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Introduction: Dyadic data analysis is commonly used in psychological research 
involving pairs of individuals in a nested relationship, such as parent and child, 
student and teacher, and pairs of spouses. There are several methods for 
calculating dyadic discrepancy (i.e., difference) scores, and purpose of the 
present study was to explore which of these methods produced the most 
accurate discrepancy estimates and most accurate outcome prediction.

Methods: Using a Monte Carlo simulation, the present study compared three 
methods for estimating discrepancy scores in dyad pairs: raw score difference 
(RSD), empirical Bayes estimates from multilevel modeling (MLM), and factor 
scores from structural equation modeling (SEM). Design factors for this 
simulation included intraclass correlation (ICC), cluster number, reliability 
estimates, effect size of discrepancy, and effect size variance.

Results: Results suggest discrepancy estimates from MLM had poor reliability 
compared to RSD and SEM methods. These findings were driven primarily by 
having a high ICC, high effect size variance, and low number of clusters. None of 
the design factors had an appreciable impact on either the RSD or SEM estimates.

Discussion: RSD and SEM methods performed similarly, and are recommended 
for practical use in estimating discrepancy values. MLM is not recommended as 
it featured comparatively poor reliability.

KEYWORDS

dyadic analysis, dyadic discrepancy, multilevel modeling, structural equation 
modeling, Monte Carlo simulation

1 Introduction

This study’s purpose was to determine the best way to measure the difference between 
members of a dyad, or two people, on a psychological construct (i.e., relationship satisfaction). 
Because there are several methods used in the literature and no clear consensus on the best 
approach, a Monte Carlo simulation compared three of these methods across a variety of 
potential research conditions, including variations on intraclass correlation (ICC), cluster 
number, reliability, effect size, and effect size variance.

Sayer and Klute (2005) defined a dyad as “two individuals” “nested in a relationship” 
(p. 291). Common examples of dyads include parent and child, employee and supervisor, or 
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student and professor. Dyadic discrepancy is defined as the degree to 
which two individuals nested in a relationship differ on some 
construct of interest. The construct could be  virtually any 
psychological or educational measure, such as depression, intelligence, 
or personality. For example, if each member of a heterosexual married 
couple completes an assessment of marital satisfaction, the scores may 
reveal that a wife has a much higher level of marital satisfaction than 
her husband. The difference in levels of marital satisfaction between 
the husband and wife is the dyadic discrepancy. The discrepancy score 
represents both the magnitude (size) and direction (which dyad 
member has a higher score) of the difference.

In addition to understanding the discrepancy itself, it may 
be useful to understand the relationship between the discrepancy and 
some other variable. Following the marital satisfaction scenario, the 
amount of discrepancy may be related to the effectiveness of couples’ 
counseling. Therefore, the focus of this study includes both the 
estimation of discrepancy and its relationship with another variable.

The importance of accurate discrepancy estimation lies in both 
the prevalence of research using dyads and the implications of 
inaccurate discrepancy estimation. Dyadic discrepancy is studied in 
multiple areas of psychology. For example, the acculturation gap 
(Costigan and Dokis, 2006) is a type of dyadic discrepancy that may 
occur between parent and child when one member of the dyad 
acculturates to a new culture at a different level than the other 
member. The discrepancy represents the size of the acculturation gap 
and the direction (whether parent or child has become more 
acculturated than the other). Acculturation gap may predict child 
maladjustment (Kim et  al., 2013). In this example, accurate 
discrepancy estimation is important for understanding the 
relationship between the acculturation gap and outcomes like child 
maladjustment, which may then impact family interventions.

As another example, dyadic discrepancy has also been applied in 
end-of-life care research. For example, Schmid et al. (2010) analyzed the 
relationship between the discrepancy in desire for medical intervention 
and family demographic characteristics to learn which families were 
most at risk for having a large discrepancy between the patients’ actual 
medical care wishes and how the family perceived them. Like the 
acculturation example, a better understanding of the relationship 
between the discrepancy and family characteristics can guide 
recommendations about interventions that prepare families for end-of-
life care decisions. Other examples discrepancy research include: marital 
satisfaction discrepancy related to psychological adjustment to 
widowhood (Carr and Boerner, 2009); informant discrepancies between 
reporters of child psychological behavior related to the diagnosis of the 
child (De Los Reyes and Kazdin, 2004); and, discrepancies between 
parent and child educational expectations related to adolescent 
adjustment (Wang and Benner, 2013). Accurate and consistent 
discrepancy score estimation is the first step to understanding the 
relationship between discrepancy and other variables.

1.1 Conceptualization of dyad 
discrepancies

Importantly, there are different ways to conceptualize dyadic 
discrepancy, such as idiographic versus nomothetic measures of 
discrepancy. The idiographic approach computes discrepancy for each 
dyad separately and can be compared among dyads. Following the 

marriage example, each couple would have its own marital satisfaction 
discrepancy score.

In the nomothetic approach, a single discrepancy estimate is 
computed across all dyads. Using marriage, the discrepancy would 
be a single measure, that might, for example, reflect a general trend 
where husbands tended to be  more or less satisfied in their 
marriages than wives. Idiographic discrepancies can be summarized 
using descriptive statistics such as mean or standard deviation and 
used in a nomothetic approach (Kenny et al., 2006a).

The goal of a dyadic analysis might be to build generalizable 
knowledge about marital satisfaction (nomothetic) or to better 
understand the marital satisfaction of individual dyads 
(idiographic). As described by Steele et al. (2013), analyses could 
combine both nomothetic and idiographic approaches. They stated, 
“…we need methods that allow individual trajectories to emerge 
while simultaneously looking to a common point of comparison” 
(p.  676). The methods compared in this study output a single 
idiographic discrepancy measure for each dyad. The discrepancy 
can then be  used to answer idiographic or nomothetic 
research questions.

Another conceptual issue is the difference between distinguishable 
and indistinguishable dyads (Gonzalez and Griffin, 1997). 
Distinguishable dyads are differentiable by some trait that is of interest 
in the research. In marital satisfaction, a heterosexual married couple 
would be considered distinguishable, for example, by role (husband 
and wife), gender, and potentially other variables such as employment 
status (where one works and one does not). Indistinguishable dyads 
have no distinguishing factor between them, such as identical twins. 
Other dyads that could be distinguishable, like husband and wife, may 
be treated as indistinguishable if role, gender, or other distinguishing 
factor is not of interest to the research study. For distinguishable 
dyads, both the size (how different are the members of a dyad) and 
direction (which dyad member has the higher score) of the 
discrepancy must be used in the analysis. For indistinguishable dyads, 
only the size of the discrepancy matters, and some statistics would 
be inappropriate for such data. For example, Pearson r should not 
be computed for indistinguishable dyads because r requires paired 
data with specific groups, where each score in the pair must belong to 
a particular group. Pearson r could mathematically be computed as a 
measure of association between a group of dyads, but r would depend 
on how each dyad member was assigned to a group, which would 
be  an arbitrary decision that alters the value of r when changed. 
Therefore, it is important to ensure measures computed for dyadic 
data appropriately take distinguishability into account.

Another issue impacting the computation of dyadic discrepancy 
is whether a single score or composite scale score is used. In some 
discrepancy models, the construct of interest is represented by a single 
score from each dyad member, which may be a single item score or a 
composite scale score generated from multiple items in a separate 
analysis of the measurement model. Conversely, some models, such 
as structural equation models, use item-level data and incorporate the 
measurement model and discrepancy model into one analysis 
(Newsom, 2002). The scope of this research is limited to the single-
score case. Whether a single score or item-level data is used, 
measurement invariance is assumed before calculating discrepancy 
scores. Confirmation of measurement invariance ensures that 
measures are indeed tapping the same construct when used with two 
different populations (Russell et al., 2016).
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In summary, when choosing discrepancy calculation methods, it 
is important to consider whether the research is idiographic or 
nomothetic in nature, whether dyads are distinguishable or 
indistinguishable within the context of the research question, and 
what kind of numerical data will be used to compute the discrepancy 
(a single score or multiple scores).

1.2 Discrepancy estimation methods

Three methods for estimating discrepancy were identified that fit 
into the theoretical framework described above; that is, they provide 
an idiographic measure of discrepancy (an individual score for each 
dyad), they may be  used for distinguishable or indistinguishable 
dyads, and they use the composite score rather than individual item 
scores. The three methods are the raw score difference (RSD), the 
empirical Bayes discrepancy (EBD) estimate from multilevel 
modeling (MLM), and the factor score from structural equation 
modeling (SEM). In this section, each method is described in detail, 
and reasons for not including other discrepancy methods are also 
provided. Throughout this section, the symbols X and Y are used to 
represent scores from dyad members A and B, respectively.

1.2.1 Raw score difference
The RSD is computed by subtracting one raw score from another, 

as shown in Equation 1:

 = −RSD X Y  (1)

The RSD is easily interpretable; a value of 0 represents lack of 
discrepancy between the dyad members (Guion et al., 2009).

RSD has been criticized for having low reliability (Cronbach and 
Furby, 1970). Reliability is the overall consistency of a measure and, 
according to classical test theory, is the true score variance divided by 
observed score variance (DeVellis, 2006). In applied research, where 
it is not possible to know true score variance, reliability is estimated 
using methods such as test–retest or inter-rater reliability. Using 
Monte Carlo simulation methods, however, it is possible to compute 
the true measure of reliability because both true score and observed 
score variances are known.

The formula for estimating reliability of RSD based on its 
components (raw scores from each dyad member) has several 
variations (Lord, 1963). The formula suggested by Lord assumes 
uncorrelated error variance, which is likely to be violated in dyads 
due to the dependency of dyad members on one another. Thus, to 
illustrate the reliability issue with RSD scores, a formula allowing 
correlated error variances was used. Williams and Zimmerman’s 
(1977) formula was used in a pre-test post-test design context, but 
it can be interpreted in the dyadic discrepancy context by thinking 
of X and Y as scores from each member of a dyad, respectively. The 
formula for reliability is shown in Equation 2:
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where ρDD’ is the reliability of RSD, ρXX’ and ρYY’ are the reliabilities 
of X and Y (e.g., reliabilities of the raw scores for dyad member X and 

dyad member Y, respectively), Var X and Var Y are the variances of X 
and Y, respectively, ρXY is the correlation between X and Y, σX and σY 
are the standard deviations of X and Y, respectively, and ρ(EX, EY) is the 
correlation between the error variances of X and Y. As demonstrated 
in this formula, anything that makes the numerator larger in the 
formula above increases the reliability of RSD, thus mitigating the 
reliability issue of RSD and making RSD a viable option for discrepancy 
estimation. These include higher reliabilities of X and Y and smaller 
correlation between X and Y.

Another feature of this formula is that, as long as ρXY is positive, 
the reliability of RSD cannot be  greater than the average of the 
reliabilities of X and Y (Chiou and Spreng, 1996). This is the primary 
argument against RSD because, in some cases, reliability of RSD is 
actually lower than the reliabilities of X and Y, but reliability of RSD 
is never higher. However, Zumbo (1999) argued that because there 
are situations where the reliability of difference scores is not an issue, 
RSD should not be ruled out in every instance. Therefore, despite the 
potential reliability issues, the RSD was evaluated as part of this study. 
The RSD is expected to have lower reliability in cases where reliability 
of X and Y are lower or X and Y are highly correlated.

1.2.2 Empirical Bayes (EB) estimate from MLM
In dyadic research, MLM can be used to estimate the average 

intercept and slope across all dyads as well as the within-dyad intercept 
and slope. In MLM, parameters are estimated using EB estimation 
instead of the traditional ordinary least squares (OLS) estimation 
method. The dyad-level slope is one of the parameters estimated in the 
model described below. The dyad-level slope is the idiographic 
discrepancy score, which is referred to as EBD in this study.

As described by Kim et al. (2013), the following MLM was used 
to generate the EBD:

 ( )β β ε= + +0 1Level1: ij j j ijijY report
 

(3a)

 ( )ε σ∼ 2with 0,ij N
 

(3b)

 β γ= +0 00 0Level2 : j ju  (4a)

 β γ= +1 10 1j ju  (4b)

 ( )τ τ τ τ  ∼        0 1 00 01 10 11with 0,0 ,j ju u MVN  (4c)

 
( )γ γ ε∗ ∗= + + + +00 10 0 1Combined model : ij ij j j ij ijY report u u report

 
(5)

Yij represents the score for each individual i within the same dyad 
j. “Report” is a dichotomous indicator with a value of −0.5 if the score 
is reported by dyad member A, and 0.5 if reported by dyad member 
B. β0j is the mean score between X and Y for each dyad j, and β1j is the 
discrepancy score between X and Y for each dyad j. εij is the unique 
effect associated with individual i nested within dyad j (i.e., 
measurement error). γ00 is the mean score across all dyads, and γ10 is 
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the mean discrepancy score across all dyads. u0j is the unique effect of 
dyad j on the mean score, and u1j is the unique effect of dyad j on the 
mean discrepancy score.

This random-coefficient model was fitted using the EB estimation 
procedure (Raudenbush and Bryk, 2002). The EB estimates of β1j (i.e., 
discrepancy in each dyad, or EBD) of the model were saved.

The model requires input of measurement error for the observed 
scores from each dyad member in order to sufficiently identify the 
model (Cano et al., 2005). The formula used to calculate measurement 
error (i.e., rij) is given in Equation 6:

 ( )α σ= − ∗ 21ME  (6)

where α is the reliability of the measure, and σ2 is the variance of 
all scores within dyads.

The EBD may be a better estimate of discrepancy. EB estimates are 
also known as “shrinkage” estimates (Raudenbush and Bryk, 2002). 
The equation for the EB estimate is:

 ( )β λ β λ γ= + −1 1 10
ˆ ˆ 1EB OLS
j j j j  (7)

where λj is the reliability of the OLS estimate, and γ10 is the overall 
slope across all dyads. The EB estimate is shrunken based on the 
reliability of the OLS estimate (λj) which is defined in Equation 8:
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where ( )β1̂
OLS
jVar  represents the variance of the OLS estimates 

and nj = 2 in a dyad. Reliability increases as the variance of the OLS 
estimates increases, the level-1 residual variance decreases, or 
nj increases.

The OLS estimate is weighted by reliability, and therefore 
counts less toward the EB estimate as reliability decreases. 
Meanwhile, the overall slope (γ10) is weighted by one minus the 
reliability, such that as reliability decreases, the overall slope is 
weighted more. Including both the OLS estimate and the overall 
slope, adjusted for reliability, results in an optimal weighted 
combination of the two (Raudenbush and Bryk, 2002). Another 
way of viewing the EB estimate is as a “composite of the sample 
slope estimate (γ10) and the predicted value of individual’s slope 
estimate ( )β1̂

OLS
j ” (Stage, 2001, p. 92).

When reliability estimates are low, as is the case with small cluster 
sizes such as dyads, the EB “borrow strength from all of the 
information…in the entire dataset to improve the estimates for dyad 
discrepancy scores” (Kim et al., 2013, p. 905). In addition, variance 
in the scores is divided into two parts: (a) variance associated with 
dyads; and (b) variance associated with individual members in the 
dyads (i.e., measurement error variance) (Kim et  al., 2013). The 
discrepancy estimates have measurement error partialed out and may 
be a more accurate estimate of the discrepancy.

On the other hand, a drawback of EB estimates is that they may 
“over-shrink” the estimates of random coefficients when cluster size is 
very small and lead to under-estimates of the posterior variance of the 

random coefficients (Raudenbush, 2008). As a result, when EB 
estimates are used as predictors in a regression analysis, their raw 
regression coefficients and standard error estimates might 
be  inaccurate, especially when the variance of EB estimates differ 
significantly from that of the true discrepancies.

1.2.3 SEM discrepancy
SEM can be used to estimate discrepancy by fitting the model 

shown in Figure 1, which is based on Newsom (2002). In the SEM 
discrepancy model, the latent intercept and slope predict the individual 
scores of each dyad member. Paths from the slope to individual scores 
are fixed to 0.5 and −0.5, so that intercept reflects the average score of 
both dyad members. The paths from intercept to individual scores are 
fixed to 1. The SEM dyadic discrepancy is indicated by the latent slope 
in Figure 1. Fitting this model using SEM would typically result in a 
single estimate for the latent slope that represents all dyads. However, 
it is possible to specify options in some software packages (such as 
PROC SCORE in SAS, or SAVEDATA in Mplus) that would save 
idiographic estimates of the latent slope. These individual estimates of 
the latent slope serve as the discrepancy estimates. One primary benefit 
of using SEM is the model’s flexibility, such as the ability to incorporate 
correlated measurement errors into the model (Newsom, 2002).

1.2.4 Other discrepancy estimation methods not 
included in the present study

Two other methods found in discrepancy research were excluded 
from this study. One was the standardized score difference, notated as 

FIGURE 1

SEM path diagram for predicting an outcome with discrepancy score 
based on Newsom (2002).
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difference in z (DIZ). To calculate DIZ, each dyad member’s score is 
converted to a z score, and one member’s score is subtracted from the 
other (De Los Reyes and Kazdin, 2004). However, the standardization 
of scores prior to computing a discrepancy changes the interpretation 
of the discrepancy (Guion et  al., 2009). Compared with the RSD 
method, a DIZ score of 0 does not mean perfect agreement between 
dyads, but rather that both dyad members have average scores within 
their respective distributions.

The second method excluded from this study was the OLS residual 
method (abbreviated as “RES” to indicate residual). RES involves using 
one member’s rating to predict the other’s in a linear regression, and 
outputting the residual for each dyad to serve as a discrepancy (De Los 
Reyes and Kazdin, 2004). This score is typically standardized into a z 
score before use. The RES score is affected by the correlation between 
dyad members’ scores (De Los Reyes and Kazdin, 2004). Say for 
example dyad member Y’s score is predicted by dyad member X’s score 
in a linear regression, and the standardized residual (RES) is output. 
The correlation between the independent variable X and RES is always 
0. Larger correlations between dyad members X and Y mean weaker 
relationships between the Y and RES, while smaller correlations 
between X and Y mean stronger relationships between the Y and 
RES. This is true because, the more variance in Y explained by X, the 
less variance there is left unexplained (i.e., the variance of residual), and 
the less Y is related to that residual. When there is not much variance 
in Y explained by X, there is a lot of Y-related variance leftover.

1.3 Possible factors influencing discrepancy 
estimation

As discussed above, this study includes three methods of estimating 
dyadic discrepancy. In addition there are several data characteristics 
(i.e., design factors) which may impact the estimation of dyadic 
discrepancy. Based on review of applied and methodological research, 
these include ICC, cluster number (number of dyads), reliability of 
measurement, and effect size and effect size variance of the discrepancy. 
Each of these is discussed in more detail in this section.

1.3.1 Intraclass correlation
Nonindependence is a key consideration in dyadic data. 

Nonindependence means that the scores from two dyad members 
may share similarity more than scores from people not within the 
same dyad. Thus, the scores violate the assumption of independence 
of observations under the general linear model framework. The degree 
of nonindependence may impact the estimation of dyadic discrepancy. 
Ignoring the nonindependence of observations and analyzing data as 
though they are independent has implications for the accuracy of 
standard error estimates (Chen et al., 2010). The standard errors for 
predictors at the ignored level may be underestimated, inflating the 
Type I error rate. Conversely, the standard error of a predictor below 
the ignored level may be overestimated, reducing the statistical power 
of the analysis (Luo and Kwok, 2009; Moerbeek, 2004).

There are several methods for measuring nonindependence. The 
unconditional ICC can be used to measure nonindependence. The 
unconditional ICC is computed as shown in Equation 9 (Raudenbush 
and Bryk, 2002):

 

τρ
σ τ

=
+
00

2
00  

(9)

where τ00 is the variance between dyads (i.e., how much the 
average of the two scores within the dyad varies among dyads) and σ2 
is the variance within dyads. ICC is interpreted as the proportion of 
variance in the individual scores that is between dyads. In other words, 
it is how much of the variance in level-1 scores is explained at the dyad 
level. Higher values of ICC indicate a stronger clustering effect, or a 
higher level of nonindependence. In addition to unconditional ICC, 
there is also the conditional ICC, which is computed after predictors 
are included in the HLM model (Raudenbush and Bryk, 2002).

The level of nonindependence has shown varying impacts in 
studies. One study revealed no effect of ICC on parameter estimates 
in a multilevel model with one predictor at level one and one predictor 
at level two (Maas and Hox, 2005). Low ICC may help overcome small 
cluster numbers, resulting in more accurate parameter and standard 
error estimates (Maas and Hox, 2005). Another study revealed 
underestimated standard errors when ICC was higher (Krull and 
MacKinnon, 2001). Low ICC is expected to result in more accurate 
discrepancy estimation in the current study according to the reliability 
equation from Williams and Zimmerman (1977).

1.3.2 Cluster number
Cluster number, or the number of dyads, varies widely in applied 

research and has been shown to impact the accuracy of parameter 
estimation (Maas and Hox, 2005) and the power for detecting 
statistical significance (Chen et  al., 2010). While fixed effects are 
consistently accurate despite cluster number, standard error estimates 
are typically biased when cluster number is less than 100 (Clarke and 
Wheaton, 2007; Maas and Hox, 2005). Standard error estimates 
typically improve as cluster number increases (Maas and Hox, 2005).

1.3.3 Reliability
Reliability, as a design factor, is operationalized in this study as 

variance of scores among a group of dyad members in a sample, i.e., 
the variance of all X raw scores from dyad member A, compared with 
the variance of true scores. Increased reliability is expected to result in 
more accurate parameter estimates.

1.3.4 Effect size and effect size variance of 
discrepancy

The size of the discrepancy between dyad members, and the 
variation of effect size among dyads, may also impact its estimation. 
In a previous study about dyadic discrepancy estimation, accuracy of 
EBD estimates was better when effect size was lower (McEnturff et al., 
2013). Furthermore, when using discrepancy as an independent 
variable in regression, the accuracy of intercept and slope estimates 
was better when effect size was higher.

1.4 Gaps in current literature

Historically, several studies have examined various approaches 
and design factors for discrepancy estimation. De Los Reyes and 
Kazdin (2004) compared RSD to two other methods, the standardized 
score and residual score methods, using one empirical dataset. 
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Although De Los Reyes and Kazdin thought for the purposes of their 
research that the standardized score method was most appropriate, 
in their conclusion, they stated, “However, there may be  other 
instances in which other measures may be  conceptually and 
methodologically optimal” (p. 334). They also noted that, “Our goal 
was to convey that an accumulating body of research cannot 
be expected to produce consistent results because the measures used 
among the studies are not interchangeable” (p. 334). A thorough 
analysis of existing discrepancy methods would aid in comparability 
of results produced in discrepancy research. Furthermore, De Los 
Reyes and Kazdin used empirical data. As explained later, a statistical 
simulation has some advantages when comparing various methods 
of estimation.

Kenny et al. (2006a, 2006b) have published substantial amounts 
of literature about dyadic data. However, they focus on nomothetic 
approaches. The idiographic measurement of dyadic discrepancy still 
needs investigation, as noted in their book. It is important to study 
approaches that work for both idiographic and nomothetic research. 
Nomothetic research may be more useful in moving theory forward, 
but idiographic scores have immediate clinical use for understanding 
how a particular dyad fits within a theory and using that knowledge 
to guide interventions for the dyad.

More recent research has also illustrated gaps and highlighted 
the need to further methodologically examine various approaches 
to discrepancy estimation in dyadic analysis. Although the RSD 
approach has been historically criticized for its low reliability 
(Cronbach and Furby, 1970), recent researchers have continued to 
debate its use, both highlighting its problems (Laird, 2020) and 
defending its use in certain contexts (Campione-Barr et al., 2020). 
Furthermore, although the EBD estimation approach using MLM 
has seen recent use in empirical literature (Bar-Sella et al., 2023), 
there has been little-to-no recent methodological research 
examining this approach. Lastly, although SEM-based discrepancy 
estimation methods see continued use in both empirical (Barooj-
Kiakalaee et al., 2022) and methodological (Sakaluk et al., 2025) 
literature, little simulation work has been conducted recently 
comparing this estimation approach with other competing 
approaches. Overall, these various gaps demonstrate the need to 
examine and compare these types of approaches to discrepancy 
estimation in dyadic analysis.

Finally, the importance of discrepancy estimation stems from the 
high-stakes topics studied using dyadic data, including topics related 
to family functioning, adolescent adjustment, and end-of-life-care. 
Dyads are the building blocks of interpersonal relationships, and 
better understanding of dyads can lead to stronger theories to support 
the well-being of individuals and families.

1.5 Purpose of the current study

Given the potential implications of inaccurate discrepancy 
estimation, and the lack of research comparing the methods, the 
following questions are addressed with this study. First, of RSD, EBD, 
and SEM, which method generates the most accurate estimate of 
discrepancy? Second, of the three methods, which allows the most 
accurate prediction of an outcome? Finally, what is the impact of the 
design factors ICC, cluster number, reliability, effect size, and effect 
size variance on the accuracy of estimates and prediction?

2 Method

A Monte Carlo simulation study was conducted, in which the 
true scores are generated first, then error added in order to create 
observed scores. Once the analysis was conducted on the observed 
scores, the results could be compared to the true scores to assess the 
performance of the statistic. This will further the work of De Los 
Reyes and Kazdin, whose empirical study did not allow the 
comparison to the true score.

2.1 Design factors

To enhance the external validity of the simulation study results, 
findings from a past literature review (McEnturff et al., 2013) helped 
set the levels of design factors that are found in real life research 
involving dyads. In their review, McEnturff et  al. evaluated the 
following literature: Baumann et  al. (2010), Blood et  al. (2013), 
Costigan and Dokis (2006), Crouter et  al. (2006), Gulliford et  al. 
(1999), Kim et al. (2009), Lau et al. (2005), Leidy et al. (2009), McHale 
et al. (2005), Stander et al. (2001), and Wheeler et al. (2010). This 
review led to the following design factors.

2.1.1 Conditional ICC
To avoid conflation of the unconditional ICC and the standardized 

average discrepancy within dyads, we manipulated the conditional 
ICC when “report” is included in the data generation model depicted 
in Equations 3a–5. The conditional ICC is independent of the 
discrepancy within dyads (β1j). From here onward, ICC all refers to 
“conditional ICC.”

Data reflected conditional ICC values of 0.1, 0.3, and 0.5 with 
“report” as the only predictor. Studies using MLM in complex survey 
designs have typical ICC values ranging from 0 to 0.3 (Gulliford et al., 
1999). Research involving dyads has shown ICC values as high as 0.49 
(Blood et al., 2013).

2.1.2 Cluster number
Data sets with cluster numbers of 50, 150, 250, and 400 were 

generated. Cluster numbers found in the review ranged from 68 
(Stander et al., 2001) to 399 (Kim et al., 2009). Cluster numbers were 
distributed throughout that range.

2.1.3 Reliability
For distinguishable dyads, data were generated with both 

matching, set at 0.7 and 0.8, and mismatched reliabilities of 0.7 for one 
dyad member and 0.8 for the other. Commonly found levels of 
reliability in the literature review were similar to the minimum values 
accepted as adequate in education, ranging from coefficient alpha of 
0.67 (Wheeler et al., 2010) to 0.96 (Baumann et al., 2010).

2.1.4 Effect size of discrepancy
For this study, Cohen’s d was 0.2, 0.5, and 0.8 to reflect widely used 

benchmarks for small, medium, and large effects (Cohen, 1988). It 
should be noted that these benchmarks are simply a rule of thumb and 
should not be the sole factor for evaluating effect size in any study. 
Effect sizes must be interpreted within the context of the study topic 
and methods. Effect sizes varied widely in the literature review, from 
d = 0.05 to d = 1.34.
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2.1.5 Effect size variance
Variance of discrepancies among dyads was set to 0.5 and 1. 

Literature reporting the variance of effect sizes was scant.

2.2 Data generation

A program was written and executed in SAS 9.4 to generate 
simulated data across a set of study conditions to examine bias and 
reliability of discrepancy estimates and their use in prediction. As 
described in the literature review, design factors included variations on 
nonindependence (ICC), cluster number, reliability, effect size, and 
effect size variance. The design factors are summarized in Table 1. A 
total of 216 simulation conditions were represented, with 1,000 
replications generated for each condition, for a total of 216,000 datasets 
(Arend and Schäfer, 2019). After the data were generated, discrepancy 
estimates for all three methods (RSD, EBD, and SEM) were computed 
and used in subsequent evaluation analyses described below. 
Discrepancy estimates from the EBD and SEM methods were 
generated using the full-information maximum likelihood (FIML) 
estimation method. All analyses were conducted in SAS except the 
computation of SEM, which was computed using MPlus. The MPlus 
SAVEDATA option enabled the export of factor scores to use as the 
SEM discrepancy. The syntax for data generation and analysis in SAS 
and MPlus can be found in Appendix 1.

Data were generated for both indistinguishable and distinguishable 
dyads. However, the regression models appropriate for indistinguishable 
and distinguishable dyads are not the same. For indistinguishable dyads, 
the outcome, Z, was generated using arbitrary values for the slope (0.8) 
and intercept (0.5), as shown in the equation below:

 ( )= + − +true true.5 .8 0Z X Y rannor  (10)

where Xtrue and Ytrue are the true scores for each dyad member and 
the absolute value of the difference between these true scores is the 
discrepancy score.

However, for distinguishable dyads, the direction of the 
discrepancy is lost when using the absolute value of the discrepancy, 
such as in the indistinguishable dyad case. For example, in the parent–
child dyad example, it is useful to know not only how different parents 
and children are, but which dyad member scores higher or lower on 
the construct of interest. Therefore, a different regression model must 
be used for distinguishable dyads.

A solution to this problem is shown in Equation 11, related to the 
method used by Wang and Benner (2013):

 = + − + + − +0 1 2 3Z b b X Y b W b X Y W e  (11)

Here, |X – Y| is the absolute value of the discrepancy, W is a 
dichotomous indicator of the direction of the discrepancy (equal to 0 
if X < Y and 1 if X > = Y), and the third predictor is the interaction 
between them. Following this, the outcome for distinguishable dyads 
in this study was generated as follows:

 = + − + + − +.5 .8 .5 .2Z X Y W X Y W e  (12)

2.3 Evaluation of methods

The outcome of interest in this study was the bias of parameters 
estimated and their standard errors. The various values that were used 
to evaluate the discrepancy estimation methods are described in this 
section. Table  2 includes the equations used to compute the 
evaluation measures.

2.3.1 Bias of discrepancy estimate
First, estimated discrepancy scores were compared to the true 

discrepancy score to determine accuracy of the discrepancy estimate. 
To assess accuracy, the absolute bias (AB) for the estimated 
discrepancy score was calculated as the difference between the true 
score and the estimate.

AB equal to zero indicated an unbiased estimate of the parameter. 
A negative AB indicated an underestimation of the parameter (i.e., the 
estimated value was smaller than the true parameter value), whereas 
a positive AB indicated an overestimation of the parameter (i.e., the 
estimated value was larger than the true parameter value).

2.3.2 Reliability of estimates
Reliability of discrepancy estimates was calculated by dividing 

the variance of the true discrepancy scores by the variance of the 
discrepancy estimates, as shown in the reliability equation in Table 2. 
Reliability is normally thought of as ranging from zero to one because 
the variance of observed scores is normally greater than the variance 
of true scores. However, because of the EBD shrinkage effect 
described in Equation 7, the variance of EBD estimates was 
sometimes less than the variance of true discrepancy scores. This 
resulted in reliability estimates greater than one. Therefore, in this 
study, an estimate is most reliable when its reliability is closest to one, 
indicating that the variance of true scores is equal to variance of 

TABLE 1 Study conditions.

ICC Reliability Effect Size Sample

ICC Between 
Variance

Within 
Variance

Reliability Error 
Variance 1

Error 
Variance 2

Effect 
Size

Effect Size 
Variance

n

0.1 0.1 0.9 0.7 0.43 0.43 0.2 0.5 50

0.3 0.3 0.7 0.8 0.25 0.25 0.5 1 150

0.5 0.5 0.5 0.7 / 0.8 0.43 0.25 0.8 250

400
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estimates. Distance from one, whether in the positive or negative 
direction, indicated deviance from perfect reliability. Reliability less 
than one happened when the discrepancy estimate was more variable 
than the true discrepancy score. Reliability greater than one happened 
when the discrepancy estimate was less variable than the true 
discrepancy score.

2.3.3 Predictive power
Although the accuracy of discrepancy estimates is interesting 

on its own, in practice, it is useful to understand how the estimated 
discrepancy impacts an outcome. For example, in addition to 
studying the amount of discrepancy in marital satisfaction, a 
researcher may also be interested in how the discrepancy predicts 
an outcome like depression. In this simulation, the discrepancy 
estimates were used in a regression analysis to predict an outcome. 
The accuracy of prediction and hypothesis testing was evaluated.

A previously stated, the regression models appropriate for 
indistinguishable and distinguishable dyads are not the same 
(see Equations 10, 12, respectively), and this impacts the 
calculation of discrepancy values. For indistinguishable dyads, 
only the amount of discrepancy matters, because the direction 
of discrepancy is arbitrary depending on which dyad member is 
assigned as A and which is assigned as B. In this scenario, the 
absolute value of the discrepancy score can be  used as the 
independent variable in the regression (see Equation 10). 
Following this, the absolute value of discrepancy estimates 
(RSD-AV, EBD-AV, and SEM-AV) were each used independently 
to predict the outcome, and the resulting parameter estimates 
(i.e., estimated slopes and their standard errors) were assessed 
for bias.

As previously mentioned regarding distinguishable dyads, the 
direction of the discrepancy is lost when using the absolute value of 
the discrepancy as an independent variable, as with the 
indistinguishable dyad case. Therefore, using the distinguishable 
dyad equation (Equation 12), the absolute value of discrepancy 
estimates (RSD-AV, EBD-AV, and SEM-AV), together with W which 
indicated the direction of the discrepancy, were each used 
independently to predict the outcome, and the parameter estimates 
were assessed for bias.

2.3.4 Bias, power, and coverage rates for 
parameter estimates and standard errors

Bias of parameter estimates demonstrated how accurate 
discrepancy estimates from each of the three methods predicted the 
simulated outcome. First, the bias for the parameter estimates 
(intercept and slopes) and their standard errors were computed as 
described in the bias equations for parameters and standard errors in 
Table 2. The bias for standard errors equation in Table 2 shows that 
because there is no true score standard error to use in the bias 
calculation, standard error estimates were compared to the standard 
deviation of all estimates within each simulation condition.

Additionally, the power for the slope estimates was computed as 
the proportion of statistically significant estimates out of the total 
number of estimates (see Table 2). The coverage rate was computed as 
the proportion of cases where the true value of the slope is found 
within the confidence interval for the slope. Higher coverage rates 
indicate better estimates of the regression parameters.

Secondly, the accuracy of the R2 estimate was examined by 
computing the bias, compared with the R2 obtained in the true score 
regression model. The equation is shown in Table 2.

2.3.5 Impact of design factors on outcomes
Finally, analysis of variance (ANOVA) was used to determine 

which estimates were most influenced by manipulations of design 
factors. The corresponding effect sizes (η2 = SSeffect/SStotal) were used to 
determine the contribution of the five design factors (ICC, cluster 
number, reliability, effect size, and effect size variance) and method 
(RSD, EBD, and SEM) to the accuracy of the discrepancy estimation. 
Post-hoc ANOVAs predicting bias of discrepancy estimation with the 
five design factors were conducted separately for each of the three 
methods (RSD, EBD, and SEM), rather than using method as an 
independent variable, which aided in the interpretation of the impact 
of design factors on bias of estimates from each method.

3 Results

Table 3 includes the means and standard deviations of estimates. 
Table 3 shows on average how the three methods compared on all 

TABLE 2 Equations for evaluating methods for dyadic discrepancy.

Measure Equation Description

Absolute bias (AB) for discrepancy 

estimates and parameter estimates ( )θ θ= −ˆAB est pop
θ̂est  is the mean of the estimated discrepancy score across the replications and θpop is 

the true parameter value (i.e., true discrepancy score).

Reliability of discrepancy estimates σ

σ

2

2
true

est

σ2true is the variance of the true discrepancy scores, and σ2est is the variance of the 

discrepancy estimates.

AB for standard errors ( )−SE Mean SDest est SEest is the standard error of the estimate, and SDest  is the standard deviation of the 

corresponding parameter estimates across the 1,000 iterations of each simulation 

condition.

Power for the slope estimate in 

prediction ( )
< .05
1000

Number of estimateswithp
Total number of estimates

The proportion of statistically significant estimates out of the total number of estimates 

per condition

AB for R2 estimate

( )−2 2R Mean Rest true

2Rest is the proportion of variance explained in the outcome by the discrepancy estimate, 

and 2Rtrue is the proportion of variance explained in the outcome by the true 

discrepancy scores
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evaluation measures. For example, the first row of Table 3 shows that 
average bias of discrepancy estimates was zero for all three methods. 
Table 4 shows the effect sizes (η2) for all six-way ANOVAs measuring 
the impact of the design factors (method, reliability, ICC, cluster 
number, effect size, and effect size variance) and all two-way interactions 
on the measures of accuracy for the three estimation methods. Table 4 
is important for understanding which measures were substantially 
impacted by variation in study conditions. Table 5 includes effect sizes 
(η2) for post-hoc five-way ANOVAs measuring the impact of the design 
factors (reliability, ICC, cluster number, effect size, and effect size 
variance) and all two-way interactions on the measures of accuracy for 
the three estimation methods individually. In Tables 4, 5, only effect 
sizes at least 0.01 are shown in the table, and only medium and large 
effects of 0.06 or greater (per Cohen, 1988) are interpreted and discussed.

3.1 Bias of discrepancy estimates

The average bias of all three discrepancy estimates was zero. 
Furthermore, ANOVA results showed no notable effect sizes using 
method and design factors to explain the bias of discrepancy 
estimates. In other words, no variations of method or design factors 
accounted for a significant amount of bias in discrepancy estimates.

3.2 Reliability of discrepancy estimates

As described in the methods, reliability is a measure of the 
consistency of the discrepancy estimates. Perfect reliability occurred 
when the variance of discrepancy estimates is equal to the variance of 
true discrepancy score, resulting in reliability equal to one. Estimates 
were considered less reliable as reliability values deviated further from 
one. On average, reliability values of EBD estimates were the furthest 

from one and therefore the least reliable (reliability = 2.29, σ = 63.70). 
Reliability for RSD (reliability = 0.51, σ = 0.06) and SEM 
(reliability = 0.53, σ = 0.06) were better. Furthermore, initial six-way 
ANOVA results showed no substantial effect sizes using method and 
design factors to explain the reliability of discrepancy estimates. However, 
some effects were found using the post-hoc ANOVAs described below.

The six-way ANOVA results showed that reliability was not 
substantially impacted by method or design factors. Though the 
means did not substantially differ by method, the box plot in Figure 2 
shows the range for EBD is impacted by outliers.

3.2.1 Post-hoc ANOVAs by method
Post-hoc ANOVAs were conducted for each method individually. 

As shown in Table 5, reliability of EBD estimates was not substantially 
(η2 > = 0.01) impacted by any design factor. RBD and SEM reliability 
were each greatly impacted by effect size variance (RSD η2 = 0.55 and 
SEM η2 = 0.52) and effect size (RSD η2 = 0.24 and SEM η2 = 0.23). To 
a lesser extent, RBD and SEM reliability were impacted by ICC (RSD 
η2 = 0.06 and SEM η2 = 0.04). Reliability increased as effect size 
variance and effect size increased. Reliability decreased as ICC 
increased. Across all levels of design factors, SEM reliability was 
greater than RSD. These trends are further illustrated in Figure 3.

3.3 Predictive power of discrepancy 
estimates

Simulated regression models were used to evaluate the accuracy 
of discrepancy estimation methods in predicting an outcome. There 
were three slope estimates in the regression model: (1) discrepancy 
slope, which was the slope estimate for the discrepancy; (2) 
direction slope, which was the slope estimate for the dichotomous 
indicator of direction of discrepancy (i.e., 0 where the score from 

TABLE 3 Mean (standard deviation) of bias, reliability, and discrepancy as predictor estimates.

Estimate Estimate property RSD EBD SEM

Accuracy of discrepancy Absolute bias (AB) of discrepancy 0.00 (0.06) 0.00 (0.06) 0.00 (0.13)

Reliability of discrepancy 0.51 (0.06) 2.29 (63.70) 0.53 (0.06)

Discrepancy as predictor

Discrepancy slope AB of estimate −0.26 (0.11) 0.22 (0.43) −0.25 (0.12)

AB of standard error 0.00 (0.02) −0.07 (0.28) 0.00 (0.02)

Power of estimate 0.96 (0.20) 0.95 (0.22) 0.96 (0.20)

Coverage rate of estimate 0.91 (0.29) 0.24 (0.43) 0.89 (0.31)

Direction slope AB of estimate −0.29 (0.32) −0.29 (0.38) −0.29 (0.35)

AB of standard error 0.00 (0.04) −0.03 (0.12) −0.02 (0.04)

Power of estimate 0.14 (0.35) 0.16 (0.36) 0.16 (0.37)

Coverage rate of estimate 0.77 (0.42) 0.75 (0.43) 1.00 (0.00)

Discrepancy by direction interaction slope AB of estimate −0.13 (0.16) −0.08 (0.58) −0.13 (0.16)

AB of standard error 0.00 (0.02) −0.07 (0.41) 0.00 (0.02)

Power of estimate 0.09 (0.29) 0.09 (0.29) 0.10 (0.29)

Coverage rate of estimate 0.18 (0.39) 0.58 (0.49) 0.19 (0.40)

R-squared AB of estimate −0.04 (0.03) −0.05 (0.04) −0.04 (0.03)

Power of estimate 0.99 (0.09) 0.98 (0.13) 0.99 (0.09)
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dyad member A is greater than the score from dyad member B, and 
1 where the score from dyad member A is less than the score from 
dyad member B), and (3) slope (discrepancy by direction 
interaction), representing the interaction effect between discrepancy 
and direction.

Results presented below are for distinguishable dyads. The 
prediction model for indistinguishable dyads, which only included 
one discrepancy slope, had similar results as the discrepancy slope for 
distinguishable dyads, rendering those results redundant. For each of 
the three slope estimates as well as R2 estimates, the results include 
descriptive statistics for bias, ANOVA results, power, and coverage rate.

3.3.1 Discrepancy slope estimate and standard 
error bias

The discrepancy slope estimates, estimating the strength of the 
relationship between the discrepancy and the outcome, were slightly less 
biased for EBD (AB = 0.22) than RSD (AB = 0.26) and SEM (AB = 0.25). 
However, the range of AB for EBD (min AB = −27.1, max AB = 66.5) 
was vastly larger that of RSD and SEM, which both ranged about −1.4 to 
−0.3. The standard deviation of AB for EBD was 0.43. The large range in 
conjunction with the relatively reasonable standard deviation indicated 
that AB of slope estimate (discrepancy) for EBD included extreme 

outliers (i.e., an outlier exceeding 3*interquartile range below the 1st 
quartile or above the 3rd quartile). The boxplots shown in Figure 4 
illustrate the distributions of bias by method. Differences among 
methods, as shown in Figure 4, accounted for a substantial amount of 
variance in bias of discrepancy slope estimate (η2 = 0.42).

Similarly, the standard errors of slope estimates in the regression 
equation were most biased for the EBD method (AB = 0.08), and on 
average, equal to zero for RSD and SEM. This means that the estimates 
of the relationship between discrepancy and the outcome were less 
consistent for the EBD method, and quite consistent for RSD and 
SEM. In the ANOVA, differences among methods accounted for an η2 
of 0.05.

The ANOVA predicting AB of standard error estimates for 
discrepancy slope showed one interaction with effect size of at least 
0.06: the interaction between method and N-size (η2 = 0.06). Post-hoc 
ANOVAs were conducted separately for each method to aid in 
interpretation of the six-way ANOVAs. Figure 5 includes three plots 
showing substantial effects of cluster number (N) on standard error of 
slope estimates for the EBD method. The first plot in Figure 5, for 
discrepancy slope standard error bias, shows that standard error bias 
is stable across cluster number for RSD and SEM methods, but 
increases as cluster number increases for EBD (η2 = 0.09). 

TABLE 4 Summary of η2 for the six-way ANOVA main and first-order interaction effects (η2 ≥ 0.01).

Discrepancy Slope—discrepancy Slope—direction Slope—discrepancy * 
direction interaction

R2

Estimate 
bias

Reliability 
of 

estimate

Estimate 
bias

Standard 
error bias

Estimate 
bias

Standard 
error bias

Estimate 
bias

Standard 
error bias

Estimate 
bias

Method – – 0.42 0.05 – 0.04 0.01 0.02 0.69

N – – – 0.03 – 0.03 – 0.03 –

ICC – – – 0.01 – – – 0.01 –

Reliability – – – – – – – – –

Effect size – – – – – 0.01 – – 0.01

Effect size 

variance

– – – 0.01 – – – – 0.02

M*N – – – 0.06 – 0.02 – 0.05 0.00

M*I – – 0.02 0.02 – 0.01 – 0.02 0.01

M*R – – – – – – – – –

M*ES – – – 0.01 – – – 0.01 –

M*ESV – – 0.01 0.01 – 0.01 – 0.01 0.01

N*I – – – 0.02 – – – 0.02 –

N*R – – – – – – – – –

N*ES – – – 0.01 – – – 0.01 –

N*ESV – – – 0.01 – – – 0.01 –

I*R – – – – – – – – –

I*ES – – – – – – – – –

I*ESV – – – 0.01 – – – – –

R*ES – – – – – – – – –

R*ESV – – – – – – – – –

ES*ESV – – – – – – – – –

Design factors are abbreviated in the table as (a) N = cluster number; (b) M = method; (c) I = ICC; (d) R = reliability; (e) ES = effect size; (f) ESV = effect size variance. Bias refers to the 
absolute bias (AB) defined in Table 2.
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TABLE 5 Summary of η2 for the post-hoc five-way ANOVA main and first order interaction effects (η2 ≥ 0.01).

Reliability Discrepancy slope bias Discrepancy slope 
standard error bias

Direction slop standard 
error bias

Interaction slope 
standard error bias

R2 bias

RSD EBD SEM RSD EBD SEM RSD EBD SEM RSD EBD SEM RSD EBD SEM RSD EBD SEM

N – – 0.02 – – – – 0.09 – – 0.05 0.06 – 0.08 0.01 – 0.02 0.01

ICC 0.06 – 0.04 0.02 0.03 0.02 – 0.04 – – 0.01 0.03 – 0.03 – 0.03 0.04 0.02

Reliability – – – – – – – – – – – – – – – – – –

Effect size 0.24 – 0.23 0.01 0.01 – – 0.01 – – 0.01 0.01 – 0.01 – 0.05 0.02 0.04

Effect size 

variance

0.55 – 0.52 0.02 0.02 0.02 – 0.02 – – 0.01 – – 0.01 – 0.11 0.05 0.07

N*I – – – – – – – 0.06 – – 0.02 – – 0.06 – – – –

N*R – – – – – – – – – – 0.01 – – – – – – –

N*ES – – – – – – – 0.02 – – 0.02 – – 0.03 – – – –

N*ESV – – – – – – – 0.03 – – 0.01 – – 0.03 – – – –

I*R – – – – – – – – – – – – – – – – – –

I*ES 0.01 – 0.01 – – – – 0.01 – – 0.01 – – 0.01 – – – –

I*ESV 0.01 – 0.01 – – – – 0.02 – – – – – 0.01 – – – –

R*ES – – – – – – – – – – – – – – – – – –

R*ESV – – – – – – – – – – – – – – – – – –

ES*ESV 0.01 – 0.01 – – – – 0.01 – – 0.01 – – – – – – –

Post-hoc ANOVAs were conducted for each method separately to aid in the interpretation of the effects. The dependent variables were discrepancy bias, reliability of discrepancy, three bias slope estimates and their standard errors (discrepancy, direction, and 
interaction), and R2 bias. The dependent variables discrepancy bias, direction slope, and interaction slope are excluded from the table because design factors were not substantial predictors (η2 ≥ 0.01) for any of the 3 methods. All other dependent variables are included 
in columns above. Design factors are abbreviated in the table as (a) N = cluster number; (b) M = method; (c) I = ICC; (d) R = reliability; (e) ES = effect size; (f) ESV = effect size variance.
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Furthermore, cluster number interacted with ICC for the EBD method 
(η2 = 0.06). The interaction effect, plotted in Figure 6, shows that the 
effect of cluster number (N) on AB of discrepancy slope standard 
errors increases as ICC increases.

The coverage rate (i.e., the percentage of models in which the true 
score discrepancy slope was found in the confidence interval for the 
discrepancy slope estimates) was larger for the RSD (91%) and SEM 
(89%) methods, while EBD was 24%. This indicates that the RSD and 
SEM methods more accurately predicted the strength of the 
relationship between the discrepancy and the outcome than EBD.

The power (aka proportion of statistically significant estimates) 
for the discrepancy slope estimate was computed for the three 
estimation methods. The power for the RSD and SEM was 0.96, and 
for EBD, 0.95.

3.3.2 Direction slope estimate and standard error 
bias

The bias of direction slope estimates was the same for all three 
methods (AB = −0.29). That means the direction of the discrepancy for 
distinguishable dyads’ relationship with the outcome was estimated with 
similar levels of bias for all three methods. However, the EBD method 
suffers from outliers, shown in the boxplots in Figure 7.

The average bias of standard errors was also comparable among 
all three methods, with RSD being the least biased (AB = 0.00), 
followed by SEM (AB = −0.03) and EBD (AB = −0.03). The boxplots 
of these distributions are shown in Figure 5 to illustrate EBD’s outliers. 
Neither the slope estimate nor its standard error were substantially 
(η2 > = 0.06) impacted by method and design factors in the original 
ANOVAs (see Table 4). However, the post-hoc ANOVAs revealed that 
standard error bias from the SEM and EBD methods was substantially 
impacted by cluster number, as shown in the upper-right plot in 

Figure 5. Standard error bias decreased as cluster number increased 
for EBD (η2 = 0.05) and SEM (η2 = 0.06).

The coverage rate of the direction slope estimate was 100% 
for SEM and lower for RSD (77%) and EBD (75%). The power for 
direction slope estimate was quite low among all methods, 
ranging from 0.14 for RSD to 0.16 for EBD and SEM. Lower 
power was expected because the outcome variable was generated 
based on a true slope of 0.5. It makes sense that power is lower 
for direction slope than discrepancy slope, which was generated 
based on a true slope of 0.8. A stronger relationship between 
outcome and predictor results in a greater percentage of 
statistically significant results.

3.3.3 Discrepancy by direction interaction slope 
estimate and standard error bias

The AB of the discrepancy by slope interaction effect was the 
greatest for RSD and SEM, both with AB = −0.13. EBD had bias of 
−0.08. Outliers remained prevalent for the EBD method. The 
distributions are shown in Figure 8.

The mean AB of standard errors was 0 for RSD and SEM, and 
−0.07 for EBD. The EBD method produced extreme standard error 
outliers, with standard error bias ranging from −3.46 to 81.63. 
Neither the slope estimate nor its standard error were substantially 
(η2 > = 0.06) impacted by method and design factors in the ANOVAs 
(see Table 4). According to the post-hoc ANOVAs, however, the RSD 
and SEM methods were not substantially impacted by design factors, 
but the EBD method was. As shown in the bottom plot of Figure 5, 
bias decreased sharply as cluster number (N) increased. Furthermore, 
cluster number interacted with ICC for the EBD method. Figure 6 
shows that the effect of cluster number on standard error bias 
increases as ICC increases.

The mean AB of standard errors was 0 for RSD and SEM, and 
−0.07 for EBD. The EBD method produced extreme standard error 
outliers, with standard error bias ranging from −3.46 to 81.63. Neither 
the slope estimate nor its standard error were substantially (η2 > = 
0.06) impacted by method and design factors in the ANOVAs (see 
Table 4). According to the post-hoc ANOVAs, however, the RSD and 
SEM methods were not substantially impacted by design factors, but 
the EBD method was. As shown in the bottom plot of Figure 5, bias 
decreased sharply as cluster number (N) increased. Furthermore, 
cluster number interacted with ICC for the EBD method. Figure 5 
shows that the effect of cluster number on standard error bias increases 
as ICC increases.

The coverage rate of discrepancy*direction interaction slope 
estimate was highest for EBD (58%). It was substantially lower for 
SEM (19%) and RSD (18%). Finally, the power of the 
discrepancy*direction interaction estimates was low and comparable 
among the three methods. Power was highest for SEM (0.10), followed 
by RSD (0.09) and EBD (0.09).

3.3.4 R2 bias
RSD and SEM R2 bias values were −0.04, and EBD was −0.05. 

Estimation method explained a large proportion of the variance in R2 
bias (η2 = 0.69). EBD accounted for the differences among methods as 
shown in Figure 9. The post-hoc ANOVAs explained that R2 bias from 
each method (RSD, EBD, and SEM) was substantially impacted by 
effect size variance. Bias by method and effect size variance is plotted 
in Figure  10. The plot shows that R2 bias increases as effect size 

FIGURE 2

Reliability of discrepancy estimate by method (η2 < 0.001). The 
minimum and maximum bias are represented by the endpoints of 
each plot. The upper edge of the box represents the third quartile 
(75th percentile), and the lower edge of the box represents the first 
quartile (25th percentile). The median (50th percentile) is represented 
by the line within the box, and the mean is represented by the 
diamond within the box.
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FIGURE 3

Reliability of RSD and SEM discrepancy estimate by design factors. Design factors shown are effect size variance (RSD η2 = 0.55 and SEM η2 = 0.52), 
effect size (RSD η2 = 0.24 and SEM η2 = 0.23), and ICC (RSD η2 = 0.06 and SEM η2 = 0.04). EBD is excluded because η2 < 0.01 for all effects. The 
minimum and maximum bias are represented by the ends of each plot. The upper edge of the box represents the third quartile (75th percentile), and 
the lower edge of the box represents the first quartile (25th percentile). The median (50th percentile) is represented by the line within the box, and the 
mean is represented by the symbol within the box. Outliers are labeled with the O symbol for RSD and the + symbol for SEM.

FIGURE 4

Absolute bias (AB) of discrepancy slope estimate by method (η2 = 0.42) and AB of standard error (SE) of discrepancy slope estimate by method 
(η2 = 0.05). The minimum and maximum bias are represented by the endpoints of each plot. The upper edge of the box represents the third quartile 
(75th percentile), and the lower edge of the box represents the first quartile (25th percentile). The median (50th percentile) is represented by the line 
within the box, and the mean is represented by the diamond within the box.
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variance increases. The power of R2 was high, at 0.98 for EBD, and 0.99 
for RSD and SEM. The high power of R2 values across all three 
methods indicated that each method produced a statistically 
significant R2, effectively identifying the existence of a relationship 
between the outcome and predictors.

4 Discussion

These findings suggest that dyadic discrepancy from MLM (i.e., 
EBD) suffers from poor reliability, especially where ICC was high, effect 
size variance was high, and cluster number was low, which hinders its 

accuracy as a predictor. The implications of this finding are that RSD or 
SEM may be preferred because they are not impacted as greatly by ICC, 
effect size variance, and cluster number. These findings are discussed 
more fully below, followed by a discussion of limitations and 
recommendations for future research.

4.1 Why did the EBD shrinkage effect result 
in outliers?

The data were explored further to better understand why EBD 
produced outliers in prediction. First “outlier” conditions were 

FIGURE 5

Standard error bias by N and method for discrepancy slope, direction slope, and interaction slope.
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defined as those with AB discrepancy slope for EBD fell beyond 
the range of AB discrepancy slope for RSD and SEM, which was 
about −1.4 to −0.8. A total of 8,111 (or 3.8%) of AB of EBD 
estimates met this condition. Outliers were most prevalent where 
ICC equaled 0.5 and cluster number equaled 50, as shown in 
Figure 11.

Examining the outlier data showed that variance of EBD within 
outlier samples was lower than the non-outlier samples. This led to a 
deeper  analysis of the variance components in EBD estimation. 

According to Equation 7, EBD is a weighted combination of the OLS 
slope and the grand mean of slopes across all dyads (γ10). It is weighted 
by the reliability of the OLS estimate. The more concentrated β1j values 
are around γ10, the more γ10 is weighted in EBD. The more the central 
tendency is weighted in EBD, the less variable EBD will be. In extreme 
outlying cases, the variance of EBD was near zero, indicating over 
shrinkage, which was cautioned against by Raudenbush (2008), 
particularly when cluster sizes are small. As a result, EBD became 
ineffective as a predictor in the regression models.

FIGURE 6

Absolute bias (AB) of discrepancy slope and interaction slope standard error by cluster number (N) and ICC, for EBD method only (η2 = 0.06 for each 
plot).

FIGURE 7

Absolute bias (AB) of direction slope estimate by method (η2 = 0.42) and AB of standard error (SE) of direction slope estimate by method (η2 = 0.05).
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4.2 Which method should researchers use 
to estimate dyadic discrepancy?

One purpose of this study was to determine the most 
accurate method for estimating dyadic discrepancy. On average, 
AB was zero for all three methods evaluated (RSD, EBD, and 
SEM). Using method and design factors to predict bias in an 
ANOVA resulted in η2 less than 0.0001. Considering average bias 

alone, one might conclude that all three methods are 
equally accurate.

However, though the methods do not differ in average bias, they 
do differ in reliability of bias. The EBD method produced estimates 
with the poorest reliability. On average, reliability was 2.29; being 
greater than one indicates that variance of EBD estimates was less than 
variance of true discrepancy scores. This proved to be problematic for 
bias of estimates and their standard errors in prediction, as 
discussed below.

Another purpose of the study was to determine which method’s 
discrepancy estimates most accurately predict an outcome. Prediction 
was evaluated using slope estimate bias, standard error of slope 
estimate bias, power, coverage rate, and effect size (R2). The 
discrepancy estimates from the EBD method produced extreme 
outliers in the prediction models. This resulted in EBD being the 
poorest performer by far in slope estimate bias and standard error 
bias for all three slopes (discrepancy, direction, and 
discrepancy*direction interaction). ANOVA effect size, η2, for 
method was not large except for when predicting discrepancy slope 
bias (η2 = 0.42). Small effects were seen using method to predict bias 
of slope standard error (slope discrepancy S.E. η2 = 0.05, 
direction = 0.04, and discrepancy*direction interaction = 0.02), as 
well as slope (interaction) bias (η2 = 0.01).

The issues with EBD stem from the “over-shrinkage” described in 
the literature review above (Raudenbush, 2008; Raudenbush and Bryk, 
2002; Stage, 2001). In the current study, the over-shrinkage primarily 
impacted samples with small cluster numbers and, more so, high 
conditional ICC. Cluster number interacts with method (η2 = 0.06), 
and the interaction plots (Figure 5) show that bias was greatest for 
EBD where cluster size was 50.

An examination of EBD outliers revealed that over 85% of the 
outlying samples had the high conditional ICC value of 0.5. The 
variance of EBD in these samples was very low. Because the EBD 
method partials out the variance from the grand slope (see 
Equations 3a–5), if dyads have a high level of dependence, more 

FIGURE 8

Absolute bias (AB) of interaction slope estimate by method (η2 = 0.42) and AB of standard error (SE) of interaction slope estimate by method (η2 = 0.05).

FIGURE 9

Absolute bias (AB) of R2 by method (η2 = 0.69).
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of the variance overall is partialed out from the dyad-level 
discrepancy. This results in EBD estimates with low variance, 
because the variance accounted for by the grand slope has been 
removed already. The shrunken variances of EBD relative to the 
true score discrepancy caused the extreme outliers in bias of 
parameters and their standard errors in the prediction equations.

Overall, none of the three methods were clearly more accurate 
than the other, and bias was not substantially impacted by method 
or design factor. However, the poor reliability of EBD and the 
resulting impact on accuracy of predicting an outcome suggests 
RSD and SEM are better estimates of dyadic discrepancy. RSD may 
be preferred since it is easier to compute. However, SEM has the 
advantages of model flexibility, such as predicting the outcome 
directly in the same model or including other relationships and 
variables in the model.

4.3 Was raw-score difference impacted by 
reliability?

According to the reliability formula in Equation 1 from 
Williams and Zimmerman (1977), RSD reliability would be higher 
when the reliability of scores from individual dyad members was 
higher and when ICC was smaller. According to Table  5 and 
Figure  3, the ANOVA predicting RSD reliability with design 
factors confirmed that reliability for RSD was higher when ICC 
was lower (η2 = 0.06). Reliability of scores for dyad members A 
and B was expected to have an impact on reliability of discrepancy 
estimates. However, in the ANOVA predicting reliability of 
estimates, η2 was 0 for reliability, indicating that RSD reliability 
did not depend on the reliability of individual dyad member 
scores. The reliability values simulated in this study were set high 

FIGURE 10

Absolute bias (AB) of R2 by method and effect size variance.

FIGURE 11

Percentage of outliers by ICC and cluster number.

https://doi.org/10.3389/fpsyg.2025.1499076
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


McEnturff et al. 10.3389/fpsyg.2025.1499076

Frontiers in Psychology 18 frontiersin.org

at 0.7, 0.8, and mixed 0.7 and 0.8, per values commonly found in 
applied research. Future research should include lower levels of 
reliability as a design factor to test the limits of how low reliability 
of scores from dyad member A and B can go without impacting 
the reliability of discrepancy.

4.4 Limitations and recommendations for 
future research

As explained in the methods and results, reliability is typically 
thought of as ranging from zero to one, but the EBD shrinkage effect 
often resulted in reliability values greater than one. We did not identify 
an alternate method of computing reliability for EBD other than the 
traditional true score variance divided by observed score variance. 
Future research should consider whether there is a better way to 
compute or interpret the reliability of EBD.

Furthermore, one of the benefits of the EBD shrinkage effect is the 
ability to include dyads with missing or unreliable data, which then 
“borrow” strength from the rest of the sample (Kim et  al., 2013). 
However, missing data was not considered in this simulation. Varying 
degrees of missingness could be  simulated in future research to 
generate understanding of whether and how each method overcomes 
the limitations of missing data.

The findings suggest that even though RSD and SEM had poor 
reliability, these estimates still do a good job predicting an outcome 
as evidenced by high levels of power. This suggests that RSD is 
suitable for many practical, real-life applications of dyadic 
discrepancy research, despite historical concerns that it is 
unreliable. Statistically, the reliability of the discrepancy score is 
impacted by the reliability of each dyad member’s scores, but the 
conditions prevalent in dyadic data literature may overcome these 
concerns by having high reliabilities of dyad member’s scores and 
low to moderate dependence. However, future research should 
further push the upper and lower limits of the design factors in the 
current study, specifically reliability of dyad member’s scores and 
cluster number, in an effort to determine under what conditions 
the RSD would become unacceptable.

A simple regression model was used to evaluate accuracy of 
prediction, but in reality, more complicated models are needed to 
adequately address dyadic discrepancy research questions. While RSD 
is the most straightforward computational approach, the ability to 
generate an accurate dyadic discrepancy in SEM is promising for 
researchers seeking to use the discrepancy in more complicated 
models, such as the second-order factor model from Newsom (2002). 
The discrepancy can be generated in the same model as the prediction 
model, and the measurement model could be included. Though it is 
possible to output the idiographic discrepancy using SEM, in practice, 
RSD is easier to compute for purposes of idiographic research. But 
SEM offers the flexibility of using discrepancy in a nomothetic model 
while maintaining the ability to output it ideographically as well. 
Future research should ensure the good performance of the SEM 
discrepancy in this study is maintained in more complicated models, 
including those with the measurement model included. It would also 
be useful to understand the impacts of measurement invariance on 
dyadic discrepancy and its use in prediction (Russell et al., 2016).

EBD and SEM discrepancy estimates were generated using full-
information maximum likelihood (FIML) estimation method. 

Restricted maximum likelihood (REML) is an alternative estimation 
method that may result in less biased estimates, particularly when 
cluster number is small (Raudenbush and Bryk, 2002). Future research 
should investigate in more detail whether the estimation method 
matters in the current context.

Finally, the findings here cannot be generalized to conditions not 
included in the simulation. Furthermore, future research should apply 
the techniques to real data, as opposed to simulated data, to see if the 
estimates compare to those found in this study.

4.5 Practical implications

Researchers seeking to make an informed decision about which 
method to use to study dyadic discrepancy would hope for a clear 
answer about which method is best. Notwithstanding the limitations 
and directions for future research in the preceding section, the findings 
suggest that RSD or SEM perform quite similarly, and better than EBD 
on average. Though the estimates themselves did not have great 
reliability for any method, the RSD and SEM methods produced 
estimates with high coverage rates and power when predicting an 
outcome with the discrepancy. This suggests that for the purpose of 
predicting an outcome, either of these methods would be suitable, and 
neither were greatly impacted by the design factors, indicating that they 
work well in the full range of research conditions simulated. 
Researchers studying more complicated models may opt for the SEM 
discrepancy estimate, while researchers interested in simpler models 
predicting an outcome with a discrepancy score should find that the 
easy-to-compute RSD works as well as SEM to predict an outcome. 
Further research, described in the preceding section, is necessary 
before concluding whether EBD provides a more accurate and useful 
estimate than RSD or SEM in other conditions, such as with 
missing data.
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