 –0.59 –0.02 –0.25 +0.14 –0.36 +0.08

Task 2 –0.28 –0.41 –0.03 +0.00 +0.15 –0.37 +0.05

Task 3 –0.33 –0.16 +0.03 –0.18 +0.45 –0.54 +0.01

Working memory

Task 1 –0.12 –0.37 –0.22 –0.06 +0.18 –0.46 +0.04
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