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This perspective article addresses the potential use of cortical excitability (CE) as 
an indicator of cognitive health in aging people. Changes in CE may be considered 
a sign of resilience to cognitive decline in old age. The authors describe research 
on CE and its link to cognitive function in older adults and emphasize that it is a 
promising, non-invasive measure of healthy aging. They also address the current 
challenges in its implementation, the need for standardized measurement protocols 
and possible future avenues of research. If properly considered, CE could pave the 
way for early detection of cognitive decline and facilitate targeted interventions 
to promote cognitive resilience.
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1 Introduction

In discussing the significant difference between the general life span and the more limited 
health span, the Brain Health Mission (Word Health Organization, 2022; Bassetti et al., 2022) 
emphasizes the critical need to understand the many structural and functional changes that 
occur as part of the complex processes of the aging brain. This endeavor highlights the 
importance of promoting brain health to improve not only longevity but also quality of life 
and recognizes that maintaining cognitive function and resilience is critical to successful aging.

Cortical excitability (CE), which refers to the tendency of the cerebral cortex to generate 
electrical activity in response to stimuli, holds great potential as a valuable biomarker for 
understanding cognitive and brain reserve (Menardi et al., 2018) (Table 1). This perspective 
article aims to explore the promising potential of increased CE levels compared to baseline 
measures or normative aging profiles, as a reliable clinical indicator of resilience in the elderly. 
Ultimately, this article aims to present compelling evidence for the link between the brain’s 
remarkable adaptive capacity in late life and age-related cognitive abilities.

Building on this theoretical framework, the researchers envision a future in which a deeper 
understanding of CE and its potential as a biomarker can drive the development of targeted 
preventive interventions. By harnessing this knowledge, clinicians and researchers can 
empower older adults to age healthily and maintain their overall well-being and quality of life.
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1.1 Understanding cognitive resilience in 
old age

As people are living longer, maintaining cognitive function in old 
age is becoming increasingly important. Cognitive resilience—the 
ability of the mind to adapt and compensate for challenges—has been 
shown to be a key factor in protecting against age-related cognitive 
decline and neuropathologies. Cognitive resilience is distinct from 
brain resilience, which is about the brain’s structural ability to 
withstand or recover from injury and disease (Joshi and Galvin, 2022; 
de Vries et al., 2024; Stern et al., 2023). Cognitive resilience instead 
emphasizes mental flexibility and adaptive strategies that help 
maintain cognitive performance over time (Table 1). Given the natural 
decline in neural systems and overall health as we age, research on 
cognitive resilience provides valuable insights into how older adults 
can maintain their autonomy and improve their quality of life, which 
could reduce the healthcare costs associated with cognitive 
impairment (Prince et al., 2024).

Research has identified several factors that contribute to cognitive 
resilience, such as education, social engagement and lifestyle that 
include physical activity and mental stimulation (Valenzuela and 
Sachdev, 2006; Díaz-Venegas et al., 2019). However, much remains to 
be understood about how these factors interact to promote cognitive 
health. Emerging areas of interest include the role of cortical arousal 
patterns, which may offer new insights into strengthening cognitive 
resilience and provide opportunities for targeted interventions to 
promote cognitive health throughout the aging process.

1.2 Rationale for examining cortical 
excitability as a biomarker

The development of reliable biomarkers to assess cognitive 
resilience and predict cognitive decline has become an urgent priority 
in aging research (Stern et al., 2023; Stern et al., 2019). Current genetic 
and imaging markers show strong associations with age-related 
cognitive decline, but their high cost and complexity make them 
impractical for comprehensive screening in the general population 
(Shen et  al., 2014; Dartora et  al., 2021; Lancione et  al., 2022). In 
contrast, CE—the tendency of the cerebral cortex to generate electrical 
responses to stimuli (Valenzuela and Sachdev, 2006)—is proving to be 

a cheaper, more accessible and plausible biomarker for assessing 
cognitive health for primary preventive initiatives (Menardi et al., 
2018; Costanzo et al., 2024; Pellegrino et al., 2024).

As we age, neurophysiological modification, such as changes in 
neurotransmitter concentration, synaptic strength and ion channel 
function, can affect CE (Menardi et al., 2018). Elevated CE levels have 
been consistently associated with poorer cognitive function and may 
indicate an increased risk of age-related pathophysiological changes, 
including neuronal degeneration (Menardi et al., 2018; Buss et al., 
2023; Chou et al., 2022). This association highlights CE as a sensitive 
indicator of brain health that has the potential to detect subtle changes 
in neuronal function before overt cognitive decline occurs.

CE is closely related to Hebbian plasticity—the brain’s adaptive 
ability to reorganize and strengthen synaptic connections in response 
to experience (von Bernhardi et al., 2017; Magee and Grienberger, 
2020). Since Hebbian plasticity is essential for learning and memory, 
CE can serve as an indicator of the brain’s adaptive potential, which is 
crucial for cognitive resilience (Menardi et al., 2018). By studying how 
CE changes with age, researchers can gain insight into the brain’s 
ability to maintain cognitive performance and adapt to age-related 
stressors (Menardi et al., 2022).

In addition, CE provides a unique insight into the balance of 
excitatory and inhibitory processes in the brain. Disruptions to this 
balance are often observed in age-related cognitive decline, which 
is characterized by increased neuronal noise and decreased signal-
to-noise ratio. By assessing CE, it becomes possible to assess how 
excitability and inhibition dynamics evolve with aging and how 
they affect cognitive resilience (Cespón et al., 2022). This could 
support the development of targeted interventions to restore 
neuronal balance and improve cognitive health (Menardi et  al., 
2022; Cordeiro et al., 2024).

Another compelling reason for investigating CE as a biomarker 
lies in its non-invasive measurement using established techniques 
such as non-invasive brain stimulation (NIBS) in combination with 
electroencephalography (EEG) (Menardi et al., 2018; Pellegrino et al., 
2024). These methods enable precise real-time assessment of cortical 
responses and are therefore suitable for both longitudinal studies and 
clinical application. Unlike complex imaging techniques, they provide 
a practical means of monitoring and promoting cognitive health in 
large populations, which fits well with public health goals focusing on 
early detection and preventive care.

TABLE 1 Glossary of terms.

Term Definition Focus

Brain reserve The brain’s structural capacity to tolerate physical damage without showing clinical 

symptoms. Based on factors like brain volume and neuronal density

Physical structure and structural integrity

Brain resilience The brain’s capacity to actively adapt and respond to stress, injury, or disease, 

maintaining brain function

Dynamic adaptation; cellular and molecular repair 

processes

Cortical excitability The responsiveness of cortical neurons to stimuli, reflecting the brain ability to 

adapt neural activity in response to changing conditions

Measurement of neural responsiveness, available as a 

biomarker for neural function and health

Hebbian plasticity A type of synaptic plasticity where simultaneous activation of neurons strengthens 

the synapse, encapsulated by the phrase “cells the fire together, wire together”

Mechanism for learning and memory, critical in adaptive 

neural and cognitive responses

Cognitive reserve The brain’s ability to use alternative cognitive strategies based on know what-know-

how to maintain performance despite damage or aging

Compensatory strategies and cognitive resources 

developed over time (e.g. experiences, education)

Cognitive resilience The capacity of cognition to adapt and maintain functionality in face of stressors 

and changes, through mechanisms like synaptic plasticity and cognitive flexibility

Real-time cognitive adaptation to stress, preserving 

cognitive performance under challenge
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Finally, the integration of CE as a biomarker is in line with 
initiatives such as the Brain Health Mission (Word Health 
Organization, 2022; Bassetti et al., 2022), which emphasize extending 
life in good health rather than just extending lifespan. The 
identification of practical and reliable biomarkers such as CE supports 
proactive measures to promote cognitive health, reduce age-related 
neuropathologies and ultimately improve the quality of life of 
older people.

2 Cortical excitability and age-related 
changes

CE is also emerging as a promising biomarker for assessing the 
health of the sensorimotor system, which may provide insight into 
cognitive resilience in old age. For example, a reduction in CE may 
improve the brain’s signal-to-noise ratio, aid cognitive processing 
and potentially mitigate cognitive decline (Al et  al., 2023). As a 
measure of the ability of the neuronal membrane to generate action 
potentials, CE can be  measured using various techniques that 
provide insight into how age affects communication between 
different neuronal networks (Li et al., 2015; Badawy et al., 2012; 
Ortega-Robles et  al., 2023). Each network—e.g., sensory-motor, 
visual, auditory or the default mode network—contributes to 
cognitive function in a unique way, and aging affects these networks 
differently in each person (Dubbioso et al., 2019; Hui et al., 2023; 
Peng et al., 2024; Dinse et al., 2023). For example, the sensorimotor 
network may suffer greater age-related effects in some people (Li 
et al., 2015; Cassady et al., 2019), affecting motor perception and 
speech modulation, while others may experience pronounced 
changes in the visual or auditory network, affecting sensory 
processing (Yoshimura et al., 2020; Zhang et al., 2023). The default 
mode network, which is responsible for brain activity at rest, also 
shows different age-related susceptibility, possibly affecting memory 
and attention. The interaction of CE with these networks is thus 
crucial to determining its role in cognitive aging (Gonzalez-
Escamilla et al., 2018). Studies that map CE in different networks can 
help clarify the link between CE and specific cognitive functions and 
how these are preserved or decline with age. The aging brain is 
characterized by several cellular and structural changes, collectively 
referred to as neurodegeneration, which include shifts in gray and 
white matter as well as changes in CE (Chou et al., 2022; Lu et al., 
2024). Research shows that CE generally declines with age, although 
this decline can vary greatly depending on brain reserve, brain 
physiology and cognitive reserve (Pettigrew and Soldan, 2019; 
Savarimuthu and Ponniah, 2024). In the pathological cognitive 
aging, reduced CE is observed, suggesting that this may be  a 
compensatory mechanism for the progressive loss of cortical 
neurons. This decline continues until the advanced stages of the 
disease, when a critical point of cortical atrophy is reached. It is 
hypothesized that the gradual change in the relationship between 
reduced CE and cognitive performance reflects the point at which 
hyperexcitability ceases to be  compensatory and becomes 
detrimental to individuals experiencing cognitive impairments, due 
to an increasing impediment in the allocation of cognitive resources 
(Peng et al., 2024; Xie et al., 2023). The cognitive reserve serves as a 
means to prolong functioning and delay reaching this critical point 
(Menardi et al., 2018; Tagliabue and Mazza, 2021).

In this context, Non-invasive brain stimulation techniques, such 
as transcranial magnetic stimulation (TMS) have emerged as a 
potential tool to assess CE as a “malleable” biomarker that is sensitive 
to age and possibly cognitive health (Tremblay et al., 2019; Kallioniemi 
and Daskalakis, 2022; Williams et al., 2021). Both over-excitation and 
under-excitation of cortical populations have been associated with 
specific neuropathologies, emphasizing the importance of neuronal 
health in interpreting measures of excitability in relation to cognitive 
aging (Pagali et al., 2024). TMS offers a promising approach to assess 
CE across the lifespan, but its application requires an evolving 
understanding of excitability as a dynamic construct that changes with 
age (Motta et al., 2018; Ferreri et al., 2021). Integrating findings from 
TMS and other modalities could ultimately improve our 
understanding of CE as a valuable biomarker of cognitive aging and 
promote a comprehensive approach to promoting cognitive resilience 
in the aging brain (Menardi et al., 2018; Motta et al., 2018; Ferreri 
et al., 2021).

3 Cortical excitability and cognitive 
performance in older adults

A growing body of evidence suggests that CE plays a crucial role 
in cognitive performance in older people (Cespón et al., 2022; Tang 
et  al., 2019). Memory, attention, working memory and executive 
functions have been linked to CE (Xu et al., 2024; Mansouri et al., 
2015). These correlations reflect the presence of an optimal level of 
arousal, below and above which cognitive functions are impaired. This 
correspondence between cognitive functions and the level of CE can 
be  understood in the context of the inverted-U hypothesis of 
excitability in memory and learning tasks (Menardi et al., 2018; Zadey 
et al., 2021; Baldi and Bucherelli, 2005), as shown in Figure 1. Two 
important lines of research linking CE to cognition are the 
investigation of whether excitability covaries with cognitive 
performance in different individuals and the investigation of whether 
the level of excitability can predict longitudinal changes in cognitive 
performance during aging (Dinse et al., 2023; Zadey et al., 2021). The 
relationship between CE and cognitive performance makes it a prime 
candidate for a potential biomarker of cognitive performance in 
general and cognitive reserve in particular (Cespón et al., 2022; Lu 
et al., 2024; Berns et al., 2020).

In several studies of older adults without cognitive 
impairments, a large variation in cognitive function between 
individuals has been observed, which is associated with a large 
variation in the level of CE (Buss et al., 2023; Zadey et al., 2021; 
Van Egroo et  al., 2019). Older adults with preserved robust 
cognitive performance show lower CE compared to less 
cognitively robust older adults, suggesting that their lower 
excitability is associated with maximal cognitive function 
(Cespón et  al., 2022). To date, no study has been able to 
prospectively link changes in CE to individual changes in 
cognitive function in healthy older people across the lifespan. 
Risk factors that increase the occurrence of cognitive impairment, 
such as amyloid deposition or entropy load, are expected to 
increase the level of excitability, which according to the 
inverted-U hypothesis will lead to a decline in cognitive function 
(Targa Dias Anastacio et  al., 2022). This provides an ideal 
opportunity to develop individualized predictive markers. To 
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summarize, there is growing evidence that CE can provide insight 
into which individuals are at risk of cognitive impairment and 
could be  used as an early detection tool to enable early 
intervention before cognitive impairment occurs in older adults 
(Cantone et al., 2023; Sharbafshaaer et al., 2023). Preliminary 
evidence suggests that CE is reduced in the commonly observed 
cases of cognitive resilience in old age (Buss et  al., 2023). CE 
could therefore be  a marker for this type of diversity in  
resilience, i.e., for defensive and proactive strategies to prevent 
pathological consequences of cognitive aging (Gonzalez-
Escamilla et al., 2018).

4 The use of cortical excitability as a 
biomarker and potential intervention 
target: promise and challenges

Preventive strategies targeting cognitive aging are particularly 
promising as they are low-risk, non-invasive and cost-effective 
(Livingston et al., 2020). By characterizing individual CE profiles, 
researchers can better understand how these markers predict, 
track and potentially even reverse accelerated cognitive decline 
(Stern, 2006; Stern, 2009). This finding supports their role as 
valuable public health strategies for maintaining cognitive health 

FIGURE 1

Traditionally, it has been hypothesized that cognitive reserve protects the individual by delaying the onset of symptoms and the time of clinical 
diagnosis. A M-shaped model reflects a more complex reality in which both individuals who age successfully and those who are on the pathway from 
normal cognitive aging to mild/major neurocognitive disorder exhibit cognitive impairment and gradual but opposing structural and functional 
changes in the central nervous system, depending on cognitive reserve. A more plausible model might be W-shaped, where altered cortical excitability 
is seen as a measure that encompasses structural and functional changes in the brain. This illustrates the potential implementation of non-invasive 
brain stimulation (NIBS) in clinical practice to assess an individual’s placement on the health-pathology continuum (Menardi et al., 2018).
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and quality of life in older adults. In particular, decreasing 
excitability has been proposed as a neural mechanism underlying 
accelerated cognitive decline and neuropathological changes 
(World Health Organization, 2017). This emphasizes the 
importance of identifying individuals with atypical changes in CE, 
cognition or neuronal volume for targeted interventions.

This relationship aligns with the inverted-U hypothesis 
illustrated in Figure 1, which emphasizes that both excessive and 
diminished cortical excitability (CE) can result in maladaptive 
cognitive outcomes. Elevated CE levels, for instance, could reflect 
compensatory mechanisms in healthy aging or dysregulated 
excitatory-inhibitory dynamics in pathological aging. This 
suggests that interventions should be  customized based on 
individual excitability patterns to achieve the best possible results.

Expanding further, direct methods such as brain stimulation 
and exercise offer promising avenues for enhancing 
CE. Neuromodulation therapies, including TMS, provide 
non-invasive and highly targeted means of altering neural network 
activity (Borgomaneri et  al., 2022; Borgomaneri et  al., 2021; 
Borgomaneri et al., 2020). Research shows that single-pulse TMS 
can improve task performance, speed and memory in older 
people, with these benefits correlating with baseline excitability 
(Ortega-Robles et al., 2023; Thut et al., 2003; Miniussi and Thut, 
2010). Higher CE induced by TMS has been associated with faster 
processing speed and improved executive function, although the 
effects are often task-dependent and vary with cognitive load and 
task type (Menardi et  al., 2018; Buss et  al., 2023; Menardi 
et al., 2022).

Increasing CE has implications for cognitive resilience. Higher 
CE levels could support cognitive reserve by improving the brain’s 
flexibility in managing task-relevant resources, which could 
attenuate age-related cognitive differences (Stern et  al., 2019; 
Stern, 2009; Stern, 2012). In this sense, individuals with higher CE 
might have a greater “cognitive resource capacity” that allows 
them to adapt more effectively to cognitive demands (Menardi 
et  al., 2018; Menardi et  al., 2022). However, measuring 
neurobiological variability using CE parameters in older adults 
remains challenging due to differences in methods, measurement 
reliability and participant characteristics (Mattay et  al., 2008; 
Kramer and Colcombe, 2018; Kivipelto et al., 2018). Advances in 
test–retest reliability now support more accurate assessments, 
allowing researchers to track individual differences in neural 
physiology with greater precision (Valenzuela and Sachdev, 2006; 
Zadey et al., 2021; Kivipelto et al., 2018).

The potential of CE as a biomarker of cognitive reserve 
emphasizes the need for an interdisciplinary approach that 
combines cognitive neuroscience, gerontology and 
neurophysiology. Aligning conceptual frameworks and research 
methodologies between the different fields will be  critical to 
advancing this burgeoning field and enabling more effective 
integration of cognitive reserve theory into brain health initiatives 
(Valenzuela and Sachdev, 2006; Livingston et al., 2020; Mattay 
et al., 2008; Raz et al., 1998). As this field matures, it presents an 
exciting opportunity to deepen our understanding of aging, 
promote cognitive resilience, and develop new prevention 
strategies for cognitive health.

5 Discussion

The authors suggest that corticomotor excitability may serve 
as a dynamic biomarker of cognitive resilience, a concept that is 
more and more investigated in studies of healthy aging and for 
which there is considerable theoretical overlap in  
brain and cognitive aging research (Menardi et al., 2018; Buss 
et al., 2023).

CE is particularly promising because it is easily accessible, 
reflects the health of neural circuits, can be  measured 
non-invasively, and is related to neuronal plasticity and the 
balance between excitation and inhibition (Buss et  al., 2023; 
Cespón et al., 2022; Dinse et al., 2023; Meder et al., 2021). As 
research progresses, CE could play an important role in the early 
detection of cognitive impairment and lead to timely 
interventions that promote cognitive resilience and support 
healthy aging.

The role of cognitive resilience in maintaining cognitive health 
during aging emphasizes the importance of further research into 
these mechanisms (Joshi and Galvin, 2022; Stern et al., 2023). The 
variability of changes in CE across individuals highlights the 
importance of not only observing baseline data, but also tracking how 
it relates to longitudinal cognitive or sensorimotor changes (de Vries 
et  al., 2024; Stern et  al., 2019; Cordeiro et  al., 2024; Gonzalez-
Escamilla et al., 2018). Moreover, the question of how the modulation 
of CE influences cognitive resilience should be investigated in more 
detail. The knowledge gained from this research could enable the 
development of new strategies to optimize cognitive function, 
enhance well-being and improve quality of life in old age.

Future approaches could combine cognitive training with 
non-invasive brain stimulation techniques to increase 
CE. Refining models of cortical excitability, such as the proposed 
‘W’ framework, could help identify the balance between 
compensatory and maladaptive states, guiding more targeted 
interventions. The use of individual profiles of neuronal plasticity 
could further personalize these interventions and maximize their 
effectiveness. Advances in neuroscience methods that allow real-
time monitoring of excitability changes could enable a more 
comprehensive approach to cognitive health, integrating CE with 
cognitive reserve metrics to better predict and mitigate age-related 
cognitive decline while differentiating between under- and over-
excitability in aging individuals.

Personalized interventions are particularly promising due to 
their excellent safety profile, so these new methods and 
neurobiological findings represent a potential breakthrough for 
public health and scientific progress. The improved ability to 
create individual profiles of the aging brain could pave the way for 
a new, personalized paradigm of cognitive resilience interventions 
and ultimately benefit the cognitive health of the population.
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