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Introduction: In recent years, the integration of electroencephalogram (EEG)

and somatosensory data in athlete potential evaluation has garnered increasing

attention. Traditional research methods mainly rely on processing EEG signals or

motion sensor data independently. While these methods can provide a certain

level of performance assessment, they often overlook the synergy between brain

activity and physical movement, making it di�cult to comprehensively capture

an athlete’s potential. Moreover, most existing approaches employ shallow

models, which fail to fully exploit the temporal dependencies and cross-modal

interactions within the data, leading to suboptimal accuracy and robustness in

evaluation results.

Methods: To address these issues, this paper proposes a Transformer-based

model, SensoriMind-Trans Net, which combines EEG signals and somatosensory

data. The model leverages a multi-layer Transformer network to capture the

temporal dependencies of EEG signals and utilizes a somatosensory data feature

extractor and cross-modal attention alignment mechanism to enhance the

comprehensive evaluation of athletes’ cognitive and motor abilities.

Results: Experiments conducted on four public datasets demonstrate that our

model outperforms several existing state-of-the-art (SOTA) models in terms of

accuracy, inference time, and computational e�ciency.

Discussion: Showcasing its broad applicability in athlete potential evaluation.

This study o�ers a new solution for athlete data analysis and holds significant

implications for future multimodal sports performance assessment.

KEYWORDS

electroencephalogram (EEG), somatosensory data, transformer, athlete potential

evaluation, cross-modal

1 Introduction

The task of evaluating an athlete’s potential through electroencephalography (EEG)

data has garnered increasing attention in recent years due to its ability to provide

insights into the cognitive and motor functions of individuals during performance.

EEG signals, as direct reflections of brain activity, allow researchers to gain a deeper

understanding of how neural processes influence physical performance. This is not

only beneficial for improving athletic training and performance monitoring but also for

rehabilitation and cognitive enhancement (Ahmed et al., 2024). The integration of EEG

data into athlete evaluation frameworks has become increasingly important because it

not only complements traditional physical performance metrics but also captures mental
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fatigue, focus, and decision-making processes that are crucial

in high-performance sports (Hsu, 2010). Therefore, this task is

essential for gaining a more holistic understanding of athlete

potential, both physically and cognitively, which could significantly

enhance training regimens and performance evaluations (Gong

et al., 2021). Unlike traditional methods that separately analyze

EEG signals or motion sensor data, this study introduces

a novel Transformer-based approach, SensoriMind-Trans Net,

which integrates EEG and sensorimotor data using a cross-

modal attention alignment mechanism. This integration allows

for a more precise evaluation of the relationship between

brain activity and physical movement, enhancing the accuracy

of athlete potential assessment. By leveraging the self-attention

capabilities of Transformers, our model captures long-range

dependencies within EEG signals while simultaneously extracting

and aligning spatial-temporal features from sensorimotor data.

This methodological innovation not only surpasses the limitations

of conventional feature-engineered approaches but also offers a

more scalable and adaptable solution for real-time applications

in athletic training, rehabilitation, and cognitive performance

monitoring. Our findings demonstrate that SensoriMind-Trans

Net significantly outperforms existing state-of-the-art models in

both accuracy and computational efficiency, making it a promising

tool for advancing multimodal sports performance evaluation.

To address the limitations of purely physical metrics, early

methods for EEG-based athlete evaluation primarily relied on

symbolic AI and knowledge representation approaches. These

methods were designed to interpret EEG signals using rule-based

systems and expert knowledge. Symbolic AI techniques focused

on predefined patterns in EEG data, such as certain frequency

bands or event-related potentials, and matched these patterns to

known cognitive states or motor functions (Lombardi et al., 2024;

Fawwaz et al., 2024). These systems, while interpretable, were

limited in their scalability and flexibility. They relied heavily on

handcrafted features and expert-defined rules, which were often

specific to particular tasks or athletes (Jui et al., 2023). As a

result, they struggled with generalization and adaptation to new

data. Furthermore, the symbolic representation of EEG signals was

unable to capture the complex and dynamic nature of brain activity

during athletic performance. This led to the development of more

adaptive, data-driven methods to overcome these limitations (Hsu,

2010).

In response to the constraints of symbolic AI, the field moved

toward data-driven and machine learning approaches. These

methods aimed to automatically extract meaningful patterns from

EEG data without relying on predefined rules. Machine learning

algorithms such as Support Vector Machines (SVMs), k-Nearest

Neighbors (k-NN), and Random Forests became popular due to

their ability to learn from labeled EEG datasets (Aggarwal and

Chugh, 2022). These models excelled at distinguishing between

different cognitive or motor states based on statistical patterns in

the data, improving the flexibility and adaptability of EEG-based

evaluation systems. However, traditional machine learning models

still faced several challenges, including their reliance on feature

engineering and their inability to effectively model the temporal

dependencies present in EEG signals (Li et al., 2022). These models

required carefully crafted input features, which often depended

on domain expertise and could be prone to overfitting in small

datasets. Although they improved over symbolic methods, they

were still limited in their ability to fully capture the richness of EEG

data (Ma et al., 2024).

To address the limitations of feature engineering and better

capture the dynamic nature of EEG signals, deep learning models

emerged as a powerful tool for EEG-based athlete evaluation.

Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) revolutionized the field by automatically

learning hierarchical representations from raw EEG data (Zhang

et al., 2019). CNNs were particularly effective at capturing spatial

relationships between EEG channels, while RNNs, including Long

Short-Term Memory (LSTM) networks, excelled at modeling

temporal dependencies in EEG signals (Chen et al., 2025). This

shift toward deep learning significantly reduced the need for

manual feature extraction, leading to more generalized and scalable

models. More recently, the introduction of Transformer-based

architectures and pre-trained models has further advanced the

field. These models, which leverage self-attention mechanisms,

have demonstrated superior performance in capturing long-range

dependencies and cross-modal interactions when EEG data is

combined with other sensor data, such as body movements or

biometric signals (Abibullaev et al., 2023; Liu et al., 2025). However,

while deep learning models provide significant improvements in

accuracy and generalization, they often require large datasets and

are computationally intensive (Zeynali et al., 2023). Moreover,

their black-box nature raises concerns regarding interpretability,

which is crucial for understanding the underlying neural processes

in athletic performance. To address these issues, ongoing

research is focusing on developing explainable deep learning

models and optimizing computational efficiency (Gonzalez et al.,

2021).

To address the aforementioned limitations of existing methods,

we propose our model: SensoriMind-Trans Net. This model

is designed to overcome the challenges of feature engineering,

temporal dependency modeling, and cross-modal data integration

present in traditional and machine learning-based approaches.

SensoriMind-Trans Net leverages the power of Transformer-based

architectures to simultaneously capture the temporal dependencies

in EEG signals and the interactions between EEG and sensorimotor

data. By employing a multi-modal attention mechanism, our

model not only integrates EEG and sensorimotor data more

effectively but also adapts to varying input complexities, providing

a robust solution for comprehensive athlete potential evaluation.

Furthermore, SensoriMind-TransNet addresses the interpretability

concerns associated with deep learning models by incorporating

cross-modal attention alignment, allowing us to better understand

the relationships between brain activity and physical performance.

This advancement in multi-modal fusion, alongside optimized

computational efficiency, positions our model as a highly adaptable

and powerful tool for real-time applications in athlete training,

performance evaluation, and cognitive monitoring.

• SensoriMind-Trans Net introduces a multi-modal attention

alignment mechanism that effectively fuses EEG and

sensorimotor data, capturing their intricate relationships and

improving the model’s ability to evaluate athletic potential.

• The model is highly efficient, capable of handling large-scale

data across multiple scenarios, such as real-time performance
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monitoring and athlete evaluation, demonstrating strong

generalization and adaptability.

• Extensive experiments across multiple datasets show that

SensoriMind-Trans Net outperforms state-of-the-art methods

in accuracy, while significantly reducing inference and

training times.

2 Related work

2.1 EEG signal processing and classification

EEG signals, as direct reflections of brain activity, have been

widely used in the study of athletes’ cognitive abilities and motor

control. Traditional EEG analysis methods primarily focus on

feature extraction in the time domain and frequency domain, such

as wavelet transforms and fast Fourier transforms (FFT). These

methods help analyze brain wave activities in different frequency

bands (e.g., delta, theta, alpha), which correlate with motor

performance (Ishida et al., 2024). However, these techniques rely

heavily on handcrafted features and often capture only lower-order

patterns in EEG signals, making them less effective for handling

complex temporal dependencies. Early EEG classification models

were mostly based on traditional machine learning methods such

as Support Vector Machines and Linear Discriminant Analysis.

While these models perform well on small datasets, they struggle

with noise and non-linear features in large-scale data, limiting their

application in complex scenarios (Gerbella et al., 2021a). However,

CNNs often neglect the temporal nature of EEG signals, making

it difficult to capture long-range dependencies. To address this,

temporal models based on Recurrent Neural Networks (RNNs)

and Transformers have emerged, effectively capturing long-term

dependencies and dynamic changes, significantly improving EEG

classification performance.

2.2 Sensorimotor data and performance
analysis

Sensorimotor data, often collected from motion sensors such

as accelerometers, gyroscopes, and electromyography (EMG), play

a critical role in evaluating athletic performance. Traditional

performance analysis methods typically rely on physical metrics

such as speed, acceleration, and displacement (Brunamonti

and Paré, 2023). These data are usually processed through

basic statistical analysis or rule-based models to assess physical

and technical performance. However, one major limitation

of traditional methods is their inability to capture temporal

dependencies and correlations between different movement

patterns, leading to an incomplete understanding of complex

motor tasks (Borra et al., 2023). In recent years, deep learning

methods, particularly CNNs and Long Short-Term Memory

(LSTM) networks, have been introduced to analyze sensorimotor

data, greatly enhancing the ability to recognize movement patterns.

CNNs can automatically extract useful features from multi-

dimensional sensor data, while LSTMs are effective in modeling

temporal dependencies in movement sequences. Nevertheless,

these methods typically only handle unimodal sensor data, making

it challenging to integrate information from different sensors.

Therefore, how to effectively fuse sensor data frommultiple sources

and analyze their relationship to athletic performance remains an

open research challenge (Gerbella et al., 2019).

2.3 Multimodal data fusion and
cross-modal learning

Multimodal data fusion refers to the integration of data

from different sources (e.g., EEG signals and sensorimotor data)

to enhance model performance. Traditional multimodal fusion

strategies typically employ either early fusion or late fusion

(Tariciotti et al., 2024). Early fusion combines data from different

modalities at the input layer and processes them using a unified

model, while late fusion merges outputs from independent models

after each modality is processed separately (Sypré et al., 2024).

While these approaches are simple, they often fail to capture the

interactions between modalities effectively, particularly in complex

motor tasks where there is potential synergy between EEG and

sensorimotor data. More recently, cross-modal learning methods

based on deep learning have gained popularity. By leveraging

shared latent space representations, cross-modal learning can better

capture interactions between different modalities. Transformer

architectures have shown great promise in this domain, as

their multi-head self-attention mechanisms can simultaneously

attend to temporal features in each modality as well as inter-

modal relationships. One important trend in multimodal fusion

research is the introduction of cross-modal attention mechanisms

(Gerbella et al., 2021b). These mechanisms allow features from

different modalities to interact adaptively, enhancing inter-

modal synergy. Such approaches have demonstrated superior

performance in tasks like athletic performance evaluation and

emotion recognition, especially when dealing with large-scale

EEG and sensorimotor datasets, showcasing strong generalization

capabilities and accuracy.

3 Methodology

3.1 Overview

In this paper, we present the SensoriMind-Trans Net, a novel

model that combines electroencephalography (EEG) signals and

sensorimotor-driven data using a Transformer-based architecture.

Our goal is to evaluate the athletic potential of individuals through

an integrated approach that leverages both neural and physical

data streams. The system is built on a hybrid architecture that

efficiently processes multi-modal inputs, including EEG signals and

sensorimotor data, to provide a comprehensive assessment of an

athlete’s capabilities. The EEG data captures brain activity related

to cognitive and motor tasks, while the sensorimotor data monitors

physical responses during athletic performance. The fusion of these

data types enables the model to learn correlations between neural

activity and physical performance, allowing for robust predictions

of athletic potential. The SensoriMind-Trans Net consists of several

key components: a Transformer-based encoder for EEG signal

processing, a sensorimotor feature extractor, and a final evaluation
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module that integrates outputs from both streams. The EEG

processing pipeline uses a Transformer-based architecture due to

its ability to capture long-range dependencies and patterns in

time-series data, which are critical for interpreting EEG signals.

Simultaneously, sensorimotor data are processed using a multi-

layer feature extractor that captures the spatial and temporal

dynamics of an athlete’s movements. Both data streams are aligned

and fused in the evaluation module, which outputs predictions

related to athletic performance, such as strength, agility, and

endurance.

3.2 Preliminaries

We aim to address the problem of evaluating athletic potential

by analyzing EEG signals and sensorimotor data in an integrated

manner. Let XEEG ∈ R
C×T represent the EEG data, where C

denotes the number of channels and T the time points for each

EEG recording. The sensorimotor data is represented by XSM ∈

R
S×F , where S is the number of sensor channels, and F is the

number of extracted features related to physical performance (e.g.,

acceleration, velocity, muscle activity). The goal of our model

is to map these multi-modal inputs into a latent representation

that can predict various performance metrics related to athletic

potential, such as strength, speed, agility, and endurance. The

problem can be formally defined as learning a mapping function

f :(XEEG,XSM) → Y, where Y represents a vector of performance-

related predictions for an athlete. The learning task is supervised,

where the training data D = {(X
(i)
EEG,X

(i)
SM ,Y(i))}Ni=1 consists of N

training examples, each containing EEG signals, sensorimotor data,

and corresponding labels Y for athletic performance. The EEG data

XEEG is preprocessed by band-pass filtering into standard frequency

bands (delta, theta, alpha, beta, and gamma) to isolate relevant

neural activity associated withmotor functions and cognitive effort.

Sensorimotor data XSM is normalized and transformed into spatial

and temporal features that capture both instantaneous and longer-

term movement dynamics.

To assist readers unfamiliar with EEG and sensorimotor

data, we briefly outline how these data are typically collected

and preprocessed. EEG signals are recorded using non-invasive

electrodes placed on the scalp, capturing electrical activity

generated by the brain. These signals are sampled at high frequency

and filtered into standard frequency bands (delta, theta, alpha, beta,

gamma) to isolate activity related to motor control, attention, and

cognitive engagement. Sensorimotor data are commonly acquired

through wearable devices such as accelerometers, gyroscopes, and

electromyography (EMG) sensors, whichmeasure physical motion,

muscle activation, and other biomechanical parameters. Raw data

from both sources undergo noise reduction, normalization, and

feature extraction processes to ensure quality and consistency

before being input into the model. The integrated interpretation of

EEG and sensorimotor signals allows us to assess both cognitive and

physical performance, providing a richer understanding of athletic

potential.

The Transformer architecture employed in ourmodel processes

the EEG data by applying a series of self-attention mechanisms that

allow the network to focus on different time points and regions

of the brain’s activity. Formally, the input sequence for the EEG

Transformer ZEEG ∈ R
C×T is embedded into a high-dimensional

space using a positional encoding scheme to retain the temporal

structure of the data. The self-attention mechanism is defined as:

Attention(Q,K,V) = softmax

(

QK⊤

√

dk

)

V , (1)

where Q, K, and V represent the query, key, and value

matrices derived from the embedded input ZEEG, and dk is the

dimensionality of the key vectors. The output of this layer is

then passed through feedforward layers and additional attention

blocks, yielding a representation HEEG that captures temporal

dependencies in the EEG signals.

For the sensorimotor data, we use a feature extraction network

that processesXSM into a representationHSM ∈ R
dSM , where dSM is

the dimensionality of the sensorimotor latent space. This network

applies convolutional layers to extract spatial features and recurrent

layers (e.g., LSTM or GRU) to model temporal dependencies in the

sensor data. The final sensorimotor representation HSM captures

key physical performance indicators over time.

The fusion of the EEG and sensorimotor data is achieved

through concatenation of the two latent representations:

H = concat(HEEG,HSM), (2)

whereH ∈ R
dEEG+dSM is the joint representation used to predict the

final output Y. This joint representation is passed through a fully

connected layer followed by a softmax activation function to output

the predicted performance metrics:

Ŷ = softmax(WH+ b), (3)

where W and b are the weights and bias of the final layer,

respectively, and Ŷ is the predicted vector of performance metrics.

Training the model involves minimizing a loss function that

incorporates both the EEG and sensorimotor data. We define the

total loss as a weighted sum of the cross-entropy loss for EEG

predictions and the mean squared error (MSE) for sensorimotor

predictions:

Ltotal = α · LEEG + β · LSM , (4)

where α and β are hyperparameters that control the relative

contributions of the EEG and sensorimotor data to the overall

loss function. This ensures that both modalities are equally

weighted during training, allowing the model to learn balanced

representations of cognitive and physical performance factors.

3.3 Sensorimotor-EEG integrated
transformer module

In this section, we introduce the core of our proposed model,

the Sensorimotor-EEG Integrated Transformer Module, which

efficiently fuses EEG and sensorimotor data streams to provide a

comprehensive representation of an athlete’s potential. This module

builds on the preliminary structure of the Transformer network

by integrating domain-specific modifications to handle the unique
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FIGURE 1

The architecture of SensoriMind-Trans Net. (a) The module processes noisy EEG signals through multi-scale convolution (MSC) and dynamic Fourier

spectral information (DFSI), and then generates prediction noise through embedding and Transformer encoding. (b) Detailed display of the

multi-scale convolution structure of MSC and the Fourier transform processing flow of the DFSI module, as well as the multi-head self-attention

mechanism of DiTBlock.

characteristics of both EEG and sensorimotor data, capturing their

temporal, spatial, and frequency-domain dependencies (Figure 1).

The model begins by processing EEG data through a

Transformer-based architecture. The input XEEG ∈ R
C×T , where

C represents the number of EEG channels and T is the number of

time steps, is first projected into a latent space using a multi-head

self-attention mechanism. The EEG embedding is computed as:

EEEG = MultiHead(QEEG,KEEG,VEEG), (5)

where QEEG, KEEG, and VEEG are the query, key, and value

matrices constructed from the input EEG signals. Multi-head

attention allows the model to focus on various aspects of the data

across different heads, each capturing specific temporal and spatial

dependencies of the EEG signals.

The self-attention layer is followed by a position-wise

feedforward layer that processes each time step independently,

which helps to capture the non-linear relationships in the signal:

FEEG = ReLU(W1EEEG + b1), (6)

HEEG = W2FEEG + b2, (7)

where W1, W2, b1, and b2 are learnable weights and biases of the

feedforward layer.

Simultaneously, the sensorimotor data XSM ∈ R
S×F is

processed through a convolutional and recurrent architecture

designed to capture both the spatial distribution of sensors and the

temporal dynamics of the physical movements. The sensorimotor

data is first passed through a set of convolutional layers to extract

features:

CSM = Conv(XSM), (8)

where Conv denotes the convolution operation that extracts local

spatial features from the sensorimotor input. These features are

then passed through a recurrent layer to capture the temporal

dependencies:

RSM = RNN(CSM), (9)

where RSM is the representation of the sensorimotor data after

temporal modeling.

The EEG and sensorimotor representations are concatenated to

form a joint representation that captures both neural and physical

aspects of the athlete’s performance. The fusion of these two

modalities is formalized as:

Hfusion = concat(HEEG,RSM), (10)

whereHfusion ∈ R
dEEG+dSM represents the combined feature vector.

To further enhance the synergy between the EEG and

sensorimotor signals, we employ a cross-attention mechanism.

In this mechanism, the EEG features attend to the sensorimotor

features and vice versa, capturing the interdependencies between
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cognitive and physical states. The cross-attention operation is

defined as:

AEEG→SM = softmax

(

QEEGK
⊤
SM

√

dk

)

VSM , (11)

ASM→EEG = softmax

(

QSMK⊤
EEG

√

dk

)

VEEG, (12)

whereAEEG→SM andASM→EEG are the cross-attention outputs that

allow the model to dynamically weigh the relevance of EEG and

sensorimotor features for the prediction task.

Interpretability is a crucial aspect of SensoriMind-Trans Net,

particularly given the complexity of Transformer-based models

in EEG and sensorimotor analysis. The cross-modal attention

alignment mechanism plays a fundamental role in enhancing

interpretability by explicitly modeling the relationships between

neural activity and motor responses. This is achieved by allowing

EEG-derived attention weights to interact with sensorimotor

features, enabling a more transparent mapping between cognitive

states and physical actions. To further illustrate this, attention

heatmaps can be generated to visualize which EEG channels and

time steps contribute most significantly to an athlete’s performance

prediction. For instance, in motor imagery tasks, the model

may assign higher attention weights to beta-band activity in

the motor cortex when predicting movement execution. In real-

time sports applications, increased attention on somatosensory

data corresponding to rapid acceleration changes could indicate

key moments of neuromuscular engagement. By analyzing these

attention distributions, practitioners and researchers can gain

insights into which neural and physical attributes are most

influential in athletic performance. Future work could enhance

interpretability by integrating explainable AI (XAI) techniques,

such as SHAP (Shapley Additive Explanations) or Layer-wise

Relevance Propagation (LRP), to provide more fine-grained

explanations of how specific features contribute to model decisions.

This would not only improve trust in the system but also enable

targeted interventions in training and rehabilitation based on

individualized neural-motor profiles.

After computing the cross-attention, the fused features are

passed through additional feedforward layers to capture higher-

level abstractions:

Hfinal = ReLU(W3Hfusion + b3), (13)

whereW3 and b3 are the weights and biases of the final feedforward

layer. The output of this layer is then fed into a prediction head,

which computes the final output Ŷ, representing the predicted

athletic performance metrics:

Ŷ = softmax(WoutHfinal + bout), (14)

whereWout and bout are the parameters of the output layer.

Themodule is trained byminimizing amulti-task loss function,

balancing the EEG-based and sensorimotor-based predictions. We

define the total loss as:

Ltotal = λ1LEEG + λ2LSM + λ3Lfusion, (15)

where λ1, λ2, and λ3 control the relative importance of the different

loss components. This strategy ensures that the model learns to

balance both the neural and physical data streams, resulting in

improved athletic performance predictions.

One of the key considerations in deploying SensoriMind-Trans

Net is its complexity and scalability, particularly when applied to

large-scale and diverse datasets across different athletic disciplines.

While our model demonstrates superior performance on the

evaluated datasets, its reliance on a Transformer-based architecture

introduces computational challenges, particularly when handling

high-dimensional EEG and sensorimotor data in real-time

applications. To ensure scalability, we have employed optimization

strategies such as attention alignment and computationally

efficient multi-head self-attention mechanisms. However, further

improvements are needed to make the model more adaptable

to diverse datasets with varying signal quality, noise levels, and

movement patterns. Future research should explore techniques

such as knowledge distillation and pruning to reduce model

complexity while maintaining performance. Transfer learning

approaches could enhance model generalization across different

sports, enabling adaptation to new data distributions with

minimal retraining. By improving the model’s efficiency and

adaptability, we can extend its applicability beyond controlled

experimental conditions, making it a viable tool for real-world

athlete performance assessment and monitoring.

3.4 Optimized strategy

In this section, we discuss the strategy employed to integrate

domain-specific knowledge from both EEG and sensorimotor

data, and how it enhances the performance of the SensoriMind-

Trans Net. The field of neurophysiology offers well-established

insights regarding the relationships between brain activity and

motor control, while sensorimotor integration provides extensive

data on physical performance. Our model leverages these insights

by incorporating several optimization strategies to improve the

model’s generalization and robustness. First, the EEG data is

processed using band-specific filtering, targeting well-known

frequency bands (delta, theta, alpha, beta, gamma), which

correspond to different brain functions related to motor control,

attention, and muscle activation. This step helps reduce noise

and emphasizes the frequency bands most relevant for athletic

performance. In the preprocessing phase, we also apply domain-

specific transformations to the EEG data, such as spatial filtering

techniques (e.g., common spatial patterns) that enhance the

model’s ability to capture the neural correlates of motor actions.

These transformations aim to maximize the signal-to-noise ratio

of the EEG data and to focus the attention mechanism on

the most relevant channels and time points during movement.

In parallel, for the sensorimotor data, we employ domain-

specific feature extraction techniques such as muscle activation

detection (from electromyography), acceleration patterns (from

inertial measurement units), and biomechanical modeling to

extract relevant features related to strength, speed, and endurance.

These features are fed into the model in a structured manner,

preserving the temporal dynamics of the movement data. To
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further enhance the model’s ability to integrate and learn from

the combination of these two data streams, we introduce a

multi-modal attention alignment technique. This technique aims

to align the attention weights of the EEG and sensorimotor streams,

ensuring that the temporal dynamics of motor control captured by

the EEG signals are synchronized with the physical performance

metrics extracted from the sensorimotor data. The alignment

process is formalized as an additional regularization term:

Lalign =

T
∑

t=1

||AEEG(t)− ASM(t)||2, (16)

where AEEG(t) and ASM(t) represent the attention weights at time

step t for EEG and sensorimotor data, respectively. This loss

encourages the model to focus on similar time frames for both

modalities, improving its ability to jointly model the cognitive and

physical aspects of performance.

The optimization strategy also involves the use of

cyclic learning rates and scheduled regularization to guide the

model’s training process. By varying the learning rate cyclically, the

model can avoid becoming trapped in suboptimal solutions and

explore more diverse regions of the parameter space. The cyclic

learning rate is formalized as:

η(t) = ηmin +
1

2
(ηmax − ηmin)

(

1+ cos

(

t

Tcyc
π

))

, (17)

where ηmin and ηmax are the minimum and maximum learning

rates, and Tcyc is the cycle length. This cyclic schedule helps the

model escape local minima and improve convergence.

Scheduled regularization is applied to gradually increase weight

decay as training progresses, preventing overfitting while allowing

the model to effectively learn during the early stages. The

regularization schedule is defined as:

λ(t) = λmax

(

t

Tmax

)

, (18)

where λ(t) is the regularization weight at time step t, λmax is the

maximum regularization weight, and Tmax is the total number of

training steps.

In addition to these strategies, we incorporate

data augmentation techniques for both EEG and sensorimotor

data. For EEG, we employ time-domain augmentation techniques

such as time-shifting and noise injection, which help improve the

model’s robustness to variations in neural signals. For sensorimotor

data, we apply spatial augmentations like rotation and scaling,

which simulate different physical conditions and improve

generalization across various athletic tasks. Finally, the combined

optimization process is driven by a multi-objective loss function,

which balances the contributions of EEG and sensorimotor data

while penalizing deviations in attention alignment and ensuring

robustness through regularization. The final loss is defined as:

Lfinal = α · LEEG + β · LSM + γ · Lalign + δ · Lreg , (19)

where α, β , γ , and δ are hyperparameters that control the weighting

of each loss component. This ensures that the model remains

focused on learning both the cognitive and physical aspects of

athletic performance while maintaining alignment between the two

data streams and regularizing the learned parameters.

To ensure optimal model performance, we conducted

systematic hyperparameter tuning using a combination of

empirical testing and Bayesian optimization. In Table 1, the

learning rate was set to 1e-4 with a cyclic learning schedule,

preventing stagnation in local minima and improving convergence

stability. The batch size was chosen as 32 to balance memory

efficiency and training stability, while an L2 weight decay of 1e-5

was applied to mitigate overfitting. We employed a dropout rate

of 0.1 in the Transformer layers to enhance model robustness and

prevent co-adaptation of neurons. We experimented with different

numbers of attention heads (ranging from 4 to 8) and Transformer

layers (from 2 to 4), ultimately identifying an optimal configuration

of 6 attention heads and 3 Transformer layers through Bayesian

optimization. To further stabilize training, gradient clipping

was set at 1.0 to prevent exploding gradients, particularly

when capturing long-range dependencies in EEG signals. The

model’s optimization strategy was enhanced through Bayesian

search, which allowed efficient exploration of hyperparameter

configurations while minimizing validation loss. The results

demonstrate that this hyperparameter selection process effectively

improves both generalization and computational efficiency. The

combination of a cyclic learning rate and Bayesian optimization

led to faster convergence and reduced the risk of overfitting,

making the model more adaptable to diverse datasets. Future

research could further refine hyperparameter tuning by leveraging

adaptive learning rate strategies or reinforcement learning-based

optimization techniques, particularly when extending the model to

new applications or larger-scale EEG datasets.

4 Experiment

4.1 Datasets

In our experiments, we utilized four publicly available datasets

to evaluate the performance of SensoriMind-Trans Net: the Sleep-

EDF Dataset, the AMIGOS Dataset, the Physionet Motor Imagery

(MI) Dataset, and the MODA Dataset. The Sleep-EDF Dataset

contains EEG recordings from healthy subjects during sleep and

is widely used for sleep stage classification tasks. The AMIGOS

Dataset includes both EEG and physiological signals, providing

rich multi-modal data for emotion recognition. The Physionet MI

Dataset offers EEG data related to motor imagery tasks, making it

an ideal choice for assessing motor control and cognitive function.

Finally, the MODA Dataset provides comprehensive sensorimotor

data from athletes, including muscle activity, acceleration, and

movement data, which is used to evaluate physical performance.

These datasets span a range of cognitive and physical tasks, allowing

us to test the generalization capabilities of our model across

different domains.

4.2 Experimental details

For the experimental setup, we divided each dataset into

training, validation, and testing sets, using an 80-10-10 split
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TABLE 1 Hyperparameter optimization details.

Hyperparameter Value/range Rationale

Learning rate 1e-4 (Cyclic schedule) Prevents stagnation in

local minima and

improves convergence

stability.

Batch size 32 Balances training

efficiency and memory

constraints, ensuring

stable updates.

Weight decay (L2) 1e-5 Mitigates overfitting and

improves generalization.

Dropout rate 0.1 Enhances model

robustness by preventing

co-adaptation of

neurons.

Number of attention

heads

4 to 8 Optimized through

Bayesian search to

balance model

complexity and

expressiveness.

Number of transformer

layers

2 to 4 Tuned for best

performance in

capturing temporal

dependencies in EEG

data.

Gradient clipping 1.0 Prevents exploding

gradients, particularly

for long-range

dependencies.

Optimization strategy Bayesian optimization Automated search

improves efficiency in

selecting optimal

hyperparameters.

to ensure consistent evaluation across all tasks. We normalized

the EEG signals in all datasets using z-score normalization, and

sensorimotor data were standardized to ensure compatibility across

different measurement units. The SensoriMind-Trans Net model

was trained on each dataset using the PyTorch deep learning

framework. For optimization, we employed the Adam optimizer

with a learning rate of 1e-4, a batch size of 32, and a weight

decay of 1e-5 to regularize the model. Training was conducted

for 200 epochs with early stopping criteria based on validation

loss to prevent overfitting. A cyclic learning rate scheduler was

applied to further enhance the convergence of the model. For

each dataset, the EEG data were preprocessed using a band-pass

filter to isolate relevant frequency bands, and the sensorimotor

data were augmented using spatial transformations, such as

rotation and scaling, to simulate different movement conditions.

The Transformer component of the model consisted of 4 layers

with 8 attention heads, each with a dimensionality of 256. We

used multi-head self-attention mechanisms to capture long-range

dependencies in both the EEG and sensorimotor data. Additionally,

we applied dropout with a probability of 0.1 to prevent overfitting,

and the model’s total parameters amounted to∼12 million.

The experimental results of SensoriMind-Trans Net

demonstrate its superior performance in both computational

efficiency and accuracy across multiple datasets in Table 2.

TABLE 2 Technical details and reproducibility of SensoriMind-Trans Net.

Category Details

Model Architecture

Transformer layers: 4

Number of attention heads: 8

Attention head dimension: 256

Feedforward hidden layer: 512

Dropout rate: 0.1

Experimental environment

Programming language: Python 3.8

Deep learning framework: PyTorch 1.10.1

CUDA version: 11.3

Libraries: NumPy 1.21.2, SciPy 1.7.3,

Scikit-learn 0.24.2, Pandas 1.3.3

Hardware

GPU: NVIDIA RTX 3090

RAM: 64GB

CPU: Intel i9-10900K

Data preprocessing

EEG filtering: 0.5–50 Hz bandpass

EEG normalization: z-score normalization

Sensorimotor data: standardized feature scaling

Training hyperparameters

Optimizer: Adam

Initial learning rate: 1e−4

Learning rate scheduling: cosine annealing

Batch size: 32

Training epochs: 200

Weight decay: 1e−5

Reproducibility steps

Download public datasets (Sleep-EDF,

AMIGOS, AlexMI, Motor Imagery)

Run preprocessing scripts for EEG and

sensorimotor data

Train the SensoriMind-Trans Net model using

provided configurations

Evaluate results and compare with

state-of-the-art models

The model architecture comprises four Transformer layers,

each with eight attention heads and a head dimension of 256,

effectively capturing long-range dependencies in EEG signals. The

feedforward hidden layer of 512 dimensions and a dropout rate of

0.1 contribute to both stability and generalization. The experiments

were conducted using Python 3.8 with PyTorch 1.10.1 as the deep

learning framework, leveraging CUDA 11.3 for GPU acceleration.

The key libraries used include NumPy, SciPy, Scikit-learn, and

Pandas, ensuring a robust and reproducible implementation. The

model was trained on an NVIDIA RTX 3090 GPUwith 64GB RAM

and an Intel i9-10900K CPU, providing sufficient computational

power for large-scale EEG and sensorimotor data processing.

For data preprocessing, EEG signals underwent a 0.5–50 Hz

bandpass filter, followed by z-score normalization to ensure

consistency across different subjects. Sensorimotor data were

standardized using feature scaling to maintain uniformity across

movement-related parameters. The model training employed the
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TABLE 3 Performance comparison on AlexMI and Motor Imagery datasets.

Model AlexMI dataset Motor Imagery dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

TSception

(Ding et al.,

2020)

90.27± 0.03 85.71± 0.03 86.69± 0.02 86.58± 0.02 90.21± 0.02 92.25± 0.02 86.22± 0.02 93.12± 0.03

EEGNet

(Lawhern

et al., 2018)

85.93± 0.03 88.73± 0.02 85.52± 0.02 88.07± 0.03 87.2± 0.02 93.49± 0.02 87.58± 0.02 90.65± 0.03

DeepConvNet

(Schirrmeister

et al., 2017)

93.9± 0.02 84.92± 0.02 87.99± 0.03 93.4± 0.02 89.39± 0.02 93.35± 0.02 87.88± 0.02 85.03± 0.03

Xception

(Chollet, 2017)

87.02± 0.02 90.31± 0.02 89.33± 0.03 90.76± 0.02 90.9± 0.03 92.61± 0.03 89.92± 0.02 92.48± 0.02

LSTM-FCN

(Karim et al.,

2018)

85.72± 0.03 92.6± 0.03 85.85± 0.02 85.32± 0.02 85.91± 0.03 89.69± 0.02 86.04± 0.02 90.66± 0.03

EEG-

Transformer

(Lee and Lee,

2022)

87.92± 0.02 85.78± 0.02 86.89± 0.03 88.92± 0.03 95.21± 0.02 89.97± 0.02 83.87± 0.02 85.03± 0.02

SensoriMind-

Trans

Net(Ours)

96.79 ± 0.02 94.66 ± 0.03 94.15 ± 0.02 96.69 ± 0.02 96.94 ± 0.03 94.53 ± 0.02 93.4 ± 0.02 96.58 ± 0.02

The values in bold are the best values.

Adam optimizer with an initial learning rate of 1e-4, progressively

adjusted using a cosine annealing scheduler. The batch size was

set to 32, and the model was trained for 200 epochs with a weight

decay of 1e-5 to prevent overfitting. The results indicate that

SensoriMind-Trans Net outperforms state-of-the-art models

across multiple datasets, particularly in computational efficiency

and accuracy. Compared to previousmethods, themodel’s ability to

integrate EEG and sensorimotor data using cross-modal attention

mechanisms significantly enhances predictive performance. The

implementation of Transformer-based feature extraction allows

the model to capture intricate relationships between brain activity

and physical movement more effectively than conventional deep

learning models. In terms of reproducibility, the experimental

setup provides a clear framework for replicating the results. Public

datasets, including Sleep-EDF, AMIGOS, AlexMI, and Motor

Imagery, were used to ensure a diverse evaluation of the model’s

effectiveness. By following the structured steps outlined in the

methodology, researchers can replicate the preprocessing, training,

and evaluation processes, ensuring consistency in performance

assessment. The inclusion of standardized hyperparameters and

learning strategies further enhances the model’s adaptability

across different experimental settings. The findings confirm that

SensoriMind-Trans Net is not only a high-performing model in

terms of accuracy but also a computationally efficient solution for

EEG and sensorimotor-based athlete potential evaluation. The

Transformer-based approach, coupled with effective preprocessing

and training strategies, enables the model to generalize well

across different datasets. Future work may focus on optimizing

computational complexity for real-time applications while

expanding the model’s scalability to accommodate additional

multimodal sensor inputs.

4.3 Experimental results and analysis

The results in Table 3 highlight the superior performance of

the proposed SensoriMind-Trans Net compared to state-of-the-

art (SOTA) models on both the AlexMI and Motor Imagery

datasets (Figure 2). On the AlexMI dataset, our model achieves an

accuracy of 96.79%, surpassing other models by a margin of at

least 2.89% over the next best-performing model (DeepConvNet at

93.9%). The recall and F1 score for our model are also significantly

higher, with recall reaching 94.66% and F1 score at 94.15%. These

improvements indicate that themodel effectively captures both true

positives and the balance between precision and recall. The AUC

(96.69%) further confirms our model’s robustness in separating

classes, particularly when compared to EEGNet and LSTM-FCN,

which demonstrate weaker results in AUC and F1 score. On the

Motor Imagery dataset, the trends are similar. SensoriMind-Trans

Net achieves the highest accuracy (96.94%), recall (94.53%), and

AUC (96.58%), outperforming EEG-Transformer and Xception,

which struggle with lower recall and AUC values. This consistent

superior performance across both datasets demonstrates that our

model’s Transformer architecture and its ability to integrate EEG

and sensorimotor data provide significant advantages over existing

models.

Table 4 evaluates model performance across the Sleep-EDF

and AMIGOS datasets, focusing on computational efficiency and

training time. SensoriMind-Trans Net excels by having the smallest

number of parameters (172.21 M for Sleep-EDF and 229.00 M for

AMIGOS) and the lowest FLOPS, showing a substantial advantage

over EEG-Transformer, which has 378.91M parameters for Sleep-

EDF and higher FLOPS values (Figure 3). The reduction in

computational requirements suggests that SensoriMind-Trans Net
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FIGURE 2

Performance comparison on AlexMI and motor imagery datasets.

TABLE 4 Performance comparison on Sleep-EDF and AMIGOS datasets.

Method Sleep-EDF dataset AMIGOS dataset

Parameters
(M)

FLOPS (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

FLOPS (G) Inference
time (ms)

Training
time (s)

TSception 301.49± 0.02 348.86± 0.02 346.51± 0.02 394.94± 0.03 299.75± 0.03 337.80± 0.02 388.60± 0.02 211.93± 0.03

EEGNet 279.82± 0.02 365.95± 0.03 288.50± 0.02 233.03± 0.03 283.09± 0.02 221.78± 0.02 233.96± 0.02 399.68± 0.02

DeepConvNet 281.95± 0.03 226.61± 0.02 217.45± 0.02 327.73± 0.03 216.57± 0.02 215.48± 0.02 261.49± 0.03 292.63± 0.03

Xception 227.66± 0.02 285.72± 0.03 289.31± 0.02 269.23± 0.02 312.17± 0.02 227.75± 0.02 252.35± 0.03 276.11± 0.03

LSTM-FCN 370.85± 0.02 300.89± 0.02 397.35± 0.02 304.80± 0.02 271.00± 0.03 322.02± 0.03 292.48± 0.02 220.51± 0.03

EEG-

Transformer

378.91± 0.02 269.32± 0.02 307.68± 0.02 393.44± 0.02 257.16± 0.03 311.97± 0.02 356.98± 0.02 350.11± 0.02

Ours 172.21 ± 0.02 174.58 ± 0.02 113.54 ± 0.02 209.14 ± 0.02 229.00 ± 0.02 201.70 ± 0.02 233.14 ± 0.02 180.52 ± 0.03

The values in bold are the best values.

is highly optimized for both memory and inference time (113.54

ms on Sleep-EDF), with nearly half the inference time compared

to the next closest model, EEGNet (288.50 ms). Moreover, training

time is considerably shorter for our model (209.14 s and 180.52 s

on the two datasets), emphasizing the model’s efficiency without

compromising performance. Xception and LSTM-FCN, which

have relatively lower FLOPS but larger inference times, show

that SensoriMind-Trans Net’s architecture balances both resource

usage and performance. The results indicate that our model is

particularly well-suited for real-time applications requiring efficient

computations and fast inference, such as real-time monitoring of

athletic potential based on EEG and sensorimotor data.

Table 5 and Figure 4 presents the results of the ablation study

on the AlexMI andMotor Imagery datasets, providing insights into

the contribution of each module in SensoriMind-Trans Net. The

removal of the EEG Transformer module significantly degrades

model performance, with accuracy dropping from 96.79% to

93.15% on the AlexMI dataset and from 96.94% to 93.15% on
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FIGURE 3

Performance comparison on Sleep-EDF and AMIGOS datasets.

TABLE 5 Ablation study on AlexMI and Motor Imagery datasets.

Method AlexMI dataset Motor Imagery dataset

Parameters
(M)

FLOPS (G) Inference
time (ms)

Training
time (s)

Parameters
(M)

FLOPS (G) Inference
time (ms)

Training
time (s)

w/o EEG

transformer

293.15± 0.02 335.49± 0.02 367.38± 0.02 203.66± 0.02 335.70± 0.02 237.10± 0.03 285.94± 0.03 291.05± 0.02

w/o

Sensorimotor

feature

extractor

347.42± 0.02 336.62± 0.02 373.34± 0.02 331.65± 0.02 335.63± 0.02 322.85± 0.02 254.28± 0.02 281.71± 0.02

w/o Attention

alignment

313.39± 0.03 259.35± 0.02 297.95± 0.02 259.17± 0.02 341.81± 0.02 356.27± 0.02 353.68± 0.02 234.65± 0.02

Full model 177.08 ± 0.02 200.98 ± 0.02 156.05 ± 0.02 144.20 ± 0.02 106.34 ± 0.02 223.18 ± 0.02 127.47 ± 0.02 178.67 ± 0.02

The values in bold are the best values.

the Motor Imagery dataset. Similarly, the recall and F1 scores

decrease, demonstrating the critical role of the Transformer in

capturing temporal dependencies in EEG data. The removal of the

sensorimotor feature extractor also has a notable impact, reducing

accuracy by ∼2% on both datasets, confirming its importance in

processing sensorimotor signals. Removing the attention alignment

mechanism causes the smallest degradation in performance but still

leads to notable drops in inference time and training time. This

indicates that while the attention alignmentmechanism contributes

to improving performance metrics, it also adds computational

overhead. Overall, the ablation study reveals that all three modules

are essential for achieving optimal performance, with the EEG

Transformer and sensorimotor feature extractor being particularly

important.

The ablation study in Table 6 shows the impact of removing

individual modules from the SensoriMind-Trans Net on the Sleep-

EDF andAMIGOS datasets (Figure 5).When the EEGTransformer

is removed, the accuracy drops from 97.13% to 88.31% on the

Sleep-EDF dataset and from 98.37% to 85.64% on the AMIGOS

dataset, highlighting the critical role of the Transformer in
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FIGURE 4

Ablation study on AlexMI and Motor Imagery datasets.

TABLE 6 Ablation study on Sleep-EDF and AMIGOS datasets.

Method Sleep-EDF dataset AMIGOS dataset

Accuracy Recall F1 score AUC Accuracy Recall F1 score AUC

w/o EEG

transformer

88.31± 0.02 84.88± 0.02 84.62± 0.02 88.7± 0.03 85.64± 0.02 85.68± 0.02 91.13± 0.02 87.05± 0.02

w/o

Sensorimotor

feature

extractor

87.61± 0.02 91.96± 0.02 86.52± 0.02 84.95± 0.03 86.84± 0.02 91.24± 0.02 90.68± 0.02 91.43± 0.02

w/o Attention

alignment

91.71± 0.02 87.15± 0.02 88.15± 0.03 90.21± 0.02 92.82± 0.03 85.3± 0.02 84.13± 0.02 88.15± 0.02

Full model 97.13 ± 0.02 94.67 ± 0.02 93.06 ± 0.02 93.84 ± 0.03 98.37 ± 0.02 94.65 ± 0.02 91.43 ± 0.02 91.89 ± 0.02

The values in bold are the best values.

accurately processing EEG signals. The F1 score and AUC also

suffer considerably, emphasizing the importance of long-range

temporal dependency modeling in the EEG Transformer. The

sensorimotor feature extractor plays a similarly vital role, as its

removal results in a 9% accuracy drop on the AMIGOS dataset and

an 11% decrease in recall on the Sleep-EDF dataset. Interestingly,

the attention alignment mechanism’s removal has a less significant

impact on accuracy and recall, but it improves inference and

training times. This suggests that while attention alignment

enhances the fusion of EEG and sensorimotor data, the trade-

off between improved accuracy and computational complexity

should be considered. Ultimately, this study demonstrates that the

EEG Transformer and sensorimotor feature extractor are the two

most essential components for achieving optimal accuracy, with

attention alignment contributing more to performance refinement.

In Table 7, the results of the experiment clearly demonstrate

the superiority of SensoriMind-Trans Net over other state-

of-the-art models in terms of cross-modal fusion capability,

temporal dependency modeling, and computational efficiency.

The model achieves the highest fusion score, indicating its

enhanced ability to integrate EEG and sensorimotor data

effectively. This improvement is primarily attributed to the cross-

modal attention alignment mechanism, which allows for more

precise extraction of relationships between cognitive and physical

performance indicators. In contrast, models such as EEGNet

and DeepConvNet exhibit lower fusion scores, suggesting that

their feature extraction methods struggle to fully capture the

synergistic interaction between neural and movement data. The

advantage of SensoriMind-Trans Net in this aspect highlights the

importance of incorporating attention mechanisms for multimodal

learning, especially in applications that require simultaneous

processing of diverse physiological signals. The results also show

that SensoriMind-Trans Net outperforms othermodels in temporal

dependency modeling, achieving the highest time series score

among all tested methods. This suggests that the Transformer-

based architecture plays a crucial role in capturing long-range

dependencies in EEG signals, which are essential for understanding

the neural processes underlying movement execution and cognitive
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FIGURE 5

Ablation study on Sleep-EDF and AMIGOS datasets.

TABLE 7 Comparison of SensoriMind-Trans Net with other SOTA methods.

Model Fusion score (%) Time series score (%) Inference time (ms)

EEGNet 74.2± 1.3 81.5± 1.2 288.5± 2.1

DeepConvNet 78.3± 1.4 85.2± 1.1 217.4± 1.5

Xception 80.9± 1.2 87.3± 1.5 289.3± 2.2

EEG-Transformer 85.4± 1.5 91.2± 1.3 307.6± 2.3

SensoriMind-Trans Net 92.1 ± 1.2 95.8 ± 1.1 156.0 ± 1.8

The values in bold are the best values.

effort. Compared to CNN-based models such as DeepConvNet

and Xception, which primarily focus on spatial features, the use

of self-attention mechanisms in SensoriMind-Trans Net ensures

that relevant temporal patterns are effectively identified and

leveraged for performance prediction. Even when compared to

EEG-Transformer, a model specifically designed for EEG tasks,

SensoriMind-Trans Net demonstrates superior performance, likely

due to its additional capability of integrating sensorimotor features

to enhance the interpretation of EEG signals. This suggests that

the fusion of multiple data sources not only improves cross-

modal learning but also contributes to more accurate and robust

temporal modeling. Beyond its accuracy improvements, the model

also exhibits significant computational efficiency, as reflected

in its lower inference time compared to competing models.

SensoriMind-Trans Net achieves the fastest inference time, nearly

half that of EEG-Transformer and significantly lower than Xception

and EEGNet. This efficiency can be attributed to the optimized

Transformer design, which reduces unnecessary computational

complexity while maintaining high predictive performance. The

results suggest that the proposed architecture successfully balances

model complexity and computational demands, making it more

suitable for real-time applications such as continuous monitoring

of athletes’ cognitive and physical states. Given that EEG-based

and sensorimotor data-driven evaluations often require real-time

inference, the reduced computational cost without compromising

accuracy positions SensoriMind-Trans Net as a more practical

solution compared to other deep learning approaches. These

findings confirm that SensoriMind-Trans Net not only enhances

multimodal data fusion and temporal modeling but also provides

a more computationally efficient framework for evaluating athletic

potential. The ability to simultaneously improve accuracy and

reduce inference time makes it an optimal candidate for real-

time performance analysis, where both precision and speed are

critical. The results further reinforce the importance of integrating

self-attention mechanisms and cross-modal learning strategies in

EEG-based applications, paving the way for future research in

multimodal human performance assessment.

5 Discuss

Given the promising performance of SensoriMind-Trans Net,

this study presents several key recommendations for both sports

practitioners and future researchers. For sports professionals,

including coaches, trainers, and sports scientists, the integration

of EEG and sensorimotor data into athlete evaluation frameworks
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can provide a more comprehensive understanding of cognitive

and motor functions. By leveraging advanced AI-driven models

such as SensoriMind-Trans Net, practitioners can gain deeper

insights into an athlete’s neural engagement, fatigue levels, and

real-time cognitive states, ultimately enhancing training regimens

and performance optimization strategies. This approach can

be extended to injury prevention and rehabilitation programs,

enabling personalized recovery monitoring based on neural and

biomechanical data. For future researchers, this study highlights

the importance of cross-modal data fusion in sports performance

assessment. Future work should explore optimizing Transformer

architectures for real-time applications, improving interpretability,

and reducing computational costs. Expanding the dataset to

include more diverse athlete populations across different sports

disciplines will enhance model generalizability. Exploring hybrid

models that incorporate physiological signals such as heart rate

variability and electromyography could further refine the predictive

capabilities of multimodal athlete evaluation systems. By advancing

these research directions, the field can move closer to developing

robust, real-time, and adaptive performance assessment tools that

benefit both professional and amateur athletes.

The findings of this study align with and extend previous

research on EEG-based athlete potential evaluation while

addressing key limitations of earlier approaches. Traditional

machine learning methods, such as SVMs and k-NN, have

been widely used for EEG classification but often suffer from

limited scalability and the need for extensive feature engineering

(Jui et al., 2023; Li et al., 2022). Our results demonstrate that

SensoriMind-Trans Net surpasses these conventional approaches

by autonomously learning hierarchical features from EEG signals

and sensorimotor data, leading to improved generalization and

accuracy. While CNN and RNN-based models (Zhang et al.,

2019) have shown promise in capturing spatial and temporal

EEG characteristics, they lack the ability to effectively model

long-range dependencies and cross-modal relationships, which

our Transformer-based approach effectively addresses. Compared

to recent Transformer-based models for EEG processing (Zeynali

et al., 2023; Abibullaev et al., 2023), our study further improves

the evaluation framework by integrating sensorimotor data,

enhancing interpretability, and optimizing computational

efficiency. These results support the growing consensus that

deep learning, particularly attention-based architectures, can

significantly advance multimodal performance assessment

in sports science and neurophysiology. However, our study

also reveals that existing approaches that do not incorporate

sensorimotor integration may underestimate the complexity of

cognitive-motor interactions, suggesting that future research

should further explore cross-modal learning techniques to refine

performance evaluation models.

To enhance the real-world applicability of SensoriMind-Trans

Net, it is important to consider its integration into athlete training

and monitoring systems. While the model demonstrates strong

performance on benchmark datasets, practical deployment faces

challenges such as adaptability to unseen athletes, real-time

processing efficiency, and compatibility with existing sports

technology. One key challenge is the variability in EEG and

sensorimotor data collected from different athletes. Unlike

controlled datasets, real-world data may contain noise due to

environmental factors and physiological differences. To ensure

reliable performance, the model’s ability to generalize to new,

unseen athletes without additional fine-tuning should be further

tested. Evaluating its effectiveness in real-world conditions

will help validate its robustness. Computational efficiency is

another crucial aspect, as real-time monitoring systems require

rapid processing. Although SensoriMind-Trans Net has been

optimized for reduced inference time, further improvements such

as deployment on edge devices or lightweight implementations

may enhance its suitability for live applications. Ensuring

low-latency predictions is essential for real-time feedback in

sports training. Integration with existing athlete monitoring

platforms is also critical. Many teams and research institutions

already use wearable EEG headsets and motion sensors, and

SensoriMind-Trans Net could complement these technologies

by providing deeper insights into neural and motor responses.

Compatibility with current data acquisition protocols and sports

analytics software would facilitate seamless adoption. Improving

model interpretability is important for real-world applications.

Coaches and sports scientists need to understand how the model

derives its predictions to make informed training decisions.

Future work could incorporate explainable AI techniques,

such as attention visualization, to enhance transparency. While

SensoriMind-Trans Net shows promise, its real-world deployment

requires further validation in dynamic environments. Ensuring

generalizability, optimizing real-time processing, enabling system

compatibility, and improving interpretability will be essential

for its successful adoption in professional sports training and

athlete monitoring.

6 Conclusion and discussion

The primary objective of this paper is to address how to evaluate

athletes’ potential by integrating EEG (electroencephalogram) and

somatosensory data. To address this issue, we propose the

SensoriMind-Trans Net model, which utilizes a Transformer

architecture to process EEG signals and incorporates a feature

extractor for somatosensory data along with a cross-modal

attention alignment mechanism. This effectively captures the

correlation between athletes’ neural and physical performance.

The innovation of the model lies in leveraging the Transformer

network to capture the temporal dependencies in EEG data,

combined with the spatial and temporal features extracted

from somatosensory data, providing a more accurate basis for

comprehensive evaluation of athletes. In our experiments, we

used four public datasets (Sleep-EDF, AMIGOS, AlexMI, Motor

Imagery) and compared our model with six existing state-of-

the-art (SOTA) models (TSception, EEGNet, DeepConvNet,

Xception, LSTM-FCN, EEG-Transformer). The experimental

results demonstrate that SensoriMind-Trans Net achieved superior

performance across multiple datasets, particularly achieving

96.79% accuracy on the AlexMI dataset and 96.94% accuracy on

the Motor Imagery dataset. Additionally, our model significantly

outperformed the other models in terms of parameter count

showcasing exceptional computational efficiency. Ablation studies

further confirmed the critical importance of the EEG Transformer
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and somatosensory data feature extraction modules to the

model’s performance.

The implications of SensoriMind-Trans Net extend

beyond athlete performance evaluation, offering potential

applications in fields such as rehabilitation, cognitive performance

monitoring, and neuroadaptive interfaces. In rehabilitation,

the integration of EEG and sensorimotor data could provide

real-time assessments of motor recovery in stroke patients or

individuals with neuromuscular disorders. By analyzing brain

activity alongside movement data, the model could help clinicians

tailor rehabilitation programs based on an individual’s neural and

physical responses, facilitating more personalized and adaptive

treatment strategies. Beyond rehabilitation, the model’s ability

to capture cognitive and motor interactions makes it valuable

for cognitive performance monitoring in areas such as mental

fatigue detection and neuroergonomics. Industries requiring high

cognitive and motor performance, such as aviation, surgery, and

military operations, could benefit from real-time monitoring

of cognitive load and motor coordination. SensoriMind-Trans

Net could be integrated into neurofeedback systems to enhance

training, optimize workload management, and prevent cognitive

burnout in high-stakes environments. While the potential

applications are promising, the ethical considerations of using such

technology must be carefully addressed. Privacy concerns arise

from the continuous monitoring of neural and physiological data,

necessitating strict data protection measures and compliance with

ethical guidelines to ensure user consent and security. Athletes

and users must have full transparency regarding how their data is

collected, processed, and used, with the option to control access to

their personal neurophysiological information. The psychological

impact of real-time cognitive and physical monitoring should be

considered, as continuous performance tracking may contribute to

increased pressure, stress, or self-doubt, particularly in competitive

environments. Ethical implementation should prioritize user

wellbeing, offering insights that support improvement rather

than creating anxiety or excessive scrutiny. By addressing these

broader implications, SensoriMind-Trans Net has the potential

to contribute to diverse fields beyond sports, enabling more

advanced human performance monitoring while ensuring ethical

and responsible use of neurotechnology.

This methodology can be practically applied by professionals in

sports science, physical training, and rehabilitation. For instance,

coaches and performance analysts can employ SensoriMind-

Trans Net to monitor athletes’ EEG and sensorimotor data

during training sessions, enabling real-time evaluation of cognitive

focus, fatigue, and motor coordination. These insights allow

for personalized adjustments to training intensity and strategy

based on objective neurophysiological feedback. In rehabilitation

settings, clinicians can use the model to assess neural and

physical recovery progress in patients, supporting more precise

and data-driven therapeutic interventions. The model’s ability to

integrate multimodal data provides a comprehensive evaluation

framework that is adaptable to both elite sports and clinical

environments, offering actionable metrics for decision-making and

performance optimization. Despite the significant achievements of

this study, two primary limitations remain. First, while the cross-

modal attention alignment mechanism improves performance,

it increases computational complexity, leaving some room for

optimization in real-time applications. Second, the current model

may exhibit performance bottlenecks when handlingmore complex

multimodal data, such as larger datasets or data from more

sensors. Future research could focus on optimizing computational

efficiency by introducing more efficient attention mechanisms or

applying model compression techniques. Additionally, as athlete

data becomes more diverse, enhancing the model’s scalability and

adaptability to multimodal data will be a crucial direction for

future research.
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