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Introduction: Lifestyle factors have demonstrated a significant contribution 
to resilience against cognitive decline and age-related diseases. However, the 
understanding of how combinations of modifiable lifestyle behaviors relate to 
cognitive trajectories across the lifespan remains limited. This study aims to explore 
the relationship between lifestyle trajectories—including cognitive activity, physical 
exercise, sleep, socialization, nutrition, alcohol consumption, tobacco use, and 
body mass index (BMI)—and cognitive performance in healthy middle-aged adults.

Methods: Data were obtained from the Barcelona Brain Health Initiative (BBHI), an 
ongoing longitudinal prospective cohort study. Participants completed repeated 
self-reports on lifestyle factors and underwent in-person neuropsychological 
assessments. Kml3d clustering was applied to the longitudinal lifestyle data to identify 
distinct profiles. Cognitive performance was then analyzed across these lifestyle 
clusters to evaluate associations between lifestyle patterns and cognitive status.

Results: The results revealed that adherence to healthy lifestyle patterns 
was strongly associated with better cognitive performance. Specifically, 
individuals following profiles characterized by higher engagement in cognitive 
and physical activities, healthier nutrition, better psychological health, and 
stronger socialization showed superior cognitive status. Moreover, the findings 
underscored that adhering to a higher number of healthy behaviors had a 
cumulative positive impact on cognition. Across the studied period—spanning 
middle age to older adulthood—cognitive trajectories were generally stable.

Discussion: This study highlights that k-means clustering of longitudinal 
lifestyle data can successfully identify meaningful lifestyle profiles associated 
with cognitive status in middle-aged adults. The results suggest that specific 
combinations of modifiable lifestyle factors may exert a more pronounced 
influence on maintaining cognitive health. These findings provide promising 
insights for the development and personalization of lifestyle interventions aimed 
at enhancing brain health and resilience to cognitive decline.
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Introduction

The continuous advancements in public health policies and 
medical innovations have led to a notable extension in human life 
expectancy. In this regard, current projections indicate that the 
population of adults aged 65 and above is predicted to be more than 
double by the year 2050. Nevertheless, the growing population also 
represents an increasing prevalence of age-related diseases, presenting 
significant challenges to both socioeconomic and healthcare systems 
(Harper, 2014). One of the major concerns of aging is cognitive 
decline, which can lead to disability and dependency, and which is 
frequently associated with cerebrovascular disorders and 
neurodegenerative diseases. However, the central question has been 
why some individuals succeed in aging successfully, retaining their 
ability to perform physical and mental functions as well as maintaining 
emotional stability and social interaction, while others experience 
cognitive decline (Rowe and Kahn, 2015).

The reserve model offers a useful framework to explain individual 
differences in cognitive aging (Stern, 2002). According to this 
framework, cognitive deficits typically emerge when the reserve of an 
individual—whether structural (brain reserve) or functional 
(cognitive reserve)—falls below a critical threshold. Individuals with 
lower baseline reserve are more susceptible to exhibiting clinical 
symptoms earlier, as they have fewer resources to compensate for the 
effects of aging and pathological changes (Katzman et al., 1988). In 
contrast, those with higher reserve levels can maintain cognitive 
functioning for a longer period, as their greater resource capacity 
provides a buffer against these detrimental influences (Fritsch et al., 
2007; Stern et al., 2023). Brain reserve refers to a passive model, where 
structural characteristics such as brain size or neuronal count, 
determine the capacity of the brain to tolerate pathology. Cognitive 
reserve, by contrast, represents an active model that emphasizes the 
flexible and efficient use of neural networks to compensate for damage 
(Arenaza-Urquijo et al., 2015). While the distinction between these 
two forms of reserve is largely conceptual, they interact closely. 
Functional adaptability (cognitive reserve) is often supported by 
anatomical resources (brain reserve), highlighting the intertwined 
nature of structure and function in sustaining cognitive health (Stern, 
2009). Even during typical aging, structural brain changes—such as 
cortical thinning, white matter and gyral atrophy, ventricular 
enlargement (Blinkouskaya et al., 2021), and hippocampal volume loss 
(Bettio et al., 2017)—have been associated with declines in various 
cognitive domains, including executive functions, processing speed 
(Prins et al., 2005), episodic memory (Lalla et al., 2022), and working 
memory (Bartrés-Faz et al., 2009; Pliatsikas et al., 2019).

Initial reserve levels are shaped by genetic and developmental 
factors, but they can also be modified throughout life by environmental 
exposures and experiences—from childhood through older age (Stern 
et  al., 2020, 2023). Since there are no direct measures of reserve, 
researchers commonly rely on proxy indicators. For brain reserve, 
typical proxies include intracranial volume, brain volume, and head 
circumference, whereas education, IQ, occupational complexity, and 
other cognitive activities are widely used proxies for cognitive reserve 
(Arenaza-Urquijo et al., 2015). However, a broader range of modifiable 
lifestyle factors—such as physical activity, cognitive engagement, 
social interaction, and dietary habits—also play a significant role in 
influencing reserve capacity (Tucker and Stern, 2011; Koščak Tivadar, 
2017; Liu et al., 2020; Wu et al., 2020; Oosterhuis et al., 2022; Song 
et al., 2022; Abellaneda-Pérez et al., 2023). These factors not only 

contribute to cognitive reserve but have also been extensively studied 
for their role in mitigating cognitive decline (Amanollahi et al., 2021) 
and delaying the onset of neurodegenerative diseases—potentially 
accounting for up to 45% of dementia cases (Xu et al., 2020; Livingston 
et al., 2024). Importantly, lifestyle behaviors may influence both brain 
structure and brain function, thereby modulating both brain reserve 
(passive model) and cognitive reserve (active model) (Bartrés-Faz 
et al., 2009; Arenaza-Urquijo et al., 2013).

Understanding the complexity of lifestyle habits is essential, as 
growing evidence suggests that combinations of behaviors—rather 
than individual factors in isolation—are better reserve proxies and 
may play a critical role in explaining the substantial inter-individual 
variability observed in cognitive aging (Cockerham, 2005; Šneidere 
et  al., 2024). However, current approaches often simplify lifestyle 
assessments, treating lifestyle factors as mere components in a 
simplistic equation without considering their complex interactions 
and synergistic effects. A common method involves constructing 
composite indices by summing up the individual impacts of various 
health behaviors, operating under the assumption of their 
interchangeable significance (Loef and Walach, 2012; McAloney et al., 
2013; Bittner et al., 2019, 2021; Franz et al., 2021). This approach fails 
to account for the interconnected nature of lifestyle behaviors, which 
tend to aggregate into distinct patterns within the population based 
on shared characteristics or underlying factors (Noble et al., 2015).

To address these limitations, unsupervised clustering techniques 
offer a valuable alternative by uncovering naturally occurring patterns 
in lifestyle data without relying on predefined categories. These 
methods allow researchers to explore how lifestyle behaviors co-occur 
and influence one another, providing a more nuanced view of their 
combined effects. By revealing these hidden patterns, clustering 
approaches help clarify the dynamic and interactive nature of lifestyle 
behaviors, contributing to a more comprehensive understanding of 
their impact on health and wellbeing.

Moreover, non-supervised data analyses based on self-reported 
online assessments over time allow exploration of trajectory patterns 
in longitudinal lifestyle data in a very efficient manner. By tracking 
changes in lifestyle behaviors over time within individual participants 
or population subgroups, researchers can uncover distinct trajectories 
of behavior evolution and identify factors that influence these 
trajectories. This longitudinal perspective offers valuable insights into 
the dynamic nature of lifestyle patterns and informs the development 
of targeted interventions tailored to individual needs and preferences.

In our previous investigation (Roca-Ventura et  al., 2024), the 
KmL3D (Genolini et al., 2013), a longitudinal clustering method, was 
employed to examine the joint evolution of nine modifiable health 
behaviors known to influence brain health (Cattaneo et  al., 2018; 
Livingston et al., 2024)—cognitive activity, physical activity, nutrition, 
sleep, socialization, obesity (BMI), alcohol intake, tobacco use, and 
vital plan—in a sample of 3,013 middle-aged adults from the Barcelona 
Brain Health Initiative (Cattaneo et al., 2018). This technique allowed 
the identification of five distinct lifestyle profiles, each associated with 
specific disease risks. The “Healthy” cluster included individuals who 
consistently maintained high engagement in cognitive, physical, and 
social activities, a healthy diet, good sleep, and low-risk behaviors such 
as minimal alcohol and tobacco use, and normal BMI; this group 
showed the lowest incidence of chronic diseases and the most favorable 
health indicators. The “Low Cognitive Reserve” cluster was 
characterized by low cognitive engagement, socialization, and purpose 
in life, despite relatively healthy values in other domains; this profile 
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was associated with increased risk of neurological conditions and lower 
mental wellbeing. The “Obesogenic” cluster reflected high BMI, poor 
diet and exercise habits, leading to greater cardiometabolic risk and 
multimorbidity. The “Heavy Smokers” cluster, characterized by high 
tobacco use, showed increased vulnerability to cardiovascular and 
neurological diseases. Finally, the “Alcohol-Sleep” cluster, was defined 
by harmful alcohol intake, poor sleep quality, and low wellbeing, 
showing the highest rates of psychiatric disorders and negative self-
rated health. These lifestyle patterns remained stable over the study 
period and were predictive of disease risk.

This study proposes that the extracted longitudinal lifestyle 
clusters are useful for exploring the impact of lifestyle choices on 
cognitive aging in middle-aged adults. This approach enables the 
crucial tracking of behavioral change patterns over time as subjects 
transition from middle age to older adulthood. Recognizing and 
comprehending these lifestyle factors during middle age is crucial, as 
modifiable risk factors for dementia can exert their influence years 
before symptoms become evident (Hughes and Ganguli, 2009; Kesse-
Guyot et al., 2014; Artaud et al., 2016). Hence, addressing these factors 
preemptively holds the potential to mitigate the risk of cognitive 
decline and promote enduring brain health.

In this context, the objectives of this study are twofold: first, to 
validate the use of unsupervised methods in lifestyle clustering 
trajectories in relation to cognitive performance; and second, to 
examine the differential evolution of cognition over time within these 
identified profiles.

Materials and methods

Participants and study design

This study was conducted within the Barcelona Brain Health 
Initiative (BBHI) framework (Cattaneo et al., 2018; Cattaneo et al., 2020), 
an ongoing prospective longitudinal study launched in 2017 aimed at 
identifying lifestyle and biological factors influencing brain health in 
middle-aged adults. From 2018 to 2022, over 5,000 participants 
completed Phase 1, which involved an annual online self-assessment via 
the BBHI web-based platform (Figure 1). These assessments collected 
data on sociodemographic characteristics, lifestyle habits, medical 
history, and personality traits. See Figure 2 for the study design.

In parallel, between May 2018 and February 2021 (Wave 1) and 
April 2020 and December 2022 (Wave 2), a subgroup of 1,000 
participants from the overall cohort were invited to participate in an 
in-depth, in-person assessment (Phase 2) in the Guttmann Institute 
Centre in Barcelona, Spain. This phase included a comprehensive 
neuropsychological evaluation conducted in a single session by 
licensed neuropsychologists (AR, VA) (Figure 2), applying a consistent 
evaluation protocol across all participants.

Roca-Ventura et al. (2024) identified five distinct lifestyle profiles 
among 3,013 BBHI participants using a data-driven analysis of online 
follow-up questionnaires from Phase 1. These clusters were labeled 
based on their most prevalent risk factors: Healthy (n = 1,249), Low 
cognitive reserve (n = 908), Obesogenic (n = 432), Heavy Smokers 
(n = 300) and Alcohol-Sleep (n = 124) (Figure 3).

In the present study, we introduce a novel aspect by utilizing data 
from the in-person comprehensive neuropsychological assessments 
conducted in Phase 2, unlike the prior study that focused on online 
self-assessments from Phase I. In-depth evaluations offer a deeper 

understanding of cognitive functioning. A total of 855 participants 
from the identified clusters completed the neuropsychological 
assessments in Wave 1, and 666 of these participants were reassessed 
in Wave 2, providing a unique opportunity to explore cognitive 
profiles in relation to previously identified lifestyle factors. All 
participants scored above 26 points on the Mini-Mental State 
Examination (MMSE), suggesting a normal general cognition 
performance. This criterion was used to ensure that the sample did not 
include individuals with global cognitive impairment at baseline.

All participants gave written informed consent to the study which 
was approved by the ethics and research committee of the Institut 
Guttmann (Badalona, Spain) and complied with the recommendations 
of the “Unió Catalana d’Hospitals.”

Cognitive assessment

Results from two timepoints (wave 1 and wave 2) were collected. 
Neuropsychological assessment consisted of a battery of well-
established neuropsychological tests, exploring general/fluid 
intelligence (Wechsler Adult Intelligence Scale IV [WAIS-IV] Matrix 
Reasoning; Weschler, 2008), premorbid intelligence (TAP-30, Pluck 
et al., 2017) and global cognitive status, screened using Mini-Mental 
State Examination (MMSE; Folstein et  al., 1975), semantic verbal 
fluency (Peña-Casanova, 2005), associative memory (Spanish Version 
of the Face Name Associative Memory Exam S-FNAME, Alegret et al., 
2015; Alviarez-Schulze et al., 2022), visuospatial searching, selective 
attention, visual/motor and processing speed (Cancelation test and 
digit symbol substitution from WAIS-IV; Weschler, 2008), Trail 
Making Test-A (TMT-A, Reitan and Wolfson, 1985), cognitive 
flexibility and set-shifting (Trial making test B [TMT-B]; Reitan and 
Wolfson, 1985), phonemic verbal fluency (Peña-Casanova, 2005), 
working memory (Digit Forward, Digit Backward and Letter number 
sequencing; Weschler, 2008), episodic memory (Rey Auditory Verbal 
Learning Test [RAVLT]; Rey, 1958), visuo-spatial abilities (Block 
design, Weschler, 2008). Following the same procedure used in 
previous studies, z-scores were calculated for each test, and a 
composite score was created by taking the average of all the z-score 
ratings together, resulting in a single score that represents global 
cognitive performance (España-Irla et al., 2021; Cattaneo et al., 2022). 
Positive z scores indicate better cognitive performance, whereas 
negative z scores indicate poorer cognitive performance relative to the 
mean performance of participants at baseline.

Three cognitive domains were also calculated by taking the 
average of z-scores tasks for memory, executive functioning, and 
processing speed. The memory domain included S-FNAME, 
immediate memory, delayed recall, and recognition of RAVLT. The 
executive functioning domain included phonemic verbal fluency, Trail 
Making Test B, digital span backward, and letter number sequencing. 
The processing speed domain included digit symbol substitution. 
These three domains have been found to be representative of cognitive 
decline in other studies (Ngandu et al., 2015), and the tasks in each 
domain were selected by an experienced neuropsychologist.

Statistical analyses

Statistical analyses were conducted with using R Studio (version 
2022.07.1+554) with R version 4.2.2 (2022-10-31), with significance 
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set at p < 0.05. The KmL3D package was employed to apply k-means 
clustering to longitudinal data (Genolini et al., 2013) targeting the 
joint trajectories of nine lifestyle behaviors associated with brain 
health (Cattaneo et  al., 2018; Livingston et  al., 2024)—cognitive 
activity, physical activity, nutrition, sleep, socialization, obesity (BMI), 
alcohol intake, tobacco use, and vital plan. Full definitions and the 
instruments used to assess these behaviors are provided in 
Supplementary material and in Roca-Ventura et al. (2024).

This unsupervised machine learning technique serves to condense 
diverse longitudinal data into coherent, uniform clusters. Other methods 
analyze each variable-trajectory independently and then consider the 

combination of partitions obtained, but these approaches do not enable 
detection of groups where the co-evolution of the variables is complex.

Determining the optimal number of clusters was accomplished 
through non-parametric computations employing the Calinski-
Harabasz index, which evaluates both between-cluster and within-
cluster variances (Genolini et al., 2015). Each observation denoting 
individual’s average composite lifestyles score across 2018–2022 was 
assigned to one of five clusters. Next, each participant was reassigned 
iteratively to the closest cluster, yielding five joint developmental 
trajectories. Participants were assigned to the closest trajectory based 
on the data available, with missing data handled by the CopyMean 

FIGURE 1

Overview of the BBHI web-based platform, showcasing the log-in page, an example of the online questionnaire, and the feedback profiles generated 
by the platform. The figure illustrates how participants access the platform, complete the lifestyle and health-related questionnaires, and receive 
personalized feedback profiles based on their responses.
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imputation method for participants with data for at least two time 
points. CopyMean first uses the Last Occurrence Carried Forward 
(LOCF) method to obtain an approximation of the imputed value, and 
then uses the population mean trajectory to refine the first 
approximation. KmL3D ran 500 times with different initial 
assignments to find the best cluster solution (Sugar and James, 2003; 
Hand and Krzanowski, 2005; Genolini et al., 2015; Chow et al., 2023). 
The whole process was repeated with the number of clusters (i.e., 
trajectories) ranging from 2 to 5, to identify the optimal number of 
trajectories. We selected the best solution based on multiple model-
fitting criteria (see Appendix S1 for details).

Associations between clusters and cognitive performance were 
analyzed using a Linear Mixed-Effects Model (LMM) with fixed 
effects for time and clusters, their interaction, and a random 

intercept for subjects to account for individual variability. Despite 
some deviation from normality (assessed via Shapiro–Wilk test), 
Q–Q plots supported approximate normality. Given the unequal 
group sizes, we adopted the Kruskal-Wallis test for comparisons, 
supported by Levene’s test (homogeneity of variance assumed) and 
Mauchly’s test for sphericity where applicable. The analysis 
encompassed cognitive composite score and cognitive domains 
(executive functioning, processing speed and memory). The 
subtests were classified in these three domains by a certified 
neuropsychologist. As the Cognitive Reserve Questionnaire (CRQ) 
was used as one of the input variables in the clustering process, and 
includes components such as educational level and occupational 
complexity, these factors are already partially embedded in the 
definition of lifestyle clusters. Supporting this, CRQ alone 

FIGURE 2

(A) Timeline of the Barcelona Brain Health Initiative. (B) Flowchart of the selection and distribution of participants in the study.
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explained 9.6% of the variance in education (R2 = 0.096, p < 0.001) 
and 6.0% of the variance in occupational level (R2 = 0.060, 
p < 0.001). Adding cluster membership to models that already 
included CRQ only improved model fit marginally (ΔR2 ≈ 1.1% for 
education and ΔR2 ≈ 0.7% for occupation; both p < 0.001), 
indicating that most of the educational and occupational variance 
across clusters was already captured by CRQ. Therefore, we did not 
adjust for education or occupation in the primary regression 
models, to avoid statistical overadjustment. In contrast, sex was not 
included in the CRQ, and CRQ did not explain variation in sex; 
however, sex differed significantly across clusters (F(4, 
3,007) = 11.30, p < 0.001), and was thus treated as an independent 
covariate and controlled for. Full results are presented in 
Supplementary Table S5. Nonetheless, to ensure full transparency, 
we have included an additional version of the regression model that 
adjusts for education, occupation, and sex in Supplementary Tables 
S6–S10.

Power analyses, performed using the “pwr” package in R, 
calculated effect sizes based on Cohen’s d or f2, depending on the 
statistical test. Ad hoc power analysis (Supplementary Table S4) 
showed high power for detecting main ANOVA effects (effect 
size = 0.0423, power = 0.999) and several post hoc comparisons (e.g., 
A-B: 0.441, power = 0.999; A-C: 0.281, power = 0.856). However, 
other comparisons, such as B-D and C-E, had low power (≤0.11), 
increasing the risk of Type II error. In the LMM, main effects of time 
and cluster were well powered (power = 0.999), but the interaction 
term showed limited power (effect size = 0.0006, power = 0.36). These 
limitations are further discussed in the manuscript.

Results

Relationship between healthy habits and 
cognitive performance

The data used for the clustering analysis came from Phase 1 and 
included a total of 3,013 participants. Table 1 provides an overview of 
cluster distribution within the subgroup of participants (n = 666) who 
underwent the in-person assessment at both Wave 1 and Wave 2, 
revealing no significant differences in distribution across these time 
points. Additional details on group differences for each classification 
variable are available in Supplementary material.

The mean interval between Wave 1 and Wave 2 assessments was 
846.8 days (SD = 142.2). A linear regression analysis showed that this 
time interval was not significantly associated with observed changes 
in outcomes (β = −5.28e−06, p = 0.947).

Significant socio-demographic differences emerged across the 
five identified lifestyle clusters (Table 1). The Healthy cluster was the 
most frequent in all data collection waves (41.4% online; 40.1 and 
41% in Waves 1 and 2, respectively) and included the highest 
proportion of participants with tertiary education (83.4%) and 
professional occupations requiring university-level training (78.1%). 
The Heavy Smokers cluster comprised the oldest participants (mean 
age = 60.1 years, p < 0.001), had a predominantly male composition 
(59%), and included the lowest proportion of individuals with higher 
education (52%). The Alcohol-Sleep cluster displayed the most 
marked gender imbalance, with 79% men, and fewer participants 
engaged in high-level professional roles. The Low Cognitive Reserve 

FIGURE 3

Radar plots showing the normalized distribution of the modifiable risk factors in each cluster (n = 3,013).
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and Obesogenic clusters had intermediate age profiles but were more 
likely to include participants with primary or secondary education 
and with occupations involving manual or lower-qualified 
non-manual work. All differences in age, gender, education, and 
occupation were statistically significant (p < 0.001), with small effect 
sizes (Cramer’s V ranging from 0.10 to 0.16), suggesting meaningful 
yet modest socio-demographic stratification across clusters.

A summary of composite and domain-specific cognitive scores at 
baseline and follow-up for each cluster is provided in 
Supplementary Table S1. Supplementary Table S2 includes detailed 
mean scores of each individual cognitive test across time points and 
clusters, illustrating the specific cognitive profiles associated with 
each group.

As shown in Figure 4, the Kruskal-Wallis test revealed significant 
overall differences in Wave 1 composite scores across clusters. Post hoc 
pairwise comparisons indicated that the “Healthy” cluster scored 
significantly higher than the “Low Cognitive Reserve” (p < 0.001), 
“Obesogenic” (p < 0.05), and “Heavy Smokers” (p = 0.01) clusters.

To account for potential confounding of sex, we  conducted a 
complementary linear regression analysis using ranked composite 
scores. This adjusted model confirmed significant differences between 
the “Healthy” and “Low Cognitive Reserve” (β = −98.33, p < 0.001), 
“Obesogenic” (β = −68.19, p = 0.009) and “Heavy Smokers” 
(β = −89.47, p = 0.004) clusters, while “Alcohol-Sleep” profile did not 
differ significantly from “Healthy” cluster (β = −40.77, p = 0.333). Sex 

was not significantly associated with cognitive scores (β = 14.52, 
p = 0.383).

Given that education and occupation are partially embedded 
within the CRQ scores used to form the clusters, these variables were 
not included in the initial models to avoid over-adjustment. However, 
to formally explore whether the observed cluster differences remained 
after controlling for residual variation in education and occupation, 
we conducted an extended regression including these variables. After 
this adjustment, the effect sizes for cluster differences were notably 
attenuated. The “Low Cognitive Reserve” cluster still scored 
significantly lower than the “Healthy” cluster (β = −75.05, p < 0.001), 
though with a reduced effect size (~24% smaller). Differences for the 
“Obesogenic” cluster were marginal (β = −50.47, p = 0.050), while the 
“Heavy Smokers” cluster difference was no longer statistically 
significant (β = −55.85, p = 0.077). The “Alcohol-Sleep” cluster 
remained non-significant (β = −24.46, p = 0.558).

Crucially, education emerged as a strong independent predictor 
of cognitive scores (β = 95.88, p < 0.001), consistent with its role in 
cognitive reserve, while occupation did not reach significance 
(p = 0.571) (see Supplementary Table S6).

Linear mixed-effects models were used to examine changes in 
neuropsychological performance (NP)—including memory, executive 
function, and processing speed—across two time points and among 
clusters (Figure  5). The model for the cognitive composite score 
revealed a significant main effect of time, indicating improved 

TABLE 1 Cluster distribution in each phase.

Variable Category Healthy Low 
cognitive 
reserve

Obesogenic Heavy 
smokers

Alcohol-
sleep

Differences 
between 
groups

On-line N 1,249 908 432 300 124

% 41.4% 30.1% 14.3% 10% 4.1%

In-person Wave 

1 (Baseline)

N 343 281 118 75 38

% 40.11% 32.9% 13.8% 8.8% 4.4%

In-person Wave 

2 (Follow up)

N 273 209 95 58 31

% 41% 31.4% 14.3% 8.7% 4.6%

Age 56.8 55.2 56.2 60.1 55.2 Tukey Contrasts 

p < 0.001*

Gender Men 43% 53% 48% 59% 79% χ2: 124 (8)

p < 0.001

Cramer: 0.15 (small)
Women 57% 47% 52% 41% 21%

Education Primary 0.6% 5.3% 3.4% 8% 0% χ2: 124 (8)

p < 0.001

Cramer: 0.16 (small)
Secondary 16.0% 27.8% 27.1% 40% 28.9%

Superiors 83.4% 66.9% 69.5% 52% 71.1%

Occupation Without paid work or 

domestic work

1.5% 4.6% 4.3% 4.1% 0% χ2: 49.9 (16)

p < 0.001

Cramer: 0.10 (small)Qualified manual work 4.7% 13.6% 7.7% 16.4% 18.9%

Qualified non-manual work 15.6% 24.6% 23.9% 23.3% 18.9%

Profession that requires 

university training

32.4% 28.9% 29.1% 23.3% 29.7%

Profession that requires 

university training with 

people in charge

45.7 28.2% 35.0% 32.9% 32.4%

In bold, the Heavy smokers group was significantly older than the other groups.
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performance from Wave 1 to Wave 2 (Estimate = 0.0833, SE = 0.0174, 
t(683) = 4.79, p < 0.001). Significant between-cluster differences were 
also observed. Participants in the “Low cognitive reserve,” 
“Obesogenic” clusters (p < 0.01) and “Heavy Smokers” cluster 
(p = 0.01) showed significantly lower cognitive scores compared to 
“Healthy” cluster. In contrast, the “Alcohol-Sleep” cluster did not 
significantly differ from the “Healthy” cluster (p = 0.191). These effects 
remained significant after adjusting for sex, which was not a significant 
predictor of cognitive performance (p > 0.05). However, the 
interaction terms between time and clusters were not significant, 
indicating that the rate of change in cognition over time did not 
significantly differ between clusters (all p > 0.05).

To explore whether residual differences in education or 
occupation contributed to these results, we fitted a secondary model 
(Model 2; Supplementary Table S7) that included these variables. In 
this extended model, education emerged as a strong independent 
predictor of cognitive performance (Estimate = 0.196, SE = 0.038, 
t(844) = 5.14, p < 0.001), whereas occupation remained 
non-significant (p = 0.610). After adding these covariates, the 
magnitude of the differences between clusters was notably reduced. 
The estimated difference between the “Low Cognitive Reserve” and 
“Healthy” clusters decreased from −0.222 to −0.175 but remained 
highly significant (p < 0.001). The difference between the “Obesogenic” 
and “Healthy” clusters was also attenuated to −0.123 and, although 
still statistically significant, showed a higher p-value (p = 0.021). In 
contrast, the previously observed difference for the “Heavy Smokers” 
cluster was further diminished and no longer reached statistical 
significance (Estimate = −0.095, p = 0.145). The “Alcohol-Sleep” 
cluster continued to show no significant difference compared to the 
“Healthy” group (p = 0.331).

For memory performance (z-scored), there was a significant 
improvement over time (Estimate = 0.227, SE = 0.0377, 
t(691.01) = 6.02, p < 0.001), indicating higher scores at follow-up. 

Compared to the “Healthy” cluster, participants in the “Low cognitive 
reserve” (p < 0.001), “Obesogenic” (p = 0.0085) and “Heavy Smokers” 
(p = 0.009) clusters had significantly lower memory scores, while no 
significant differences were observed for the “Alcohol-Sleep” cluster 
(p = 0.213). Interaction terms between time and clusters were not 
statistically significant (all p > 0.05), indicating similar memory 
improvements across groups. These effects were observed after 
controlling for sex that was significantly associated with female sex 
(p < 0.001). To further explore if differences in education or occupation 
accounted for these associations, an additional model (Model 2; 
Supplementary Table S8) was fitted including these variables. Education 
emerged as a strong independent predictor of memory scores 
(Estimate = 0.320, SE = 0.058, t(833.12) = 5.51, p < 0.001), whereas 
occupation remained non-significant (p = 0.294). After including 
education and occupation, the magnitude of the differences between 
clusters was attenuated. The estimated difference between the “Low 
Cognitive Reserve” and “Healthy” clusters decreased from −0.274 to 
−0.222, although it remained highly significant (p < 0.001). The 
difference for the “Obesogenic” cluster was also reduced to −0.185 and 
retained statistical significance with a higher p-value (p = 0.027). In 
contrast, the difference for the “Heavy Smokers” cluster diminished 
further and was no longer statistically significant (Estimate = −0.163, 
p = 0.112). The “Alcohol-Sleep” cluster continued to show no significant 
difference compared to the “Healthy” group (p = 0.269).

For executive functions, there was a non-significant trend toward 
improvement over time (Estimate = 0.04, SE = 0.0271, t(709) = 1.49, 
p = 0.138). The “Low cognitive reserve” (B; p < 0.001) and the 
“Obesogenic” cluster (p = 0.045) showed significantly lower executive 
function scores than the “Healthy” cluster, while differences with the 
“Heavy Smokers” (p = 0.20) and “Alcohol-Sleep” (p = 0.692) clusters were 
not significant. No significant time-by-cluster interactions were found 
(all p > 0.05). These results were obtained while controlling for sex, 
significantly associated male sex (p = 0.015). An additional model 

FIGURE 4

Distributions of neuropsychological assessment composite score at Wave 1 across clusters (plot obtained with the ggplot2 package, function 
ggbetweenstats).
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(Model 2; Supplementary Table S9) was fitted to explore whether residual 
differences in education or occupation could account for these 
associations. Education emerged as a significant independent predictor 
of executive function scores (Estimate = 0.154, SE = 0.044, t(854) = 3.46, 
p < 0.001), whereas occupation did not show a significant association 
(p = 0.506). Including these variables attenuated the differences between 
clusters. The estimated difference for the “Low Cognitive Reserve” cluster 
relative to the “Healthy” cluster decreased from −0.233 to −0.193 but 
remained highly significant (p < 0.001). In contrast, the difference for the 
“Obesogenic” cluster was reduced to −0.094 and no longer reached 
statistical significance (p = 0.138). Differences for the “Heavy Smokers” 
and “Alcohol-Sleep” clusters remained non-significant.

For processing speed, there was a non-significant trend toward 
decline over time (Estimate = −0.0537, SE = 0.035, t(695) = −1.52, 
p = 0.128). The “Low cognitive reserve,” “Obesogenic,” and “Heavy 
Smokers” clusters showed significantly lower processing speed scores 
than the “Healthy” cluster (all p < 0.05). The “Alcohol-Sleep” cluster 
did not differ significantly from the “Healthy” cluster (p = 0.147). No 
significant time-by-cluster interactions were found (all p > 0.05). 
Adjusting for sex showed that female participants had higher 
processing speed scores (p = 0.0026). In an extended model (Model 2; 

Supplementary Table S10) that additionally included education and 
occupation, education emerged as a significant positive predictor of 
processing speed (Estimate = 0.236, SE = 0.062, t(845) = 3.79, 
p < 0.001), whereas occupation remained non-significant (p = 0.405). 
After adjusting for these factors, the differences between clusters were 
slightly amplified for most comparisons. The estimated difference for 
the “Low Cognitive Reserve” cluster relative to the “Healthy” cluster 
became −0.189 and remained significant (p = 0.005). The 
“Obesogenic” cluster also showed a strengthened association 
(Estimate = −0.221, p = 0.013), and the “Heavy Smokers” cluster 
exhibited an even larger difference (Estimate = −0.275, p = 0.009). 
Interestingly, the difference for the “Alcohol-Sleep” cluster approached 
significance after adjustment (Estimate = −0.265, p = 0.051).

Discussion

The primary objective of this study was to analyze how 
combinations of lifestyle behaviors cluster together and relate to 
cognitive performance at a specific point in time, as well as to begin 
exploring how these relationships evolve longitudinally. Using data 

FIGURE 5

Changes from Wave 1 (Baseline) to Wave 2 (Follow-up) in (A) composite score, (B) memory, (C) executive functions, and (D) processing speed across 
five clusters: Healthy, Low Cognitive Reserve, Obesogenic, Heavy Smokers, and Alcohol-Sleep. Significant differences between time points are 
indicated by asterisks for all clusters (ns = not significant, p > 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, **** p ≤ 0.0001).
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from a cohort of healthy middle-aged adults, the study aimed to 
examine variations in cognitive trajectories across five stable lifestyle 
clusters. Identifying these profiles provides valuable insights into how 
specific combinations of lifestyle factors are associated with different 
levels of cognitive functioning.

Subjects classified under the “Healthy” profile were individuals 
who adhered to a Mediterranean diet, engaged in regular physical 
exercise, had strong social networks, reported good sleep perception, 
high scores in purpose in life, and actively sought cognitive stimulation 
(Roca-Ventura et al., 2024). This profile, when compared to other 
profiles, had the healthiest behaviors, and displayed the highest levels 
of cognitive performance. In contrast, clusters characterized by riskier 
habits, such as “Obesogenic” and “Heavy Smokers,” displayed lower 
cognitive performance compared to the “Healthy” profile.

The “Low cognitive reserve” profile included individuals with 
minimal engagement in cognitively stimulating activities, limited 
social interactions, and poor planning of vital life aspects. This group 
also had significantly lower levels of education compared to the 
“Healthy” profile. Consistent with these characteristics, individuals 
in the low reserve group demonstrated reduced cognitive 
performance across all domains. These results underscore the 
significance of cognitive activities and education, modifiable factors 
that influence cognitive performance from early life stages (Livingston 
et al., 2020). Education has well-established protective effects and is 
consistently linked to better cognitive outcomes (Thow et al., 2017; 
Wilson et al., 2019). Although education was partially embedded in 
the clustering process through the CRQ, our additional analyses 
demonstrated that it remained an independent predictor of cognitive 
performance, partially attenuating but not eliminating the differences 
between clusters. This underscores the closely related yet distinct 
contributions of formal education and broader lifestyle-cognitive 
reserve profiles to cognitive outcomes in this cohort. Importantly, this 
highlights that education’s influence extends beyond its early-life 
effects, fostering engagement in intellectually enriching activities that 
can help maintain or enhance specific cognitive abilities, particularly 
in older adults. While the impact of education is often most 
pronounced in early life, cognitive stimulation in later life can also 
play a crucial role in preserving cognitive health (Ruppert et  al., 
2024). Moreover, benefits of education are not solely determined by 
the number of years spent in school. When occupational complexity 
is considered, the direct effect of education on dementia risk may 
diminish. This indicates that the long-term cognitive advantages of 
education depend on its application, particularly through mentally 
stimulating work. Indeed, individuals with more education who did 
not pursue cognitively demanding careers were not at a lower risk of 
dementia compared to those with less education but more complex 
occupational roles (see also Karp et al., 2004). These findings support 
the notion that cognitive reserve—and its protective effects on 
cognition—is best understood within a broader life course model. It 
is not solely built through early-life education, but through the 
continued translation of that education into intellectually engaging 
life experiences. This underscores the importance of promoting not 
only educational access, but also lifelong opportunities for cognitive 
stimulation as a strategy to support cognitive health and reduce the 
risk of dementia.

It is also noteworthy in this cluster the co-occurrence of cognitive 
activity and poor socialization, where poor socialization may 
exacerbate the impact of limited cognitive activity. These results align 

with previous literature suggesting that cognitive reserve moderates 
the association between social isolation and cognitive outcomes in 
later life (Evans et al., 2018). Based on the cognitive reserve theory, 
social integration would provide mental stimulation through complex 
communication and interaction with others. Furthermore, the results 
also highlight the potential role of vital plan in promoting cognitive 
resilience during middle age (Boyle et al., 2010; Abellaneda-Pérez 
et al., 2023). These three variables—cognitive activity, socialization, 
and vital plan—appear interconnected, each moderating the other, 
and carry important implications for interventions that may target 
social isolation, vital plan, and cognitive activity simultaneously, 
thereby adopting a holistic approach to improve cognitive function.

Conversely, the “Alcohol-Sleep” cluster, which also showed poor vital 
plan and socialization but have higher cognitive activities than “Low 
Cognitive reserve” and more level of education than the other risky 
profiles, did not significantly differ from the “Healthy” cluster in 
cognitive performance. This group also had higher levels of stress and 
greater prevalence of psychiatric diseases such as depression and anxiety. 
This finding aligns with studies such as Yu et al. (2020), which found that 
better cognition scores (super-cognition) were associated with busier, 
more socially-isolated and stressful midlife—characteristics that 
resemble our “Alcohol-Sleep” group. These findings suggest that although 
the ‘Alcohol-Sleep’ cluster exhibited higher prevalence of stress, poor 
sleep perception, and mental health issues, they also had higher levels of 
education and cognitive activity than other high-risk clusters. This may 
have conferred a cognitive protective effect, buffering the impact of 
negative lifestyle factors. This result is consistent with previous research 
indicating that cognitive reserve, particularly in the form of lifelong 
cognitive engagement and education, can moderate the impact of 
adverse conditions on cognitive outcomes (Stern, 2012; Stern et al., 2019; 
Kremen et al., 2019). On the other hand, lack of consistent cognitive 
engagement throughout life, such as learning a new language or musical 
instruments, could impact cognitive function and increase the risk of 
dementia (Ihle et al., 2015; Lee et al., 2018; Leggieri et al., 2019; Bae et al., 
2020). A more extensive longitudinal study is needed to clarify the 
trajectory of these cognitive differences. This approach could provide 
more precise insights into whether early-life cognitive activity is 
associated with better cognitive performance in middle age, while other 
risk factors may start to impact cognitive function in later life.

Indeed, when we  looked at longitudinal changes we  found a 
moderate increase over time in cognitive performance. The observed 
improvement across all lifestyle clusters, including those with riskier 
profiles, warrants careful interpretation. Given the characteristics of the 
cohort—cognitively healthy middle-aged adults—and the relatively 
short follow-up period (approximately 2 years), an overall upward trend 
in neuropsychological test scores is not totally surprising. Previous 
research has shown that cognitively healthy individuals in midlife may 
improve performance when exposed repeated cognitive assessments 
over short intervals, possibly due to practice effects, familiarity and test-
taking strategies (Bartels et al., 2010; Kremen et al., 2022).

These effects could be  particularly evident when participants 
present relatively high educational attainment and socioeconomic status 
(Cabeza et al., 2018; Stern, 2012; Stern et al., 2019; Stern et al., 2020), 
as in the case of BBHI’s participants (Cattaneo et  al., 2020). These 
findings suggest that lifestyle-related cognitive differences may become 
more pronounced over longer follow-up periods or with the inclusion 
of older populations approaching the threshold of age-related 
cognitive decline.
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However, our findings highlight the beneficial impact of engaging 
in multiple health behaviors from middle-aged to older adults on 
cognitive performance. Jia et al. (2023) proposed a framework for 
classification based on the number of adhered healthy lifestyle factors, 
defining an unfavorable group for those following 0–1 factor, an 
average group for 2–3 factors, and a favorable group for 4–6 factors. 
This classification demonstrated that the unfavorable group was linked 
to greater memory deterioration compared to the average and 
favorable groups, even among individuals carrying the APOE ε4 allele. 
In our investigation, the “Healthy” group, similar to Jia et al.’s favorable 
group, showed superior cognitive performance compared to clusters 
engaged to more than one unhealthy behavior, which likely correspond 
to Jia et al.’s unfavorable or average groups. Similarly, Dhana et al. 
(2024) explored the association between lifestyle choices and cognitive 
function in older adults, revealing that adhering to a healthy lifestyle 
could potentially provide cognitive reserve to maintain cognitive 
abilities despite the presence of brain neuropathologies. Nonetheless, 
these models assume that behaviors are interchangeability, whereas our 
analysis has revealed profiles characterized by the coexistence of 
healthy and unhealthy behaviors, akin to Jia et al. (2023) average group, 
with distinct impacts on cognitive performance. This suggests that 
specific combinations of modifiable factors may be more influential on 
cognitive maintenance, and that adhering to a higher number of 
healthy behaviors positively impacts cognitive performance. Multiple 
studies have found associations between cognitive activities such years 
of schooling, engage in training courses, play music instruments or 
professional occupation and cognitive function moderate or attenuate 
the association between brain pathology and the clinical outcomes 
(Song et al., 2022), however this study also highlights the importance 
of other factors such as vital plan an socialization in this moderation.

Recent years have shown a rise in studies examining lifestyle 
factors like nutrition, physical exercise, tobacco, and alcohol 
consumption. However, certain key lifestyles have been overlooked as 
essential components of modifiable health factors. Liao et al. (2022) 
included social activity in their clustering analyses of the association 
between health-related behaviors and episodic memory. The results 
revealed the importance of engaging in social and physical activities 
for the preservation of episodic memory in old age. Our study is the 
most comprehensive to date, analyzing traditional lifestyle factors 
along with less conventional ones, creating unique profiles of 
co-occurring behaviors that have not been previously studied 
(Livingston et al., 2020; Abellaneda-Pérez et al., 2023). The aggregation 
of these factors into unique lifestyle profiles—and their association 
with cognitive outcomes—has not been previously explored, 
underscoring the novelty and value of this study. Public health experts, 
legislators, and healthcare providers can use this knowledge to better 
target programs and encourage positive lifestyle changes, leading to 
more effective and efficient use of resources and interventions, 
improving people’s quality of life and health outcomes.

The effectiveness of multimodal therapies, which address multiple 
risk factors simultaneously, is often higher than single-domain 
interventions, but results have been inconsistent. A meta-analysis by 
Meng found moderate evidence indicating that multidomain 
interventions can improve cognitive composite scores but no 
moderate- or high-certainty evidence that these interventions enhance 
global cognition (Meng et al., 2022). However, these interventions are 
more promising when targeting at-risk populations (Kivipelto et al., 
2018), as seen in trials like the Finnish Geriatric Intervention Study 

(FINGER, Kivipelto et al., 2013; Ngandu et al., 2015), the Prevention 
of Dementia by Intensive Vascular Care (PreDiva), and Multidomain 
Alzheimer Preventive Trial (MAPT, Vellas et al., 2014) which showed 
cognitive benefits in higher-risk subgroups. These results, along with 
our research, point to the importance of multimodal approach for 
modifying lifestyles habits and improving cognitive reserve. However, 
it is essential to acknowledge that personalized and profile-specific 
interventions are necessary considering that lifestyle patterns have 
been linked to distinct cognitive trajectories and lifestyle habits tend 
to cluster differently. Considering the persistent nature of these habits, 
it is ineffective to use universal techniques to encourage sustainable 
behavior change. Instead, interventions should be tailored to target 
individual lifestyle profiles and address the particular obstacles and 
problems that are distinct to each profile. It is more reasonable to 
implement and sustain healthy lifestyle changes over time when 
programs are individualized and provide continuous support.

The use of machine learning algorithms like KmL3D enables the 
complex analysis and identification of joint trajectories in longitudinal 
data into unique lifestyle profiles, that have proven to be not only 
adequate and reliable but also highly valuable for revealing insights 
that would be  challenging to obtain using other approaches. This 
advanced approach has allowed the identification of patterns and 
relationships within the data that would remain hidden in simpler 
analyses, offering deeper understanding of how lifestyle choices 
influence cognitive aging over time. By leveraging KmL3D, the study 
can capture the dynamic and multifaceted nature of lifestyle behaviors 
and how they are differently associated with cognition. By capturing 
the complexity of real-world behaviors and their impact on cognitive 
outcomes, this methodology enhances our ability to predict, prevent, 
and manage cognitive decline more effectively. This kind of analysis 
could lead to more accurate and personalized predictions and 
interventions that could significantly improve public health strategies 
and individualized care.

Taken together our findings suggest that lifestyle clustering based 
on longitudinal data may be a valuable strategy for identifying middle-
aged adults at increased risk of future cognitive decline. Personalized 
interventions targeting multiple modifiable risk factors 
simultaneously—especially those addressing cognitive engagement, 
socialization, and goal-setting—may enhance resilience to age-related 
cognitive deterioration. By focusing on the specific lifestyle profiles 
uncovered in this study, tailored interventions could more effectively 
strengthen cognitive reserve and delay the onset of clinically relevant 
decline. Given that lifestyle patterns tend to cluster and remain stable 
over time, universal approaches to encourage behavior change may 
be less effective. Instead, interventions tailored to individual profiles 
that account for unique challenges and barriers are likely to be more 
sustainable and impactful. Such tailored programs, offering 
continuous support, may facilitate the long-term adoption of healthy 
behaviors and thereby help preserve cognitive function. Future studies 
should explore these profiles across a longer time span and in more 
diverse populations to test the generalizability of the current findings.

Limitations

In conclusion, this study demonstrates the feasibility and relevance 
of using unsupervised clustering on lifestyle trajectories to identify 
cognitive profiles in healthy adults. However, some limitations must 

https://doi.org/10.3389/fpsyg.2025.1510971
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Roca-Ventura et al. 10.3389/fpsyg.2025.1510971

Frontiers in Psychology 12 frontiersin.org

be acknowledged. First, the reliance on self-reported data may introduce 
bias. Second, sample characteristics in terms of age-range and health 
status, and the relatively short follow-up period, could have generated 
practice effects possibly responsible of the small cognitive improvements 
observed, and preventing to observe meaningful cognitive changes over 
time and differences between clusters. Third, the sample includes 
predominantly highly educated and health-conscious individuals, 
limiting generalizability. Fourth, some of the statistical analyses were 
underpowered—particularly the interaction term in the multilevel 
model (MLM) and several post hoc comparisons in the ANOVA (see 
Supplementary material for details). This limited statistical power 
increases the risk of Type II errors, meaning that potentially meaningful 
effects may not have reached statistical significance. Therefore, results 
derived from these specific analyses should be interpreted with caution. 
Future studies should aim for larger and more balanced samples, as well 
as longer follow-up periods, to confirm and extend these findings.
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