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To develop AI tools that can communicate on par with human speakers and listeners, 
we need a deeper understanding of the factors that affect their perception and 
production of spoken language. Thus, the goal of this study was to examine to 
what extent two AI tools, Amazon Alexa and Polly, are impacted by factors that are 
known to modulate speech perception and production in humans. In particular, 
we examined the role of lexical (word frequency, phonological neighborhood 
density) and stylistic (speaking rate) factors. In the domain of perception, high-
frequency words and slow speaking rate significantly improved Alexa’s recognition 
of words produced in real time by native speakers of American English (n = 21). 
Alexa also recognized words with low neighborhood density with greater accuracy, 
but only at fast speaking rates. In contrast to human listeners, Alexa showed no 
evidence of adaptation to the speaker over time. In the domain of production, 
Polly’s vowel duration and formants were unaffected by the lexical characteristics 
of words, unlike human speakers. Overall, these findings suggest that, despite 
certain patterns that humans and AI tools share, AI tools lack some of the flexibility 
that is the hallmark of human speech perception and production.
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1 Introduction

Human-AI (artificial intelligence) interactions are quickly becoming an integral part of 
our daily lives, as witnessed by the rising use of AI tools. AI tools, such as Amazon’s Alexa and 
Apple’s Siri, utilize a wide range of technologies, including natural language processing, 
automatic speech recognition (ASR), and machine learning, to simulate human conversation 
(Harvill et al., 2024). One of the ultimate goals of these technologies is for AI tools to reach a 
level of verbal communication which mimics that of human speakers and listeners. To 
accomplish this goal, we must have a deeper understanding of the ways in which different 
factors interact with the processing and production of spoken language. While the 
psycholinguistics literature has identified a multitude of factors that influence the human 
ability to recognize and produce words, very little is known about whether these same factors 
affect AI tools. Thus, this study’s purpose was to examine the extent to which AI tools are 
impacted by the same factors that affect word recognition and production in humans.

This type of investigation is important in order for psycholinguistic researchers, and the 
scientific population more generally, to be informed consumers of AI. For any given factor 
that affects word recognition and production in humans, the speech behavior of AI tools has 
the potential to faithfully replicate that behavior or to distort it—and this, in turn, affects how 
human users will respond. For example, if an AI tool faithfully replicates human speech 
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behavior across a wide variety of factors, we might expect human 
users to respond to it in ways that resemble their interactions with 
other humans, and potentially to anthropomorphize it. On the other 
hand, if AI tools distort certain factors of human speech behavior, 
human users may undergo an experience of uncanniness, and respond 
to the tool in unpredictable ways. By investigating how AI tools are 
impacted by psycholinguistic factors, we  take an important step 
toward understanding how such tools affect our own behavior as 
human beings.

In human listeners, the accuracy of spoken word recognition 
depends on a combination of at least three types of factors, as 
suggested by Bradlow and Pisoni (1999, p. 2083): (1) lexical factors, 
such as word frequency and phonological neighborhood density, 
(2) style- or signal-related factors, such as speaking rate, and (3) 
instance-specific factors, such as the listener’s prior experience with 
the talker’s voice. These factors, which affect the recognition of 
words in human speakers, are also likely to affect the production of 
those same words. Below we will expand on how each of the three 
types of factors can affect the human ability to recognize and 
produce words.

First, as for the lexical characteristics of words, it has been well 
documented in the literature that high-frequency words are 
privileged over low-frequency words in speech perception (Todd 
et  al., 2019). Listeners recognize high-frequency words more 
accurately and quickly than low-frequency words (Howes, 1957; 
Broadbent, 1967; Luce and Pisoni, 1998). During lexical decisions, 
high-frequency words are judged as real words more often and 
faster relative to low-frequency words (Forster and Chambers, 1973; 
Luce and Pisoni, 1998). In speech production, high-frequency 
words are produced more casually (or less clearly) than 
low-frequency words, with shorter vowel durations and more 
contracted vowel spaces (Munson and Solomon, 2004).

Phonological neighborhood density is a measure of the number 
of similar-sounding words that a target word has (Luce and Pisoni, 
1998). Numerous studies on speech perception have demonstrated 
that words with many similar-sounding words (i.e., neighbors) are 
recognized more slowly and less accurately due to the presence of 
their neighbors, which act as competitors, compared with words 
with few similar-sounding words (Luce and Pisoni, 1998; Vitevitch 
and Luce, 1998; Ziegler et al., 2003; Vitevitch and Luce, 2016; Van 
Engen, 2017). Contrary to research on speech perception, studies 
on speech production have yielded inconsistent findings about the 
effect of phonological neighborhood density. Some studies have 
shown that words from dense neighborhoods are more clearly 
articulated, probably as a result of talkers attempting to maximize 
intelligibility of words that might otherwise be confused (Munson 
and Solomon, 2004; Watson and Munson, 2008; Scarborough and 
Zellou, 2013); in contrast, other studies have shown that words 
from dense neighborhoods are less clearly articulated, suggesting 
that words that are retrieved quickly are more likely to be reduced 
(Yao, 2011; Gahl et al., 2012).

Some studies have looked at the joint effects of word frequency 
and phonological neighborhood density. Their findings have shown 
that lexically “easy” words (i.e., frequent words with few 
phonological neighbors) are recognized more accurately than 
lexically “hard” words (i.e., infrequent words with more 
phonological neighbors) (Bradlow and Pisoni, 1999). In speech 
production, “hard” words are more carefully articulated, as 

indicated by longer vowel durations and expanded vowel spaces 
(Munson and Solomon, 2004; Wright, 2004).

Second, a large amount of evidence suggests that changes in 
speech style-related variables affect speech production and 
perception. According to Lindblom (1990)’s Hyper- and Hypo-
articulation (H&H) Model, speakers constantly monitor listeners’ 
needs and vary their speech output along a continuum of hypo-
speech (which reflects desire to minimize articulatory effort) and 
hyper-speech (which reflects desire to be understood better). Clear 
speech, which is a distinct speaking style that the speaker adopts in 
order to be better understood by a listener, is a good example of 
hyper-speech. Switching from conversational speech production to 
clear speech gives rise to a number of acoustic changes, including 
slower speaking rates and more carefully articulated vowels and 
consonants (Picheny et  al., 1986; Bradlow, 2002; Smiljanić and 
Bradlow, 2005, 2009; Uther et al., 2007). Extensive research has 
indicated that words produced in a clear speech style are more 
intelligible than those produced in a casual speech style, and this 
has been demonstrated in various populations including hard-of-
hearing adult listeners (Picheny et al., 1985), normal-hearing adult 
listeners (Bradlow et  al., 1996; Krause and Braida, 2002; Hazan 
et al., 2012), nonnative adult listeners (Bradlow and Bent, 2002; 
Smiljanić and Bradlow, 2011), school-aged children with and 
without learning disabilities (Bradlow et  al., 2003), and infants 
(Song et al., 2010). Relatedly, Bradlow and Pisoni (1999) showed 
that words produced at a slow and medium speaking rate were 
recognized significantly more accurately than words produced at a 
fast rate. However, they found no intelligibility advantage for the 
slow speaking rate over the medium speaking rate.

Third, studies have demonstrated that word recognition 
accuracy is enhanced when the listener is familiar with the talker’s 
voice. For example, Nygaard et al. (1994) showed that listeners were 
better at identifying novel words in noise when the words were 
produced by a talker they had previously been trained to identify 
than when the same words were produced by a novel talker. Thus, 
learning the specific acoustic properties of a talker’s voice seemed 
to facilitate the subsequent phonetic analysis of spoken words. 
Similarly, Bradlow and Pisoni (1999) showed that hard words 
presented later in a session were recognized more accurately than 
hard words presented earlier in the session. In contrast, easy words 
presented later in the session and those presented earlier in the 
session did not significantly differ in intelligibility. Overall, the 
results suggested that the intelligibility challenge introduced by the 
lexical characteristics of hard words may be overcome as the listener 
becomes accustomed to the talker’s voice.

Compared to the wealth of psycholinguistics literature on the 
factors influencing human word recognition and production, only 
a handful of studies have examined whether these same factors 
affect machine recognition and production systems. Earlier research 
on then state-of-the-art ASR systems showed that their recognition 
errors increased for very slow or fast speech (Siegler and Stern, 
1995; Fosler-Lussier and Morgan, 1999; Greenberg and Chang, 
2000; Hirschberg et al., 2004) and infrequent words (Fosler-Lussier 
and Morgan, 1999; Mansfield, 2021). To the best of our knowledge, 
there have been only two studies that examined the role of 
neighborhood density in ASR performance. Goldwater et al. (2010) 
analyzed the effects of a wide range of prosodic, lexical, contextual, 
and disfluency factors on the accuracy of two ASR systems. They 
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identified several factors associated with high error rates, including 
disfluencies, closed-class words, short words, and words at the 
beginning of a turn. In addition, they found no correlation between 
the number of neighbors and error rates of words presented in 
context, suggesting that phonological neighborhood density might 
play a more significant role when contextual cues are insufficient to 
distinguish words that sound similar. In contrast, Jyothi and Livescu 
(2014) showed that their novel relative frequency-weighted 
measures of word neighborhood effectively predicted errors from 
both isolated-word and continuous-word ASR systems.

The process of evaluating the ASR systems in these studies 
typically involved comparing system transcriptions of 
conversational speech data with reference transcriptions generated 
manually by humans. Thus, all of the aforementioned studies used 
the existing datasets of conversational speech, such as the 
Switchboard Corpus, to evaluate ASR systems. However, recent 
advancements in technology have made it feasible to examine real-
time conversations between humans and voice-activated AI 
assistants. This presents an opportunity to gain further insight into 
the factors influencing the accuracy of spoken word recognition 
during real-time interaction.

Recent years have seen several exciting lines of new questions 
about AI tools emerge from psycholinguistic research, including: 
What speech adjustments do speakers make when speaking to a 
voice-activated AI assistant as opposed to a human (Cohn and 
Zellou, 2021; Cohn et al., 2021, 2022, 2024)? How can the use of AI 
tools facilitate the acquisition of a second language (Dizon, 2017, 
2020; Moussalli and Cardoso, 2020; Song et al., 2022; Chen et al., 
2023; Hsu et al., 2023; Tai and Chen, 2023; Luo et al., 2024; Tai, 
2024; Wang et al., 2024; Yang et al., 2024)? How do people adopt or 
respond to the various attributes of AI-generated voice 
(Schreibelmayr and Mara, 2022; Dodd et al., 2023; Gwizdzinski 
et al., 2023; Zellou et al., 2023; Pycha and Zellou, 2024)? Despite the 
growing interest in AI tools, the factors accounting for the 
recognition and production patterns of AI tools have not been 
well understood.

Thus, the primary goal of this study was to examine whether the 
factors that affect word recognition and production in humans are also 
shared by AI tools. We tested two AI tools developed by Amazon: their 
voice-activated AI assistant, Alexa, and their text-to-speech AI service, 
Polly. In Experiment 1, we looked at how Alexa’s word recognition was 
affected by two lexical factors (word frequency and phonological 
neighborhood density) and a style-related factor (speaking rate). In 
addition, we examined how an instance-specific factor (the listener’s 
prior experience with the talker’s voice) influenced Alexa’s word 
recognition. In Experiment 2, we  examined how the acoustic 
properties of speech generated by Polly changed as a function of the 
lexical properties of words (word frequency and phonological 
neighborhood density) and style (speaking rate).

Note that, although both Alexa and Polly make use of AI 
technology, these two tools serve different purposes. Alexa is an 
interactive assistant, designed to interact with people in a natural 
manner: an individual can query Alexa by speaking, and receive a 
spoken response. Polly, on the other hand, is a text-to-speech (TTS) 
tool: an individual can type a sentence or paragraph, and Polly will 
speak it aloud. Ideally, we might have tested a single tool, such as 
Alexa, on both perception and production. In practice, however, this 
was not feasible, because it is not possible to elicit a pre-defined 

spoken stimulus from Alexa. In the current study, therefore, 
Experiment 1 tests the ASR component of Alexa, while Experiment 2 
tests Polly, which is a TTS tool. Note also that, because Polly is a TTS 
tool, it produces speech output from text alone. Therefore, it is not 
possible to examine how prior experience with a talker’s voice would 
affect its behavior. For this reason, Experiment 2 only examines lexical 
and style factors, and not an instance-related factor.

Studies comparing human and machine recognition systems have 
long indicated that ASR performance is not up to par with human 
performance, especially when dealing with degraded signals and 
highly variable spontaneous speech (Lippmann, 1997; Dusan and 
Rabiner, 2005; Juneja, 2012). Despite the significant advancement 
made over the last decade in ASR, with recognition rates approaching 
human levels (Xiong et  al., 2016; Hussein et  al., 2022), ASR 
performances still lag behind in several areas. One area where human 
and machine recognition systems diverge greatly is perceptual 
adaptation. For instance, human listeners show improvements in the 
speed and accuracy of word identification after only brief exposure to 
unfamiliar accented speech, suggesting rapid perceptual adaptation 
(Clarke and Garrett, 2004; Adank and Janse, 2010; Xie et al., 2018). 
Although there is evidence that modern ASR systems can adjust their 
internal processes to mimic human perceptual adaptation (Winata 
et al., 2020), it is still unclear whether these systems can exhibit rapid 
learning to a similar degree as humans (Davis and Scharenborg, 2016).

Similar limitations are found in speech produced by AI tools 
based on neural networks. Alexa and Polly both progressed from the 
earlier unit-selection method of stringing together small snippets of 
pre-recorded sounds to neural-network-based text-to-speech systems, 
which synthesize speech from scratch. Compared to speech produced 
by unit selection, speech produced by neural text-to-speech systems 
is generally considered to be  more natural-sounding and more 
versatile (Trueba and Klimkov, 2019). Nonetheless, there is evidence 
that current neural text-to-speech systems often fail to capture 
sophisticated linguistic information that underlies speech. For 
example, Fernández-Peña (2023) demonstrated that Polly produced 
intonation patterns that do not match the pragmatic meanings of 
tag questions.

Based on the previous research, in Experiment 1, we predicted 
that lexical- and style-related factors would influence Alexa’s 
recognition errors in a similar way to humans, with higher error rates 
for low frequency words, high density words, and fast speech. In 
contrast, we  predicted that Alexa’s recognition errors would not 
necessarily decrease with increased experience with the speaker’s 
voice, indicating a lack of human-like perceptual flexibility and rapid 
learning. In Experiment 2, we predicted that Polly’s speech production 
would be modulated by speaking rate, but not necessarily by lexical 
factors; due to the limited literature on the acoustic properties of 
AI-generated speech, these predictions were exploratory.

2 Experiment 1

The aim of Experiment 1 was to examine how various factors 
affect Alexa’s recognition accuracy for words that were produced by 
human speakers in real time. To accomplish this, native speakers of 
American English prompted Alexa to spell target words (e.g., “Alexa, 
I  want you  to spell tack”), and we  coded the accuracy of 
Alexa’s response.
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2.1 Materials and methods

2.1.1 Participants
All participants (n = 21) who served as interlocutors for Alexa 

were native speakers of American English with no known speech or 
language impediments. Participants were recruited through campus 
advertisements and announcements made in classes at the University 
of Wisconsin-Milwaukee. Fourteen participants were female, six were 
male, and one participant preferred not to disclose their gender 
identity; their mean age was 23 years (range: 18–44).

Although dialect wasn’t an exclusionary criterion for the present 
study, all participants indicated they use the North dialect (Labov 
et al., 2006). The North dialect is a variation of American English that 
is used primarily in Wisconsin, Illinois, Minnesota, and Michigan. 
Three participants indicated that they grew up in bilingual households 
(Spanish), though their dominant language was still American 
English. Participants were asked to list their estimated proficiency in 
languages other than English. Fifteen participants out of 21 indicated 
various proficiencies in their L2, ranging from beginner to advanced, 
though none of these participants indicated native-like proficiency in 
that language. In addition, participants were asked about their prior 
experience using intelligent voice assistants, such as Amazon’s Alexa, 
Apple’s Siri, and Google’s Google Assistant. The majority of the 
participants said they had experience with them, with only four saying 
they had never used any of them.

2.1.2 Stimuli
Target words were 120 CVC English words, evenly divided into 

four groups: high frequency/high density (HFHD), high frequency/
low density (HFLD), low frequency/high density (LFHD), and low 
frequency/low density (LFLD). The target words contained one of the 
ten vowels /ɑ, æ, ɛ, i, ɪ, u, ʌ, oʊ, eɪ, ɑɪ/. Vowels were balanced across the 
four groups to ensure that they are not a confounding factor on Alexa’s 
recognition of the target word (see the Table A1 for a complete list 
of stimuli).

Frequency and density statistics were taken from the English 
Lexicon Project database1 (Balota et al., 2007). In the present study, 
high frequency words were defined as words with log-transformed 
values (Log_Freq_HAL) greater than 9. High phonological density 
words were defined as words having densities (Phon_N) greater than 
25. The mean log-transformed frequency and the mean density for the 
four groups are shown in Table  1. The mean log-transformed 

1 http://elexicon.wustl.edu

frequency for high-frequency and low-frequency words was 10.64 
(SD = 1.03) and 7.05 (SD = 1.11), respectively. The mean density for 
high-density words was 29.4 (SD = 4.20), and 14.7 (SD = 3.86) for 
low-density words. Finally, 30 CVC filler words were purposefully 
chosen to have mean frequency and mean density values that fell 
in-between those of our target words (see Table 1).

2.1.3 Procedure
Participants first completed a short questionnaire, which was 

designed to examine their language background. They were then 
invited to a sound-attenuated room, where the actual experiment took 
place. There were two conditions for each participant: a normal-
speaking rate condition, as well as a fast-speaking rate condition. 
During the normal-rate condition, participants were instructed to 
speak at the same speed as they would in everyday life. During the 
fast-rate condition, they were instructed to speak more quickly than 
they typically would. The order of the conditions was counterbalanced 
with half of the participants completing the normal-speaking rate 
condition first, and the other half completing the fast-speaking rate 
condition first. In each condition, participants were provided with a 
printed list of words and were asked to produce each word within the 
frame sentence, “Alexa, I want you to spell _______.” Words were 
recorded in a sentence even though the sentence itself did not provide 
any context for the target words. This was done because speaking rate 
manipulation was expected to be more natural for sentences than for 
single words. The word list contained 150 stimulus words in total (120 
targets + 30 fillers). The order of the words was randomized for each 
participant. Note that the word Alexa was the wake word we used for 
Alexa. In response to the request, Alexa typically responded in the 
following format: “______ is spelled ______” (e.g., “Tack is spelled 
T-A-C-K”).

In addition to the word list, participants were also provided with 
a printed set of instructions that described the process for moving 
from one word to the next. Regardless of whether or not Alexa spelled 
each word correctly, participants were asked to pronounce each word 
only once and move onto the next word. There were two exceptions 
to this. The first exception occurred when participants corrected 
themselves immediately after realizing they had mispronounced the 
target word. The second exception occurred when participants 
repeated themselves immediately after realizing that Alexa was not 
awake. Although participants were instructed to verify that Alexa 
responded to the wake word before asking it to spell each word, some 
participants failed to do so.

During the experiment, participants were seated next to an Alexa 
device (2nd Generation of Echo Show). The productions were recorded 
directly onto a desktop computer running Audacity software at a 

TABLE 1 Characteristics of stimuli.

Mean log-transformed frequency (SD) Mean density (SD)

HFHD 10.64 (1.06) 30 (4.62)

HFLD 10.65 (1.01) 14 (4.12)

LFHD 7.00 (0.98) 29 (3.80)

LFLD 7.11 (1.24) 15 (3.64)

Filler 9.24 (1.67) 23 (0.66)

SD represents standard deviation.
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sampling frequency of 44.1 kHz and 32-bit quantization via a 
Behringer XM8500 cardioid microphone that was located about five 
inches from the lips and connected to an M-Audio M-Track Solo 
preamplifier. The entire experiment took roughly 1 hour, and 
participants were instructed to take breaks as needed. The participants 
gave informed consent and received either a gift card or extra credit 
for their participation.

2.1.4 Coding of data
After listening to the recordings, we categorized Alexa’s responses 

into three groups: correctly recognized, incorrectly recognized, or 
excluded (see Table 2). When Alexa’s response was the same as the 
target word (e.g., tack → tack) or a homophone of the target word (e.g., 
pick → pic), the target word was judged to be correctly recognized by 
Alexa. Because we  tried to avoid words with homophones when 
choosing our stimuli, pick turned out to be the only word to which 
Alexa responded with a homophone.

In contrast, when Alexa’s response was different from the target 
word, the target word was judged to be  incorrectly recognized by 
Alexa. There were four specific cases that met this categorization: (1) 
The first (and most common) case was Alexa spelling a word other 
than the target word (e.g., tack → tech). (2) Alexa responded with a 
phrase indicating that it did not know the answer (e.g., “Sorry, I do not 
know that one.”). (3) Alexa produced a beep sound instead of spelling 
a word. The reason why we classified cases (2)–(3) as misrecognition 
errors is because Alexa often gave those answers in response to specific 
target words across different participants, suggesting that Alexa 
understood the question but had trouble recognizing the target words. 
For example, Alexa almost always gave a beep sound in response to 
the word moan, suggesting that the cause of its response is most likely 
to be the misrecognition of the word.

In addition, there were six specific cases in which we decided to 
omit the data, rather than marking Alexa’s response as correct or 
incorrect. These cases also shared a common characteristic, which was 
that they could be attributed to random error, and as a consequence, 
were not consistently observed across different participants or target 
words. We excluded these tokens, as the cause of the misrecognition 

was unclear. (1) First, we omitted the errors that participants made 
themselves (e.g., mispronunciations, or skipping of the target word). 
(2) Experimenter errors were also omitted (for some participants, the 
word both appeared twice on the word list). (3) There were instances 
in which Alexa simply did not respond. (4) Alexa gave related 
information to the target word rather than the spelling of the word 
(e.g., “The letter f is the first letter in the word fit,” when the target word 
is fit). (5) Alexa gave information that did not seem to be related to the 
target word (e.g., “The Spell is a book by Heather Killough-Walden,” 
when the target word is hoot; and “Alarm for what time?,” when the 
target word is sip). (6) Alexa responded with a phrase indicating that 
it did not understand the question or that it was confused (e.g., “Hmm, 
did not quite catch that. Say that again?” “Please provide more context 
or information in order to help you”).

The number of words analyzed per participant was 240: 30 words 
× 2 levels of frequencies (high, low) × 2 levels of phonological 
neighborhood density (high, low) × 2 types of speaking rate (normal, 
fast). Ideally, this would give us 5,040 (240 × 21 participants) tokens 
to analyze. After excluding 171 tokens for the various reasons listed 
above, the final dataset included 4,869 tokens.

2.2 Results

We performed two analyses on the accuracy data using the 
glmer function in the lme4 package (Bates et al., 2015) in R, version 
4.2.3 (R Core Team, 2023). In the first analysis, our mixed-effects 
logistic regression model included word frequency (high vs. low), 
phonological neighborhood density (high vs. low), and speaking 
rates (normal vs. fast) as fixed effects. These categorical variables 
were sum coded. The random effect structure included by-subject 
and by-item random intercepts, along with the maximal random 
slopes that resulted in convergence (Barr et al., 2013; Matuschek 
et al., 2017; Brauer and Curtin, 2018). The syntax of the final model 
was: glmer(accuracy ~ frequency*density*rate 
+ (frequency + density + rate|subject) + (rate|item), family = 
binomial, data = datafile, control = glmerControl(calc.

TABLE 2 Number of tokens analyzed for each category.

Category Number

Counted as correct Alexa’s response was the same as the target word. 3,921

Alexa’s response was a homophone of the target word. 12

Counted as incorrect Alexa spelled a different word than the target word. 771

Alexa responded with a phrase indicating that it did not know the 

answer.

127

Alexa produced a beep sound. 38

Excluded Participant error 11

Experimenter error 18

Alexa did not respond. 85

Alexa gave related information, however it did not spell the target word. 19

Alexa gave unrelated information. 25

Alexa responded with a phrase indicating that it was confused. 13

Total 5,040
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derivs = FALSE)). In addition, we  conducted post-hoc pairwise 
comparisons for significant interactions using the emmeans 
function of the emmeans package (Lenth, 2024). All reported 
p-values were Bonferroni corrected for multiple comparisons.

As shown in Table 3, the main effects of frequency and rate 
were significant. High-frequency words were easier for Alexa to 
recognize than low-frequency words. Also, words spoken at a 
normal speaking rate were easier for Alexa to recognize than 
words spoken at a fast speaking rate (Figure 1). Although the main 
effect of density was not significant, there was a significant 
density × rate interaction, suggesting that the effect of density was 
modulated by speaking rate. Post-hoc pairwise comparisons 
revealed that low-density words were recognized more accurately 
than high-density words only under the fast rate condition 
(Estimate = −0.963, SE = 0.421, Z = −2.287, p < 0.05). Frequency 
× density and frequency × rate interactions were not significant, 
suggesting that the observed difference between high- and 
low-frequency words held true across different density and rate 

conditions. Finally, the frequency × density × rate interaction was 
not significant either.

In the second analysis, we examined whether Alexa’s recognition 
accuracy improved as its experience with the speaker’s voice 
increased. Specifically, following Bradlow and Pisoni (1999), 
we looked at the possibility that words presented in the fourth and 
final quartile (Q4) of the experimental session – that is, later in the 
session  – would be  recognized more accurately than words 
presented in the first quartile (Q1) – that is, earlier in the session. 
Since each participant produced 120 target words in each speaking 
rate condition, the first and last 30 target words Alexa heard made 
up Q1 and Q4, respectively. Figure 2 shows the percent correct 
accuracy for each of the four word categories presented during Q1 
and Q4 of the sessions. We examined the differences between Q1 
and Q4 separately for each word category to rule out the possibility 
that Alexa’s recognition accuracy was impacted by the types of 
words that made up Q1 and Q4. Each mixed-effects logistic 
regression model included sum-coded quartile (Q1 vs. Q4) and 

TABLE 3 Results of mixed-effects logistic regression model.

Estimate SE Z p-value

Intercept 2.695 0.279 9.665 < 0.001

Frequency 0.933 0.227 4.106 < 0.001

Density −0.285 0.223 −1.274 0.203

Rate 0.513 0.099 5.158 < 0.001

Frequency × Density 0.037 0.222 0.166 0.868

Frequency × Rate −0.094 0.067 −1.416 0.157

Density × Rate 0.197 0.066 2.978 < 0.01

Frequency × Density × Rate −0.043 0.066 −0.649 0.517

FIGURE 1

Boxplots of Alexa’s accuracy data. The middle line of each box represents the median value, the outer margins of each box represent the interquartile 
range, and the whiskers extend to 1.5 times the interquartile range.
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speaking rate (normal vs. fast) as fixed effects. The random effect 
structure included by-subject and by-item random intercepts, and 
maximal random slopes. The syntax of the final model was: 
glmer(accuracy ~ quartile*rate + (quartile*rate |participant) + 
(rate|item), family = binomial, data = datafile, control = 
glmerControl(calc.derivs = FALSE)).

The results indicated that Alexa’s recognition accuracy differed 
between Q1 and Q4 for two of the word categories: LFHD and 
LFLD. For LFLD words, Alexa’s recognition accuracy indeed 
increased from Q1 to Q4, as indicated by a significant effect of 
quartile (Estimate  = −0.381, SE  = 0.169, z  = −2.253, p  < 0.05). 
However, the difference between Q1 and Q4 was driven by the 
normal speaking rate condition (see Figure 2), as suggested by a 
significant interaction between quartile and speaking rate 
(Estimate = −0.366, SE = 0.176, z = −2.083, p < 0.05). For LFHD 
words, which are comparable to the “hard” words in Bradlow and 
Pisoni (1999), Alexa’s recognition accuracy unexpectedly decreased 
from Q1 to Q4 (Estimate = 0.385, SE = 0.143, z = 2.698, p < 0.01). 
This was observed in both speaking conditions, as indicated by a 
lack of interaction between quartile and speaking rate 
(Estimate = 0.055, SE = 0.140, z = 0.390, p = 0.696). In addition, 
we found a significant effect of speaking rate on accuracy for both 
LFLD and LFHD words. For the other two word categories, HFHD 
and HFLD, no difference was found between Q1 and Q4, or between 
normal and fast speaking rates. Thus, overall, we did not find any 
consistent effect of quartile. This implied that having more 
experience with the speaker’s voice did not translate into an 
improvement in Alexa’s recognition accuracy.

2.3 Interim summary of Experiment 1

When responding to target words produced by human 
interlocutors, Alexa was overall more accurate for high-frequency 
words and for speech produced at a normal rate, compared to 
low-frequency words and speech produced at a fast rate. Alexa also 
recognized words with low neighborhood density more accurately 
than those with high neighborhood density, but only at fast speaking 
rates. There was no consistent effect of quartile, suggesting that Alexa’s 
perception performance did not improve over the course of sessions 
with individual talkers.

3 Experiment 2

The aim of Experiment 2 was to examine how various factors 
affect Amazon Polly’s word production. To accomplish this, 
we provided carrier sentences to Polly in text form (e.g., “Alexa, I want 
you to spell tack”), which Polly converted to speech. We then analyzed 
the acoustic characteristics of the target word’s vowel.

3.1 Materials and methods

The production experiment used the same 120 target words and 30 
filler words as described for the perception study. Each word was 
embedded in the sentence frame, “Alexa, I want you to spell ______.” 
The stimulus sentences were generated using Amazon Web Service’s 

FIGURE 2

Boxplots of Alexa’s accuracy for the first (Q1) and fourth (Q4) quartiles of the experimental sessions. The middle line of each box represents the median 
value, the outer margins of each box represent the interquartile range, and the whiskers extend to 1.5 times the interquartile range.
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Polly Text-to-Speech tool. We used the standard engine, which was the 
only engine available in our region. The language was American English, 
and we used all of the available voice settings, which consisted of five 
female voices (Salli, Kimberly, Kendra, Joanna, Ivy) and three male 
voices (Matthew, Justin, Joey), for a total of eight virtual “participants.” 
for each voice, we generated the full list of 150 sentences twice, once 
with a normal speaking rate, and once with fast speaking rate. Within 
each voice and rate, the order of the sentences was randomized.

The rates were controlled using the emphasis level tag in the Speech 
Synthesis Markup Language (SSML). According to the SSML 
documentation, the “moderate” emphasis level serves as Polly’s default, 
so this setting was used for the normal-speaking rate condition. By 
comparison, the “reduced” emphasis level decreases the volume and 
speeds up the speaking rate, so this setting was used for the fast-
speaking rate condition. Although the changes to volume are not 
relevant to the current study, we used the emphasis tag because, as far 
as we are aware, it is the only means of manipulating speaking rate in 
Polly. The output of Polly was MP3 files, which we converted to WAV 
files using Praat.

We segmented each WAV file in Praat, using visual inspection of 
the waveform and spectrogram to indicate the start and end point of 
each target word and, within each word, the target vowel. We used a 
script to measure the duration of each vowel, as well as F1 and F2 at the 
midpoint of the vowel. Fillers were excluded from analysis. Thus, a total 
of 1920 vowels were analyzed (120 target words × 2 speaking rates × 8 
“participants”).

3.2 Results

Descriptive results for the production study are displayed in 
Tables 4–6. We performed statistical analysis on three output variables, 

duration, F1, and F2, using the lme function in the nlme package 
(Pinheiro and Bates, 2000; Pinheiro et al., 2024) in R. Each of the three 
mixed-effects regression models used the same sum-coded fixed 
effects as described for the perception study. The random effects 
structure included by-subject and by-item intercepts; more complex 
models failed to converge. The syntax of the final model for duration 
was: lme(duration ~ Frequency*Density*Style, random = 
list(~1|Participant,~1|Item)). The syntax of the final models for F1 and 
F2 was the same.

For duration, there was a significant effect of speaking rate 
(Estimate = −0.034, SE = 0.001, t = −66.468, p < 0.05), such that 
vowels in the fast condition were significantly shorter than vowels in 
the normal condition. No other effects or interactions were significant. 
For F1 and F2, no effects or interactions were significant.

3.3 Interim summary for Experiment 2

The results of Experiment 2 showed that the Polly’s target vowels 
had significantly shorter duration at a fast speaking rate, compared to 
a normal speaking rate. Rate had no significant effect on vowel 
formants. Furthermore, lexical characteristics had no significant effect 
on any acoustic measurement.

4 Discussion

The current study examined how Amazon Alexa and Polly 
responded to lexical and stylistic factors that are known to modulate 
speech perception and production in humans. In the domain of 
perception, Alexa’s performance was significantly affected by word 
frequency and speaking rate. Its performance was also affected by 

TABLE 4 Mean vowel durations (standard deviations) in seconds, for production experiment.

Normal rate Fast rate

High frequency
High density 0.232 (0.059) 0.165 (0.044)

Low density 0.241 (0.064) 0.173 (0.047)

Low Frequency
High density 0.235 (0.062) 0.169 (0.045)

Low density 0.237 (0.068) 0.167 (0.049)

TABLE 6 Mean vowel F2 values (standard deviations) in Hertz, for production experiment.

Normal rate Fast rate

High Frequency
High density 1813.54 (526.83) 1805.73 (521.52)

Low density 1851.58 (519.48) 1837.43 (524.73)

Low Frequency
High density 1817.10 (511.17) 1816.66 (516.62)

Low density 1786.00 (529.56) 1815.92 (512.26)

TABLE 5 Mean vowel F1 values (standard deviations) in Hertz, for production experiment.

Normal rate Fast rate

High Frequency
High density 639.64 (262.03) 639.35 (259.47)

Low density 626.40 (248.20) 631.57 (249.23)

Low Frequency
High density 644.21 (257.72) 647.15 (259.74)

Low density 638.57 (256.26) 644.56 (258.94)
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neighborhood density, but only at fast speaking rates. Alexa showed 
no evidence of adaptation over time; although its performance 
changed from the first quartile of target words (Q1) to the fourth and 
final quartile (Q4) for low frequency words, the change was in an 
unexpected direction. Meanwhile, in the domain of production, 
Polly’s performance was significantly affected by speaking rate alone. 
Overall, these findings suggest that AI speech lacks some of the 
flexibility that is the hallmark of human speech. In what follows, 
we discuss each of these findings in turn.

4.1 Perception and frequency

Alexa’s recognition performance was significantly affected by 
frequency, such that it exhibited higher accuracy for frequent target 
words, compared to infrequent ones. This result is almost certainly 
expected. Although the precise algorithms underlying AI models are 
proprietary, the key idea of such models is that they produce output 
using the occurrence of already-existing patterns within very large 
datasets. It stands to reason, then, that AI models would make a basic 
distinction between frequent versus infrequent patterns.

With that said, our results are still notable because frequency 
exerted an impact on accuracy scores even under “ideal listening” 
conditions – that is, in a quiet environment with no time pressure 
for a response. In comparable conditions, human listeners 
performing lexical decision tasks (a common measure of word 
recognition) typically produce accuracy scores which are at ceiling 
(Luce and Pisoni, 1998); the difference between frequent versus 
infrequent words surfaces primarily under conditions of pressure, 
or through finer-grained measures such as reaction time. That is, 
even if a human takes a little bit longer to respond to low-frequency 
words like gush, he or she will ultimately respond to them with 
high accuracy. Such is not the case with Alexa, whose basic ability 
to recognize low-frequency words is compromised. In this regard, 
Alexa’s behavioral response to frequency is parallel to—and yet 
more extreme than—a human listener.

Also, it is worth mentioning that there might be  differences 
between the words that human listeners and AI models find frequent. 
For instance, although the word dune was one of the low-frequency 
words according to the database we used, Alexa recognized the word 
with a startlingly high accuracy rate of 97.6%. Given that Dune is the 
title of a widely-seen film, we suspect that it was one of the frequent 
words in the datasets Alexa was trained on.

4.2 Perception and density

Alexa’s overall recognition performance was not significantly 
affected by density. This differs from human listeners, who typically 
recognize low-density words better than high-density ones. For 
humans, this effect is attributed to a process of lexical competition. 
Specifically, an input signal will activate not only its target, but also any 
stored lexical representations which sound sufficiently similar to the 
target. When a larger number of representations are activated (as is 
the case for high-density words), there are more potential words 
competing for recognition, so perception becomes less accurate and 
slower. In our results, the lack of a density effect could conceivably 
suggest that Alexa simply does not use a competition algorithm, or 

that if it does, the competition does not involve similar-
sounding words.

Such a conclusion does not seem entirely warranted, however, 
because our results do show an effect of density at fast speaking rates. 
In this condition, where speech segments are more rapid and more 
reduced, high-density words exhibited lower accuracy rates than 
low-density words. This finding seems to suggest that Alexa does 
employ a competition algorithm, at least in some conditions, or 
alternatively that Alexa is sensitive to a very closely related measure, 
such as the transitional probability between phonemes.

Despite the absence of a main effect for density, this interaction 
effect is consistent with what we know about human perception more 
broadly—namely, that certain effects which are dormant under ideal 
listening conditions will manifest themselves under more difficult 
conditions or, as Bradlow and Pisoni (1999, p. 2075) put it, “perceptual 
difficulties introduced by one factor might be attenuated or amplified by 
the presence of another factor.”

4.3 Perception and speaking rate

Alexa’s recognition performance was affected by speaking rate, 
such that accuracy was lower at the faster rate. This is comparable to 
findings that have been reported for human listeners. This finding is 
particularly important in light of recent studies on the acoustic 
properties of Alexa-directed speech, which have shown that human 
speakers slow down when speaking to Alexa (Cohn and Zellou, 2021; 
Cohn et al., 2021). It is assumed in these studies that human speakers 
adjust their speaking rate in order to ensure that Alexa recognize the 
word. Nevertheless, there has not been any empirical evidence to 
suggest that the speaking rate adjustments will actually enhance 
Alexa’s word recognition. By demonstrating that Alexa’s word 
recognition rate was significantly impacted by the speaking rate of the 
sentences that were produced “live” by human speakers, our study 
provides a basis for understanding the speaking rate modifications 
found in the previous research.

In order to estimate the size of the acoustic difference between 
the normal and fast speaking rates used by Alexa’s human 
interlocutors (Experiment 1) as well as Polly (Experiment 2), 
we measured speaking rate for a subset of the utterances that they 
produced. Specifically, we calculated the speaking rate of the frame 
sentence “I want you to spell ____” that contained the following 
four words: seat (HFHD), check (HFLD), hag (LFHD), and robe 
(LFLD). The four words were chosen because in Experiment 1, they 
exhibited the recognition accuracy closest to the median accuracy 
in each word category. In total, 168 sentences (4 sentences × 2 
speaking rates × 21 participants) were analyzed for Experiment 1, 
and 64 sentences (4 sentences × 2 speaking rates × 8 voices) were 
analyzed for Experiment 2.

The results showed that the human speakers in Experiment 1 
produced an average of 4.37 syllables per second (SD = 0.71) under 
the normal speaking rate condition, and 6.51 syllables per second 
(SD = 1.19) under the fast speaking rate condition. In Experiment 2, 
Polly produced an average of 3.50 syllables per second (SD = 0.34) 
under the normal speaking rate condition, and 4.90 syllables for 
second (SD = 0.44) under the fast rate condition. These results help us 
verify that the speakers in both experiments indeed produced the rate 
differences that we expected. Interestingly, Polly exhibited a smaller 
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difference between normal and fast rates compared to human 
speakers, as well as a slower rate overall.

4.4 Perception and adaptation over time

Alexa’s recognition performance changed from Q1 to Q4, but this 
effect was only found for low-frequency words. To some extent, this is 
not surprising, because Alexa’s performance was near ceiling for high-
frequency words (see Figure  1). When looking at results for 
low-frequency words, however, we do not necessarily see the trajectory 
of change that we would expect. In our results, recognition accuracy 
for LFLD words did increase from Q1 to Q4, but this effect was limited 
to the normal-rate condition. This is not what we see in previous 
results from human listeners: Bradlow and Pisoni (1999) demonstrated 
improved perception over time, but their effect was limited to the fast-
rate condition (their study examined “difficult” words, namely LFHD 
words), where recognition was presumably more difficult to begin 
with. Puzzlingly, Alexa seems to exhibit improvement in a condition 
where none is needed.

Also in our results, recognition accuracy for LFHD words actually 
decreased from Q1 to Q4. This finding, which held across participants 
and items, directly contradicts what we expect from adaptation, and 
does not have a clear explanation. It is possible that our human 
speakers experienced fatigue, and therefore devoted less and less effort 
to their pronunciations as they progressed through the experiment, 
thereby producing less recognizable words in Q4 compared to Q1. 
However, it is unclear why fatigue should impact only one category of 
words (LFHD) to the exclusion of the others.

In sum, although we found some evidence of change over time, 
we cannot characterize these changes as adaptation. Further work is 
needed to understand how and why Alexa’s accuracy rates fluctuate as 
it interacts with an individual speaker. For now, we can conclude that 
Alexa lacks the perceptual flexibility that is a hallmark of human 
speech perception.

4.5 Comparison with previous studies of 
human perception

Using many of the same variables employed in the current study, 
Bradlow and Pisoni (1999) examined word recognition in human 
listeners. Table 7 displays their accuracy results and compares them to 
ours. Note that although the current study used four types of words (2 
levels of frequency × 2 levels of density), the comparison depicts only 
two types of words (“easy” versus “hard,” corresponding to HFLD 
versus LFHD), since those were the two types examined by Bradlow 
and Pisoni (1999).

Several patterns are apparent. First, Alexa’s accuracy rate is lower 
than that of humans overall. Although Alexa performs well enough to 
be used as an everyday commercial product, its basic capacity for 
word recognition still falls short. This may be due, in part, to the 
nature of Alexa’s training data, which presumably consists of words 
occurring in meaningful contexts. By contrast, the stimulus sentences 
for the current study (“Alexa, I want you to spell ____”) were stripped 
of context, thereby depriving Alexa of one of its most valuable clues.

Second, Alexa’s accuracy is more strongly affected by a change 
from easy to hard. That is, while human recognition rates are roughly 
comparable for easy and hard words, Alexa’s recognition rates are 
noticeably lower for hard words. With the caveat that hard words are 
actually a composite of both low frequency and high density, it appears 
that Alexa is overly sensitive to frequency effects. Given the basic 
premise of AI models, this is perhaps not surprising, and it highlights 
the need for such models to integrate additional principles, besides 
frequency alone.

Third, Alexa and human listeners are affected by speech-rate 
changes in different ways. For easy words, Alexa’s accuracy is less 
affected by changes in rate. This suggests that Alexa may have already 
been trained on fast speech samples, and indeed, that it may have had 
relatively more exposure to fast speech than humans have. But for 
hard words, Alexa’s accuracy is more affected by changes in rate. Thus, 
although Alexa has a basic capacity to respond to fast speech, this 
capacity deteriorates with low-frequency, high density words, 
providing further support to the notion that Alexa is oversensitive 
to frequency.

Although we have sketched a basic comparison of perception in 
humans versus Alexa, the conclusions that we can draw from Table 7 
remain limited by differences in stimulus design and experimental 
procedure. Future work could elaborate the comparison by directly 
comparing humans and Alexa as they respond to the exact same 
stimuli and with the exact same procedure.

4.6 Production

In contrast to Alexa’s perception performance, which mimicked 
some of the capacities of human listeners, Polly’s production 
performance suggests only a very limited approximation of human 
speakers. The results did show that the duration of vowels in the target 
words varied as a function of speaking rate, with shorter durations in 
the fast rate. However, such a result would be expected under any 
definition of “rate.” Meanwhile, vowel quality (as measured by F1 and 
F2) did not vary as a function of speaking rate. This differs from what 
has been typically reported for human speakers, who produce 
expanded vowel spaces in clear speech, which is typically spoken at a 
slower rate, compared to casual speech, which is typically spoken at a 

TABLE 7 Recognition accuracy for the easy and hard words gathered from human listeners in Bradlow and Pisoni (1999) and from Alexa in the current 
study.

Speaking rate Bradlow and Pisoni (1999) Current study

Easy word (≈HFLD) Medium 94.67% 89.69%

Fast 91.61% 89.07%

Hard word (≈LFHD) Medium 90.04% 77.52%

Fast 84.97% 59.76%
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faster rate (although we note that speech style and speech rate, while 
closely linked, are nevertheless distinct concepts). Thus, whereas 
humans seem to accomplish changes in speech rate by harnessing a 
variety of linguistic variables, Polly limits itself to non-spectral changes.

Furthermore, results provided no indication that Polly’s 
productions were modulated by lexical characteristics. This clearly 
differs from what has been reported for humans. In human speech, 
high-frequency words have shorter durations and more contracted 
vowel spaces than low-frequency words. Interpreted within the 
framework of Lindblom’s H&H theory, this is because human speakers 
know that frequent words are easier for human listeners to recognize, 
and they can therefore devote less effort to their articulation. 
Essentially, this is a “theory of mind” scenario, in which the speaker 
attempts to understand the mental state of the listener, and acts 
accordingly. If this scenario is correct, then the lack of a frequency 
effect for Polly’s productions need not be a surprise, because Polly is 
an AI model that lacks theory of mind.

For density, the previous research on human speech is mixed. As 
noted in the Introduction, some studies have reported that humans 
produce high-density words more clearly. This scenario can 
be  interpreted within the framework of H&H theory in the same 
manner as frequency; that is, because human speakers know that 
high-density words are more difficult for human listeners to recognize, 
they produce them with longer durations and more expanded vowel 
spaces. However, other studies have reported that humans produce 
high-density words less clearly, possibly because they devote less effort 
to sequences of sounds that are highly practiced. Although these 
notions are quite different from one another – H&H’s theory of mind, 
on the one hand, and the concept of “effort,” on the other—neither of 
them is applicable to a software algorithm. Interpreted in this way, 
Polly’s lack of sensitivity to lexical characteristics is not 
entirely surprising.

With that said, the ultimate test of Polly’s speech production 
would not really come from acoustic measurements such as those that 
we report here (which are themselves limited, since we examined only 
the vowel in CVC target words). Instead, it would come from human 
listeners themselves, who could provide data to help us determine 
whether the lack of frequency- and density-based acoustic modulation 
affects their ability to recognize words. Future perceptual studies could 
use Polly-generated speech to accomplish this goal.

The current study used the standard engine of the AWS Polly 
Text-to-Speech tool, which was the only engine available in the region 
where this research was conducted. Other regions have access to the 
neural engine, and its output could potentially be quite different from 
what we examined here. The current study is also limited to speech 
output produced by a single commercial organization; the output 
produced by other commercial organizations, or by research groups, 
could potentially be quite different.

4.7 Future work

For future work on AI tools, a crucial question will concern 
dialect variation. While the current study has examined both lexical 
and stylistic sources of variation, and also touched on questions of 
indexical variation, it has done so within a relatively homogenous 
dialectal context. For the perception study, our human speakers 
were native speakers of a variety of American English that is 
associated with white people living in the midwestern region of the 

United States. For the production study, the voices supplied by Polly 
possessed similar characteristics. But much of the richness of 
human language – and much of the variation in the speech stream – 
comes from dialects. Understanding how AI tools respond to 
dialectal variation is important for basic linguistics and cognitive 
science, because we  know that humans adapt very rapidly to 
features of a novel dialect, both in perception (e.g., Dahan et al., 
2008) and in production (e.g., Babel, 2010, 2012). Thus, in order to 
have a full scientific understanding of tools like Alexa and Polly, 
we must characterize the extent to which they adapt, or fail to adapt. 
Work on dialectal variation is also important for ethical reasons, 
because previous research has demonstrated that AI tools exhibit 
biases to dialects. For example, language models have been shown 
to exhibit racial disparities in their responses to African-American 
speech (Koenecke et al., 2021) and also to embody less overt racism 
in the form of prejudice against African-American dialects 
(Hofmann et  al., 2024). Future work must continue to probe 
these issues.

5 Conclusion

AI tools seem to mimic human speech in ways that were 
unimaginable until very recently. But how good is their mimicry? The 
answer to this question is important because it will affect our own 
human behavior when we interact with AI. The current study brought 
two AI tools, Alexa and Polly, “into the lab” and tested them with some 
of the same variables that have been shown to shape human perception 
and production: frequency, density, speaking rate, and change over 
time. Our results showed that for some of these variables, AI tools 
exhibited sensitivity in the same manner as humans; for others, 
however, AI tools exhibited oversensitivity, or no sensitivity at all. 
These findings deepen our understanding of what artificial intelligence 
can – and cannot – do.
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Appendix

TABLE A1 Stimuli used in Experiments 1 and 2.

Vowel HFHD HFLD LFHD LFLD

1 ɑ pot top cot mop

2 æ sad van lad sag

3 æ fat half sap dash

4 æ pack gas pap gaff

5 æ pat path tack zap

6 æ bad jazz hag dab

7 ɛ bet death peck pep

8 ɛ set check beck chef

9 i seek teeth beak beef

10 i feed league bead deem

11 i sheet deep beep sheath

12 i seat teach seep jeep

13 ɪ bit zip sip ditch

14 ɪ tip kiss hick miff

15 ɪ pick fish wick hiss

16 ɪ bid give hid fig

17 ɪ fit ship pip pith

18 u suit youth hoot goose

19 u moon food dune womb

20 u boot duke toot booth

21 ʌ cut such hut shuck

22 ʌ bug judge bun gum

23 ʌ suck tough putt gush

24 oʊ note both soak dose

25 oʊ bone home moan robe

26 eɪ gain gave fade babe

27 eɪ hate tape bake nape

28 eɪ date shape sate Jake

29 ɑɪ like pipe kite hike

30 ɑɪ fight wife tyke wipe
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