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Grounding mathematics in an
integrated conceptual structure,
part I: experimental evidence that
grounded rules support transfer
that formal rules do not

Kevin W. Mickey and James L. McClelland*

Department of Psychology, Stanford University, Stanford, CA, United States

Mathematics relies on formal systems of rules that can be treated in isolation or

grounded in a conceptual system that provides meaning for the relationships the

rules express. Here, we show how the conceptual system provided by the unit

circle, a visuospatial structure that provides a meaning for formal expressions

in the domain of trigonometry, supports a generalizable understanding of

trigonometric relationships, allowing for transfer beyond relationships explicitly

taught. We examined the utility of the unit circle in our first study, in which we

presented trigonometric identity problems to undergraduates (N = 50) who had

prior coursework in pre-calculus trigonometry. Students reported using the unit

circle to solve these problems more often than other approaches, and those

who reported using the circle solved more problems correctly. Using other

students from the same population, we then manipulated the systems they used

by presenting a refresher lesson, using either formal rules or rules grounded

in relationships on the unit circle (N = 35 in each group). Students in both

conditions improved on taught problems, but only students in the grounded

condition showed improvement on held-out transfer problems. Using findings

from a third study further exploring the grounded condition (N = 64 participants),

we found evidence that the circle supported transfer in two ways: by providing a

procedure that could be used to solve both taught and transfer problemswithout

rules and by allowing students to appreciate rules as capturing relationships

between meaningful quantities, facilitating their application and extension. This

project served as the starting place for the development of a curriculum that

supports reliance on the unit circle and led to robust learning and retention

of trigonometric relationships for most students with su�cient relevant prior

knowledge, as described in Part II of this article.

KEYWORDS

visuospatial representation, mathematics education, learning trigonometry, conceptual

grounding, generalization, transfer, mathematical cognition

Introduction

A substantial body of evidence suggests that visuospatial processes may ground simple

numerical and arithmetic reasoning (Dehaene, 1997; Dehaene et al., 1999).Yet higher level

mathematical cognition is often treated as depending on the manipulation of structured

arrangements of symbols according to structure-sensitive rules, without regard to the

spatial relationships these rules may be describing (Harnad, 1990). Mathematicians and
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philosophers like Russell (1903), who proclaimed that “all

Mathematics is Symbolic Logic”, attempted to formalize

mathematics as an extension of logic, and soon after the

introduction of electronic computers, symbolic rule-following

programs were developed to prove logic theorems (Newell

et al., 1958) and to solve mathematical equations of unbounded

complexity (Martin and Fateman, 1971). Furthermore, some have

argued that symbolic rule-following is essential for many types

of systematic cognition (Fodor, 1975; Marcus, 2003). However,

others have argued that visuospatial reasoning is a core feature

of human intelligence (Wai et al., 2010), and that mathematical

thinking, including achieving new mathematical insights, often

relies on visuospatial reasoning (Wertheimer, 1959; Presmeg, 2006;

Shepard, 2008).

Many people may agree that visuospatial reasoning and rule-

based reasoning both contribute to success in mathematical

problem solving. Often, however, these two forms of reasoning are

considered separately and treated as drawing on distinct cognitive

resources that have innate biological underpinnings. In this two-

part publication, we emphasize, instead, the interdependence

of formal and spatial forms of representation, the benefits of

integration of these representations, and the central roles of

human-invented structures and conventions in mathematical

reasoning. The key points we make are the following:

• Interdependence and integration of formal and spatial

reasoning. Formal and spatial elements are intimately

interdependent in the reasoning systems employed in

mathematics and mathematics education; together these

elements create an integrated system in which formal and

spatial representation systems work together to support

problem solving and understanding.

• Dependence of formal and spatial reasoning systems

on human-invented structures and conventions. The

interdependent formal and spatial reasoning systems are

human-invented systems of notation and spatial organization

that allow quantities and relationships to be represented and

understood in relation to each other in useful and powerful

ways.

• Benefits of integration. Interdependence creates the

opportunity to integrate strictly formal systems with more

intuitive spatial reasoning systems, empowering intuition in

service of mathematical understanding, promoting transfer

and robust learning.

• Challenges impeding integration. The dependence on

structured, human-invented conventions makes exploiting

interdependence challenging for learners, because these

systems, though powerful, rely on arbitrary, and in some

ways counter-intuitive, conventions that create a barrier to

understanding.

The present article—the first in a two-part series—employs

experimental studies in the domain of trigonometry using

undergraduates with prior exposure to the domain, yielding

findings that support the idea that integration has benefits, and

providing evidence that these benefits depend, at least in part, on

grounding what people may often think of as formal rules in a

human-invented system of spatial reasoning that provides meaning

for these formal expressions. The second article in this series

(Mickey et al., 2025) focuses on the challenges learners often face

in mastering this system. There we describe the approach we took

to addressing this challenge in an intervention study using high-

school and community college students without prior exposure to

the domain. We provide evidence that our approach allowed many

students to learn to solve trigonometry problems that students

often fail to master in typical classroom settings and to retain what

they had learned after a 2–3 week delay.

In the following sections of this introduction, we ground the

key points we have listed in the seminal work of Robbie Case and

colleagues on the representation of whole and decimal numbers and

then extend them to our domain of pre-calculus trigonometry.

Case’s concept of a central conceptual
structure: an integrated representation of
the mental number line

We have found it useful to consider the form of integrated

representation we are describing as occurring through what Case

et al. (1996) called a central conceptual structure which links

different representations to support understanding. We argue

that this kind of representation supports building the kinds of

links between spatial and formal reasoning that some teachers

and textbooks emphasize (Gelfand and Saul, 2001) and that

many mathematicians exploit in their own patterns of reasoning

(Einstein, 1979; Needham, 1998; Stewart, 1995). Because of its

centrality in our work, we begin with a review of Case’s views, using

his example, which we hope will be accessible to many readers.

Case et al. (1996) developed and applied the idea of a

central conceptual structure in his work on grade-school children’s

understanding of the non-negative counting numbers. Case later

applied this idea to older grade-school children’s understanding of

decimal numbers and fractions (Moss and Case, 1999). He treated

the mental number line as such a structure. For Case, the mental

number line was not a simple continuum along which points can

be placed, but a structured system for representing numbers, their

relative positions, and the quantities they represent, all in relation to

each other within a powerful set of human-invented conventions.

Though an intuitive sense of a continuum of values varying in

magnitude may have some evolutionary basis (Dehaene, 1997), the

mapping of such a continuum onto space has come to be construed

by many investigators as an invented human representational

scheme that is interdependent with a person’s representation of

symbolic number (Núñez, 2011; Link et al., 2014; Kanayet et al.,

2018). Learning this mapping, Case argued, is an important step

in the emergence of basic mathematical reasoning abilities. The

number line from 0 to 10 provides the conceptual core of this

system, aligning the arbitrary names and graphic symbols for the

integers from 0 to 10 according to a sequence laid out in space

by assigning each successive digit to each successive position in

a conventionalized order from left to right, so that their relative

positions with respect to each other can be considered, and allowing

the quantities they stand for to be visualized by, for example, raising
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a finger or adding a token to a set for each increment of position

along the line.

Further, Case understood the number line to have higher-

order structure dependent on a very important human notational

invention: The place-value system, specifically the base 10 system

underlying arithmetic as it is taught around the world today. The

place-value system allows numbers to be seen as sums of integer

multiples of powers of 10. This system was an important human

invention that makes arithmetic operations highly systematic, so

that completely formal procedures can be used to perform exact

numeric calculations. The number line from 0 to 100 becomes,

in this framework, a structure consisting of a nesting of 10

instances of the number line from 0 to 10 within itself, and

this system can be extended to larger and larger powers of 10,

to represent indefinitely large quantities. There is an important

arbitrary convention associated with this, in that the right-most

digit in the representation of an integer quantity always represents

the quantity of individual units, with each successive digit to the

left representing the number of multiples by the next larger power

of 10, so that, for example 173 = (1× 100)+ (7× 10)+ 3.

A further extension of this human invention allows unit

quantities to be partitioned to represent quantities between the

unit values, now using the integers from 0 to 10 to partition

the interval between 0 and 1 into ten parts. The process can be

applied recursively to create finer and finer partitions. Importantly,

this partitioning must be aligned with a human-invented

representational convention for decimal numbers, wherein each

successive digit to the right of a decimal point corresponds to

the next recursive subdivision of the interval specified by its

predecessor to its left. The first digit after the decimal point places

the number within a specific tenth of the whole line, while the

second places it within a specific tenth of that tenth of the line, and

so on. In this way quantities of any magnitude and any degree of

precision can be mapped into a common frame of reference and

positioned with respect to each other, facilitating reasoning and

problem solving about number.

In their work within this framework, Case and colleagues

promoted the idea that children gradually acquire an integrated

understanding of number notation, position along a structured

linear dimension, and the quantity for which each number stands,

as well as an understanding of relationships among various

numbers, such as the understanding that 7 is between 6 and 8; that

8 references a larger quantity and a position closer to 10 than 7; that

37 can be understood as 3 tens and 7 ones and at the same time as a

position along a line from 1 to 100 between 30 and 40, 3 unit steps

to the left of 40. Moss and Case (1999) extended this framework to

create a method for teaching decimals and fractions, starting with

the number line from 0 to 100 and using it to represent percentages

of a unit quantity. Here again, coordinating arbitrary conventions

is key. For decimals, prior to understanding this system, children

often initially treat 0.173 as a larger number than 0.37, but after

being taught the relevant conventions, they realize that the former

is between 0.1 and 0.2 while the latter is between 0.3 and 0.4, making

the former the smaller rather than the larger number. A key part

of this work was an emphasis on relating fractions to the number

line, starting with 1/2 corresponding to 0.5 or 50 percent and 1/4

corresponding to 0.25 or 25 percent. Interestingly it is found in

studies of children’s marking of lines from 1 to 100 that 0.5, and

at later ages, 0.25 and sometimes 0.75, are treated as landmarks or

reference points around which other points are placed within this

system (Barth and Paladino, 2011; Sullivan et al., 2011).

Ideas building on Case’s insights have had an important impact

on early mathematics eduction. A seminal body of work starting

with Ramani and Siegler (2008) drew on Case’s ideas to show that

a game in which children compete to move a token from a start

square to a finish square across a row of squares labeled with the

digits from 1 to 10, while tracking each successive square’s name as

the next digit in the series, leads to marked improvement in several

early number skills including the ability to judge which of two

numbers is larger. A considerable body of later work reviewed in

Siegler and Lortie-Forgues (2014) draws on and extends these ideas

to numbers of larger magnitudes, as well as fractions and negative

numbers.

The unit circle: an integrated conceptual
structure in trigonometry

Drawing on Case’s ideas, we investigate the grounding of

mathematical understanding in what we believe Case would have

called a central conceptual structure in the domain of pre-calculus

trigonometry, a branch of mathematics often taught in pre-calculus

courses at the gateway to advanced mathematics. This subject

matter sits at the intersection of algebra and geometry and offers

rich opportunities for investigating visuospatial and rule-based

reasoning in productive mathematical thinking. The concepts

introduced in this material are foundational to many fields of

science and engineering, going far beyond the basic “triangle

trig” relationships often taught in conjunction with a first course

in geometry.

Pre-calculus trigonometry is also a domain that can be very

challenging for many high-school students, as we document in

the sequel to this article (Mickey et al., 2025), and so presents a

real opportunity for educational advances. Finding better ways of

teaching trigonometry may be an important way to remove some

of the barriers to STEM careers, potentially leading to insights

that could support better student learning in many branches of

mathematics, science, and engineering.

In pre-calculus trigonometry, students learn about the

trigonometric functions, including the sine (sin), cosine (cos), and

tangent (tan) functions, using them to solve problems such as

determining the distance between two spatially remote objects

or the value of an oscillating quantity such as the height of

the sun in the sky. These functions can be conceptualized in

many different ways: They can refer to ratios of the lengths of

pairs of sides of right triangles or to the values of functions that

oscillate regularly as a function of time. They also enter into

many complex relationships with each other–relationships that are

specifically taught as “identities” and that are central to reasoning

in trigonometry.

Identities are relationships that hold regardless of the specific

value of the argument to a function. Two of the most basic
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identities are:

sin(−θ) = − sin(θ)

and

cos(−θ) = cos(θ),

where θ can be any real number. These identities can seem

arbitrary. In one, the minus sign inside the parentheses appears to

have been pulled out and placed in front of the function definition,

while in the second, the minus sign has simply disappeared. Why

this difference, and why is it in cos and not sin that the minus

sign disappears? Indeed, as we will document, undergraduates at

Stanford University who have taken high school classes covering

pre-calculus trigonometry often make mistakes answering simple

multiple choice questions about the second of identities, choosing

− cos θ rather than cos(θ) to be equal to cos(−θ). However, these

relationships are not at all arbitrary–they have meaning when

understood within the context of a conceptual framework known

as the unit circle, which we now describe.

The unit circle, shown in Figure 1, has a radius of 1, and its

center is at (0, 0) on the (x, y) coordinate plane. Angles can be

visualized on the unit circle by defining one side (called the initial

side) as the positive side of the x-axis, and by rotating the other

(terminal) side of the angle (a ray with one end fixed at the center

of the circle) up (counter-clockwise) for positive angles or down

(clockwise) for negative angles. To measure angles one needs a unit

of measurement. When these relationships are first introduced the

unit of measurement is one degree, a unit that divides the circle into

360 equal parts. In this system, the cosine of an angle corresponds

to the x-coordinate of the point where the angle’s terminal side

intersects the circle, and the sine of an angle is equal to this point’s

y-coordinate.

These unit circle definitions of sine and cosine extend the

definitions these functions have in right triangles, where the

absolute values of the x and y coordinates of the endpoints of the

terminal side of the angle correspond to the lengths of sides of a

right triangle, as illustrated in Figure 1.

We propose that the unit circle serves as an integrated

conceptual structure in trigonometry, combining the conceptual

system for representing the horizontal and vertical positions of

points on the plane in terms of real-valued [x,y] coordinate pairs

with the conceptual system for representing points on a circle in

terms of a single real-valued angular coordinate θ (Figure 2). We

use the word integrated rather than Case’s term central to emphasize

how it brings two distinct conceptual systems into coordination

with each other. Furthermore, each of these conceptual structures

can be thought of as an integrated structure that combines

geometric and numerical content (Fauconnier and Turner, 1998),

FIGURE 1

The unit circle. In triangles, cosine is defined as the ratio of the length of the side adjacent to the angle (shown in green in the figure) to the length of

the hypotenuse, and the radius of the unit circle is equal to 1. The ratio then reduces to the length of the horizontal side. Similarly the sine ratio

reduces to the length of the vertical side (shown in lavender). On the unit circle, these quantities correspond to the values of the x and y coordinates

of the point where the terminal side of the angle intersects the circle.
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FIGURE 2

The unit circle is a conceptual structure in trigonometry that integrates the system for representing positions of points on the X-Y coordinate plane

with a system for representing positions around the circumference of a circle.

with the unit circle integrating both of these into a higher-order

conceptual blend (Lakoff and Nunez, 2000).

Fauconnier and Turner (1998) argued that productive insights

can emerge from conceptual integration by bringing elements of

distinct structures into direct relationship with each other (e.g.

the position of a point on the circle relative to reference positions

on the circle and on the plane) and combining these with even

more basic knowledge brought into the representation by a process

they call “completion”. A key point to note in this context is

that, just as with Case’s conception of the number line, each of

these systems has arbitrary conventions that must be mastered.

The x and y coordinates of the Cartesian plane each consist of

the extended number line we discussed above, the one called the

x axis running from left to right in ascending numerical value

with 0 at the center of the circle, and the other called y running

from bottom to top with 0 at its intersection with the other. The

placement of the horizontal coordinate first in an [x, y] coordinate

pair is an arbitrary convention. The θ coordinate on the circle

has an arbitrary, conventionalized reference point where the circle

intersects the positive end of the x axis of the Cartesian plane,

its positive direction is arbitrarily counter-clockwise rather than

clockwise, and it divides the circle arbitrarily into 360 parts. Its

most important reference points are now located at 90, 180, and

270 degrees, corresponding to the three points other than 0 where

the circle intersects an axis of the Cartesian plane.

If a person understands both the Cartesian and circular

coordinate systems, and the way in which they are coordinated in

the unit circle, the identities sin(−θ) = − sin(θ) and cos(−θ) =

cos(θ) become meaningful, as visualized in Figure 3. The first

corresponds to the statement that a rotation of θ degrees in the

negative direction from the reference point on the horizontal x axis

through the circle will place a point at the same vertical distance

from the reference point but in the opposite direction from a

rotation of the same number of degrees in the positive direction.

The second corresponds to the statement that the x coordinates of

the points reached by these equal and opposite rotations will be the

same. These correspondences can be visualized on the unit circle.

Another identity, such as the identity cos(θ + 180) = − cos(θ), can

be understood as expressing the idea that the horizontal position of

the point reached by rotating half way round the circle from any

position θ will be the same horizontal distance from the center of

the circle as the point at θ but in the opposite direction. Visualizing

the relevant positions on the circle and considering their horizontal

and vertical positions grounds the relationships and makes them

visually apparent. The evidence we will present below suggests that

this supports understanding these identities, in a way that promotes

transfer to other related identities.

Overview

In the present article, we present experimental studies

investigating the role of visuospatial representations, formal

rules, and their interaction in solving—and learning to
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FIGURE 3

Using the unit circle to understand why sin(θ ) = − sin(θ ) while

sin(θ ) = − sin(θ ). The first expression can be read as stating that the

position reached by rotating a point in the negative direction from

the reference point at 0 degrees on the positive x axis is the same

distance from the x axis as the point reached by an equal rotation in

the positive direction, but in the opposite direction, while horizontal

distance of these points from the y axis are the same.

solve—trigonometric identity problems. Our findings suggest

that grounding in the unit circle supports robust, generalizable

understanding, and that it does so, at least in part, by allowing

the use of grounded rules—rules that describe meaningful

spatial relationships—that generalize because the relationships

involved are more general than those captured in specific taught

examples. Our findings also suggest that success in using this

model is far from universal, even among the undergraduates

at Stanford, a highly selective university, all of whom had

prior exposure to the unit circle in pre-calculus trigonometry.

Specifically, only a subset of students relied on the unit circle

spontaneously, and only a subset of those who did not do so

benefited from a reminder lesson grounding trigonometric

identities in the unit circle. In the General Discussion, we return to

this theme.

In a related project we began after completing the second

study described in the present article, we found that success was

even more limited among students in a pre-calculus class at a

public high school near the university. In the second article in

this series (Mickey et al., 2025), we consider the reasons for this,

and we build on what we learned in the studies in the present

article and on principles and insights from others’ research on

the psychology of learning and education to develop a curriculum

that supported robust learning of trigonometric relationships in

a substantial proportion of students without prior exposure to

this material.

Study 1: exploring trigonometric
reasoning

To explore what representations people use to solve

trigonometry problems, we began with an preliminary study

to develop testable hypotheses, using 37 undergraduate students

taking an introductory psychology class at Stanford University.

Participants first solved a set of 40 identity problems described

more fully in the methods for Study 1 below, then answered a few

short questions and took a short break, then completed forty more

such problems before answering a fuller set of questions about the

representations they used and their trigonometry background.

In this study, we found a wide range of variation in

performance, with many students scoring below 50% correct

overall, even though all of the participants had some prior exposure

to trigonometry and strong enough quantitative backgrounds

to gain admission to a highly selective university. Strikingly,

participants performed especially poorly on a problem that taps a

basic and explicitly instructed aspect of pre-calculus trigonometry,

namely the value of the cosine of a negative argument. Given a

probe expression like cos(−70 + 0), where the numbers represent

the arguments to the cosine function in degrees, and the task of

identifying which of the alternatives sin(70),− sin(70), cos(70), and

− cos(70) is equivalent to the probe expression, many participants

chose− cos(70), whereas the correct answer is cos(70).

Our preliminary study also provided evidence suggesting a

role for visuospatial representations in trigonometry. Specifically,

we found that students reported using one of the visuospatial

representations we asked them about—the unit circle—more

frequently than others, and those who reported using the unit

circle tended to perform better at solving the identity problems.

Participants reported using the unit circle more than any

other representation; self-reported circle use was more strongly

associated with greater overall accuracy than other representations,

even after controlling for self-reported number of courses involving

trigonometry and years since last use of trigonometry; and those

who reported always using the unit circle did much better on

cos(−θ + 0) problems than other participants.

Our preliminary findings suggest a central role for the unit

circle in solving the trigonometric identity problems used in

our study and point to a specific role for this representation

in facilitating mastery of fundamental aspects of trigonometry.

We therefore set out to establish the reliability of the association

between unit circle use and performance on trigonometric identity

questions and to determine whether a brief lesson grounded in

the unit circle could produce benefits relative to a lesson relying

on formal rules. Our first two studies establish that unit circle

use is indeed associated with better performance on trigonometric

identities questions and demonstrate that a brief lesson grounded in

the unit circle leads to performance gains that transfer to untaught

problems, whereas a rule-based lesson does not. Our third study

then builds on these results to explore possible explanations for the

transfer benefit of the unit-circle based lesson.

Study 1 explored the relationship between reported circle use

and performance on our trigonometric identities test, using a larger

group of participants than our preliminary study and with some

refinements we describe below.
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Methods and materials

Participants
We recruited 50 undergraduate students at Stanford University

to participate in a single hour-long session in exchange either for

credit in an introductory psychology class or for pay ($12). We

decided in advance to stop collecting data once we reached 50

participants. We chose a round number somewhat greater than the

number of participants in the pilot study to allow us to achieve

somewhat tighter confidence intervals for our dependent measures.

For all of our studies, the IRB approved the experimental design,

and participants provided informed written consent. 60% of the

participants were female. Among the 68% of participants for whom

we obtained additional demographic data, the distribution of racial

identity was 29% Asian American, 26% White, 18% Black or

African American, 15%Multiracial, 9%Hispanic/Latino(a), and 3%

Other.

Materials
The problems used each consisted of a probe and four choice

alternatives. The probe was always an expression of the following

general form:

func(±θ ± 1)

where func was either sin (sine) or cos (cosine), and θ and 1 were

numeric expressions in degrees. The value of θ was drawn from the

set {10, 20, 30, 40, 50, 60, 70, 80} and could be positive or negative

while ±1 could take any of the values (–180, –90, +0, +90, +180).

The order of the terms within the parentheses of the probe varied

so that θ could occur first or second. If the first term was positive,

its sign was not displayed. The choice alternatives were always of

the form:

sin(θ) OR− sin(θ) OR cos(θ) OR− cos(θ)

where the value of θ was the same as its value in the probe. For each

participant, two blocks of forty problems were generated according

to a 2x2x5x2 design in which function (sin or cos), sign of θ

(positive or negative), value of ±1, and order (θ before 1 or 1

before θ) were fully crossed. The value of θ was selected randomly

and independently on each trial.

Procedure
Each participant was tested individually while seated in a quiet

laboratory room. At the beginning of each block, participants

read instructions indicating that their task was to consider the

expression at the top of each display, and to choose the equivalent

expression from four possible choices. It was noted that all

expressions were in degrees. They were instructed to respond

“quickly but still accurately” and were asked not to use paper and

pen/pencil or a calculator and not to refer to any outside sources.

A single digit subtraction problem was presented as an

example, followed by a block of problems. The order of trials

in each block was random, and selected independently for each

block. No feedback was provided. After the participant’s response

was recorded on each trial, the participant clicked to initiate

the presentation of the next trial. Response times (from the

presentation of the problem to the mouse click indicating the

participant’s choice response) were recorded on every trial. At the

end of each block, participants produced a confidence rating (an

estimated number of correct answers out of 40) and an open-ended

description of how they solved the problems, with the specific

instruction to describe anything they may have visualized and any

rules, mnemonics or other strategies they may have used.

Additional self-reported measures were collected after

completing the second block. First, participants rated on a

five point scale (Not different at all, Slightly, Somewhat, Very,

Extremely different) the extent to which the way they solved

the second block of questions was different from the first block

of questions. An open-ended response box was provided for

participants to describe any changes in the way they solved the

problems. Participants then estimated how recently (in years) they

encountered trigonometry in school or in work (0 if current). They

also estimated how many classes they had taken that involved

trigonometry or required some use of trigonometric knowledge

(with the instruction that this includes not only math classes, but

also applications in the sciences and other areas). Participants were

then asked to rate on a five point scale (Never, Rarely, Sometimes,

Often, Always) how often, in solving each block of problems,

they: (1) recalled an explicit rule or formula, (2) visualized the

sine or cosine graphs as waves, (3) visualized sine and cosine

as x and y coordinates of a circle, (4) visualized a right triangle

with sine and cosine associated with sides of a triangle, (5) used

a mnemonic (memorized acronym or phrase) to help remember

facts about sine and cosine, or (6) used another representation

or strategy. These ratings were first collected with participants

instructed to consider only the first block, and were collected a

second time after the participant was instructed to consider only

the second block. Participants then rated how often they had used

each representation in previous classes and other experiences

with trigonometry, and they also rated how much they had been

exposed to each representation.

Following this, 20 additional problems were used for problem-

specific self-report assessment. These 20 problems included one

example of every combination of function, sign of θ , and signed

value of 1, with randomly chosen values for θ and for the order of

θ and1. Immediately after solving each problem, participants rated

the extent to which they used each representation (1–6 above) on a

three point scale (not at all, a little, a lot).

At the end of the study, we also asked students to solve three

problems in front of the experimenter. The experimenter instructed

students to talk through what they were thinking as they were

thinking it, and this think-aloud protocol was recorded.1 The three

problems shownwere: cos(−50+0), cos(20+180), and sin(90−70).

Due to a technical error, for the first five participants,

one trial was not presented in their block of problem-

specific reports, and one trial presented in their first

main block was mis-specified, so that block was

slightly unbalanced.

1 In gathering consent, we explained that recording was entirely optional.

One student declined to be recorded.
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FIGURE 4

Mean accuracy (with 95% BCIs) split by problem type, from Study 1 (no lesson). The color indicates what trigonometric identity, possibly taken

together with basic algebraic principles like x± 0 = x, can solve each problem type. Cases labeled Multiple/Other could be solved by a combination

of these trigonometric and algebraic rules. In the rules shown, func could be sin or cos; when func refers to one of these, opp refers to the other.

Results

General performance and background measures
Our findings replicate the striking finding of our preliminary

study: The ability to use knowledge of very basic aspects of

trigonometry that can be captured in a very small number of

rules is quite poor, even among students with fairly extensive prior

exposure to trigonometry at a highly selective private university.

Participants reported an average of 3.8 prior classes involving

trigonometry, 95% bootstrapped2 confidence interval (BCI)[3.2,

4.7], SD = 2.7, and an average of 2.5 years since last use

of trigonometry, 95% BCI [2.0, 3.0], SD = 1.7. Yet overall

performance on our trig identity problems averaged only 52%, 95%

BCI [46%, 59%].3

Figure 4 shows performance broken down by problem type,

collapsing across order (θ first or1 first) (Order had no appreciable

effect on accuracy in a logistic mixed model with a random

2 We used 10,000 bootstrap runs to resample subjects, and confidence

intervals have 95% point-wise coverage and are bias corrected and

accelerated (BCa) (Efron, 1987).

3 Supplementary Section 1 provides information about gender e�ects in

Studies 1–3. In brief, male participants outperformed females in Study 1 and

prior to the lessons in Studies 2 and 3. The main patterns of findings we

report in the main text showed the same pattern across genders, but were

slightly stronger in women, perhaps because more men performed at ceiling

accuracy levels.

intercept and slope for each student and for each problem type,

b = 0.04, 95% CI [−0.05, 0.12], z = 0.88, p = 0.381). As

shown in pink in Figure 4, accuracy on the trivial func(θ + 0)

problems averaged 94% correct, 95% BCI [86%, 98%], and most

(84%) participants answered all eight of these problems correctly

(four with sine and four with cosine). Figure 4 also highlights eight

types of problems that can be solved by the application of a single

trigonometry rule, together with the rule x±0 = x. These problems

are: sin(−θ + 0) and cos(−θ + 0); sin(θ + 180), sin(θ − 180),

cos(θ + 180) and cos(θ − 180); sin(90− θ) and cos(90− θ). Mean

accuracy on these problems was only 52%, 95% BCI [45, 60]. As

previously observed in our pilot study, accuracy on cos(−θ + 0)

was quite poor, averaging 36%, 95% BCI [24, 48].

Self-report measures and their relationship to
accuracy

Retrospective self-report ratings for blocks 1 and 2 were

averaged (there were no reliable differences between blocks, -0.02,

95% CI [-0.11, 0.08], F(5, 294) = 0.73, p = 0.605). There

were significantly different levels of self-reported use between

representations, Kruskal-Wallis χ2(5) = 55.78, p < 0.001.

With a median rating of “often” (4 on a 5 point scale), the unit

circle had significantly more self-reported use than every other

representation: the waves (p < 0.001), the right triangle (p =

0.018), rules/formulas (p = 0.005), mnemonics (p < 0.001), and

others (p < 0.001) (pairwise Mann-Whitney tests corrected by

Holm’s procedure).
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We next examined whether prior exposure to or prior use

of the unit circle might explain the high degree of reliance on

the unit circle in our study. A Kruskal-Wallis one-way analysis

of variance showed significant variation in self-reported exposure,

Kruskal-Wallis χ2(5) = 120.79, p < 0.001. Students reported

significantly less exposure to mnemonics (p < 0.001) and “other”

representations (p < 0.001) than the unit circle (pairwise Mann-

Whitney tests corrected byHolm’s procedure). However, there were

no significant pairwise differences in reported exposure between

the unit circle, rules, the right triangle, and waves, which all

had a median rating of “quite a bit” of exposure (4 on a 5

point scale).

The self-reported ratings of prior use tell a similar story.

There was significant variation in self-reported prior use, Kruskal-

Wallis χ2(5) = 95.70, p < 0.001; compared to the unit circle,

students reported significantly less prior use of waves (p = 0.003),

mnemonics (p < 0.001) and “other” representations (p < 0.001).

However, the median rating of prior use of the unit circle, rules,

and the right triangle was “often” (4 on a 5 point scale) and

there were no significant pairwise differences in reported use of

these representations. Thus, the exposure ratings showed that

students were taught about other representations (including rules

and formulae) that they could have used, and the prior use ratings

showed that many had a large amount of experience using such

representations.

As a planned comparison, we examined whether reported

unit circle use would be a better predictor of overall accuracy

relative to other representations. We included each of the self-

report representation ratings as well as classes and years since last

exposure to trigonometry, as well as self-reported prior use of an

exposure to the unit circle, in a logistic mixed model to predict

overall accuracy (Supplementary Section 2.1). Reported unit circle

use significantly accounted for independent variance after taking

into account all the other predictors b = 0.34, 95% BCI [0.11, 0.57],

z = 2.92, p = 0.004.

We next considered the relation between problem-specific

ratings and performance for cos(−θ + 0) and sin(−θ + 0)

problems. As detailed in Supplementary Section 2.2, circle use was

strongly associated with correct performance on cos(−θ +0), while

performance on sin(−θ + 0) was generally accurate, independent

of reliance on the unit circle. Among those reporting little or no

reliance on the unit circle, the predominant error on cos(−θ + 0)

was − cos(θ), accounting for 75% of errors (95%BCI[61, 85]) on

this problem type.

Discussion

Study 1 finds highly consistent evidence that use of one

particular visuospatial representation—the unit circle—was

strongly associated with success in solving trigonometric

identity problems. The unit circle was the most commonly used

representation in our task, and those students who reported

using it tended to have higher overall accuracy. Use of the unit

circle proved to be especially strongly associated with successful

performance on cos(−θ + 0) problems. In spite of the simplicity of

the symbolic expression used in these problems and the centrality

of the cosine function in trigonometry, performance was quite

poor, and the predominant response was to choose− cos(θ), rather

than cos(θ), as the answer. One explanation for this error is that

participants may have a tendency to follow a simple heuristic

strategy which could be described as “pulling out the minus sign”—

something that is consistent with symbolic rules in some situations

(e.g. (−A) = −(A)), and happens to work for sin(−θ + 0), but is

not generally valid when dealing, as here, with a minus sign found

in the argument to a function. If, on the other hand, one visualizes

the cosine of a negative angle on the unit circle and compares this

to the cosine of the corresponding positive angle, the identity of the

corresponding values is apparent. Since no symbolic expressions

are involved, there is no temptation to over-apply a “pull out the

minus sign” rule.

Study 2: comparing a formal lesson
with a grounded lesson

Our findings suggest the possibility of a causal relationship

between circle use and effective trigonometry performance and

motivate the future exploration of such a relationship through

direct manipulation of exposure to the unit circle in trigonometric

reasoning. Accordingly, in Study 2, we devised two brief lessons,

one grounding trigonometric relationships in the unit circle, and

one promoting the use of rules without grounding them in

any visuospatial conceptual structure. If, indeed, reliance on the

unit circle facilitates solving trigonometric identities, then the

grounded lesson should lead tomore robust improvements than the

formal lesson.

Note that our lessons were very brief, and the participants in

our population have had extensive prior exposure to the relevant

concepts. Thus, we think of these brief lessons as serving more as

reminders of content previously learned than as the full source of

students’ knowledge of the relationships covered in these materials.

We will return to this point below.

Methods and materials

Participants
We recruited 70 Stanford undergraduate students to participate

in a single hour-long session in exchange either for credit in

an introductory psychology class or for pay ($12). 50% of the

participants were female. Among the 74% of participants for whom

we obtained additional demographic data, the distribution of racial

identity was 31% Asian American, 25% White, 15% Black or

African American, 12% Hispanic/Latino(a), 12% Multiracial, and

6% Other.

Procedure and design
The procedure was identical to that of Study 1, except that

participants received either a grounded lesson or a formal lesson

between blocks 1 and 2 of the experiment. With the addition

of the lessons, we did not include a think-aloud protocol at
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the end of study, in order to keep the whole study within

time constraints.

Grounded and formal lessons
The lessons were constructed to provide exposure to a parallel

sequence of lesson elements, with each element presented on a

single computer screen.4 One lesson presented each relationship

in the context of the unit circle and the other presented it in

the context of symbolic rules and manipulations of symbolic

expressions. The set of lesson elements consisted of two subsets.

The first subset dealt with the arguments to the sin and cos

functions, including compound expressions, such as (70 + 90). In

the grounded lesson, this expression was presented as describing

a sequence of angular rotations of a radial line shown on an

accompanying diagram, in which one component corresponded

to a “special angle” (90) along with another “arbitrary” angle, in

this case 70. It was noted that rotations performed in either order

produce the same result, so that expressions such as (70+ 90) were

equivalent to expressions such as (90+70). In the formal lesson, this

expression was presented as an instance of an expression involving

an arbitrary angle that could be represented in a rule with a variable

(x) along with a special angle, so that (70 + 90) could be seen as

an instance of the expression (x + 90). It was noted that principles

of ordinary arithmetic apply to such expressions, so that a rule

involving (x+ 90) applies equally to expressions like (70+ 90) and

expressions like (90+ 70).

The second subset of lesson elements covered eight of the 20

trigonometric identities included in our trigonometric identities

test. The eight consisted of four pairs: sin(x + 0) = sin(x) and

cos(x + 0) = cos(x); sin(−x + 0) = − sin(x) and cos(−x +

0) = cos(x); sin(x + 90) = cos(x) and cos(x + 90) = − sin(x);

sin(x + 180) = − sin(x) and cos(x + 180) = − cos(x). From

a formal, algebraic point of view, the set of rules together with

principles of ordinary arithmetic were sufficient to solve all of the

identity problems, although in some cases, more than one rule had

to be applied to obtain the correct answer. For example, for the

problem cos(−40 + −180), the correct response, − cos(40), can

be obtained by first applying the rule cos(−x) = cos(x) to obtain

cos(40+180), then apply the rule cos(x+180) = − cos(x) to obtain

− cos(40).

Each of the identities was presented in the context of a specific

problem, such as cos(50 + 0). For the formal lesson, a rule was

introduced such as cos(x + 0) = cos(x). The participant was then

required to apply the rule to the given expression to derive the

equivalent simplified expression, in this case cos(50), then choose

this expression from the simplified-expression alternatives, in this

case sin(50), − sin(50), cos(50), − cos(50). Participants could not

move to the next screen until the correct expression was selected.

For the grounded lesson, the principle captured by the rule was

introduced by depicting the given expression as a radial line on

a unit circle and the corresponding projection of that line on

the horizontal axis (for cosine) or the vertical axis (for sin). In

both cases the general principle was stated, and participants were

4 Complete lesson materials used in Studies 2 and 3 are available in our

OSF repository at https://osf.io/dkng9.

required to apply the principle to the given problem to select the

correct answer before moving on to the next lesson element.

At the end of each subset of lesson elements, participants rated

their prior familiarity, understanding, and expected ability to apply

the material to problems like those encountered in the first block.

To encourage productive thinking, participants in both groups

then saw a final screen, stating that the rules (formal lesson) or

relationships (grounded lesson) they had seen would apply directly

to some of the problems they saw in the first part of the experiment,

and would see again in the next part. They were also told that the

rules or relationships would be helpful with other problems as well,

but might need to be adapted or extended to address all of the

problems. Formal lesson participants were told that “other rules

from arithmetic and simple algebra might help you deal with some

of the cases”, while grounded lesson participants were told, “if you

can visualize the given angle as a point on the unit circle and then

visualize its x or y co-ordinate, and if you can do the same with the

alternative answers, this will help you solve the problem.”

Results

General performance and background measures
Overall performance on the 80 problems in blocks 1 and

2 averaged 57% (95% BCI [51, 62]). Accuracy on the trivial

func(θ + 0) problems averaged 89% correct (95% BCI [84, 92]),

and the majority (66%) of participants answered all eight of

these problems correctly. Participants reported an average of 4.6

prior trigonometry classes (95% BCI [3.9, 6.1], SD = 4.2),

and an average of 2.4 years since last use of trigonometry (95%

BCI [1.9, 2.9], SD = 2.0). We compared the two lessons

in several ways using participant ratings and other measures

(Supplementary Section 2.3). There were no significant differences

in the rated familiarity, understanding, or ability to apply between

lessons. Students also rated the extent to which they changed their

strategy or use of representations from block 1 to block 2. Students

in both lesson conditions reported significantly more change in

representation use relative to students with no lesson in Study 1,

but there was no significant difference in the the amount of change

between the formal and grounded lesson groups.

E�ect of lessons on accuracy
We used a logistic mixed model to assess the effect of the

grounded and formal lessons on accuracy, using the no-lesson

participants from Study 1 as a no-lesson comparison group

(Supplementary Section 2.4).

While both lessons did help students (relative to no lesson),

the grounded lesson helped students achieve higher accuracy than

the formal lesson. The interaction between block and lesson vs no

lesson was significant (b = 0.06, 95% CI [0.01, 0.12], z = 2.28,

p = 0.023). While there was some improvement from block 1

to block 2 even without a lesson (b = 0.39, 95% CI [0.14, 0.64],

z = 3.07, p = 0.002), the improvement was greater for those who

did receive a lesson (b = 0.76, 95% CI [0.11, 1.41], z = 2.28,

p = 0.023). The interaction between block and lesson type was

significant (b = 0.12, 95% CI [0.01, 0.22], z = 2.21, p = 0.027),
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indicating that the grounded lesson produced significantly stronger

improvement than the formal lesson (b = 0.48, 95% CI [0.05,

0.90], z = 2.21, p = 0.027). Both groups improved significantly in

accuracy from block 1 to block 2, with the grounded group showing

greater improvement (b = 0.53, 95% CI [0.23, 0.83], z = 3.48,

p = 0.001 for the formal group vs. b = 1.01, 95% CI [0.70, 1.31],

z = 6.51, p < 0.001 for the grounded group).

Compared to the no-lesson baseline, we found that the formal

lesson led only to enhanced performance on problem types that

were included in the lesson, whereas the grounded lesson led to

improvements both on taught problem types and on problem types

that were held out of the lesson to assess transfer. Figure 5 shows

the mean improvement for each lesson condition, broken down by

whether the problem was a taught problem or a transfer problem.

We extended the logistic mixed model to encompass the taught

vs transfer comparison, and found these key effects: For taught

problems, the effectiveness of the formal lesson (b = 1.24, 95%

CI [0.83, 1.64], z = 6.01, p < 0.001) and the effectiveness of

the grounded lesson (b = 1.20, 95% CI [0.81, 1.60], z = 5.94,

p < 0.001) were not significantly different (b = −0.04, 95% CI

[−0.59, 0.51], z = −0.13, p = 0.898). However, the grounded

lesson showed significantly greater improvement than the formal

lesson on transfer problems (b = 0.72, 95% CI [0.22, 1.21], z =

2.84, p = 0.004). Students who saw the formal lesson failed to show

any significant improvement on transfer problems (b = 0.21, 95%

CI [−0.14, 0.56], z = 1.19, p = 0.234) while students who saw

the grounded lesson showed quite strong improvement on transfer

problems (b = 0.93, 95% CI [0.58, 1.28], z = 5.16, p < 0.001). See

Supplementary material for additional statistical details.

E�ect of lessons on representation use
How might our grounded lesson have supported transfer to

problems not explicitly taught? As discussed more fully below,

we hypothesized that the unit circle might allow students to

use a visualization strategy based on the unit circle to solve

trigonometric identity problems. To test this, we examined changes

in participants’ self-reported use of different representations after

participating in the grounded or the formal lesson (Figure 6),

noting that, as a baseline, we found no reliable strategy changes

between blocks in the no lesson condition from Study 1. As

expected, students who saw the formal lesson reported an increase

FIGURE 5

Mean improvement from block 1 to block 2 in log odds of responding correctly (with 95% BCIs) on taught vs. transfer problems, split by lesson

condition: no lesson from Study 1, formal lesson from Study 2, and grounded lesson from Study 2. Although eight problems were included in the

lessons, the identities sin(x+ 0) = sin(x) and cos(x+ 0) = cos(x) were expected to be trivial, and empirically most students achieved near ceiling

performance before the lesson. We therefore excluded them, treating sin(−x+ 0) = − sin(x),cos(−x+ 0) = cos(x), sin(x+ 90) = cos(x),

cos(x+ 90) = − sin(x), sin(x+ 180) = − sin(x) and cos(x+ 180) = − cos(x) as the taught problems in this analysis. The 12 remaining problem types

were held out as transfer problems: func(x− 180), func(−x+ 180), func(−x− 180), func(x− 90), func(−x+ 90), and func(−x− 90), where func can be

sin or cos.
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FIGURE 6

Mean change in self-reported use of each representation (with 95% BCIs), split by lesson condition: no lesson from Study 1, formal lesson from Study

2, and grounded lesson from Study 2. This change is measured as the di�erence between the block 1 ratings and block 2 ratings, each on a five point

scale from “Never” to “Always.”

in rule use from block 1 to block 2, t(34) = 6.27, p < 0.001,

and decreased self-reported use of the unit circle, t(34) = −3.52,

p = 0.001. However, students who saw the grounded lesson did

not simply report an increase in their use of the unit circle and a

decrease in their use of rules. Instead, they reported increased use

of both the unit circle, t(34) = 2.48, p = 0.018, and of rules or

formulae, t(34) = 3.43, p = 0.002. Across participants there was no

significant correlation in the reported amount of increase in circle

and rule use, r = −0.13, 95% CI [−0.45, 0.21], t(33) = −0.77,

p = 0.448. Therefore, while there is variability between subjects

in co-occurrence of strategies, the data did not seem to arise solely

from a group that increased reliance on the unit circle and another

group that increased reliance on rules. This led us to design a

third study to examine alternative ways of understanding how our

grounded lesson might have supported generalization beyond the

problems explicitly taught.

Discussion

In Study 2, we found that grounding trigonometric

relationships in the unit circle promoted a more generalizable

understanding than presenting these relationships simply in

formal terms. That is, the grounded lesson improved accuracy

not only on problems taught in the lesson, but also on problems

held out for transfer – something the formal rule based lesson

failed to do. From a practical point of view, this finding seems of

central importance as scientists attempt to formulate clearly

for practitioners what is needed in education to support

productive transfer.

It therefore seems important to understand why our grounded

lesson led to this outcome. Initially, we hypothesized that our

grounded lesson would lead to increased reliance on the unit

circle as a procedure for deriving representations of the quantities

involved, providing a productive procedure that could be applied

not only to taught but also to transfer problems, similar to the

procedure Wertheimer (1959) taught young students to allow

them to extend their ability to find the area of a parallelogram to

figures with quite different shapes. Based on this, we expected the

grounded lesson to result in increased reliance on the unit circle,

at the expense of reliance on rules. However, this is not exactly

what we found. The grounded lesson led to an increase in reported

reliance on the unit circle and the use of rules. Our third experiment

was motivated by the goal of understanding this finding and its

implications for successful transfer in more detail.

Study 3: how does the grounded
lesson support transfer?

We begin by asking why our grounded lesson led to an increase

in the use of rules and the unit circle. One possibility is that

the grounded lesson could change the nature of the rule-like

representations students used. This possibility is interesting, since

such rules could potentially be more useful for performance on

transfer problems that the rules taught in our formal lesson. This

could occur if grounding in the unit circle changes the way a

student represents the relationship expressed in a formal rule. For

instance, after the grounded lesson, the quantity x + 180 in the

rule sin(x + 180) = − sin(x) might be encoded as representing a
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position half way around the unit circle from the position of x, and

the rule itself might be encoded as expressing the idea that when a

point is rotated halfway around the circle from a starting position

x, its vertical position will be offset from the horizontal axis by the

same distance in the opposite direction, so that the value of its y

coordinate will have the same magnitude but the opposite sign.

This could facilitate generalization or transfer to problems in which

+180 is replaced with −180 if the expression x − 180 is also coded

as corresponding to a position halfway around the circle from x.

There is, however, a simpler account for the increased use of

both rules and the unit circle after the grounded lesson. Perhaps

participants in the grounded condition relied on the taught rules, in

more or less the same form as participants in the formal lesson, on

taught problems, but used the approach of mapping to visualizable

quantities on transfer problems. Because our self-report measure

from Study 2 only asked for an overall rating of rule or circle use,

the findings are consistent with this possibility.

To investigate more fully how the grounded lesson facilitated

transfer, our next experiment collected problem-specific ratings

of representation use. The hypothesis that participants relied

predominantly on rules for taught problems but use visualization

for transfer problems predicts that we would see increased rule

use ratings on taught problems and increased circle use ratings

on transfer problems. Alternatively, if the grounded lesson led

participants to rely on grounded rather than formal rules, they

might report simultaneous use of both the unit circle and rules,

regardless of whether the problems were taught or transfer

problems. Furthermore, if the pattern of representation use

varies between participants and/or within a participant between

problems, we may gain insight by asking which pattern of

representation use coincided with the highest accuracy on taught

problems and on transfer problems.

Our design of the current study included several additional

features intended to help us understand more about the role of the

grounded lesson in promoting productive reasoning. To go beyond

a simple quantitative rating of representation use, we recorded

participants as they thought aloud to solve four selected problems

after the end of the structured experimental session. Our analysis

of these recordings provided strong support for the idea that our

participants frequently used grounded rules. In addition, a subset

of the problems were taught to some participants and held out

as transfer problems for others, with assignment to taught vs

transfer counterbalanced. The study also included a manipulation

of whether problems were presented with a specific angle, as in the

previous studies, or with the variable θ . This allowed us to examine

the possibility that participants might rely on visualization of the

specific quantities involved when given a specific value, and might

rely on rules (grounded or otherwise) when given a variable not

corresponding to a specific value.

Methods and materials

Participants
We recruited 69 Stanford undergraduates to participate in

a single hour-long session in exchange either for credit in an

introductory psychology class or for pay ($15 Amazon gift card).

Two participants who did not complete the study within an hour

were excluded (we offered them the chance to leave after an hour

and they accepted). Three additional participants were excluded

due to experimenter error in initializing the study, resulting

in an incomplete or incorrect lesson. Of the 64 participants

who completed the study, 62.5% were female. Also, among all

participants who completed the study, the distribution of racial

identity was 38% White, 27% Asian American, 17% Multiracial,

11% Black or African American, 5% Hispanic/Latino(a), and

3% Other.

All participants gave informed consent prior to participation.

The experiment included 4 problems at the end that were solved in

front of the experimenter, and in gathering consent, we explained

that recording was entirely optional. Two students declined to

be recorded.

Procedure
The procedure was very similar to the grounded condition of

Study 2. Participants saw trigonometric expressions [e.g., sin(−70+

180)] and tried to identify which of four simpler expressions was

equivalent to the given expression. There was one block of 40

problems, followed by a brief lesson grounding these relationships

in the unit circle, followed by another block of 40 problems.

There were two key differences from previous studies.

First, some of the problems were selected as counterbalanced

taught/transfer problems. We kept sine and cosine problems with

θ+0 and−θ+0 arguments as always taught, and we kept problems

with −θ + 180, −θ − 180, θ − 90, and −θ − 90 arguments as

always transfer problems. The counterbalanced problems involved

sine and cosine problems with θ + 180, θ − 180, θ + 90, and 90− θ

arguments. Students were randomly assigned to be taught problems

with θ+180 or θ−180 arguments, and were also randomly assigned

to be taught problems with θ + 90 or 90 − θ arguments. This 2x2

design resulted in four different versions of the grounded lesson.

The second key difference was the addition of a third block of

problems during which we obtained problem-specific self-reports

of strategies. These 20 problems included one example of every

combination of function, sign of θ , and signed value of 1, with

randomly chosen values for θ and for the order of θ and 1.

Immediately after solving each problem, participants rated how

confident they were that their answer to that problem was correct

on a three point scale (not at all, somewhat, very). They then

rated the extent to which they used each of the representations

considered in studies 1 and 2 on a three point scale (not at all, a

little, a lot).

Additionally, half of the problems used in this block included

the generic variable θ instead of a specific angle measure (e.g., 20◦),

counterbalancing this factor with other problem type variables.

Within each group receiving each version of the grounded lesson,

half the students saw the generic θ problems before the instantiated

angle problems, while the other half saw the instantiated angle

problems before the generic θ problems.

At the end of the study, we also asked students to solve four

problems in front of the experimenter. The four problems shown

were: cos(−50+ 0), cos(20+ 180), sin(90− 70), and cos(θ − 180).

The experimenter instructed students to talk through what they
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were thinking as they were thinking it. The think-aloud protocol

for the 62 participants whose protocols were recorded were later

transcribed for use in the analyses we report below.

Results

General performance and background measures
Accuracy on the 40 problems in block 1 averaged 53%, 95% BCI

[48, 59], SD = 0.22. Accuracy on the trivial func(θ + 0) problems

averaged 91% correct (95% BCI [84, 95]), and most participants

(78%) answered all eight of these problems correctly. Participants

reported an average of 5.5 prior classes (95% BCI [4.6, 6.6], SD =

4.0) and an average of 2.3 years since last use of trigonometry (95%

BCI [1.8, 2.8], SD = 2.0).

Transfer e�ects
We replicated Study 2’s finding that the grounded lesson

facilitates transfer of a student’s understanding to problems

not included in the lesson materials. Figure 7 presents post-

lesson improvement scores for problems that were always

taught, problems that were always held out for transfer, and

counterbalanced problems that were taught or held out for transfer.

For always taught and always transfer problems, improvement

scores on the same problems from Studies 1 and 2 are presented

for comparison. Considering first the always transfer problems,

we contrasted the performance improvement on these problems

in Studies 2 and 3 (where the grounded lesson occurred between

blocks 1 and 2) with the improvement for the same problems

in Study 1 where there was no lesson, and found that the

participants who saw the grounded lesson from either study

improved significantly more than participants with no lesson (b =

0.96, 95% CI [0.15, 1.78], z = 2.33, p = 0.020). In contrast,

participants receiving the formal lesson in study 2 did not improve

more than participants with no lesson on these problems (b =

−0.20, 95% CI [−0.71, 0.31], z = −0.77, p = 0.440). Though the

improvement on problems always held out for transfer was slightly

larger after the grounded lesson in Study 2 than it was in Study 3,

the difference was not significant (b = −0.13, 95%CI [−0.62, 0.35],

z = −0.54, p = 0.587).

Focusing next on the results from the current study on

the counterbalanced problems, we sought to assess whether

students showed improvement after the lesson on these problems,

with a particular interest in improvement scores when these

problems were held out for transfer. We used a logistic mixed

model to predict whether each trial was answered correctly

(Supplementary Section 2.5). Students improved significantly from

block 1 to block 2 in overall accuracy, b = 0.69, 95% CI [0.52,

0.87], z = 7.72, p < 0.001, and the interaction between block

and transfer was significant, b = −0.32, 95% CI [−0.57, −0.07],

z = −2.55, p = 0.011. Examining simple effects among the

contributing conditions, we found that within the first block,

there was no significant difference in accuracy between taught and

transfer problems, b = 0.10, 95% CI [−0.15, 0.35], z = 0.79,

p = 0.430, but within the second block, students solved more

taught problems correctly than transfer problems, b = −0.36, 95%

CI [−0.65, −0.07], z = −2.40, p = 0.016. Crucially, students did

still show significant improvement on transfer problems from block

1 to block 2, b = 0.47, 95% CI [0.26, 0.67], z = 4.42, p < 0.001.

An exploratory analysis to understand the reduced

transfer effect observed with the counterbalanced stimuli

(Supplementary Section 2.6) considered the potential influence

of the specific problem type on both baseline problem success

and transfer, using results obtained from Study 3 as well as the

previous two studies. This analysis showed that our grounded

lesson produced a robust transfer effect among variants of

problems involving a shift of ±180. The grounded lessons led

to transfer across all problem variants with a shift of ±180,

while the formal lesson did not. In contrast, the pattern of

transfer after a grounded lesson among variants of problems

involving a shift of ±90 was mixed. Our tentative interpretation

of the full pattern of findings with such problems is that

grounding in the unit circle interacted with students’ prior

understanding of problems involving cos(90− θ) and sin(90− θ).

These are among the easiest of the problems in our data set

(Figure 4), and students’ reports of their strategies on such

problems often grounded them in relationships within a right

triangle, where they have a very clear grounded interpretation

(Supplementary Section 2.7). Nevertheless, there were some

signs of positive transfer among problems involving ±90. A

further finding to emerge from this analysis was the observation

that, both before and after receiving either a grounded or a

formal lesson, students had less success with problems including

cos(−θ), regardless of the value of the shift (0,±90 or ±180),

suggesting that their tendency to rely on the heuristic of “pulling

out the minus sign” was not completely dispelled by either type

of lesson.

Overall rule and circle use
Study 3 replicated the finding that the grounded lesson led

to an increase in self-reported overall use of both the unit circle,

t(63) = 1.74, p = 0.088, and rules and formulae, t(63) = 3.99,

p < 0.001. As in Study 2, we did not find evidence of the students

falling into two distinct types, one reporting extensive rule/formula

use but little circle use and the other reporting extensive circle use

but little rule/formula use. Instead, we found that the relationship

between a student’s mean reliance on the unit circle and mean

reliance on a rule or formula was not significantly different from

0, r = −0.15, 95% CI [−0.38, 0.10], t(62) = −1.18, p =

0.242. Furthermore, 61% of participants reported a mean reliance

on both the unit circle and a rule or formula greater than or

equal to 1.5.

Problem specific rule and circle use ratings
Next we turned to results from trials in which participants

provided problem specific ratings, focusing on the counterbalanced

problems that control for problem type across participants. The

results from this block corroborate the impression that our

participants often relied jointly on rules and the unit circle in this

block of trials, which occurred after they all received our grounded

lesson. In support of this, the mean reported reliance on a rule

or formula was 2.13, 95% BCI [1.96, 2.29], while mean reported
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FIGURE 7

Mean improvement in log odds of responding correctly (with 95% BCIs) on taught vs. transfer problems, split by lesson condition of all studies: no

lesson from Study 1, formal lesson and grounded (old) lesson from Study 2, and grounded (new) lesson from Study 3. After excluding the trivial

func(θ + 0) problems, the only problems always taught in the lesson were the func(−θ + 0) problems. The problems always held out for transfer were

func(−θ + 180), func(−θ − 180), func(θ − 90), and func(−θ − 90). The counterbalanced problems that were taught or held out for transfer in Study 3

were func(θ + 180), func(θ − 180), func(θ + 90), and func(−θ + 90). Data from the no lesson condition corresponds to the same problem types as the

other conditions in each cell.

reliance on the unit circle was 1.98, 95% BCI [1.81, 2.16]. Of the

participants who reported relying a little or a lot on the unit circle

or on a rule or formula for a particular problem, 42% reported

relying a little or a lot on the other representation during the

same trial.

If the increase in rule and circle use that we observe after

the grounded lesson occurred because participants used rules

on taught problems and rely on the unit circle on transfer

problems, we would expect to see higher ratings of rule use

on taught problems and higher ratings of circle use on transfer

problems. As shown in Figure 8, participants reported using

rules and the unit circle across both problem types, with only

a slight tendency for rule or circle use to vary as a function

of whether a problem was taught or held out for transfer. A

cumulative link mixed model for reliance on rules (including

a random intercept for each participant and random effects of

transfer vs. taught, value type, and their interaction) found slightly

greater reliance on rules for taught than for transfer problems,

b = −0.27, 95% CI [−0.51, −0.02], z = −2.11, p =

0.035 and no other significant effects. A corresponding analysis

for reliance on the unit circle did not find a significant effect

of taught vs. transfer. Instead, it found slightly more reliance

on the circle for problems involving a specific angle than for

problems with a generic θ , b = −0.48, 95% CI [−0.74,

−0.22], z = −3.58, p < 0.001, as shown in the right panel

of Figure 8.

Problem specific rule and circle use ratings and
accuracy

The problem-specific ratings block also allows us to examine

how the representation a student reported using on each problem

relates to their accuracy in answering the problem. For this

analysis, we focus on students’ performance on the counterbalanced

problems (Figure 9), using accuracy on these problems in block 3,

the block with problem-specific reports, as the dependent measure.

The analysis revealed that when students reported using neither

the circle or a rule/formula, they performed poorly, but when

students reported using the unit circle or a rule/formula or both

on a particular trial, they were more likely to answer correctly. We

used a logistic mixed model to predict accuracy, with self-reported

specific use of the unit circle, self-reported specific use of a rule or

formula, and transfer (vs. taught) as predictors, along with their

interactions (Supplementary Section 2.8). The analysis revealed a

significant main effect of reported rule/formula use, b = 0.80,

95% CI [0.32, 1.27], z = 3.28, p = 0.001, a non-significant

trend toward a main effect of reported circle use, and a significant

interaction of reported use of the unit circle and reported use of a

rule or formula, b = −0.87, 95% CI [−1.47, −0.27], z = −2.86,

p = 0.004. On trials in which a student reported not relying on

the unit circle, higher rating of rule or formula use significantly

predicted better accuracy, b = 1.65, 95% CI [0.80, 2.51], z = 3.79,

p < 0.001. On trials in which a student reported relying a lot

on the unit circle, there was no significant effect of self-rated rule
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FIGURE 8

Mean self-reported reliance (with 95% BCIs) on a rule or formula and on the unit circle, split by taught vs. transfer problem and by specific value vs.

generic θ , using the block of problem-specific ratings from Study 3.

or formula use, b = −0.09, 95% CI [−0.74, 0.57], z = −0.26,

p = 0.798.

Protocol evidence for use of grounded rules
The findings considered so far support the view that students

who saw the grounded lesson tended to report increased use

of both rules and the unit circle. This finding has led us to

the view that an important function of the grounded lesson is

to allow students to appreciate the rules of trigonometry, not

just as arbitrary arrangements of symbols, but as expressions

capturing meaningful visuospatial relationships. Specifically, we

suggest that the grounded lesson may facilitate students encoding

and expressing rules in terms of the unit circle, which may

in turn support both good performance on taught problems as

well as transfer to problems not explicitly taught. Evidence from

the think-aloud protocols of students’ solutions of the problem

cos(20+180) provided additional support for this view (we provide

the full transcripts of these protocols in Supplementary Section 3;

transcripts of students protocols for the other three problems are

available in our OSF repository https://osf.io/3dtp9/).

When students encountered the cos(20+ 180) problem during

the problem specific rating block, 13 of the 64 participants selected

the option “a lot” in rating their reliance on a rule or formula

and selected “not at all” in rating their reliance on the unit circle.

Our reading of the think-aloud protocols for these participants

suggested to us that some of their rules were grounded in the

unit circle. Participant #25 fell in this group for problem-specific

rating of this particular problem, and was also the only participant

in their general ratings to report always using a rule or formula

and never using any other representation. However, in the think-

aloud protocol this student expressed an understanding in terms

of visuospatial transformation and resulting relationships, using

gesture as well as words: “I know it’s going to go basically shift

right across that [rotates hand] . . . it’s just pretty much negative of

whatever the other angle is . . . ”.

To examine this group’s tendency to ground rules in the unit

circle, we looked at language used in the think-aloud protocol

for each of the 13 participants in this subset. Two participants

(#22, #62) explicitly mentioned using a “circle”, and an additional

six participants (#3, #14, #16, #25, #54, #57) mentioned some

combination of “visualizing”, “rotating”, “angles”, and “quadrants”.

Two participants (#42, #58) mentioned visualizing angles on the

x-y plane in their general strategy description, but not in this

particular think-aloud protocol. One participant (#36) mentioned a

wave-based “graph” visualization. Only two participants (#10, #19)

mentioned no visualization.

In summary, the think-aloud protocol for many of the

participants who reported relying on rules and not on the unit circle

appeared to include references to visualization and the unit circle.

Although they differed in how they described their strategy both in

problem-specific and in more global ratings, the preponderance of

successful participants in Study 3 appear to have relied at least in

part on the unit circle or rules grounded in the unit circle. This

is consistent with the view that the grounded lesson may have

facilitated encoding and expressing rules in terms of the unit circle.

We explore this idea more fully below.

General discussion

The findings from the three studies reported here show that

trigonometric relationships provide a powerful example of how a

coherent, visuospatially grounded, conceptual structure can make

symbolic expressions meaningful, allowing them to be applied and

generalized successfully. In Study 1, we observed how students

approach solving trigonometric identity problems, and found that

students most often reported using the unit circle. Students who

reported using the unit circle also tended to have higher accuracy.
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FIGURE 9

Accuracy on trials in Study 3 for each combination of self-reported reliance on the unit circle and on a rule/formula, split by whether the problem

was taught in the lesson or held out as a novel transfer problem. The results are taken the problems that were counterbalanced as taught or transfer.

Other students, who did not report using the unit circle or reported

using it less often, were more likely to rely on faulty heuristics

like “pulling out the minus sign”, leading to errors on cos(−θ) =

− cos(θ). Study 2 randomly assigned students to a brief lesson,

either based strictly on formal rules or grounded in the unit circle,

allowing us to test the causal nature of the relationship observed in

Study 1. This study found that both lessons led to improvements on

relationships explicitly taught, but only the grounded lesson lead to

enhanced performance on transfer problems not explicitly taught

in the lesson.

Next, we sought to examine how the unit circle taught in the

grounded lesson supported transfer to untaught problems. Study

3 counterbalanced the assignment of some problems to either

be taught in the lesson or held out for transfer. We replicated

Study 2’s finding that the grounded lesson facilitated transfer of

a student’s understanding to problems not included in the lesson,

though the effect was restricted to a subset of the counterbalanced

problems. Study 3 also included a block of problems where students

reported their use of rules and formulas, the unit circle, and other

strategies. Students reported relying slightly more on a rule or

formula when solving taught problems than transfer problems.

However, across all problem types, students often reported relying

on both the unit circle and a rule or formula on a particular

problem. At the end of Study 3, participants also completed

a brief think-aloud protocol, which revealed that most of the

successful participants, even those who self-reported rule use with

no circle use, relied at least in part on rules grounded in the

unit circle.

Across our studies, we found that grounding trigonometric

relationships in the unit circle facilitated successful problem solving

and generalization. We now consider two different ways our

grounded lesson might have facilitated this outcome.

First, the grounded lesson may provide a a general procedure,

sufficient to solve both the taught and transfer problems in our

studies. Specifically, our unit circle lesson might lead students

to use the numbers inside the parentheses of a trigonometric

expression to map the expression to a position on an internally

represented, schematic unit circle, and then to use the cosine or

sine function to project that position onto the x or y axis through

the center of the circle to determine the sign and magnitude of

the quantity represented by the expression. They could apply this

same procedure both to the probe expression and to the candidate

choice alternatives to find the candidate that has the same sign and

magnitude as the probe expression.

Alternatively, the unit circle may help students represent

mathematical rules, not simply as abstract symbolic expressions,

but as relationships between entities and their properties in

structured spatial relationships. Treating rules as representing such

relationships can also support systematic generalization beyond

specific taught relationships. For example, our unit circle based

lesson can help students think of the expression cos(x + 180) =

− cos(x) as expressing the idea that a point located halfway around
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the unit circle from another point is the same distance from the

y axis as the original point, but in the opposite direction. If the

student knows that 180 degree rotations in either direction, denoted

by offsets of ±180 degrees, will take a point half way around

the circle, then the rule will apply equally to cos(x − 180) as to

cos(x+ 180).

It seems likely that there is some partial validity to both of these

possibilities, and the relative importance of each may be difficult

to pinpoint exactly. While the first was the one we started with

after Study 1, our findings across Studies 2 and 3 led us to attribute

increased importance to the second possibility. The key finding

that began to point us toward the idea of grounded rules was

our finding in study 2 that the grounded lesson led to increased

reports both of rule use and of use of the unit circle in problem

solving. Further consideration of participants reports of rule and

circle use in study 3, including qualitative and quantitative analyses

of participant’s recorded protocols as they solved the cos (20+ 180)

problem corroborated this interpretation further: even those who

said they only used rules expressed their understanding in terms

of words and gestures consistent with grounding these rules in the

unit circle.

The unit circle as an integrated conceptual
structure that may be challenging to learn

Whether by providing a general procedure or by grounding

rules, the unit circle exhibits several of the characteristics that

Case et al. (1996) identified in what he called central conceptual

structures. We call these structures integrated conceptual

structures, to emphasize that they depend on linking symbolic and

structural elements as well as linking two different ways of thinking

about positions of points on the plane.

To bring out this linkage, we briefly revisit the identities

sin(−θ) = − sin(θ),

cos(−θ) = cos(θ),

and

sin(θ + 180) = − sin(θ),

cos(θ + 180) = − cos(θ).

Seen through the lens of purely symbolic expressions, these are

arbitrary and confusing expressions. Why, for example, should the

same relationship hold for sin and cos in one case but not in the

other? In the first pair, why is it that sin and not cos has a minus

sign on the right hand side?

To make sense of these identities—to see why they hold,

rather than as arbitrary expressions to be memorized—one must

understand the symbols involved through the lens of their meaning

in the visuospatial model of the unit circle. Quite a lot is in play here.

One must be certain of that sin picks out the vertical coordinate

of the point at the circular position θ , while cos picks out the

horizontal coordinate, and not the other way around. The validity

of the relationship also depends on treating θ and−θ as referencing

positions reached by equal and opposite rotations from the correct

reference point; if one treated the intersection of the circle with

the positive end of the vertical axis as 0 the relationship would

no longer hold. Thus, the elements of the expressions require a

very specific coordination of symbols and numbers with the spatial

model for the two identities to make sense. For the second pair

of identities, 180 must be seen as corresponding to a rotation half

way around the circle, thereby placing the point reached after the

rotation exactly opposite the point at θ so that it is clear that it must

be same distance in the opposite direction from the point at θ in

both the horizontal and the vertical directions. For students who

have a firm grasp of these alignments, the spatial model supports

an intuitive understanding of the relationships expressed in both of

these pairs of identities.

These observations may help explain why only a subset of

the students in our study successfully relied on the unit circle

and why only a subset of those who did not do so spontaneously

showed a benefit from our brief grounded lesson. As we have noted,

this lesson introduces the relevant concepts and relationships very

briefly, and so it may be better to think of it as a reminder or

refresher, rather than as a sufficient basis for internalizing and

integrating all of the conventions involved to be able to use them

effectively after the brief reminder lesson. The reminder lesson may

not “stick” if the conventions are unfamiliar. For example, if the

student does not already know that 180 degrees corresponds to a

rotation half way around the circle, the brief engagement with this

fact in our grounded lessonmay not be sufficient for them to engage

with it when they see the expression cos(θ + 180) in a test problem

after the lesson.

Toward a curriculum that produces robust
grounded learning

The findings of these studies provided a springboard for asking

whether a focus on grounding trigonometric relationships in the

unit circle could be used as the basis for a curriculum that

could lead to robust learning of these relationships in students

without prior background in trigonometry beyond exposure to

the basic trigonometric concepts typically encountered in high-

school geometry classes. To this end, we obtained permission

to observe the teaching of trigonometry in two pre-calculus

classrooms at a public high school near Stanford, and we invited

students from these classrooms to go through the protocol of

Study 2 in the unit-circle condition, as they were completing a six-

week unit on trigonometry. Strikingly, though their textbook and

classroom instruction included exposure to the unit circle and to

the trigonometric identities covered in our lesson, all but one of the

students who chose to participate performed near chance on the

pre-test portion of the study, and performance on the post-text did

not show a statistically reliable improvement. This led us to begin

to appreciate the challenges many students face when attempting

to engage with this subject matter, and to undertake a multi-year

effort to develop a grounded curriculum that begins to address

some of these challenges, helping more students achieve success,

as described in the sequel to this article (Mickey et al., 2025).
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Conclusion

Across our studies, the unit circle revealed itself to be a

strong, coherent conceptual structure, creating a fertile ground for

learning and understanding trigonometry through the interplay

of visuospatial and rule-based approaches. While the unit circle

could serve as a standalone procedure for solving problems, and

it could also be used alongside independent rules or formulae, we

have argued that successful students learn and use rules that are

more intrinsically tied to the unit circle. Students can learn how

to map parts of a symbolic expression onto meaningful properties

of the unit circle, and this grounded understanding may facilitate

application and generalization of rules in order to solve problems

successfully. Continuing this research by addressing remaining

theoretical questions and by working closely with educators to

facilitate implementation will have important benefits, both for our

understanding of the role of grounding symbolic expressions in

visuospatial representations, and also for helping students learn

mathematics more effectively. Our own efforts in this direction are

described in Mickey et al. (2025).
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