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Background and objective: The psychological mechanisms that make 
Conditioned Pain Modulation (CPM) an effective non-pharmacological 
intervention are still not fully understood. Expectancy is believed to be a critical 
psychological factor affecting CPM effects, but its specific role has yet to be fully 
clarified. This study aims to explore the relationship between expectancy and 
CPM while providing physiological evidence using functional near-infrared 
spectroscopy (fNIRS).

Method: A standardized CPM induction paradigm was implemented, with 
verbal guidance used to induce expectancy. The Numeric Rating Scale (NRS) 
assessed the intensity of the test stimulus (TS), while an 11-point scale evaluated 
participants’ attentional focus on the TS and the effect of expectancy. fNIRS was 
employed to monitor changes in prefrontal cortex (PFC) activity.

Results: Expectancy significantly amplified the CPM effect (p = 0.036) while 
markedly reducing attention to the experimental stimulus (p = 0.004). fNIRS 
findings indicated significant reductions in activity within the left frontal eye 
field, left dorsolateral prefrontal cortex, and left frontal pole regions. In the post-
test, the control group demonstrated significantly higher cortical activity in the 
right frontal pole region compared to the expectancy group (p < 0.05). Within 
the expectancy group, bilateral frontal pole cortical activity was significantly 
lower in the post-test compared to the pre-test (p < 0.05).

Conclusion: Expectancy represents a key psychological mechanism underlying 
the CPM effect, potentially modulating its magnitude through attention 
regulation and accompanied by a reduction in oxygenated hemoglobin activity 
in the frontal pole region and introduced the Expectancy-Attention-CPM 
Modulation Model (ECAM).
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1 Introduction

Pain is characterized as an unpleasant sensory and emotional 
experience tied to actual or potential tissue damage or analogous 
experiences (Song et  al., 2020). As a multifactorial phenomenon 
shaped by physiological, psychological, and social influences, pain 
functions, from an evolutionary standpoint, as a crucial warning 
mechanism safeguarding the body from harm. However, maladaptive 
responses to pain can yield severe repercussions, manifesting as a wide 
range of emotional and cognitive disturbances (Moriarty et al., 2011). 
In addition to eliciting significant anxiety, depression, and sleep 
disturbances in affected individuals, pain imposes a profound 
economic burden on both families and society (Zhang et al., 2020).

Currently, pain management strategies are broadly categorized 
into pharmacological and non-pharmacological approaches. 
Pharmacological treatments pose significant challenges; opioids, for 
example, can effectively mitigate pain perception but are associated 
with a risk of dependency (Rieder, 2019) and may induce structural 
and functional changes in the brains of chronic pain sufferers 
(Borsook et al., 2018). Consequently, numerous non-pharmacological 
interventions have risen in prominence and are now widely employed 
in clinical settings.

Conditioned pain modulation (CPM) is identified as a mechanism 
underlying endogenous pain inhibition. Specifically, it describes how 
a pain stimulus delivered to one region of the body (conditioning 
stimulus, CS) can suppress the perception of pain arising from a 
separate stimulus applied to another region (test stimulus, TS), 
thereby achieving what is often referred to as an “analgesia by pain” 
effect. The degree of TS suppression by CS directly reflects the 
efficiency of an individual’s CPM mechanism; in essence, the stronger 
the suppression of TS by CS, the more robust the endogenous pain 
inhibitory capability (Tang et al., 2016).

CPM’s “top-down” approach to pain inhibition exemplifies the 
activation of endogenous pain regulatory mechanisms (Pud et al., 
2009). The prevailing view holds that the mechanism underlying 
CPM involves the activation of the spinal-medullary-spinal neural 
circuit (Zhang et al., 2020). However, some researchers argue that 
the CPM effect cannot be solely attributed to the activation of this 
neural circuit by exogenous pain signals; rather, psychological 
functions also play a crucial role (Nir et al., 2012; Plinsinga et al., 
2023). Among these psychological factors, expectancy is considered 
a potential mechanism contributing to the analgesic effect of 
CPM. Expectancy is defined as the anticipation of a potential 
outcome or the occurrence of a desired effect based on prior 
experiences (Deng et  al., 2015). It is widely recognized as a 
fundamental psychological mechanism driving the placebo effect 
(Wei et al., 2018) and is often elicited and modulated through verbal 
suggestions (Cormier et al., 2013). Research indicates that positive 
expectancy can significantly alleviate pain, while negative expectancy 
(such as anticipating intensified pain) can heighten pain perception 
(Taylor et al., 2017). In studies exploring expectancy’s role in CPM, 
participants with analgesic expectancy exhibited a more pronounced 
CPM effect compared to those expecting heightened pain sensitivity 
(Cormier et  al., 2013; France et  al., 2016). Compared to healthy 
individuals, chronic pain patients generally demonstrate reduced 
CPM efficiency (Pickering et al., 2014). Chronic pain persistence in 
these patients is frequently linked to inadequate self-management, 
which elevates the risk of pain-related disability (Caes et al., 2021). 

Effective self-management strategies, however, can markedly reduce 
chronic pain’s impact and enhance psychological health (Nicholas 
et  al., 2012). Positive analgesic expectancy, as an effective self-
management tool, has proven to significantly mitigate pain (Shih 
et al., 2019).

Extensive research has delved into the neural mechanisms 
underpinning CPM, revealing that CPM not only reduces pain but 
also significantly activates the prefrontal cortex (PFC) and the 
periaqueductal gray (PAG; Mohr et al., 2008). Moreover, the extent of 
pain relief is strongly correlated with the connectivity between the 
dorsolateral prefrontal cortex (DLPFC) and the white matter tracts of 
the PAG (Bunk et al., 2020). Individual differences in PFC cortical 
function further influence the expression of conditioned pain 
modulation effects (Youssef et al., 2016), suggesting that the DLPFC 
may represent a pivotal brain region in the functioning of CPM.

Expectancy modulates pain through a “top-down” regulatory 
process, influencing both the objective processing of nociceptive 
signals and subjective pain perception (Ploghaus et al., 2003). Studies 
indicate that stimulating the dorsolateral prefrontal cortex (DLPFC) 
via transcranial magnetic stimulation (TMS) can enhance placebo 
responses, leading to a reduction in social pain (Wang et al., 2023). 
Notably, the right DLPFC exhibits higher levels of activation than the 
left (Kong et  al., 2007), highlighting the DLPFC’s critical role in 
processing pain-related expectancy (Amanzio et  al., 2013) and 
positioning it as a core brain region in expectancy-driven modulation.

Furthermore, the analgesic effects of endogenous opioids suggest 
a link between expectancy and CPM. It is hypothesized that 
expectancy may reduce pain perception by modulating endogenous 
opioid systems. Studies have demonstrated that opioid activity in 
regions such as the periaqueductal gray (PAG), amygdala, orbital 
frontal cortex (OFC), insula, left prefrontal cortex (LPFC), and 
anterior cingulate cortex (ACC) is closely tied to placebo effects 
(Wager et  al., 2011), while negative expectancy or nocebo effects 
manifest as deactivation within these regions (Scott et  al., 2008). 
Additionally, placebo-induced effects driven by expectancy can 
be blocked using the opioid antagonist naloxone (Levine et al., 1978); 
likewise, when patients are administered opioid antagonists, their 
CPM efficacy declines (King et al., 2013), and its correlation with the 
DLPFC weakens (Sprenger et al., 2011). However, some researchers 
have expressed opposing views, suggesting that the role of expectancy 
in CPM may not be mediated by opioids (France et al., 2016). Despite 
observable expectancy effects, CPM responses often remain 
unchanged (Nir et al., 2012), and some propose that pain relief via 
CPM and expectancy arises from entirely independent mechanisms 
(Skyt et al., 2018). In conclusion, the psychological mechanisms by 
which expectancy influences CPM are still debated and require deeper 
exploration. Variability in the methods used to induce CPM effects 
may account for the inconsistencies in research findings and an 
incomplete understanding of its underlying psychological processes.

This study therefore recruited healthy participants who were 
screened based on specified exclusion criteria and employed the CPM 
induction paradigm as recommended by the European Journal of Pain 
(Yarnitsky, 2010). Capsaicin-induced pain served as test stimulus, 
while fixed-duration cold-water immersion was used as the 
conditioning stimulus. Verbal suggestions were employed to induce 
analgesic expectancy, allowing for observation of the effects of 
expectancy on CPM and the activation of the PFC in both the 
expectancy and control groups.
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2 Methods

2.1 Participants

The sample size for this study was calculated using G*Power 
3.1.9.2, with parameters set at an effect size f of 0.25 and power (1–β) 
of 0.8, resulting in a target sample of 34 participants. Accordingly, 
Study 1 recruited 44 university students. After excluding 5 participants 
who did not achieve successful activation of positive expectancy, the 
final sample included 39 participants (18 women), divided into a 
control group of 19 and an expectancy group of 20. Participants’ ages 
ranged from 18 to 27 years (M ± SD = 21.95 ± 2.27).

Exclusion criteria were as follows: (1) corrected vision 
abnormalities; (2) ongoing pain lasting more than 3 months; (3) 
female participants currently in their menstrual cycle; (4) trauma or 
tattoos on the inner left hand or right ankle; (5) left-handedness; (6) 
current alcohol consumption or use of analgesics or neuroactive drugs 
within the past week. All participants provided informed consent and 
had the right to withdraw from the study at any point. Upon 
completion of the study, participants received psychological 
counseling and a compensation of 25 RMB. This study was approved 
by the Ethics Review Committee of Inner Mongolia Normal University.

2.2 Induction and assessment of 
conditioned pain modulation

Since the CPM effect is not contingent upon the characteristics of 
test stimulus, participant tolerance serves as the key criterion for 
evaluating the stimulus. Consequently, a range of commonly utilized 
pain induction methods, including thermal, mechanical, electrical, 
and chemical stimuli, has been incorporated (Kennedy et al., 2016). 
Among these methods, capsaicin-induced pain is considered a safe 
and non-invasive approach that reliably produces stable and lasting 
pain effects (Modir and Wallace, 2010). The cold pressor test (CPT) is 
regarded as the most potent method for inducing a conditioning 
stimulus (Nilsen et al., 2014) and is noted for its strong reliability 
(Lewis et al., 2012; Nuwailati et al., 2022). Immersion of the wrist in 
12°C cold water for 1 min is a frequently recommended and widely 
utilized protocol (Lewis et  al., 2012). Furthermore, except when 
applied to the same specific location on the same limb, CPM effects 

are generally unaffected by the stimulus site, with testing often 
performed on the ipsilateral or contralateral lower limbs (Damien 
et al., 2018).

In this study, capsaicin application and the cold pressor test (CPT) 
were employed to induce test stimulus (TS) and conditioning stimulus 
(CS), respectively, as illustrated in Figure 1. The capsaicin utilized was 
a 0.1% cream, commonly used in clinical settings to relieve joint pain 
and sprains, as depicted in Figure 1a. The CPT was controlled using 
an SME–CTB high-precision low-temperature constant temperature 
water bath, with a temperature accuracy of ±0.01°C. The container 
had a diameter of 180 mm and a height of 120 mm, with a target 
temperature set at 12°C, maintained through continuous water 
circulation to ensure consistent temperature, as shown in Figure 1b. 
The room temperature was consistently maintained at 26°C.

The evaluation of conditioned pain effects was performed using 
the Numeric Rating Scale (NRS), which directly assessed the pain 
intensity experienced by participants on their right lower leg 
(experimental stimulus pain intensity). The NRS is widely recognized 
as an effective clinical tool for accurately and intuitively measuring 
pain levels (Hong et al., 2003) and has demonstrated the lowest error 
response rate and greatest utility in non-cross-cultural research 
(Atisook et al., 2021). This scale utilizes an 11-point system ranging 
from 0 to 10, with 0 representing no pain and 10 signifying the most 
severe pain imaginable or intolerable. Measurements showed that the 
initial pain intensity induced by capsaicin among participants was 
7.58 ± 1.03, indicating successful activation of test stimulus.

2.3 fNIRS measurement

Functional near-infrared spectroscopy (fNIRS) is a relatively 
non-invasive, safe, portable, and cost-effective neuroimaging 
technology. By measuring light absorption, it non-invasively 
calculates changes in the concentrations of oxygenated 
hemoglobin (HbO2) and deoxygenated hemoglobin (HbR), 
thereby providing an indirect assessment of brain activity (Irani 
et al., 2007). This study utilized a LABNIRS SHIMADZU–3000 
near-infrared imaging device, manufactured by Shimadzu 
Corporation, Japan, to record changes in participants’ cortical 
blood oxygen concentration. The device emits continuous waves 
at wavelengths of 780 nm, 805 nm, and 830 nm, with a sampling 

FIGURE 1

Pain induction materials, (a) the left image shows capsaicin ointment, (b) the right image shows cold water apparatus.
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rate of 12.82 Hz. The optode array was configured in an 8 × 3 
layout, comprising 12 light source emitters and 12 detectors, 
forming an optical array with 37 near-infrared measurement 
channels embedded in the optode cap (Figure  2). The spacing 
between adjacent emitters and detectors was 3 cm, allowing full 
coverage of the prefrontal cortex (Figure 2). After the experiment, 
a 3D digital locator by Polhemus, with a measurement accuracy of 
0.01–2.94 mm, was used to capture the 3D spatial positions of the 
optodes on participants. Reference points were marked in the 
order of NZ, CZ, AL, and AR, followed by sequential collection of 
each emitter and detector’s coordinates to determine the position 
of each channel. The NIRS_SPM tool in MATLAB was then 
employed to convert these coordinates into MNI standard 
coordinates and to determine the coverage of the 37 channels 
across Brodmann areas (Table 1).

2.4 Other measurements

An 11-point scale was employed to assess the level of attention 
focus and the anticipated analgesic effect (scores above 6).

2.5 Experimental design and procedure

This study adopted a 2 (experimental condition: expectancy 
group/control group) × 2 (time: pre-test/post-test) mixed 
experimental design, with experimental condition as a between-
subjects variable and time (pre-test/post-test of pain intensity for test 
stimulus and pre-test/post-test of attention focus on test stimulus) as 
a within-subjects variable. The dependent variables were the pain 
score of test stimulus and the attention focus score on test stimulus.

FIGURE 2

fINRS channel layout information (from left to right: anterior, left, and right views). (a) Position of the optical plate covering the frontal lobe. (b) Layout 
of the optical pole plate, consisting of 37 measurement channels composed of emission and reception optical poles. The red square represents the 
emission optical pole, the green square represents the reception optical pole, and the blue square represents the observation channel.
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The experimental procedure is as follows: after entering the 
laboratory, participants sign an informed consent form and then 
proceed with the formal experiment. An electrode cap is first placed 
on each participant to ensure proper signal quality across all channels. 
Capsaicin is applied to a 6 × 6 cm area on the inner side of the right 
ankle, which is then covered with plastic wrap for 20 min to facilitate 

heat generation and maintain a stable, continuous pain sensation (Li 
et  al., 2020). After the 20-min period, participants rate the pain 
intensity on the inner side of the right ankle. To confirm effective 
induction of test stimulus, participants must report a moderate pain 
intensity to proceed; otherwise, they are excluded from the study. 
Eligible participants immerse their left hand in 12°C cold water for 

TABLE 1 MNI spatial location information for each fNIRS channel.

Channel MNI coordinates Brodmann area Brain region Coverage rate

X Y Z

1 61 1 45 6 Right pre–SMA 0.90152

2 47 22 50 8 Right Frontal eye fields 0.93333

3 26 36 55 8 Right Frontal eye fields 0.96761

4 0 38 55 8 Frontal eye fields 0.9697

5 –28 31 54 8 Left Frontal eye fields 0.98326

6 −49 11 50 8 Left Frontal eye fields 0.46154

7 −61 −16 46 6 Left pre–SMA 0.46099

8 68 −6 32 6 Right Frontal eye fields 0.77922

9 55 21 36 9 Right DLPFC 0.78777

10 32 53 36 9 Right DLPFC 0.79817

11 11 60 39 9 Right DLPFC 0.79921

12 −13 60 37 9 Left DLPFC 0.74902

13 −35 5 33 9 Left DLPFC 0.55752

14 −57 20 28 9 Left DLPFC 0.56641

15 −61 9 31 9 Left pre–SMA 0.57394

16 58 33 19 9 Right DLPFC 0.73038

17 49 38 31 9 Right DLPFC 0.6898

18 20 67 25 10 Right Frontopolar area 0.99635

19 −2 66 24 10 Frontopolar area 1

20 −24 66 23 10 Left Frontopolar area 1

21 −42 53 23 10 Left Frontopolar area 0.77586

22 −54 33 21 9 Left DLPFC 0.78049

23 60 29 6 45 Right Broca’s area 0.58689

24 50 51 8 9 Right DLPFC 0.45221

25 30 68 8 10 Right Frontopolar area 1

26 12 73 12 10 Right Frontopolar area 1

27 −14 73 10 10 Left Frontopolar area 1

28 −34 64 9 10 Left Frontopolar area 1

29 −48 48 10 9 Left DLPFC 0.61172

30 −59 23 11 45 Left Broca’s area 0.70794

31 54 45 −6 47 Right Inferior prefrontal gyrus 0.84932

32 38 65 −4 10 Right Frontopolar area 0.86142

33 20 72 −2 10 Right Frontopolar area 0.90064

34 −5 72 −1 10 Frontopolar area 0.87697

35 −23 70 −1 10 Left Frontopolar area 0.97342

36 −41 60 −3 10 Left Frontopolar area 0.89883

37 −54 40 −2 47 Left Inferior prefrontal gyrus 0.75000

Only brain regions with a coverage rate above 40% are listed.
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1 min, after which they rate the pain intensity and attention focus level 
on the inner side of the right ankle within 3 min. The expectancy 
group receives verbal instructions (‘The water temperature will 
be automatically adjusted to achieve a good analgesic effect’), while 
the control group is informed that the water temperature remains 
unchanged. Both groups then undergo a second one-minute cold 
water immersion, after which participants rate the pain intensity, 
attention focus level, and anticipated analgesic effect on the inner side 
of the right ankle within 4 min. Finally, a 3D locator captures the 
channel position information. At the conclusion of the experiment, 
participants are compensated with 25 RMB, the expectancy group is 
debriefed on the true nature of the experiment, and psychological 
counseling is provided to all participants.

2.6 Statistical analyses

Data preprocessing, individual-level analysis, and 2D and 3D 
result visualization for fNIRS were performed using the NIRS_KIT 
data processing toolkit in MATLAB R2013b (Hou et  al., 2021). 
Based on the simplest and most direct Bonferroni correction 
method within the FWE correction criteria (Oshina and Spigulis, 
2021), the raw optical density data was converted into blood oxygen 
concentration changes. The accuracy of fNIRS signal data is often 
affected by interference noise and slow head movements of 
participants. To address this, a first-order polynomial regression 
model for detrending was applied in task-based analysis 
preprocessing to estimate linear and nonlinear trends, which were 
then subtracted from the original hemoglobin concentration 
signals. Temporal Derivative Distribution Repair was utilized to 
correct motion artifacts (Fishburn et al., 2019). For this study, an 
infinite impulse response (IIR) bandpass filter range of 0.01–
0.018 Hz was applied to eliminate unrelated high- and 
low-frequency components. Individual-level analysis was 
performed using a general linear model (GLM), with the 
hemodynamic response function convolved to calculate β values as 

activation indices of oxygenated hemoglobin (HbO2) in the 
prefrontal cortex under different task conditions (Hall et al., 2021; 
Yeung et al., 2020).

Finally, 2 (experimental condition: expectancy group/neutral 
group) × 2 (time: pre-test/post-test) ANOVA was conducted on the β 
values for each channel before and after testing, using the statistical 
software SPSS 25.0.

3 Results

3.1 Behavioral results

ANOVA for experimental condition groups and time (pre-test/
post-test) revealed a significant interaction between experimental 
condition and pre/post-test scores of the test stimulus pain intensity, 
F(1, 37) = 4.725, p = 0.036, η2p = 0.113. Simple effects analysis 
indicated no significant difference between the control group’s 
pre-test score (4.926 ± 0.359) and post-test score (4.729 ± 0.421) for 
the test stimulus pain intensity. In contrast, the expectancy group’s 
post-test score (3.458 ± 0.410) was significantly lower than its pre-test 
score (4.283 ± 0.350), F(1, 37) = 16.758, p = 0.000, η2p = 0.312. The 
pre-test scores between the expectancy group (4.283 ± 0.350) and 
control group (4.926 ± 0.359) showed no significant difference; 
however, the control group’s post-test score (4.729 ± 0.421) was 
significantly higher than the expectancy group’s post-test score 
(3.458 ± 0.410), F(1, 37) = 4.685, p = 0.037, η2p = 0.112, as shown in 
Figure  3. ANOVA on experimental conditions and pre/post-test 
attention scores to test stimulus revealed a significant interaction 
between pre/post-test attention scores and experimental conditions, 
F(1, 37) = 9.383, p = 0.004, η2p = 0.202. Simple effects analysis showed 
no significant difference between the pre-test attention scores of the 
control group (5.061 ± 0.430) and the expectancy group 
(4.660 ± 0.419). However, the post-test attention score of the control 
group (4.595 ± 0.366) was significantly higher than that of the 
expectancy group (3.080 ± 0.357), F(1, 37) = 8.776, p = 0.005, 

FIGURE 3

Analysis of variance for experimental conditions and time (pre- and post-assessment scores of experimental stimulus pain intensity and attention on 
the calf). (a) The difference in the pre- and post-assessment scores of experimental stimulus pain intensity perceived by the two groups of participants 
under different experimental conditions. The pain intensity of the experimental stimulus was measured using an 11-point scale ranging from 0 to 10, 
where 0 indicates no pain and 10 represents the most unbearable or imaginable pain. (b) The difference in the pre- and post-assessment scores of 
attention on the right ankle, as measured under different experimental conditions. The level of attention concentration on the right ankle was rated 
using the 11-point scale. *indicates p < 0.05, **indicates p < 0.01, and the error bars in the figure represent the standard error.
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η2p = 0.192. There was no significant difference between the control 
group’s pre-test (5.061 ± 0.430) and post-test attention scores 
(4.595 ± 0.366), whereas the expectancy group’s post-test attention 
score (3.080 ± 0.357) was significantly lower than its pre-test score 
(4.660 ± 0.419), F(1, 37) = 38.730, p = 0.000, η2p = 0.511, as shown in 
Figure 3.

Pearson correlation analysis revealed a significant positive 
correlation was observed between participants’ post-test pain intensity 
scores for the experimental stimulus and their attention post-test 
scores (p < 0.01, r = 0.884).

3.2 fNIRS results

ANOVA on the β values for experimental conditions and pre/
post-test times across 37 channels revealed significant main effects in 
the left frontal eye field (Channel 6), left dorsolateral prefrontal cortex 
(Channel 13), and left frontal pole (Channel 20), F(1, 37) = 4.389, 
p = 0.043, η2p = 0.106; F(1, 37) = 4.621, p = 0.038, η2p = 0.111; F(1, 
37) = 5.454, p < 0.025, η2p = 0.128 (Figure 4). As presented in Table 2, 
post-hoc comparisons indicated that the activation levels in Channels 
6, 13, and 20 were significantly lower in the post-test than in the 
pre-test.

The interaction between experimental conditions and the pre/
post-test β values for Channels 18, 19, and 21 was significant, F(1, 
37) = 4.136, p = 0.05, η2p = 0.106; F(1, 37) = 4.258, p = 0.046, 
η2p = 0.106; F(1, 37) = 5.222, p = 0.028, η2p = 0.124 (Figure 4).

Simple effects analysis indicated that in the control group, cortical 
activity intensity in the right frontopolar area (Channel 18) during the 
post-test (−0.002 ± 0.002) was significantly higher than that observed 
in the expectancy group (−0.007 ± 0.002). For the expectancy group, 
cortical activity intensity in the right frontopolar area (Channel 18) 
during the post-test (−0.007 ± 0.002) was significantly lower 
compared to the pre-test (−0.002 ± 0.002). Similarly, post-test 
activation levels in frontopolar area (Channel 19) for the expectancy 
group (−0.008 ± 0.002) were significantly lower than the pre-test 
levels (−0.001 ± 0.002). Additionally, in the expectancy group, cortical 
activation in the left Frontopolar area (Channel 21) during the post-
test (−0.006 ± 0.002) was significantly lower than during the pre-test 
(0.001 ± 0.003).

Pearson correlation analysis revealed a significant positive 
correlation between Channel 7(Left pre–SMA) and participants’ post-
test attention scores (p < 0.05, r = 0.347).

4 Discussion

4.1 The relationship between expectancy 
and CPM

By manipulating the experimental treatments for the expectancy 
and control groups, this study compared changes in pre- and post-test 
experimental stimulus pain intensity under different conditions, 
where lower pain intensity indicates a stronger CPM effect. Results 

FIGURE 4

Brain region activation difference map. (a) The main effect map representing brain region activation (from left to right: right, anterior, left views), with 
involved brain regions being the Left Frontal eye fields (channel 6), the left DLPFC (channel 13), and the left frontopolar area (channel 20). (b) The 
interaction effect map representing brain region activation (from left to right: right, anterior, left views), with involved brain regions being the right 
frontopolar area (channel 18), the frontopolar area (channel 19), and the left frontopolar area (channel 21). The red areas within the borders indicate 
significant activation of these brain regions.
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showed that when positive expectancy was effectively induced, the 
expectancy group experienced more pronounced pain relief, resulting 
in a significantly greater CPM effect. This finding confirms that 
expectancy, as an intrinsic psychological mechanism, indeed plays a 
pivotal role in modulating CPM effects. The DLPFC, recognized as a 
key brain region in CPM modulation, is often associated with 
activation during expectancy-driven pain alleviation (Wager et al., 
2011; Watson et al., 2009). However, this study revealed that under 
conditions of certain positive expectancy, the DLPFC exhibited 
notable deactivation. In fact, DLPFC activation depends on the 
certainty of the expectancy; uncertain expectancy is more likely to 
induce significant DLPFC activation than certain expectancy 
(Carlsson et  al., 2006). Increased DLPFC signaling is, conversely, 
linked to reduced CPM capacity (Youssef et al., 2016). Moreover, a 
study on neuropathic pain treatment found that the analgesic effects 
of neuropharmacological agents were more closely related to 
deactivation, rather than activation, of the occipital and frontal lobes 
(Iannetti et al., 2005; Kong et al., 2007). Therefore, DLPFC deactivation 
supports the occurrence of CPM-induced analgesic effects.

4.2 The relationship between attention and 
CPM

While prior research has suggested that attention and CPM 
regulate pain through independent physiological mechanisms (Moont 
et al., 2012) and do not rely on the role of attention (Ladouceur et al., 
2012), this study observed significant differences in post-test attention 
scores for test stimulus between the control and experimental groups, 
as well as significant pre- and post-test differences in attention scores 
within the expectancy group. These results indicate that attention may 
indeed play a meaningful role in CPM.

The perception of pain is regulated by top-down attentional 
mechanisms (Desimone and Duncan, 1995; Kastner and Ungerleider, 
2000; Mouraux and Iannetti, 2009; Petersen and Posner, 2012). The 
prefrontal cortex, a critical part of the cerebral cortex, comprises 
regions such as the frontal eye fields, Frontopolar area, and dorsolateral 
prefrontal cortex (Fuster, 2001). It is implicated in diverse complex 
cognitive activities, including decision-making, working memory, and 
attentional regulation (Fuster, 2001; Miller and Cohen, 2001), with the 
left prefrontal region particularly essential for higher-order cognitive 
tasks. Studies employing the N-back paradigm to explore prefrontal 
structure and function have underscored the significance of the left 
prefrontal cortex in higher-level cognitive control (Volle et al., 2008). 
Additionally, functional magnetic resonance imaging (fMRI) studies 
on executive functions have confirmed that the left prefrontal cortex 
plays a role in attentional shifting (Sylvester et al., 2003). The frontal 
eye fields (FEF), part of the prefrontal cortex, are directly involved in 
the control of stimulus-driven attention (Corbetta and Shulman, 

2002). While traditionally associated with visual attention and ocular 
movement control (Corbetta and Shulman, 2002), the FEF’s 
involvement in this study’s analysis of the relationship between CPM 
effects and attention demonstrates its role in modulating pain 
information, Undoubtedly, the changes in attention are intricately 
linked to the regulation by the SMA brain region (Borsook et al., 
2013), The significant positive correlation between Channel 7 (Left 
pre–SMA) and the post-test attention scores further reinforces this 
connection, supporting the possibility that attention contributes to the 
regulation of pain within CPM-induced analgesia. The significant 
positive correlation between post-test attention and post-test TS pain 
intensity offers compelling evidence that reinforces the potential role 
of attention in modulating the CPM analgesic effect.

4.3 The relationship between expectancy 
and attention

Contemporary models of attention comprise both ‘top-down’ and 
‘bottom-up’ selection mechanisms (Legrain et al., 2009). ‘Top-down’ 
selection represents a goal-directed, conscious cognitive process in 
which attention is unconsciously captured by stimuli (Failing and 
Theeuwes, 2018). This process enhances neural activity in response to 
relevant stimuli while suppressing activity related to irrelevant stimuli, 
thereby modulating the sensitivity of stimulus-specific neural 
responses (Desimone and Duncan, 1995).

Pain is recognized as a ‘bottom-up’ control mechanism that 
automatically draws attention through warning signals, disrupting 
ongoing activities (Eccleston and Crombez, 1999; Van Damme et al., 
2004) and prioritizing protective behaviors to avert bodily harm (Legrain 
et  al., 2011). This indicates that ‘bottom-up’ attention to pain can 
be modulated through ‘top-down’ mechanisms. In pain management, 
‘top-down’ regulation of attention using distraction tasks has 
demonstrated efficacy in reducing pain perception (Johnson, 2005; Kohl 
et al., 2013). For example, engaging participants in highly demanding 
visual tasks reduces the amplitude of the P2 component of nociceptive-
evoked potentials (Legrain et  al., 2005). Expectancy, as a proactive 
coping strategy initiated by the brain before the onset of a stimulus, 
influences the allocation of attentional resources (Atlas and Wager, 2012; 
Desimone and Duncan, 1995; Summerfield and Egner, 2009). The 
frontal pole is not only involved in complex task-related decision-
making and expectancy (Koechlin and Hyafil, 2007) but also plays a role 
in attentional regulation (Irani et  al., 2007). This study revealed 
significant behavioral differences in pre- and post-test attention to 
experimental stimuli between the expectancy and control groups, as well 
as variations in blood oxygen changes in the left and right frontal poles 
detected via fNIRS. The marked changes in blood oxygen concentration 
in the frontal pole may suggest that expectancy processing of pain 
information within the CPM effect facilitated shifts in attention away 

TABLE 2 Main effect results for channels 6, 13, and 20.

Channel Brain region Channel pre-test β 
value (M ± SD)

Channel post-test β value 
(M ± SD)

F p* η2
p

6 Left Frontal eye fields −0.001 ± 0.001 −0.005 ± 0.001 4.389 0.043* 0.106

13 Left DLPFC −0.003 ± 0.001 −0.006 ± 0.001 4.621 0.038* 0.111

20 Left Frontopolar area −0.003 ± 0.001 −0.007 ± 0.001 5.454 0.025* 0.128

*indicates p < 0.05, **indicates p < 0.01, error bars indicate standard error.
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from test stimulus pain. This implies that the psychological mechanism 
of the CPM effect is driven by expectancy through a ‘top-down’ process, 
influencing analgesic outcomes by modulating the allocation of attention.

4.4 Changes in the PFC within CPM

The PFC serves as a central component of the brain’s cognitive 
control network (Badre, 2008), with distinct functional differences 
between the left and right PFC. The left PFC predominantly processes 
the meaning and features of individual events, facilitates rapid event 
activation, and strongly inhibits adjacent events. In contrast, the right 
PFC emphasizes cross-temporal and spatial integration of event 
meanings and characteristics, engages in slower event activation, and 
exhibits weaker facilitation of neighboring events (Wood and 
Grafman, 2003). Research using alpha brainwave activity to examine 
lateralization effects in the PFC has shown that the left PFC supports 
the behavioral activation system (BAS), while the right PFC underpins 
the behavioral inhibition system (BIS; Coan and Allen, 2003). BAS is 
linked to reward pursuit and positive behavior, functioning as a 
motivational system that drives individuals toward desired outcomes 
or potentially rewarding stimuli (Kennis et al., 2013). In contrast, BIS 
is described as a system that interrupts ongoing behavior, heightens 
arousal, and increases attentional focus in response to potential 
punishment, novel stimuli, or uncertain outcomes (Gray, 1994; Corr, 
2004). Furthermore, the lateralization of the PFC is evident in emotion 
processing, with the left PFC primarily regulating positive emotions, 
while the right PFC specializes in processing negative emotions 
(Demaree et  al., 2005). Activation of the BAS system promotes 
approach behaviors and elicits positive emotional experiences, 
whereas deficits in the BAS system increase the risk of depression 
(McFarland et al., 2006). Conversely, activation of the BIS system is 
associated with negative emotions, such as anxiety (Li et al., 2008).

The fNIRS results from this study indicated that changes in brain 
activity were predominantly localized to the left PFC regions, specifically 
the left frontal eye field, left dorsolateral prefrontal cortex, and Left 
Frontopolar area. This highlights the prominent role of the left PFC in 
pain regulation. During experimentally induced pain, increased activity 
in the left PFC correlates with pain perception, and when pain is 
alleviated due to motivational drives for pain relief rewards, activity in 
the left PFC decreases (Silva Passadouro et al., 2022). This suggests that 
inducing a clear analgesic expectancy effectively activates reward-seeking 
motivation (Fields, 2007), leading to reduced levels of oxygenated 
hemoglobin in the left PFC and the suppression of right PFC activity in 
pain modulation. Supporting evidence includes studies demonstrating 
that right PFC oxygenated hemoglobin activity diminishes during 
expectancy-induced pain relief (Silva Passadouro et al., 2022).

4.5 Psychological mechanism of 
expectancy in modulating CPM

Pain is not merely a direct interpretation of noxious stimuli; rather, 
it represents a complex interplay of sensory, emotional, motivational, 
and cognitive experiences. This protective function fosters motivation 
and learning, encoded by the brain’s reward-motivation cortical 
circuits that register both the aversive aspects of pain and its relief 
(Navratilova and Porreca, 2014). These circuits encompass regions 

such as the prefrontal cortex, ventral tegmental area, amygdala, and 
hypothalamic (Haber and Knutson, 2010; Navratilova and Porreca, 
2014; Schultz, 2000). Positive expectancy activates reward-seeking 
motivations, while negative expectancy triggers avoidance responses 
(Fields, 2007). Our findings also confirmed that when analgesic 
expectancy was clearly established, participants’ BAS system exhibited 
significant activation. This activation of positive expectancy aligns 
reward-seeking motivations with the drive to avoid pain, supported by 
neuroimaging evidence showing activation in the left PFC.

Moreover, the allocation of attention to information is shaped by 
motivation (Di Nocera et al., 2014) and modulated by emotional states, 
with their interplay influencing an individual’s subjective pain experience 
(Villemure and Schweinhardt, 2010). Studies in China have also 
established a significant correlation between heightened attention to 
pain and increased negative emotions (Liu, 2024). Positive and negative 
emotional states drive individuals to engage in escape or approach 
behaviors, while allowing them to learn and anticipate whether future 
circumstances will be threatening or beneficial (Wiech and Tracey, 2013).

According to the Cyclical Model of Pain, Executive Function, 
Emotion Regulation, and Self-Management (the COPES model), there 
exists a cyclical relationship among immature executive function and 
emotional regulation, reduced self-management capability, chronic 
pain experiences, and increased pain-related disability (Caes et al., 
2021). Chinese scholars have suggested that individuals can learn to 
reduce negative experiences, thereby updating the perceived meaning 
of pain and fostering positive expectancy for future pain episodes (Liu 
et  al., 2022). This theory provides new perspectives on the 
psychological mechanisms by which CPM alleviates pain. Researchers 
have proposed the Expectancy-Attention-CPM Modulation Model 
(EACM Model), depicted in Figure 5.

According to the EACM model: During the process of the CPM 
effect, individuals can learn to manage their pain expectancy through 
self-regulation. When positive expectancies are formed, they activate the 
individual’s positive motivational system, generating analgesic 
motivations aligned with pain avoidance. This influences attentional 
resource allocation, shifting focus away from pain, thereby reducing pain 
perception and enhancing the CPM analgesic effect. In contrast, negative 
expectancies elicit conflicting motivations that are inconsistent with pain 
avoidance, leading to increased attention to pain and heightened pain 
perception, ultimately weakening the CPM effect. Moreover, observed 
changes in PFC activity are closely linked to emotional regulation (Etkin 
et al., 2015). Hence, within this framework, emotions emerge as another 
psychological factor affecting CPM efficacy. Emotions can interact with 
attention to directly shape pain experiences or exert direct influence on 
the CPM effect. For example, negative emotional states such as pain 
catastrophizing correlate with reduced pain modulation capacity, where 
higher levels of pain catastrophizing are associated with weaker pain 
regulation and lower CPM efficiency (King et al., 2013).

4.6 Limitations

This study utilized two distinct pain induction methods. The 
first method involved applying capsaicin to the body to induce heat 
pain as an experimental paradigm, offering a highly reproducible 
form of stimulation. The second method employed was the cold 
pressor test (CPT), a widely used and effective pain induction 
paradigm in laboratory settings, in which participants immerse 
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their hands in cold water up to the wrist. Researchers used 12°C 
water to elicit pain in participants, effectively serving as a 
conditioned stimulus. However, due to the relatively slow 
temperature regulation of cold-water apparatuses, precise control 
over the intensity of the conditioned stimulus remains challenging. 
Future studies should explore alternative induction methods, such 
as laser or electrically induced pain stimuli. Moreover, pain and 
conditioned pain modulation, as experiences and regulatory 
processes with emotional dimensions, involve not only cortical 
structures like the DLPFC but also deeper nuclei such as the 
periaqueductal gray (PAG) and the anterior cingulate cortex (ACC; 
Yarnitsky, 2010). Regrettably, due to the inherent limitations of 
fNIRS (Scholkmann et  al., 2014), this study was confined to 
observing cortical activity, thereby precluding the investigation of 
brain activity in deeper structures implicated in conditioned pain 
modulation. This limitation may have constrained the depth of the 
findings. Future research could integrate fMRI, TMS, and other 
technologies to further investigate additional brain regions 
associated with pain processing, offering a more comprehensive 
view of the neural mechanisms underlying CPM-induced analgesia.

Laboratory conditions differ substantially from clinical 
settings. The ecological validity of the conclusions derived from 
this study in the laboratory—regarding their potential application 
in clinical practice—remains to be further examined. Furthermore, 
as the participants in this study were all healthy adults, it is crucial 
to explore whether these findings can be  generalized to other 
populations, such as chronic pain sufferers or the elderly. Future 
research should investigate the psychological and neural 
mechanisms involved in pain processing during conditioned pain 
modulation across diverse populations, thereby improving the 
ecological validity of this study.

The expectancy manipulation in this study was induced 
through verbal guidance, potentially subject to individual 
differences such as personality traits, which could lead to varying 
degrees of effectiveness in the expectancy group. Furthermore, 
the expectancy approach utilized may involve elements of 
deception. Although participants provided informed consent 
prior to the experiment and received full debriefing afterward, 
this process may still raise concerns about infringing upon their 
right to informed consent. Thus, minimizing or avoiding 

deception remains a pressing issue. Researchers have proposed 
the use of an ‘open-label’ approach, which may serve as a means 
to induce expectancy effects without deception. This involves 
enlisting participants who have previously undergone expectancy 
induction to facilitate expectancy effects in current participants 
(Charlesworth et  al., 2017). Nevertheless, whether the ‘open-
label’ approach can truly avoid deception warrants 
further investigation.

5 Conclusion

This study employed a CPM induction paradigm with 
capsaicin-induced pain as the test stimulus (TS) and a fixed-
duration cold-water immersion as the conditioning stimulus 
(CS). The findings underscored that expectancy serves as a 
pivotal psychological mechanism in CPM, with “top-down” 
expectancy amplifying the analgesic effects of CPM. Moreover, 
the study identified a potential role for attention in modulating 
CPM effects, suggesting that expectancy may regulate CPM 
through attention control. To further elucidate these mechanisms, 
the researchers introduced the ECMA model, aiming to describe 
the psychological dynamics of CPM and offer innovative 
perspectives for its clinical application, ultimately benefiting 
patients experiencing pain.
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FIGURE 5

EACM model, where “–” indicates a decrease and “+” indicates an increase.
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