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Forgetting phenomena in the
Iowa Gambling Task: a new
computational model among
diverse participants
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Introduction: The Iowa Gambling Task (IGT) is a widely used paradigm

for evaluating decision-making and executive functioning, yet existing

computational models seldom account for the phenomenon of forgetting,

which is critical to understanding dynamic decision processes.

Methods: We developed the Exploitation and Exploration with Forgetting (EEF)

model, which integrates a dynamic forgetting parameter (λ) and participants’

first-choice priors into a unified reinforcement-learning framework. The EEF

model was fitted to choice data from 504 healthy individuals performing

the standard 100-trial IGT. Model performance was assessed via goodness-

of-fit comparisons (BIC/AIC/Free Energy), parameter- and model-recovery

simulations, and behavioral validation.

Results: Across multiple cohorts, the EEF model achieved superior fit relative to

five establishedmodels. We introduce two novel metrics—Sequential Exploration

Decay (SED) and Forgetting Interval (FI)—to quantify how forgetting shapes

exploratory behavior. The EEF model’s SED and FI values closely matched

empirical data, and further analyses revealed systematic e�ects of age and

gambling frequency on forgetting and decision strategies.

Discussion: Our findings underscore the fundamental role of forgetting in

complex decision-making environments. By explicitly modeling information

decay, the EEF framework o�ers novel insights into cognitive dynamics across

the lifespan and behavioral contexts, and provides a parsimonious yet powerful

tool for future computational and empirical research.

KEYWORDS

Forgetting Phenomena, Iowa Gambling Task, Exploitation and Exploration with
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1 Introduction

Forgetting is a crucial concept in psychology, as it affects both memory capacity and
key cognitive activities such as learning and decision-making. In the field of psychology,
researchers have begun to recognize that forgetting is not merely a manifestation of
memory impairment but rather an essential capability for proper brain function (Nørby,
2015). Studies have shown that forgetting facilitates the optimization of information
storage and utilization.When forgetting occurs, the brain releases more cognitive resources
for information processing, enabling individuals to free themselves from overwhelming
information (Gaissmaier et al., 2008). Professor Blake Richards, who specializes in the
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study of neural circuits, once remarked: “Our ability to generalize
new experiences is, at least in part, due to the fact that our brains
engage in controlled forgetting.” He posited that forgetting serves
as a mechanism for the brain to prevent overfitting (Gravitz, 2019).

Although significant progress has been made in recent years
in understanding the mechanisms and functions of forgetting,
research integrating forgetting into cognitive decision-making
models remains relatively limited. In the field of cognitive
science, researchers typically employ a series of standardized
cognitive paradigms to investigate information processing, risk
assessment, and reward mechanisms during decision-making
processes. These paradigms help us understand how the brain
makes decisions in complex situations (Serrano and Alacreu-
Crespo, 2022). The Iowa Gambling Task (IGT) is one of the
most widely used experimental paradigms in this context. First
introduced by Bechara et al. (1994), the IGT was designed to
evaluate an individual’s decision-making abilities when faced with
risk and uncertainty. It is now extensively applied in cognitive
psychology and neuropsychology and is considered an essential
tool for measuring cognitive decision-making. By simulating
real-life decision-making scenarios, the IGT assesses individuals’
decision making under uncertainty; it has been widely interpreted
as tapping emotion-related decision processes (Bechara et al.,
1994). Furthermore, the IGT has been widely used in clinical
settings to assess decision-making deficits in patients with various
psychological and neurological disorders, especially in populations
with brain injuries, substance abuse, neurological diseases, and
mental disorders (Yechiam et al., 2005; Hu et al., 2023).

In the IGT, participants are required to make selections from
four card decks (A, B, C, and D), each of which has different reward
and penalty structures. Each choice may result in either a reward or
a loss. The goal of the task is to maximize the total net gain within a
limited number of trials. Among these decks, A and B offer higher
immediate rewards but lead to net losses in the long run due to their
larger long-term penalties, potentially resulting in negative overall
gains. In contrast, C and D provide lower immediate rewards but
have smaller penalties, leading to positive gains in the long run
(Hu et al., 2023). In the original study by Bechara et al. (1994), the
experiment was designed with a total of 100 choices. The payoff
scheme for the four decks (A, B, C, and D) is shown in Table 1.

As summarized in Table 1, Decks A and B yield a nominal
profit of $100 on every draw but conceal larger long-term losses,
whereas Decks C and D pay only $50 per draw yet accrue a
positive net return over a ten-draw horizon. This trade-off between
high-reward/high-risk and low-reward/low-risk options creates the
classic exploitation–exploration dilemma at the heart of the IGT.

This study laid an important foundation for understanding how
humans make decisions when confronted with uncertainty and
risk. Although subsequent IGT experiments and their variants may
have adjusted the total number of trials and reward mechanisms,
the fundamental essence of the task remains unchanged. This
consistency ensures the comparability of research findings and
allows for in-depth analysis of decision-making behaviors across
different experimental conditions.

Traditional modeling approaches for analyzing IGT data
primarily focus on value-based learning and decision-making.
Common models include the Expected Value (EV) model, the
Prospect Valence Learning (PVL) model, and a hybrid version

TABLE 1 Payo� scheme used in the Iowa Gambling Task by Bechara et al.

(1994).

A B C D

Profit per choice 100 100 50 50

Number of losses per 10
choices

5 1 5 1

Possible loss amounts –150 –1,250 –25 –250

–200 –50

–250 –75

–300

–350

Total return after 10 choices –250 –250 250 250

When selecting Deck A continuously for 10 trials, there will be 5 occurrences of random losses

ranging from $150 to $350. Similarly, for every 10 consecutive selections of Deck B, there will

be 1 occurrence of a large loss of $1,250. In contrast, selecting Deck C or D yields a gain of

$50 each time. For every 10 consecutive selections of Deck C, there will be 5 occurrences of a

total fixed loss of $250; likewise, for every 10 consecutive selections of Deck D, there will be 1

fixed loss of $250. Based on the expected value calculated over 10 choices, choosing Deck A

or B results in an average loss of $250, whereas choosing Deck C or D is expected to yield an

average positive gain of $250 (Bechara et al., 1994).

combining EV and PVL—the PVL-Delta model. Although these
models have made progress in quantifying the weights of gains
and losses during decision-making processes, they often overlook
other critical dynamics in the decision-making process (Ahn
et al., 2008; Busemeyer and Stout, 2002). As a result, their
explanatory power and application scope are somewhat limited.
With the advancement of research, more modeling approaches that
emphasize exploratory behavior have been proposed. Among these,
Directed Exploration (DE) offers a new perspective on IGT research
by proposing an exploration strategy that integrates information
preferences into decision-making models. This strategy explicitly
prioritizes information gathering rather than merely maximizing
gains (Wilson et al., 2014). Building on this foundation, the Value
and Sequential Exploration (VSE) model, designed by Ligneul
(2019), introduces sequential exploration dynamics to capture
exploitation, random exploration, and sequential exploration in the
IGT while maintaining sensitivity to existing rewards.

To further enhance the explanatory power and applicability
of models, some researchers have begun incorporating additional
elements into IGT decision-making models. The Value Plus
Perseveration (VPP) model is one such attempt, which not
only considers the weights of gains but also introduces the
concept of perseveration in decision-making (Worthy et al.,
2013). However, the VPP model requires eight parameters, which
is relatively complex given the number of trials, making it
challenging in terms of both application and interpretation,
especially regarding the cognitive validity of these parameters
(Konstantinidis et al., 2014). On the other hand, the Outcome
Representation Learning (ORL) model also attempts to capture
more decision-making behaviors by increasing model complexity.
Nevertheless, its perseveration module does not integrate reward
magnitude and reward probability into the estimation of reward
expectations, which is considered inconsistent with fundamental
theories in behavioral economics (Haines et al., 2018). Although
the aforementioned models offer new theoretical pathways for

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1510151
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Yang et al. 10.3389/fpsyg.2025.1510151

interpreting IGT, current IGT models rarely consider forgetting
as a core variable, particularly in the context of complex, repeated
decision-making environments.

By effectively quantifying forgetting, we can reveal how
individuals adjust their cognitive strategies when confronted
with constantly changing environmental information, which has
significant theoretical and practical implications for research
ranging from cognitive health to neuropsychiatric disorders. To
meet this demand, we propose a new computational model called
Exploitation and Exploration with Forgetting (EEF), which, for the
first time, introduces a parameter specifically designed to quantify
forgetting ability within the context of the IGT.

1.1 Main contributions

We present a four-parameter Exploitation–Exploration
with Forgetting (EEF) model that integrates an individualized

forgetting rate into the reinforcement-learning update, thereby
capturing person specific information loss while remaining highly
parsimonious. Deck-specific initial weights are derived directly
from the empirical first-choice frequencies, anchoring the model
in observed behavior rather than arbitrary priors. To probe
information decay dynamics we introduce two complementary
indices—Sequential Exploration Decay (SED) and Forgetting
Interval (FI)—which quantify, respectively, the rate at which
exploratory value wanes and the typical lag between informative
choices. In addition, the EEF model was fitted to data from healthy
young adults as well as two heterogeneous groups—individuals
with gambling disorder and older adults—and achieved the best
(or statistically comparable) BIC and AIC scores across these
cohorts while remaining competitive on the free energy criterion.
Parameter-recovery simulations yielded high correlations between
generating and recovered values, confirming that the model’s
parameters are both identifiable and psychologically interpretable.

This study provides a more precise and in-depth methodology
for modeling and understanding complex decision-making
behaviors. Particularly in terms of cognitive validity, our research
shows that the forgetting parameter can effectively capture
individuals’ information processing characteristics during
decision-making and predict future choice behavior. Furthermore,
we have enhanced the previously established open-source toolbox,
making this model widely applicable to various research contexts
and enabling researchers tomore efficiently analyze and understand
the phenomenon of forgetting in the IGT (Ligneul, 2019).

2 Descriptions of Exploitation and
Exploration with Forgetting model

In the IGT, each individual’s choice patterns across different
card decks reflect their risk preferences, outcome evaluations,
and how they learn and adjust their strategies based on
experience. Researchers use computational cognitive models to
simulate human decision-making processes when faced with
uncertainty and potential risks, helping to elucidate the cognitive
mechanisms underlying decision behaviors. In studying decision-
making behaviors, normative decision theory adopts a top-down

approach, using mathematical analyses to provide guidance for
optimal decision-making. This theory is based on expected utility
theory, emphasizing the maximization of expected utility when
making rational decisions under conditions of uncertainty and
risk (Morelli et al., 2022). However, real-world decisions often
deviate from these rational standards, as decisions are typically
made under conditions of insufficient information or uncertainty.
To improve model performance, it is essential to consider the
limitations of cognitive systems (e.g., limited attention andmemory
resources) and account for certain biases and irrational factors
when constructing computational models.

Our Exploitation and Exploration with Forgetting (EEF) model
builds upon the concepts of previous models and primarily consists
of two components: an exploitation module and an exploration
module. The exploitation module updates by analyzing recent gain
and loss data associated with each card deck, while the exploration
module adjusts by monitoring the recent selection frequencies
of each option to capture behavioral patterns corresponding to
sequential exploration dynamics observed in the IGT. The dynamic
management of memory and forgetting is a fundamental element of
human decision-making processes. Distinguishing itself from other
models, the EEF model introduces an innovative “individualized
forgetting parameter”. This mechanism not only influences the
retention of information during exploitation but also regulates
information updating in exploratory behavior. Specifically, in our
EEF model, the forgetting parameter λ plays a crucial role in
updating the weights of both exploitation and exploration. It
controls the rate of information updating, reflecting the extent
to which a person’s decision-making is influenced only by recent
rounds or information, rather than by all accumulated experiences.
By adjusting the λ parameter, the model is able to capture
individual differences in behavioral patterns when faced with
decision-making scenarios.

Importantly, unlike the fixed geometric decay in PVL-1 and
VSE, our single forgetting parameter λ both modulates exploitation
and exploration, updates interactively on each trial, and can
be read as an individual’s short-term memory horizon—thereby
avoiding potential misunderstandings about scope, dynamics,
or interpretability.

In addition, our model innovatively incorporates the initial
preference knowledge of IGT participants, based on their first-
choice patterns, to enhance the consistency between the model and
human decision-making patterns. In this section, we will provide
a detailed explanation of the EEF model, including the specific
equations and parameters involved.

2.1 Exploitation with forgetting in IGT

The Exploitation and Exploration with Forgetting (EEF) model
consists of two main components: an exploitation module and
an exploration module. The exploitation module is conceptually
similar to the core ideas in the PVL and VSE models, both
of which primarily base their computations on gain and loss
utilities. However, our model does not include the “loss aversion”
parameter from the PVL model or the decay parameter from
the VSE model. The EEF model specifically introduces two key
control variables:
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• Sensitivity Control Variable θ (ranging between 0 and 1):

Adjusts the impact of gains and losses on utility calculations.
• Forgetting Parameter λ (ranging between 0 and 1):

Represents the degree of information forgetting.

In each trial, the exploitation weight of each deck d, d ∈

{A,B,C,D}, is updated according to the following equation:

Exploitationd(t + 1) = (1− λ)Exploitationd(t) (1)

Exploitationd(t) represents the exploitation weight of deck
d at time t. Equation 1 describes how the exploitation weight
of deck d is updated when it is not selected. Here, the weight
gradually decreases at a rate controlled by the forgetting parameter
λ, simulating the effect of forgetting—that is, the gradual decay of
unused information.

V(t) = Gain(t)θ − Loss(t)θ (2)

Exploitationd(t + 1) = (1− λ)Exploitationd(t)+ V(t) (3)

Equation 2 calculates the value V(t) at time t, where θ

modulates the sensitivity to gains and losses. Equation 3 illustrates
how, when deck d is selected, the exploitation weight is updated
based on the recent monetary feedback. In the exploitationmodule,
an increase in the forgetting parameter λ indicates faster forgetting,
meaning that previous information is lost more rapidly. In other
words, as an individual’s level of forgetting increases, the emphasis
in exploitation weight updates shifts from the prior exploitation
weight to the current value incentive.

2.2 Exploration with forgetting in IGT

Exploration weight represents the gradually increasing
attractiveness of a specific deck when it has not been selected for a
period of time. The exploration weight is an independent function
separate from the exploitation weight, meaning it is not influenced
by the monetary feedback experienced during the IGT. Previous
models have used the delta rule combined with a learning rate and
exploration reward parameter to simulate sequential exploration
behaviors by adjusting the weights of unselected decks (Ligneul,
2019). In our study, we design the increase in exploration weight to
be closely related to the forgetting process, with a particular focus
on the impact of forgetting on exploratory behaviors.

The exploration weight is governed by the following equations:

Explorationd(t + 1) = 0 (4)

Explorationd(t + 1) = λExplorationd(t)+ (1− λ)φ (5)

Explorationd(t) represents the exploration weight of deck d at
time t. Equation 4 is the exploration weight update equation for a
selected deck, indicating that the exploration weight of a selected
deck is reset to zero. In contrast, Equation 5 includes the individual
forgetting parameter λ and the exploration incentive parameter
φ (ranging from −5 to 5). This equation describes that, starting

from an initialized exploration weight, consistent with the cognitive
reinforcement mechanisms observed in Yechiam et al. (2010), if
a deck remains unselected over time, its exploration weight will
gradually approach φ under the influence of exploration incentives,
encouraging (if φ is positive) or discouraging (if φ is negative) the
agent to re-explore options that have been ignored for a long period.

The equation also suggests that in groups with a high level of
forgetting, the effect of exploration incentives may be weaker. In
high-forgetting groups, individuals are inclined to ignore or quickly
forget past information, making them more likely to forget the
information related to “how long an option has been unchosen”
when making decisions, causing the update of exploration weight
to depend more on previous weights rather than on exploration
incentives. To consider an extreme case, when the forgetting rate is
1, it implies that an individual with only memory of the current trial
completely disregards past information and makes choices based
solely on the rewards received in the current trial. In this scenario,
the exploration weight remains unchanged from the initial value
of zero, and each choice relies exclusively on the utility calculation
of the exploitation weight. This distinction illustrates the different
ways in which λ impacts exploration and exploitation weights.

2.3 Consistency parameter and decision
probability computation

After calculating the exploitation weight and exploration
weight for each deck using the exploitation and exploration
modules, the EEF model determines the probability of selecting
each deck using the following equation:

P(Choice = d) =
e(Explorationd+Exploitationd)×Consistency

∑4
i=1 e

(Explorationi+Exploitationi)×Consistency
(6)

The EEF model follows a similar approach to the PVL model
in generating choice probabilities (Steingroever et al., 2013). This
equation treats the decision-making process as a stochastic process
regulated by a consistency parameter (subsequently referred to as
“C”), which adjusts the randomness of choice behavior. In statistical
physics, C is analogous to the “inverse temperature” parameter
β , which controls the probability distribution of state selection.
In decision-making models, an increase in C indicates that the
choice process is more influenced by the combined effect of the
computed exploration and exploitation weights, thereby reducing
randomness and increasing reliance on these weights.

Notably, the value of C is derived from a transformation
of the inverse temperature parameter β , with the specific
transformation formula defined as C = 3β − 1, where β ranges
from 0 to 5. The model ultimately converts these weights into
choice probabilities using the softmax function, ensuring that
the probability distribution is normalized (i.e., the sum of the
probabilities for all options equals 1). This method effectively
balances the impact of randomness and the influence of weights,
ensuring that the model’s choice behavior not only reflects the
computed weights but also adheres to the statistical characteristics
of a stochastic process.
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FIGURE 1

Visualization of the selection of 504 participants in IGT: (A) Round selection in IGT. (B) The first round section in IGT.

2.4 IGT first choice: foundation of model
prior knowledge

The structure of the IGT allows researchers to observe and
analyze participants’ decision-making patterns across multiple
choices, which gradually become apparent as the task progresses.
At the beginning of this sequence of decisions, the first choice plays
a unique role. The first choice is made by participants without a
full understanding of the long-term consequences of each deck,
revealing their initial risk preferences and intuitive judgments.
After constructing the core framework of the EEF model, we
noted that, despite extensive research on the IGT, few studies have
thoroughly explored participants’ first-choice behaviors within the
task, and it is even rarer to see these behaviors used as the
foundation for model construction. Thus, this study aims to fill this
gap by conducting an in-depth analysis of first choices in the IGT,
with the goal of improving the model’s parameter recovery when
simulating human decision-making behavior.

Specifically, we seek to investigate first-choice patterns through
a comprehensive dataset to provide prior knowledge that enhances
model performance. We utilized a dataset containing 504
healthy participants (Steingroever et al., 2015), drawn from ten
independent studies using standard or variant IGT payoff schemes,
encompassing the classic 100-trial version of the task.

Figure 1 presents our visualization analysis of the choices made
by 504 participants across each trial in the dataset (Steingroever
et al., 2015). Figure 1A shows the choice frequency for each option
across 100 trials by 504 participants, while Figure 1B reveals distinct
preference patterns for card decks A, B, C, and D in the first
round of the IGT. Statistical analysis indicates that Deck A is
the most popular option, with a selection probability of 38.29%,
chosen 193 times. This is followed by Deck B, which was chosen
126 times, accounting for 25.00% of the total choices. In contrast,
Decks C and D have lower selection probabilities, at 20.83% (105
choices) and 15.87% (80 choices), respectively. The chi-square test
further reinforces the significance of this pattern. The resulting
chi-square statistic reached 68.46, with a corresponding p-value of
9.13 × 10−15. This p-value is far below the 0.05 threshold, clearly

indicating that the observed choice frequencies differ significantly
from the theoretical random probability of each option (25%).
This suggests that under conditions of incomplete information,
participants display a pronounced initial preference for certain
options, particularly Deck A. Such a choice bias may be related to
participants’ intuitive judgments and their varying perceptions of
risk, leading to the formation of preferences for certain decks in the
early stages of decision-making.

The model’s prior knowledge reflects the initial beliefs
or experiences that humans rely on when making decisions.
Incorporating this knowledge into the model allows it to better
simulate human intuition and preferences, thereby enhancing
its predictive accuracy and alignment with human decision-
making patterns. To improve the model’s fit to human decision-
making behaviors, we incorporated the observed frequencies of
participants’ initial choices as prior knowledge in the model.

As previously mentioned, the EEF model combines the derived
exploitation and exploration weights with a consistency parameter
C and transforms them into choice probabilities using the softmax
function. Thus, we can reverse-transform the observed choice
frequencies from earlier through the softmax function (setting β =

3) to compute the initial weight for each deck, which serves as the
model’s prior knowledge.

The initial weights of the four card decks are calculated
as follows:

wini = [0.0184, 0.0020,−0.0050,−0.0155] (7)

This initial weight serves as the model’s starting condition
and is combined with the weights subsequently derived from the
exploitation and exploration strategies to simulate participants’
decision-making behaviors in the Iowa Gambling Task. By doing
so, themodel is provided with amore reasonable starting condition,
allowing it to capture participants’ intuitive tendencies during the
early stages of decision-making.

More than a mere post-hoc adjustment, embedding the
empirically observed first-choice bias as a prior state is not a
generic post-hoc tuning device but an organic element of the
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EEF’s forgetting architecture. The vector wini constitutes an initial
memory trace that decays trial by trial at the individual specific
forgetting rate λ, entering the same update equations as all
subsequent experience. Benchmark models that lack an explicit
memory-decay or exploration channel (e.g., EV, PVL-1) cannot
accommodate such transient priors without redefining their core
equations, which would blur the theoretical distinctions under
comparison. For this reason the first-choice prior is implemented
only in the EEF model, where it naturally complements the joint
principles of forgetting and dynamic memory renewal.

3 Materials and methods

3.1 Data sources

To systematically analyze IGT decision-making patterns and
validate the empirical fit of the new computational model, we
selected several key datasets, all of which used the IGT as a
research tool. The following section details these datasets and their
applications in this study.

3.1.1 Iowa Gambling Task performance dataset
This study primarily utilizes the dataset containing 504 healthy

participants mentioned earlier as the basis for validating the EEF
model. This dataset is integrated from 10 independent studies,
with an original sample size of 617 healthy individuals, defined
as participants without reported neurological disorders. The data
were collected from studies using either the traditional IGT payoff
scheme or its variants, with all data obtained through computerized
versions of the IGT, covering different samples ranging from 95
to 150 trials. Specifically, we selected data from studies using the
standard 100-trial version, encompassing a total of 504 participants.
This dataset provides detailed records of each participant’s choices
in every trial and their corresponding reward and loss outcomes
(Steingroever et al., 2015). Detailed information on the studies
included in the dataset is presented in Table 2.

The seven contributing studies span laboratory, online, and
clinical contexts and cover a broad age range (18–88 years). This
heterogeneity reduces sampling bias and enables us to test whether
each competing model generalizes across demographic variability.

3.1.2 IGT in gambling behaviors dataset
We also included a dataset focused on decision-making

behaviors among individuals with varying gambling frequencies,
originally consisting of 147 participants (Kildahl et al., 2020).
Due to missing critical condition labels and gambling frequency
information, we excluded some participants and ultimately used
data from 139 participants for analysis.

Participants were recruited through the participant system
of Aarhus University’s Cognition and Behavior Laboratory, with
the majority being students (accounting for 84%). To meet the
participation criteria, all participants must have engaged in at
least one gambling activity within the past three months and be
at least 18 years old. Participants in the dataset were divided

TABLE 2 Iowa Gambling Task performance dataset (Steingroever et al.,

2015).

Study Number of
participants

Number
of

trials

Demographics

Horstmann
et al. (2012)

162 100 M = 25.6 years
(SD = 4.9), 82
female

Kjome et al.
(2010)

19 100 M = 33.9 years
(SD = 11.2), 6
female

Maia and
McClelland
(2004)

40 100 Undergraduate
students

Premkumar
et al. (2008)

25 100 M = 35.4 years
(SD = 11.9), 9
female

Steingroever
et al. (2013)

70 100 M = 24.9 years
(SD = 5.8), 49
female

Wood et al.
(2005)

153 100 M = 45.25 years
(SD = 27.21), wide
age range

Worthy et al.
(2013)

35 100 Undergraduate
students, 22 female

The original article provided detailed participant information, including age, occupation, and

gender distribution. These data were collected byAnnette Horstmann andwere first published

in the study by Steingroever et al. (2013). A subset of this dataset is also included in the study

by Horstmann et al. (2012). Participants in the dataset are divided into two main age groups.

The first 90 participants are young adults, aged between 18 and 40 years, with an average age

of 23.04 years (SD = 5.88). The next 63 participants are older adults, aged between 61 and 88

years, with an average age of 76.98 years (SD = 5.20).

into four groups based on their self-reported gambling frequency:
less than once per month (38 participants), at least once per
month (45 participants), once per week (29 participants), and
multiple times per week (27 participants). The experiment was
conducted through the Gorilla online experimental platform,
requiring participants to complete the task in a quiet environment
in a single session. The ages of the participants primarily ranged
from 27 years and below, with the majority being between 18
and 22 years old (71 participants), followed by 23 to 27 years
old (56 participants), and a small number of participants over 28
years old.

3.2 Model evaluation and comparison
methods

As experimental data and theoretical understanding continue
to advance, the validation and comparison of decision-making
simulation methods have become increasingly important. This
section introduces and compares several decision-making
simulation methods used for the IGT. In particular, we introduce
two new evaluation metrics—Sequential Exploration Decay (SED)
and Forgetting Interval (FI)—which help us further investigate
the effectiveness of various methods in capturing forgetting and
exploratory behaviors.
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3.2.1 Sequential exploration decay
In a previous study, Ligneul (2019) proposed an index for

quantifying sequential exploration, referred to as the “SE index.”
This index measures the occurrence of directed exploration by
calculating the probability that participants select four different
decks consecutively over four trials. Their study found that the
actual frequency of SE events was 11.1%, significantly higher than
the expected random exploration frequency of 9.38% (binomial
test: p < 10−10), indicating that participants tend to engage
in more exploratory choices. Although the SE index effectively
captures directed exploration behaviors in the IGT, it primarily
reflects overall exploration patterns and cannot finely distinguish
between behavioral changes in the early and late stages of the
task, nor can it capture changes in information value decay across
different phases.

In the IGT, even though participants may have already
identified the long-term gains or risks associated with certain decks,
forgetting and other psychological biases may lead them to re-
explore previously chosen options, particularly in the later stages of
the task. To capture these temporally varying exploratory behaviors
from a new perspective, this study introduces a new evaluation
metric called “Sequential Exploration Decay” (SED). This metric
reflects the extent of information value decay by calculating the
ratio of the number of consecutive four-different-deck events in the
first 50 rounds (early exploration phase) to that in the last 50 rounds
(late exploration phase).

By calculating the SED for the IGT data from 504 participants,
the experimental data show that the actual SED ratio is 1.54923,
whereas several existing decision-making models such as EV,
PVLdelta, ORL, VPP, and VSE exhibit significantly higher
SED ratios after simulation (EV and PVLdelta > 5, ORL =

3.01339, VPP = 3.39871, VSE = 2.35052, all p-values < 0.05).
This discrepancy suggests that although these models can simulate
the decision-making process to some extent, they may fail to
fully account for certain key psychological phenomena influencing
human decision-making, such as forgetting and cognitive biases.
Therefore, by introducing the SED metric, we aim to provide a
more refined and accurate tool for analyzing and understanding
the actual impact of these psychological phenomena on decision-
making behaviors.

3.2.2 Forgetting interval
Our analysis is conducted based on the hypothesis that negative

feedback (e.g., suffering a large loss after choosing a particular
deck) is typically perceived by participants as a high-information
event, prompting them to avoid selecting that option again in the
short term. However, as time progresses and new information is
introduced (i.e., through interference-based forgetting; Ecker and
Lewandowsky, 2012), the impact of this negative feedback may
gradually diminish, leading participants to reselect the same deck.
Therefore, we propose a new metric, the Forgetting Interval (FI),
to quantify the extent to which participants forget information in
the IGT. This metric measures the time (in terms of the number
of trials) it takes for participants to reselect a deck after receiving
negative feedback, providing a new dimension for computational
models of the IGT to assess forgetting behaviors.

The four card decks (A, B, C, D) in the IGT are presented
to participants with equal probability. Under the assumption of
no preference or memory effects, the probability of randomly
selecting any deck in each trial is 1/4. If participants have no
specific preference or avoidance, the expected time interval before
reselecting a deck after receiving negative feedback should be 4
trials, according to the expectation formula (E =

∑∞
n=1

( 1
4

)n
·

( 3
4

)n−1
· n = 4). However, by analyzing the data from 504

participants, we found that the average re-selection interval after
receiving negative feedback is 6.24 trials (SD = 7.53), which is
significantly higher than the expected random interval of 4 trials
(t(503) = 6.69, p < 0.001). This finding indicates a notable
delay in participants’ decision-making behaviors when faced with
unfavorable outcomes. In previous computational model designs,
the phenomenon of reselecting an option after a period following a
negative feedback event was often attributed to either exploitation
or exploration strategies. However, such conventional explanations
do not adequately account for why the FI is significantly shorter in
older adults compared to younger adults. This observation suggests
that models solely relying on exploitation and exploration strategies
may overlook the critical role ofmemory and forgetting in decision-
making processes, making it reasonable and necessary to introduce
forgetting factors into computational models.

Our Forgetting Interval metric can thus be shown to capture the
phenomenon of forgetting in the IGT andwill serve as an important
reference for subsequent model comparisons.

3.2.3 Statistical model evaluation criteria: BIC,
AIC, and free energy

To evaluate the goodness of fit and complexity of decision-
making models, this study employs three statistical metrics:
Bayesian Information Criterion (BIC), Akaike Information
Criterion (AIC), and Free Energy (F).

The Bayesian Information Criterion (BIC), proposed by
Schwarz (1978), aims to assess model performance. It is calculated
using the sample size n, the number of model parameters k, and the
maximum likelihood estimate L̂. The formula is as follows:

BIC = ln(n) · k− 2 · ln(L̂) (8)

BIC imposes a larger penalty for model complexity, helping
to prevent overfitting. A lower BIC value generally indicates a
model that achieves a high goodness of fit while maintaining an
appropriate level of complexity.

The Akaike Information Criterion (AIC), proposed by Akaike
(1974), is calculated as:

AIC = 2k− 2 ln(L̂) (9)

AIC also evaluates the balance between goodness of fit and
complexity, but compared to BIC, it imposes a smaller penalty for
the number of parameters, making AIC more tolerant in model
selection when dealing with models containing a large number of
parameters, especially for large-sample data analysis.

Free Energy (F) is a metric used to assess the balance between
fitting the data and model complexity, which is crucial for selecting
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the optimal model. Free Energy not only reflects the model’s ability
to fit the data but also considers its complexity, helping to avoid
overfitting. In this study, we use Free Energy to comprehensively
evaluate the performance of different models to ensure the selection
of a model that accurately reflects the experimental data without
being overly complex. The formula for calculating Free Energy is
as follows:

F = −0.5×SSE−0.5×ntot log(2π)+0.5×log det(Q)+S+dF (10)

Where SSE (sum of squared errors) measures the deviation
between the model predictions and the actual data; ntot is the
total number of parameters, reflecting the model’s dimensionality
and complexity together with the error term; log det(Q) is the
logarithm of the determinant of the prior precision matrix Q,
representing the contribution of the prior distribution to the model
complexity and the estimation of parameter uncertainty; S is the
entropy of the model, describing the uncertainty in the posterior
distribution of the parameters; and dF is the KL divergence between
the posterior and prior distributions of the precision parameters
(such as observation noise precision and state evolution noise
precision), measuring the degree to which the model deviates from
the prior assumptions.

This comprehensive evaluation method allows us to find the
optimal balance between goodness of fit and model simplicity,
thereby enabling more effective simulation and understanding of
human decision-making behaviors.

3.2.4 Approach for model and parameter
recovery

Relying solely on traditional estimators such as the Akaike
Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) may not be sufficient to comprehensively reflect a model’s
performance. This issue is particularly evident when inferring
cognitive processes from model-estimated parameters. A common
scenario is that a model with lower information loss or better
data-fitting ability does not necessarily replicate actual choice
behaviors more accurately, indicating that themodel may still fail to
capture the complexity of human cognition. Alternatively, similar
behavioral patterns may arise from completely different parameter
configurations, suggesting that the model’s interpretability of
human cognitive decision-making processes is limited. To address
these challenges and ensure that the performance of our EEFmodel
is at least comparable to, if not better than, that of previous models,
we conduct analyses in Section 4.

First, for each model, we use each participant’s actual decision
data to set the best-fitting parameters of the model, and then
employed these parameters to generate simulated IGT decision
behaviors for the agent. Starting from initial prior knowledge, the
agent received feedback for each round that followed the same
rules as those of the participants, guided by the exploration and
exploitation strategies as well as the consistency parameter. Next,
we applied our EEF model and other competing models to the
simulation-generated data, attempting to recover the initially set
parameters from these data. By comparing the consistency between
the parameters recovered from the simulated data and the original

parameters, we evaluated the EEF model and previous models
in terms of parameter recovery quality, stability, and reliability.
Additionally, we compared the agent’s simulated choices with the
actual choices of participants. Through parameter recovery, we
can identify the strengths and weaknesses of the model under
specific decision contexts, thereby making targeted adjustments to
the model parameters or algorithms to improve its performance
and applicability in real-world settings.

4 Result

In this section, we explore the behavioral data of 504
participants in the Iowa Gambling Task, focusing specifically on
the application effectiveness of the two newly introduced evaluation
metrics—Sequential Exploration Decay (SED) and Forgetting
Interval (FI)—in different decision-making models. By comparing
the performance of the EEF model with that of five other models,
we assess the impact of incorporating forgetting factors into model
design on improving the accuracy of simulating real decision-
making behaviors. Additionally, this section presents the models’
performance in fitting actual choice data, providing empirical
evidence to understand the effectiveness of eachmodel in capturing
the dynamics of human decision-making.

4.1 Forgetting phenomena—Sequential
Exploration Decay and forgetting interval

In this subsection, we conduct a detailed comparison of the
effects of the two newly proposed evaluation metrics—Sequential
Exploration Decay (SED) and Forgetting Interval (FI)—in the EEF
model and five other previously established models, using the IGT
dataset from 504 participants as the basis.

The Sequential Exploration Decay (SED) metric introduced in
this study is designed to measure the extent of information value
decay and changes in exploratory behavior between the first 50
rounds and the last 50 rounds in the IGT.

Figure 2A presents the actual SED ratio based on data from
504 participants and the results simulated by different decision-
making models. A ratio >1 signifies that exploration events are
more frequent in the first half of the task than in the second half,
thereby operationalising the gradual decay of information value.
Conversely, a ratio close to 1 indicates that participants (or models)
maintain a comparable level of exploration throughout. Hence,
the proximity of the EEF bar to the empirical dashed line visually
conveys its ability to reproduce the tempo of exploratory decline
observed in humans.

The experimental data show that the actual SED ratio is 1.549,
reflecting a gradual decrease in exploratory behavior throughout
the task. As illustrated in the chart, there are significant differences
in the SED ratios among different decision-making models: the
SED ratios for the EV and PVLdelta models are much higher
than the actual data, at 79.857 and 74.375, respectively. The SED
ratios for the ORL, VPP, and VSE models are 3.013, 3.399, and
2.351, respectively—much lower than those of the EV and PVLdelta
models but still significantly higher than the actual data. Statistical
analysis using the chi-square test confirms that, except for the EEF
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FIGURE 2

Model performance in forgetting phenomenon verification: (A) Performance in Sequential Exploration Decay (SED). (B) Performance in Forgetting

Interval (FI). The red dashed line in (A) and (B) represents the SED and FI values derived from the IGT data of 504 participants. The EEF model is the

closest model to these empirical values, indicating its higher accuracy in capturing human decision-making behavior.

model, the SED ratios of all other models differ significantly from
the actual SED ratio(p < 0.001).

Such a stark contrast between early and late-stage exploration
behaviors may indicate an excessive dependence and exploitation
of early-acquired information in these models. This near-cessation
of exploration in the later stages of the task contrasts with the
gradually diminishing yet sustained exploration behavior observed
in the actual data, highlighting a deficiency in the models’ dynamic
adaptability to simulate human decision-making. In contrast, the
EEF model shows a more balanced pattern of exploration between
the early and late stages, with an SED ratio of 1.557, which is
very close to the actual data value of 1.549. This suggests that the
EEF model, by incorporating forgetting, can better simulate the
actual exploration dynamics and more accurately reflect human
behavioral patterns and the phenomenon of forgetting in an ever-
changing decision environment. It also indicates that the continued
exploration observed in the later stages of the IGT may be due to
some degree of forgetting of previously acquired information in
human decision-making.

As for the Forgetting Interval (FI) showed in Figure 2B, a
new evaluation metric designed to quantify participants’ degree
of forgetting after receiving negative feedback, an analysis of the
data from 504 participants revealed that the actual FI is 6.24 trials,
indicating that participants typically delay a period of time before
reselecting the same deck after experiencing negative feedback.

In terms of model comparison, the EEF model’s FI value is
4.13 trials. Although this differs from the actual data (6.24 trials),
it is the closest to the real data among all models. Other models,
such as the EV model (3.69 trials), the ORL model (4.04 trials),
the PVL-Delta model (3.61 trials), the VPP model (3.93 trials), and
the VSE model (4.11 trials), show FI values lower than the EEF
model, indicating that their performance in simulating participants’
forgetting behaviors deviates further from the actual situation.
This result highlights the relative advantage of the EEF model
in capturing decision behaviors related to forgetting. One-tailed
Welch’s t-tests further confirmed that the FI value of the EEFmodel
was significantly higher than that of the EV, PVL-Delta, and VPP
models (p < 0.01), indicating better alignment with the actual
data. Although the differences between EEF and the ORL(p =

0.14) and VSE(p = 0.42) models were not statistically significant,

the EEF model still achieved the closest approximation to the
real data among all models. This observation suggests that further
refining and adjusting the parameters of the forgetting mechanism
in future model developments may improve model accuracy and
practical applicability.

By comparing the performance of each model in terms of
SED and FI, we found that the EEF model, which incorporates
forgetting factors, achieves the closest alignment with the actual
data across both metrics. This finding underscores the necessity of
incorporating forgetting factors into models and highlights the EEF
model’s significant advantage in simulating the phenomenon of
forgetting and its impact on human behavior. These results suggest
that future research andmodel development should further explore
and refine the mechanisms of forgetting to enhance the model’s
realism and predictive accuracy.

4.2 Statistical model evaluation (BIC, AIC,
and free energy)

In this section, we conduct fixed-effects and random-effects
analyses on the Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIC), and Free Energy (F) metrics for
the EEF model and five other previously established models.
The experiments are still based on the IGT dataset from 504
participants. It should be noted that using Free Energy (F) directly
as a metric for model comparison may not allow for a direct
comparison with other statistical metrics such as BIC and AIC, due
to differences in their calculation methods and scales. To address
this issue, this study apply a transformation to the Free Energy
(F) metric by multiplying its value by –2, i.e., calculating −2 × F

(Daunizeau et al., 2014). The purpose of this transformation is to
align the dimensionality and value range of Free Energy (F) with
those of BIC and AIC, thereby enabling a clearer and more rational
comparison between models.

Figure 3 uses the EEFmodel as the reference point and adopts a
fixed-effects model comparison framework. In this context, positive
bar values represent the amount of information loss incurred when
selecting a model other than EEF. Because each bar reflects the
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FIGURE 3

Performance of each model in terms of AIC, BIC, and free energy (relative to EEF). The bar chart illustrates the relative di�erences of each model

compared to the baseline model (EEF). The values are computed using the formula: –2 times the sum of each metric (AIC, BIC, and Free Energy)

subtracted by –2 times the sum of the corresponding metric for the baseline model EEF. Positive values indicate worse performance compared to

EEF. The absolute values of each metric are also shown for reference.

difference between a given model’s score and the EEF baseline,
higher (positive) values indicate worse performance, while values
at or below zero suggest comparable or superior performance.

As shown in the figure, the EEF model outperforms all other
models across nearly all evaluation metrics. The only exception is
the Free Energy criterion, where it performs slightly worse than the
VSE model. Nonetheless, this marginal drawback is outweighed by
its superior performance on the remaining metrics.

Under the BayesianModel Selection framework, the EEFmodel
achieved the highest estimated model frequency under both the
BIC and AIC criteria, exceeding 70% and 40% respectively—
well above the chance level (1/6) and other models. Notably, the
confidence intervals of these estimates did not overlap with the
chance level or other models, indicating a statistically robust group-
level preference for the EEF model. These consistent results across
multiple evaluation criteria provide strong Bayesian evidence for
the robustness and generalizability of the EEF model in explaining
human decision-making behavior in the IGT.

4.3 Simulation: model and parameter
recovery

In this section, we present the results of the simulation
experiments on model and parameter recovery. We focus on
evaluating the EEFmodel’s performance compared to the other five
existing models in terms of prediction accuracy for fitting actual
choice data and simulated choice data, as well as the quality of
parameter recovery.

Figure 4 shows the performance of three metrics that measure
model recovery. In the analysis of fitting actual data (Fitted
Choices), the EEF model achieved 58.13% accuracy, significantly
outperforming the EV model (44.01%; t = 14.02, p < 0.0001) and
the PVL1 model (45.51%; t = 12.15, p < 0.0001). Its accuracy did
not differ significantly from the ORL model (57.47%; t = 0.64, p =

0.521), nor from the VPP (58.21%; t = −0.08, p = 0.940), or VSE
models (58.64%; t = −0.50, p = 0.618). Notably, the simplified
EEF model achieves any equivalent fitting performance with fewer
parameters than ORL, VPP, and VSE, underscoring its efficiency.

In the analysis comparing whether the choices derived from the
agent (Simulated Choices) can replicate the original choice data, the
EEF model achieved an accuracy of 41.977%—the highest among
all six models—demonstrating strong performance. Two-tailed
Welch’s t-tests showed that its accuracy was significantly higher
than that of EV [27.05%; t(73861) = 18.16, p < 0.0001], PVLDelta
[27.43%; t(78709) = 17.28, p < 0.0001], and VPP [38.77%;

t(100756) = 3.11, p = 0.0018], but did not differ significantly
from ORL [40.14%; t(100632) = 1.80, p = 0.072] or VSE
(41.55%; t(100773) = 0.50, p = 0.619). Despite using fewer free
parameters, the EEF model still outperformed most alternatives,
underscoring its robustness in replicating experimental behavior
and its efficiency in simulating participants’ decision-making
processes. These findings confirm the effectiveness and stability of
the EEF model in capturing complex cognitive dynamics.

Figure 5 presents the results of the parameter recovery
analysis, providing a visual assessment of each model’s ability
to recover simulated parameters. All axes display z-scored
parameter values, standardized by subtracting the sample mean
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FIGURE 4

Model and parameter recovery acrossing models. Comparison of di�erent models based on correlation mean, fitted choices, and simulated choices.

Correlation mean evaluates the parameter recovery quality, while fitted and simulated choices indicate the models’ ability to replicate participant

behavior and generate consistent simulated choices.

and dividing by the standard deviation. This rescaling ensures that
heterogeneous parameters are comparable and can be displayed on
common axes.

As a result of this standardization, data points may assume
negative values even when the original parameters (e.g., λ, θ ∈

[0, 1]) remain within their theoretical bounds. Negative z-scores
simply indicate that a participant’s parameter estimate falls below
the sample mean.

The dashed line in each subplot marks perfect equivalence
between parameters estimated from the real dataset (x-axis) and
those recovered from simulated data (y-axis). Among all models,
the EEF model shows the tightest clustering of points around this
ideal line, demonstrating superior consistency and accuracy in
parameter recovery.

Overall, the composite correlation coefficient for parameter
recovery in the EEF model is 0.849 (range: 0.69–0.96), which is
significantly higher than those of the other models. Specifically,
the EV model yielded a composite coefficient of 0.787 (range:
0.75–0.86), the ORL model 0.791 (range: 0.67–0.87), and the
VSE model 0.792 (range: 0.63–0.94). The PVLdelta and VPP
models showed relatively inconsistent parameter recovery, with
lower overall coefficients and broader variability across parameters
(PVLdelta: 0.725, range: 0.52–0.86; VPP: 0.698, range: 0.38–0.94).
Pairwise Fisher z-tests confirmed that the EEF model’s recovery
performance was significantly better than all other models (p values
< 0.05 in all comparisons). Notably, the correlation coefficients for
the ForgettingRate and ExploreBonus parameters in the EEF model
reached 0.896 and 0.956, respectively, highlighting the model’s
strong explanatory and predictive power in capturing individual
differences in decision-making behavior.

5 Discussion

5.1 Extension of EEF model with loss
aversion

We further extended the EEF model by adding a loss aversion
parameter (LA), ranging from 0 to 5, to the exploration module.
This parameter reflects the tendency for individuals to form a
more negative impression of an option after encountering negative
feedback, thereby reducing its probability of being selected. We
named this extended model the Exploitation and Exploration
with Forgetting and Loss Aversion (EEFLA). Specifically, we
made the following modification to the utility calculation in the
exploitation module:

V(t) = Gain(t)θ − LA ∗ Loss(t)θ (11)

In addition, all other parts of the exploitation and exploration
modules in the EEFLA model remain consistent with the original
EEF model. We conducted a comprehensive comparative analysis
between the EEF model and the EEFLA model.

Figure 6 shows the performance of three metrics that measure
model recovery across EEF and EEFLA. First, it is essential to
highlight the EEFLA model’s ability to fit actual data (Fitted
Choices) and replicate original choices (Simulated Choices). As
mentioned earlier, the EEF model outperformed previous models
in terms of parameter recovery (Fitted Choices: 58.128%; Simulated
Choices: 41.977%). After incorporating the loss aversion parameter,
the EEFLA model showed even better performance on these two
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FIGURE 5

Parameter recovery analysis across. (A) EV Model, (B) ORL Model, (C) PVL Model, (D) PVL-Delta Model, (E) VPP Model, (F) VSE Model, and (G) EEF

Model. The dashed line represents perfect equivalence between parameters fitted from the real data (x-axis) and recovered from simulated data

(y-axis). EEF shows the highest consistency, with most parameters closely aligned along the ideal line, indicating superior recovery accuracy

compared to other models.

metrics, achieving a fit to actual data of 58.956% and replicating
42.613% of the original choices. This performance surpasses that of
all models, including the EEF and the five comparison models. This
result indicates that introducing the loss aversion parameter allows
the model to better fit the original data.

Figure 7 shows the comparison of SED and FI, and we can find
that although the EEFLA model performed slightly worse than the
EEF model (the SED of EEFLA is 1.598, with a difference of 0.049
from the original data, while the SED of EEF has a difference of
only 0.008 from the original data; the FI of EEFLA is 4.02, with a
difference of 2.22 from the original data, while the FI of EEF has a
difference of 2.11), it still outperformed most of the other models.
This indicates that the EEFLA model is still capable of effectively
simulating human decision-making behaviors.

However, it can be seen from Figure 8 that the performance
of the EEFLA model is not outstanding in terms of parameter
recovery and fixed-effects statistical model analysis. The composite
correlation coefficient for EEFLA’s parameter recovery is 0.785
(range: 0.58–0.93), which is lower than the EEF model’s 0.849
(range: 0.69–0.96). Additionally, the EEFLA model did not
perform well in the previously mentioned fixed-effects statistical
model analysis.

In summary, although the performance of the EEFLA model
with the loss aversion parameter is still inferior to that of
the EEF model in many aspects, the EEFLA model may show
superior performance when there is a higher demand for accurately
reproducing human decision-making behaviors.

5.2 Capturing age- and gambling
frequency-related IGT decision patterns
with the EEF model

5.2.1 Age-related di�erences in IGT performance
Isabel Gómez-Soria and colleagues found that older adults

exhibit a higher forgetting rate when it comes to remembering

the temporal order and task-related information (Gómez-Soria
et al., 2021). This suggests that in tasks involving short-term
memory, older adults experience faster information loss compared

to younger individuals. However, in a study by Wood et al. (2005),
there was no significant difference in IGT performance between

older and younger groups, which might indicate that the two
groups adopt different decision strategies. Therefore, we use the

IGT dataset from Wood et al. (2005)’s study, which includes 90
younger adults (aged 18–40 years, average age = 23.04 years, SD

= 5.88) and 63 older adults (aged 61–88 years, average age =

76.98 years, SD = 5.20), to evaluate the EEF model’s effectiveness
in capturing strategy differences among IGT participants and to

investigate the forgetting patterns in older vs. younger adults.
When comparing the EEFmodel’s fitted parameters for the IGT

data of the older and younger groups, Figure 9 presents the average
values of the model parameters along with error bars to display the
range of these averages. We can see that the forgetting rate is higher

in older adults compared to younger adults (Old: 0.537 ± 0.030;
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FIGURE 6

Model and parameter recovery across EEF and EEFLA model.

FIGURE 7

Model performance in forgetting phenomenon verification (EEFLA included): (A) Sequential Exploration Decay (SED). (B) Forgetting Interval (FI).

Young: 0.462 ± 0.026), which is consistent with the conclusions of
Gómez-Soria et al. (2021).

At the same time, we also observe that older adults have
significantly lower value sensitivity1 (Old: 0.298 ± 0.025; Young:
0.349 ± 0.026) and lower exploration reward (Old: 0.500 ±

0.289; Young: 0.686 ± 0.207) than younger adults, whereas the
consistency parameter is significantly higher in older adults (Old:
0.869 ± 0.043; Young: 0.741 ± 0.039). This parameter pattern
aligns well with Eppinger et al. (2012)’s findings that older adults
show reduced striatal activity in the anticipation and processing of
rewards, leading to decreased sensitivity to immediate rewards. It
also corresponds with Sparrow and Spaniol (2016)’s observation
that older adults are more inclined to choose familiar options

1 A notable point is that the significance threshold used here is 0.1.

rather than trying new or uncertain choices in tasks involving
exploratory behaviors.

In summary, these fitted parameters reflect the different
forgetting phenomena and distinct choice strategies between the
older and younger groups in the IGT. This demonstrates that the
EEF model can capture age-related variations in decision-making
behaviors in both older and younger adult groups.

5.2.2 Gambling frequency-related di�erences in
IGT performance

We also apply the EEF model to a dataset from a study by
Kildahl et al. (2020) that focused on decision-making behaviors
among individuals with different gambling frequencies. To better
investigate the characteristics exhibited by groups with varying
gambling frequencies in the IGT using the EEF model, we
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FIGURE 8

Performance comparison in EEF and EEFLA: (A) Performance in Terms of AIC, BIC, and Free Energy (Relative to EEFLA). (B) and (C) Performance in

Parameter Recovery Across EEFLA and EEF.

FIGURE 9

EEF-fitted parameters in young-old dataset.

merged the original four groups—less than once per month (38
participants), at least once per month (45 participants), once
per week (29 participants), and multiple times per week (27
participants)—into two groups: low-frequency gamblers (Non-
gamb: less than once per month and at least once per month, 83
participants) and high-frequency gamblers (Gamb: once per week
and multiple times per week, 56 participants). The figure below
shows a comparison of the EEF-fitted parameters for the 100-trial
IGT results of the two groups.

We can observe from the Figure 10 that the Explore Bonus
for low-frequency gamblers (Non-gamb) is negative (−0.213 ±

0.240), which contrasts sharply with that of high-frequency
gamblers (0.018 ± 0.221). This indicates that individuals with low
gambling frequency have a weaker tendency toward exploratory
behavior compared to high-frequency gamblers, especially when
exploration may yield uncertain outcomes; they may even
avoid engaging in exploration. Such behavior suggests that
low-frequency gamblers exhibit stronger risk aversion during
exploration and prefer more stable choices over attempting new
strategies.

Regarding the difference in Forgetting Rate, we can see that
the forgetting rate of low-frequency gamblers is significantly higher
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FIGURE 10

EEF-fitted parameters in gambling dataset.

than that of high-frequency gamblers (Gamb: 0.361 ± 0.028; Non-
gamb: 0.422 ± 0.029). Although there is currently no specific
research on the relationship between gambling frequency and
short-term memory ability, some studies have explored the impact
of games like Mahjong on short-term memory and working
memory. A 12-week intervention study found that older adults
with mild cognitive impairment showed significant improvements
in executive functions, such as task-switching and multitasking
abilities, after continuous participation in Mahjong activities
(Zhang et al., 2020). Similarly, engaging in intellectual activities
such as board games has been shown to reduce the risk of
cognitive decline and improve memory and executive functions
in older adults (Lee et al., 2018). In a related study, regular
participation in board games was also found to enhance cognitive
performance in terms of attention, memory, and problem-solving
abilities among older adults (Yao, 2019). This can be analogized
to the differences in forgetting rates fitted by the EEF model for
different gambling populations. The complex rules and strategic
operations required in certain types of gambling gamesmay require
participants to continuously process and memorize various types
of information, thereby having a positive effect on short-term and
working memory.

Although this conclusion is somewhat preliminary, we can
still use the EEF model’s analysis of IGT data to identify the
behavioral characteristics of different populations in such decision-
making tasks.

5.3 Conclusions and future research
directions

This study proposes and validates a new computational
model—the Exploitation and Exploration with Forgetting (EEF)
model—which, for the first time, introduced a forgetting parameter

in the context of the Iowa Gambling Task (IGT) and incorporated
the initial conditions based on the first-choice data of 504
participants collected by Steingroever et al. (2015). By comparing
the EEF model with previous models, we verified its effectiveness
and addressed the gap in IGT research concerning the phenomenon
of forgetting, revealing how individuals adjust their strategies in
response to constantly changing environmental information.

Through the introduction and analysis of two new metrics,
Sequential Exploration Decay (SED) and Forgetting Interval (FI),
we found that the EEF model performs better than the other five
models in capturing the phenomenon of forgetting in the IGT.
The analysis of SED showed that the EEF model maintains a more
balanced pattern of exploration behavior between the early and late
stages of decision-making, and its SED value is closer to the real
data compared to models like VSE and PVLdelta. This indicates
that the EEF model more accurately simulates the process of
information value decay over time, highlighting the central role of
forgetting in exploratory behaviors. Furthermore, the EEF model’s
superior performance on the FI metric further demonstrates its
effectiveness in simulating human behavior under the influence of
negative feedback.

However, this study still has some limitations. Although the
introduction of the forgetting parameter enhanced the model’s
explanatory power, its consistency with actual individual decision-
making behavior needs further improvement in certain contexts.
This may be due to the model’s current inability to fully account
for other complex influencing factors, such as emotional states
and risk preferences. Modeling and integrating these factors
present significant challenges, involving multi-dimensional data
collection and complex algorithm design. In addition, although this
study examined the behaviors of different age groups, a deeper
exploration of specific populations (e.g., patients with mental
disorders) regarding the differences in forgetting and decision-
making behaviors requires more detailed research design and
ethical approval. Regarding the neural mechanisms of forgetting,
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although existing research suggests that forgetting is closely
related to the activities of the prefrontal cortex and hippocampus,
integrating these neural mechanisms into our model remains a
challenge. The acquisition and analysis of neurobiological data are
complex and require interdisciplinary collaboration and advanced
technical support.

Therefore, future research will focus on the following
directions: First, refining the forgetting mechanism and exploring
methods for dynamically adjusting the forgetting parameter to
better simulate cognitive processes in various contexts. This may
involve developing new algorithms or using machine learning
techniques to automatically optimize model parameters. Second,
applying the EEF model to more complex decision-making
scenarios, such as multi-armed bandit tasks or real-life decision-
making contexts, to verify its broader applicability and improve its
generalizability. Finally, we plan to incorporate more psychological
and neurobiological data, such as electroencephalography (EEG)
and functional magnetic resonance imaging (fMRI), to further
investigate the neural mechanisms of forgetting and decision
behavior. By integrating these neural signals into the model, we
hope to enhance the model’s accuracy in simulating individual
decision-making processes. Although this direction is highly
complex, it has the potential to significantly improve the model’s
biological realism and predictive capability.
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