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The impact of multiple
representations on students’
understanding of vector field
concepts: Implementation of
simulations and sketching
activities into lecture-based
recitations in undergraduate
physics

Larissa Hahn* and Pascal Klein

Physics Education Research, Faculty of Physics, University of Göttingen, Göttingen, Germany

Multiple external representations (e. g. diagrams, equations) and their

interpretations play a central role in science and science learning as research

has shown that they can substantially facilitate the learning and understanding

of science concepts. Therefore, multiple and particularly visual representations

are a core element of university physics. In electrodynamics, which students

encounter already at the beginning of their studies, vector fields are a central

representation typically used in two forms: the algebraic representation as

a formula and the visual representation depicted by a vector field diagram.

While the former is valuable for quantitative calculations, vector field diagrams

are beneficial for showing many properties of a field at a glance. However,

benefiting from the mutual complementarity of both representations requires

representational competencies aiming at referring di�erent representations

to each other. Yet, previous study results revealed several student problems

particularly regarding the conceptual understanding of vector calculus

concepts. Against this background, we have developed research-based,

multi-representational learning tasks that focus on the visual interpretation

of vector field diagrams aiming at enhancing a broad, mathematical as well

as conceptual, understanding of vector calculus concepts. Following current

trends in education research and considering cognitive psychology, the tasks

incorporate sketching activities and interactive (computer-based) simulations

to enhance multi-representational learning. In this article, we assess the impact

of the learning tasks in a field study by implementing them into lecture-

based recitations in a first-year electrodynamics course at the University of

Goettingen. For this, a within- and between-subjects design is used comparing

a multi-representational intervention group (IG) and a control group (CG)

working on traditional calculation-based tasks (N = 81). Group comparisons

revealed that students in the intervention group scored significantly higher on a

vector field performance test after the intervention (p = 0.04, d = 0.40) while

perceiving higher cognitive load during task processing (extraneous p < 0.001,

d = 0.75; intrinsic p = 0.02, d = 0.47; germane p = 0.02, d = 0.48). Moreover,

students who worked with multi-representational learning tasks achieved higher

normalized learning gains in tasks addressing conceptual understanding and
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representational competencies related to vector field diagrams and vector

calculus concepts (gH,IG = 0.35, gH,CG = 0.13). These results provide guidance

for the design of multi-representational learning tasks in field-related physics

topics and beyond.

KEYWORDS

multiple representations, task-based learning, lecture-based recitations, sketching,

interactive visualization, conceptual understanding, physics, simulation

1 Introduction

Mathematics and physics concepts are often represented in

some form of external representation (De Cock, 2012). Thereby,

different forms of representation, multiple representations (MRs),

allow to express a concept or a (learning) subject in various

manners by focusing on different properties and characteristics.

In complementing and constraining each other, multiple

representations enable a deep understanding of a situation or a

construct (Ainsworth, 1999; Seufert, 2003) and, moreover, using

multiple representations was found to have positive effects on

knowledge acquisition and problem-solving skills (e.g., Nieminen

et al., 2012; Rau, 2017). Regarding the understanding and

communication of science concepts, visual representations are

particularly crucial (Cook, 2006). Following previous research,

they can help to eliminate science concepts’ abstract nature and

were shown to support students to develop scientific conceptions

(e.g., Cook, 2006; Chiu and Linn, 2014; Suyatna et al., 2017).

However, to benefit from multimedia learning environments,

representational competencies based on an understanding of how

individual representations depict information, how they relate to

each other, and how to choose an appropriate representation to

solve a problem are required (DeFT framework; Ainsworth, 2006).

Without representational competencies, visual representations

cannot fully unfold their potential as meaning-making tools.

Additionally, learning with and mentally processing visual

representations often places special demands on the visuo-spatial

working memory, thus increasing cognitive load (Baddeley, 1986;

Cook, 2006; Logie, 2014). Here, previous research showed that

externalizing visuo-spatial information can provide cognitive

relief (e.g., Bilda and Gero, 2005). In this regard, sketching

(or drawing) visual cues in multimedia learning has become

an increasing scientific focus in recent years (Ainsworth and

Scheiter, 2021). Following empirical findings, sketching allows to

pay more attention to details (Ainsworth and Scheiter, 2021),

thus supporting a visual understanding of concepts (Wu and

Rau, 2018). Correspondingly, previous studies reported positive

learning effects of sketching activities in (multi-)representational

learning environments, as they increase attention and engagement

with the representations and help to activate prior knowledge, to

understand a representations’ properties, or to recall information

(e.g., Ainsworth and Scheiter, 2021; Kohnle et al., 2020; Leopold

and Leutner, 2012; Wu and Rau, 2018). Typical sketching activities

are copying a given representation, creating a visual representation

with modified individual features or by transforming textual

information into a drawing, or inventing a novel representation

(e.g., to reason; Ainsworth and Scheiter, 2021; Kohnle et al.,

2020). Moreover, with respect to Cognitive Load Theory (Sweller,

2010) which characterizes the limited capacity of working memory

resources based on three types of cognitive load—intrinsic,

extraneous, and germane cognitive load—sketching activities are

able to promote a more effective use of these resources (Bilda and

Gero, 2005).

In addition to cognitive relief provided by sketching in

multi-representational learning, previous work demonstrated

the added value of interactive (computer-based) simulations for

the development of representational competencies (e.g., Kohnle

and Passante, 2017; Stieff, 2011). As such, integration of such

visualization tools in multimedia learning environments foster

active learning, thus supporting students’ use of scientific

representations for communication and helping them to

integrate their representational knowledge systematically with

content knowledge (Linn et al., 2006; Stieff, 2011). Specifically,

the complementation of simulation-based learning by the

aforementioned sketching activities was found to support a deeper

understanding of the representation being presented (Ainsworth

and Scheiter, 2021; Kohnle et al., 2020; Wu and Rau, 2018).

Considering the value of multiple representations for

science learning, unsurprisingly, they also play a major role in

university physics. For instance, in electrodynamics, vector field

representations are deeply rooted in the developmental history of

the domain (Faraday, 1852), being represented either algebraically

as a formula or graphically using arrows. In university experimental

lectures, an introduction to electric and magnetic fields typically

starts from concrete analogous representations of electric or

magnetic field lines, then moving on to more abstract or idealized

visual-graphical and symbolical representations (Küchemann

et al., 2021). Using demonstration experiments, electric and

magnetic field lines are visualized, for example, by semolina grains

(Benimoff, 2006; Küchemann et al., 2021; Lincoln, 2017) or iron

filings (Küchemann et al., 2021; Thompson, 1878), respectively.

When representing a quantity as a vector field, the fields’ properties,

its divergence and curl, and further the integral theorems of Gauss

and Stokes are of particular importance for physics applications

(Griffiths, 2013). Accordingly, a sound understanding of vector

calculus is of great importance for undergraduate and graduate

physics studies. For example, a study by Burkholder et al. (2021)

found a significant correlation between extensive preparation

in vector calculus and students’ performance in an introductory

course on electromagnetism.

However, further research also revealed that a conceptual

understanding, which is relevant to physics comprehension, often

caused difficulties for students (e.g., Bollen et al., 2015; Pepper et al.,

2012; Singh and Maries, 2013). Besides conceptual gaps regarding
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vector field representations in general, learning difficulties in

dealing with vector field concepts such as divergence and curl

became particularly apparent. For example, students struggled to

extract information about divergence or curl from vector field

diagrams and they interpreted and used these concepts intuitively

instead of referring to their physics-mathematical concepts in

a rigorous manner (Ambrose, 2004; Baily et al., 2016; Bollen

et al., 2015, 2016, 2018; Klein et al., 2018, 2019; Pepper et al.,

2012; Singh and Maries, 2013). In a study on students’ difficulties

regarding the curl of vector fields, Jung and Lee (2012) diagnosed

the gap between mathematical and conceptual reasoning as a

major source of comprehension problems. Furthermore, Singh and

Maries (2013) concluded that graduate students struggle with the

concepts of divergence and curl, even though they know how

to calculate them mathematically. In the context of electrostatics

and electromagnetism, it was also shown that conceptual gaps

regarding vector calculus led to improper understanding and errors

when applying essential principles in physics (Ambrose, 2004;

Bollen et al., 2015, 2016; Jung and Lee, 2012; Li and Singh, 2017).

Regarding these findings, it is noticeable that the aforementioned

studies did not strictly distinct between conceptual understanding

and representational competencies with respect to vector fields.

This is not surprising, since there is strong overlap of the two

areas in electrodynamics—vector fields are, as such, a form of

representation that cannot be understood in a subject context

isolated from concepts. Conversely, it is almost impossible to

learn electrodynamics concepts without vector field representations

(representational dilemma; Rau, 2017).

In introductory physics texts, vector concepts are typically

given as mathematical expressions, but are either not or

insufficiently explained qualitatively (Smith, 2014). Even in more

advanced physics textbooks, there is little geometric explanation

or discussion of vector field concepts and integral theorems.

Regarding the aforementioned empirical findings, relevance

and requirement of new instructions that address a conceptual

understanding become even more apparent. Consequently,

numerous authors advocated the use of visual representations in

order to foster a conceptual understanding. Following this line of

research, Bollen et al. (2018) developed a guided-inquiry teaching-

learning sequence on vector calculus in electrodynamics aiming

at strengthening the connection between visual and algebraic

representations. Implementing the tutorials in a second-year

undergraduate electrodynamics course revealed a positive effect of

the interventions on physics students’ conceptual understanding

and their ability to visually interpret vector field diagrams. In

addition, subjects expressed primarily positive feedback regarding

the learning approach. However, as discussed by the authors,

the exact results should be interpreted with care as the number

of participants was small and the implementation followed a

less streamlined structure as, for example, no strict control

and intervention group design was used. Additionally, Klein

et al. (2018, 2019) developed text-based instructions for visually

interpreting divergence using vector field diagrams. Eye tracking

was used to analyze representation-specific visual behaviors, such

as evaluating vectors along coordinate directions. Here, gaze

analyses revealed an increase in conceptual understanding as a

result of this intervention (Klein et al., 2018, 2019). In addition

to a positive impact of visual cues on performance measures,

a positive correlation with students’ response confidence was

found. This means that students not only answered correctly more

often, but also trusted their answers more, which is a desirable

result of successful teaching (Klein et al., 2017, 2019; Lindsey

and Nagel, 2015). In subsequent interviews, subjects expressed

diagram-specific mental operations, such as decomposing vectors

and evaluating field components along coordinate directions,

as a main problem source (Klein et al., 2018). Thus, a follow-

up experimental study involved sketching activities aiming at

generating representation-specific aids (e.g., field components) to

support the visual interpretation of divergence (Hahn and Klein,

2023a). Here, sketching was shown to significantly reduce perceived

(intrinsic) cognitive load when applying visual problem-solving

strategies related to a fields’ divergence.

With regard to previous findings concerning student

problems, building upon the existing multi-representational

teaching-learning materials, and using the DeFT framework

(Ainsworth, 2006), four multi-representational learning tasks

were developed aiming at visually interpreting vector field

diagrams (see Hahn and Klein, 2022b, for task development).

Each task addresses one vector calculus concept in which

the representational forms are used in a coordinated manner

aiming at developing conceptual understanding (Modeling

Instruction approach, e.g., McPadden and Brewe, 2017). Using

a combined approach, multiple representational learning was

integrated with sketching activities and an interactive vector

field visualization tool (Hahn et al., 2024), following current

trends in education research (Ainsworth and Scheiter, 2021;

Kohnle et al., 2020; Wu and Rau, 2018). Sketching activities

and the interactive tool were incorporated to provide cognitive

relief in multi-representational learning, to foster engagement

with the representations, and to support the development of

representational competencies related to vector calculus concepts.

Here, representation-specific sketching activities, such as sketching

vector components or highlighting rows or columns to support

evaluation along coordinate directions, were included (Hahn

and Klein, 2023a; Klein et al., 2018, 2019). Additionally, typical

sketching tasks for learning with interactive simulations, such

as copying or creating a vector field diagram, were involved

(Kohnle et al., 2020). The research-based multi-representational,

sketching- and simulation-based learning tasks (in the following:

multi-representational learning tasks) are implemented into

lecture-based recitations in a first-year electrodynamics course.

Consequently, the present study aims at evaluating the added

value of a combined approach including multiple representations,

sketching activities, and interactive visualizations in task-based

learning of vector calculus by comparing a multi-representational

intervention group and a control group with traditional

calculation-based tasks. Therefore, the following guiding question

is investigated: “Do multi-representational learning tasks have

a higher learning impact than traditional (calculation-based)

tasks in the context of vector fields?" Considering previous

research findings and theoretical frameworks from cognitive

psychology on multi-representational learning, and on the use of

sketching activities and interactive visualizations, we hypothesize

that multi-representational, sketching- and simulation-based
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learning tasks (in the following: multi-representational

learning tasks):

(H1) promote students’ performance as measured by a vector

field performance test (that includes tasks related to vector

calculus, vector field quantities, and vector field concepts), and

(H2) reduce perceived cognitive load (as measured by a

cognitive load questionnaire) during task processing.

2 Methods

Learning tasks are implemented in the weekly recitations

on experimental physics II in the summer semester 2022, 2023,

and 2024. Physics students usually attend experimental physics II

in their second semester of study, then encountering university

electromagnetism for the first time. The module includes a lecture

with demonstration experiments and weekly recitations in which

the compulsory assignments are discussed. Dividing the study

into an alpha implementation (summer semester 2022) and a

beta implementation (summer semester 2023 and 2024) primarily

serves to consolidate the data. In the alpha implementation, all

instruments and learning tasks were tested and psychometrically

characterized, thus providing guidance for improvement (see

Hahn and Klein, 2023b, for results of the alpha implementation).

Then, alpha as well as beta implementation are used to evaluate

the effectiveness of the intervention aiming at answering the

guiding question and testing the hypotheses. Study design and

procedure are identical in both implementations as there where

no fundamental changes necessary after the alpha implementation.

In the following, the study and the materials used are described

(Section 2.1). Then, in Section 2.2, sample and statistical methods

used aiming at answering the guiding question and testing the

hypotheses are presented.

2.1 Study design and materials

A detailed description of the study procedure, the materials and

all instruments can be found in Hahn and Klein (2023b). The article

also describes test and scale analyses based on data from the alpha

implementation.

2.1.1 Procedure
The study is based on within- and between-subjects treatments

wrapped in a rotational design (Figure 1). At the beginning of

the lecture period, all recitation groups are randomly divided into

two superordinate groups both serving as intervention groups

(IG) and control groups (CG) at some time but in different

order (IG-CG group and CG-IG group, respectively). Students

select a fixed recitation group by their own without knowing

about the assignment to a treatment condition later on. The

study procedure including an overview of all instruments and

data is summarized in Table 1 (see Section 2.1.2 and results of

the alpha implementation in Hahn and Klein, 2023b). Before

the first intervention phase (intervention phase I), students take

a performance test on vector calculus. Subsequently, the first

intervention phase starts and in each of the following 4 weeks,

students complete a mandatory intervention task (either a multi-

representational or a traditional task) in addition to a set of

standard tasks which does not differ between the groups. The

traditional tasks consist of typical, predominantly calculation- and

formula-based, problem-solving tasks that have always been used

in the course (e.g., they present some mathematical representation

of vector fields and students must calculate divergence or curl).

First, the upper group in Figure 1 is intervention group (IG) and

works on the multi-representational learning tasks, while the lower

group is control group (CG) and works on traditional (calculation-

based) tasks. All assignments are completed by self-study within

1 week, submitted for correction, and discussed with a dedicated,

independent intervention tutor during the subsequent recitation.

Prior to each task discussion, a short questionnaire on perceived

cognitive load during task processing and means of task assistance

is deployed. After the first intervention phase in the 7th week of the

semester, students again complete the performance test on vector

calculus and another evaluation questionnaire. Subsequently, the

groups switch roles and the second 4-week intervention phase

starts. Finally, the performance test on vector calculus and the

questionnaire are administered again.

2.1.2 Materials and measures
Vector field performance test. Initially, all subjects completed

a test with demographic questions (e.g., age, gender, semester

of study) and a performance test on vector calculus assessing

conceptual understanding closely linked with representational

competencies. The performance test included 19 tasks, partly

comprising several subtasks, hence, a total of 65 items (multiple-

choice and true-false items of one task counted separately) covering

seven different subtopics of vector calculus. Forty-niner of the

items were designed in multiple-choice or true-false format, while

the remaining 16 items required a sketch, formula, justification,

calculation, or a proof. Most of the items were taken from

established concept tests on electrodynamics (CURrENT) or have

been used and validated in a similar form in previous studies

(Baily et al., 2016, 2017; Bollen et al., 2015, 2018; Hahn and Klein,

2022a, 2023a; Klein et al., 2018, 2019, 2021; Rabe et al., 2022). In

Table 2, two of these tasks are specifically referred to in order to

characterize the sample: one targets foundational knowledge (i.e.,

basic principles of vector field representations), while the other

emphasizes the transfer of knowledge (i.e., applying it in novel

contexts or problem-solving scenarios, such as curl evaluation).

After the intervention phases, the students again completed the

performance test which was extended by a module-specific task

on electrostatics. Additionally, for most of the multiple-choice

and true-false items, response confidence was assessed using a

6-point Likert-type rating scale (1 = absolutely confident to 6 = not

confident at all) to provide insight into student response behavior

beyond performance measures.

Questionnaire on task processing. In weekly recitations,

students answered a short questionnaire related to the previous

learning task providing information about the cognitive load they

experienced while completing the task as well as any kind of task

assistance. The items regarding cognitive load are based on a scale
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FIGURE 1

Study design with timeline from left (t0) to right (t2; intervention group IG, control group CG, multiple representations MRs). The designations “IG-CG

group" and “CG-IG group" refer to the chronological order of the groups in the rotational design (first intervention group, then control group, or vice

versa).

TABLE 1 Overview of scales included for data analysis (Cronbach’s alpha

αC).

Time point Scale #item αC

t0 (pretest) Vector field performance test (V0)

(response accuracy)

44 0.76

Confidence (C0) 34 0.96

Sociodemographics – –

Intervention

phase I

Extraneous cognitive load (ECL) 16 0.87

Intrinsic cognitive load (ICL) 12 0.90

Germane cognitive load (GCL) 8 0.88

Effort (E) 8 0.82

t1 (posttest) Vector field performance test (V1)

(response accuracy)

44 0.71

Confidence (C1) 34 0.97

Tutor (T) 6 0.82

measuring the three types of cognitive load from Leppink et al.

(2013) which was supplemented by items from Klepsch et al.

(2017) and Krell (2017). The final questionnaire contained 12

items measuring cognitive load on a 6-point Likert-type rating

scale (1 = strongly disagree to 6 = strongly agree). Test analyses in

the alpha implementation resulted in four scales of cognitive load

(Hahn and Klein, 2023b). The scales for extraneous, intrinsic, and

germane cognitive load reflect the three types of cognitive load

according to Sweller (2010), with the germane cognitive load scale

primarily assessing perceived improvement in understanding, the

intrinsic cognitive load scale addressing the inherent complexity

of the learning subject, and the extraneous cognitive load scale

focusing on the design of the instructional material. In addition,

the effort scale assesses the effort expended in task completion

(Krell, 2017; Paas and Van Merriënboer, 1994). In addition to the

perceived cognitive load, means of task assistance (e.g., “working

together in a group with students from my course,” “looking

up in a textbook”) were assessed using a choice format. This

information was used to maximize the comparability between the

two groups and to ensure that students are actively involved in the

learning process.

Questionnaire on tutor behavior. After the intervention phases,

a questionnaire was used which surveyed the tutor’s behavior

during task discussion as a control variable using six items (6-point

Likert-type rating scale from 1 = strongly disagree to 6 = strongly

agree). The items are based on the “tutor evaluation questionnaire”

by Dolmans et al. (1994) supplemented by modifications from

Baroffio et al. (1999) and Pinto et al. (2001).

Learning tasks. The multi-representational learning tasks

were designed as four parallel learning tasks on divergence,

Gauss’ theorem, curl, and Stokes’ theorem building on the

sketching-based instruction for divergence developed by Hahn

and Klein (2023a) (see Hahn and Klein, 2022b, for task

development). These tasks integrate multiple representations and

sketching activities, further supported by the inclusion of an

interactive vector field visualization tool (Hahn et al., 2024).

In the learning tasks, interactive visualizations and sketching

activities are closely linked, for example, students are required

to create a vector field diagram based on the tool. In line

with common practice in university teaching, the control groups’

tasks primarily involve calculations and mathematical proofs in

the context of vector calculus. Multi-representational as well as

traditional calculation-based learning tasks can be found in the

Supplementary material.

2.2 Analyses of alpha and beta
implementation

Due to high dropout rates, the core sample, which includes

students who participated in all performance tests and completed

all eight learning tasks, would consist of only 10 students (NIG = 6,

NCG = 4), which contradicts fundamental assumptions of

statistical data analysis. Therefore, the following analyses, aimed

at answering the guiding question and testing the hypotheses, will

be limited to intervention phase I, including 81 students. Since the

rotational design was primarily implemented for fairness reasons,

the research aim is not compromised by omitting intervention

phase II. A summary of deviations in data analysis, as proposed in

Hahn and Klein (2023b), is provided at the end of the manuscript.
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TABLE 2 Sample data (intervention group IG, control group CG, number No., statistical significance p using unpaired two-sided t-tests).

Total IG CG p

(IG-CG group) (CG-IG group)

Number of subjects 81 51 30 –

No. of female subjects 18 (22%) 10 (20%) 8 (27%) –

Mean age (in years) 20.3± 2.8 20.3± 1.8 20.3± 4.0 0.91

No. of semesters studied 2.3± 1.2 2.2± 1.0 2.4± 1.4 0.41

Average grade for university entrancea 1.5± 0.5 1.5± 0.5 1.4± 0.5 0.57

Tutor behavior (T)b 0.85± 0.14 0.84± 0.15 0.87± 0.12 0.28

Pretest score vector field performance test (V0)
b 0.69± 0.14 0.68± 0.14 0.71± 0.15 0.30

Pretest score vector field representationsb,c 0.81± 0.18 0.80± 0.19 0.84± 0.18 0.25

Score for qualitative evaluation of a field’s curlb,c 0.31± 0.41 0.28± 0.38 0.38± 0.46 0.31

aThe scale ranges from 1.0 (best performance) to 4.0. The grades are indicated by the students.
bThe scale ranges from 0 to 1 (best performance).
cItem is included in the vector field performance test.

2.2.1 Sample
In total, 281 students took part in the pretest. However, to

ensure valid results by focusing on intervention phase I, data

analysis will be carried out based on a sample of 81 student who

participated in both the pre (t0) and post (t1) intervention vector

field performance test and completed all four learning tasks of

intervention phase I (for detailed description of sample generation

see Hahn and Klein, in press). This sample size is consistent

with the power analysis results from the alpha implementation

(for further characterization of the sample, see Table 2; Hahn and

Klein, 2023b). It is notable that the pretest scores on vector field

representations, the first item of the performance test, were rather

high, indicating that all students had sufficient prior knowledge

of visual representations of vector fields and the decomposition

of individual vectors into components to understand the learning

tasks. However, since they scored only 69% in the pretest on

vector calculus and as only 31% were able to evaluate the curl

of a vector field diagram (item included in the performance test;

detailed analysis of this item in Hahn and Klein, in press), the tasks

could still have a meaningful impact (Table 2). Furthermore, no

significant differences between the two groups regarding various

sociodemographic data, performance indicators, or perceived tutor

behavior were found (Table 2).

As a manipulation check, most students in the intervention

group reported using the interactive vector field tool (86% across

all tasks) (Hahn et al., 2024), while none of the students in the

control group used it. Other means of task assistance, if any,

such as internet research, textbook, and lecture notes, were used

equally often by both groups. Almost none of the students indicated

copying answers from another student’s solution, suggesting that

active learning occurred in both groups.

2.2.2 Data analysis
Since all data except the performance test data were given in

values between 1 and 6, a linear transformation to the interval

[0; 1] was performed. Then, as required for parametric procedures,

all scales for dependent and control variables were checked for

normal distribution (see Table 1 for all scales included in the data

analysis). Using the scales derived from test and scale analyses

in the alpha implementation (Hahn and Klein, 2023b), all scales

for analysis of alpha and beta implementation showed acceptable

reliabilities (αC > 0.71; Table 1). For the analysis, the vector field

performance test was limited to the first 44 items, as the data for

the subsequent items did not allow for meaningful interpretation.

This adjustment ensured that pre- and posttest were identical

and did not include any module-specific tasks. Consequently, the

confidence scale was also shortened to 34 items. As do the full scales

(alpha implementation; Hahn and Klein, 2023b), the abbreviated

scales also show satisfactory psychometric properties.

Regarding the hypotheses, statistical analyses primarily consist

of standard methods of quantitative statistics (i. e., t-tests) to

examine the influence of group membership on the dependent

variables, that means response accuracy and response confidence

for pre- and posttest as well as perceived cognitive load types.

Besides performance, learning gains are compared between the

groups. Therefore, the absolute gain g, defined as the difference

between pre- and post-scores, as well as Hake’s gain gH , calculated

by the quotient of absolute gain and maximum possible gain, are

used (Hake, 1998). In addition, 2 × 2 analyses of variance are

conducted to examine the impact of the intervention comparing

pretest (t0) and posttest (t1). To gain detailed insights into group

differences, covariance analyses are performed while controlling

for the effects of potentially confounding variables, such as

tutor behavior. Furthermore, correlations are examined to explore

the relationships between variables in depth and within-subjects

effects are investigated through pre- and post-comparisons of

students’ performance in the vector field performance test. All

analysis methods described align with the proposed methods in

Hahn and Klein (2023b), confirmatory analyses). All analyses

are interpreted based on the guidelines provided by Cohen

(1988). Pre-analyses for covariance analysis, including correlations

between control and dependent variables, can be found in the

Supplementary material.
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FIGURE 2

Students’ response accuracy before (t0) and after (t1) the

intervention for control group CG and intervention group IG.

Response accuracy between the groups is compared using unpaired

t-tests (pretest two-sided, posttest one-sided) and response

accuracy between pre- and posttest (mean for t0 and t1 in violet) is

compared using analyses of variance (* / *** / n.s. statistical

significance p < 0.05 / p < 0.001 / not significant, e�ect sizes η
2
p and

Cohen’s d, error bars represent 1 SEM).

3 Results

In the following, the data analyses are reported according to

the research hypotheses H1 (Section 3.1) and H2 (Section 3.2).

For H1, which concerns students’ performance in vector calculus,

vector field quantities, and vector field concepts, response accuracy,

learning gain, and response confidence are compared between

intervention and control group at pretest (t0) and posttest (t1). For

H2, which addresses students’ perceived cognitive load during task

processing, all four types of cognitive load (ECL, ICL, GCL, and E)

are compared between the groups.

3.1 Students’ performance related to
vector calculus, vector field quantities, and
vector field concepts (H1)

After the intervention phase, students’ overall response

accuracy in the vector field performance test improved from 0.69

± 0.14 to 0.77 ± 0.11, with large effect size [F(1, 79) = 53.72,

p < 0.001, η2p = 0.41; Figure 2 violet]. This achievement indicates a

normalized gain gH = 0.27 of small size according to Hake (1998).

When comparing intervention and control group, a large-sized

interaction effect between time and group membership was found

[F(1, 79) = 14.26, p < 0.001, η
2
p = 0.15]. This was reflected by

a larger increase in response accuracy from pre- to posttest for the

intervention group [0.68 ± 0.14 to 0.79 ± 0.11; F(1, 50) = 68.29,

p < 0.001, η
2
p = 0.58; Cohen’s d = 1.16] compared to the

control group [0.71 ± 0.15 to 0.75 ± 0.11; F(1, 29) = 8.06,

p = 0.008, η
2
p = 0.22; Cohen’s d = 0.52; Figure 3]. Referring to

FIGURE 3

Comparison of students’ response accuracy and learning gain for

control group CG and intervention group IG from pre- (t0) to

posttest (t1). Normalized gain gH referring to Hake (1998) for both

groups is visualized in orange. Response accuracy between t0 and t1
is compared using analyses of variance (** / *** statistical significance

p < 0.01 / p < 0.001, e�ect size η
2
p , error bars represent 1 SEM).

the interpretation of normalized gain by Hake (1998), students

from the intervention group achieved a medium normalized gain

of gH = 0.35 (absolute gain g = 0.11), while students’ accuracy in

the control group showed a small normalized gain of gH = 0.13

(absolute gain g = 0.04; Figure 3 orange).

After the intervention, a significant group difference regarding

students’ response accuracy was found, reflecting a small-sized

effect [t(79) = 1.73, p = 0.04, d = 0.40; Figure 2]. When

accounting for students’ accuracy in the pretest, group differences

in the posttest were further strengthened, yielding a large effect

size [F(1, 78) = 15.86, p < 0.001, η
2
p = 0.17], supporting the

interaction effect.

Overall, students’ response confidence in the vector

field performance test improved after the intervention

[F(1, 79) = 12.24, p < 0.001, η2p = 0.13], with medium effect size

(Figure 4 violet). Similar large-sized effects were observed for the

intervention group [F(1, 50) = 8.49, p = 0.005, η2p = 0.15] and the

control group [F(1, 29) = 5.76, p = 0.02, η2p = 0.17]. Furthermore,

no interaction effect between time and group membership for

students’ response confidence was found (p = 0.71).

Before the intervention, students in the control group were

more confident about their answers in the pretest than students

in the intervention group [t(79) = −2.18, p = 0.03, d = 0.50;

Figure 4]. After the intervention, the group difference in students’

response confidence diminished (p = 0.06). When students’

accuracy in the pretest was taken into account, the group difference

in response confidence further reduced (p = 0.19).

In both the pre- and the posttest, students’ response accuracy

was moderately correlated with their response confidence (pre

r = 0.44, p < 0.001; post r = 0.38, p < 0.001). This correlation was

large- and medium-sized for the intervention group (pre r = 0.52,

p < 0.001; post r = 0.38, p = 0.006) and small- and large-sized for

the control group (pre r = 0.26, p = 0.16; post r = 0.51, p = 0.004)
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FIGURE 4

Students’ response confidence before (t0) and after (t1) the

intervention for control group CG and interventions group IG.

Response confidence between the groups is compared using

unpaired t-tests (pretest two-sided, posttest one-sided) and

response confidence between pre- and posttest (mean for t0 and t1
in violet) is compared using analyses of variance (* / *** / n.s.

statistical significance p < 0.05 / p < 0.001 / not significant, e�ect

sizes η
2
p and Cohen’s d, error bars represent 1 SEM).

3.2 Students’ perceived cognitive load
during task processing (H2)

Students in the intervention group reported significantly higher

extraneous, intrinsic, and germane cognitive load compared to

the control group (Figure 5). Group comparison of extraneous

cognitive load showed a medium-sized effect [t(79) = 3.27,

p < 0.001, d = 0.75]. Both intrinsic and germane load differed

between the groups with small effect sizes [t(79) = 2.05,

p = 0.02, d = 0.47 and t(79) = 2.08, p = 0.02, d = 0.48,

respectively]. However, when accounting for response accuracy in

the pretest, a plausible predictor of performance, no significant

group differences in intrinsic cognitive load were found (p = 0.07).

Moreover, when tutor effects were considered, significant group

differences in germane cognitive load were further strengthened,

showing a medium-sized effect [F(1, 70) = 8.71, p = 0.004,

η
2
p = 0.11]. Additionally, germane cognitive load was overall

positively correlated with students’ individual absolute learning

gain (r = 0.25, p = 0.02), but no correlation with posttest response

accuracy was found (p = 0.97). Students’ effort expended during

task completion did not differ between intervention and control

group (p = 0.21), with both groups showing high values above 0.70.

4 Discussion

4.1 Impact of multi-representational
learning tasks on students’ performance
(H1)

Before the intervention, students demonstrated high prior

knowledge of visual representations of vector fields and vector

FIGURE 5

Students’ perceived cognitive load for control group CG and

intervention group IG. Extraneous cognitive load (ECL), instrinsic

cognitive load (ICL), germane cognitive load (GCL), and cognitive

e�ort (E) are compared between the groups using unpaired t-tests

(one-sided; * / *** / n.s. statistical significance p < 0.05 / p < 0.001 /

not significant, e�ect size Cohen’s d, error bars represent 1 SEM).

decomposition (Table 2). However, their ability to evaluate the

curl of a vector field diagram was limited, with only 31%

accuracy. This aligns with findings in previous research, which

also highlighted challenges in students’ ability to interpret vector

field diagrams (Baily et al., 2016; Hahn and Klein, 2023a; Klein

et al., 2018, 2019; Singh and Maries, 2013). After the intervention,

both overall response accuracy and confidence in vector calculus

concepts significantly improved, with large and medium effect

size, respectively. These results underline the value of instructional

support for vector calculus in physics study entry phase, consistent

with conclusions from prior studies (Bollen et al., 2018; Dray and

Manogue, 2023; Hernandez et al., 2023; Singh and Maries, 2013).

When comparing intervention and control group, students

who worked with multi-representational learning tasks, including

sketching activities and an interactive vector field simulation,

achieved significantly higher scores after the intervention and

showed a higher normalized learning gain. With a value of 0.35, the

gain of the multi-representational learning tasks corresponds to the

normalized gain of interactive engagement methods in previous

physics education studies (e.g., Coletta et al., 2007; Hake, 1998;

Hernández et al., 2021; Núñez et al., 2021; Sahin, 2010). In contrast,

the control group, which worked with traditional calculations-

based learning tasks, showed a low normalized gain of 0.13,

even falling below the results from traditional courses in earlier

studies (Coletta et al., 2007). These findings highlight the value of

instructional support through multiple representations, sketching

activities, and interactive visualizations in promoting learning of

vector calculus and other complex physics concepts. Using Cohen’s

d instead of Hake’s gain further supports the abovementioned

conclusions (Nissen et al., 2018). Moreover, a large-sized

interaction effect between time and group membership further

emphasized the impact of multi-representational tasks on students’

learning. These findings support hypothesis H1 and align with

theoretical frameworks from cognitive psychology, which advocate

for combining multiple representations, sketching activities,
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and interactive visualizations as effective learning approaches

to enhance conceptual understanding and representational

competencies of abstract concepts (e.g., Ainsworth, 1999;

Ainsworth and Scheiter, 2021; Kohnle et al., 2020; Stieff, 2011).

Therefore, multiple representations in task-based learning are

particularly beneficial for introductory physics students, as they

address common challenges students face when learning about

these complex concepts (e.g., Bollen et al., 2015; Pepper et al., 2012;

Singh and Maries, 2013).

In previous studies, students achieved impressive scores

in evaluating divergence, answering conceptual questions, and

completing transfer tasks after multi-representational, sketching-

based instruction (e.g., 88% on divergence evaluation, 85% on

conceptual questions, and 81% on partial derivatives tasks; Hahn

and Klein, 2023a). The results from this study, with a score of 79%

on the vector calculus performance test, demonstrate comparable

effectiveness of the multi-representational learning tasks in a

typical physics university lecture setting. These findings offer

initial evidence for the transfer of results from previous clinical

studies on vector fields (Hahn and Klein, 2023a; Klein et al., 2018,

2019) to regular university teaching contexts. Additionally, the

successful extension of previous divergence-focused instructions

to other vector calculus concepts can be inferred. However,

comparisons between this study and that of Hahn andKlein (2023a)

are limited due to differences in study conditions. This applies

in particular to the sample (first-year students vs. second-year

students in this study). Furthermore, performance assessment in

the study by Hahn and Klein (2023a) took place immediately

after the intervention, i.e., a maximum of 60 min elapsed between

the pretest and the posttest. In this study, in contrast, the

posttest was conducted 1 week after the fourth learning task

was discussed in the recitation, i.e., 6 weeks passed between

the pre- and the posttest. The latter indicates that the learning

outcomes measured in this study likely reflect sustainable, long-

term learning effects rather than short-term gains. Moreover, it

should be emphasized that this effect was demonstrated in a much

more realistic setting compared to the study by Hahn and Klein

(2023a), as the students worked on the tasks independently without

external control.

Compared to previous studies (Hahn and Klein, 2023a; Klein

et al., 2018, 2019), the multi-representational learning tasks in this

study were enhanced by an interactive vector field visualization

tool. Therefore, this study provides initial indications of the

educational value of the tool. The findings here align with those

from Hahn et al. (2024), indicating a good alignment of the

simulation, the learning tasks, and students’ prior knowledge.

Additionally, students’ indication of high perceived educational

impact of the visualization tool can initially be confirmed with

performance measures.

Group comparisons in the vector field performance test

revealed that multi-representational learning tasks led to higher

learning gains and performance scores. However, students in

the intervention group did not show greater confidence in their

answers compared to the control group. In contrast, students

who worked with traditional tasks reported higher response

confidence both before and after the intervention. Notably, these

group differences diminished after the intervention, suggesting

a greater gain in metacognitive abilities among students in the

intervention group. Additionally, significant positive correlations

between accuracy and confidence were found before and after

the intervention for both groups, mirroring results from previous

studies (Klein et al., 2017, 2019; Lindsey and Nagel, 2015). This

suggests that students were generally aware of their performance,

i. e., those who answered correctly displayed high response

confidence and those with incorrect answers had lower confidence.

Such high metacognitive abilities are a key outcome of effective

learning, as they enable learners to regulate and improve their

learning processes (Lindsey and Nagel, 2015; May and Etkina,

2002).

4.2 Impact of multi-representational
learning tasks on perceived cognitive load
during task processing (H2)

In the recitations, a short questionnaire on perceived cognitive

load was administered before task discussion. Students who worked

with multi-representational learning tasks and those working with

traditional learning tasks reported similar levels of effort invested

during task completion. Values above 0.70 suggest that considerable

amount of cognitive resources were allocated to meet the task

demands (Paas and Van Merriënboer, 1994). As mental effort

is influenced by prior knowledge and experiences regarding the

tasks’ requirements (Paas and VanMerriënboer, 1994), these results

imply a high level of alignment between the learning tasks and

learners’ prior knowledge. Moreover, as indicated by high, but not

excessive, values, the tasks encouraged learners to exert cognitive

effort, which is crucial for the construction of cognitive schemata

and, consequently, for learning (Sweller, 2010).

When comparing intervention and control group, students

who engaged with multi-representational learning tasks, including

sketching activities and an interactive vector field tool, reported

higher levels of extraneous, intrinsic, and germane cognitive load

during task processing. The group difference in germane cognitive

load suggests that students working with multi-representational

learning tasks were able to allocate more working memory

resources to processing the subject matter (Sweller, 2010). This

conclusion is further supported when considering the tutor

behavior. Particularly, this result aligns with the abovementioned

findings that students who worked with multi-representational

learning tasks showed higher learning achievement compared

to the control group and aligns with results from previous

studies in the context of vector fields (Hahn and Klein, 2023a).

Following theories from cognitive psychology (e.g., Ainsworth,

1999; Ainsworth and Scheiter, 2021; Stieff, 2011), these results

further underline the value of instructional support through

multiple representations, sketching activities, and interactive

visualizations for complex and field-related concepts. Additionally,

the positive correlation between germane cognitive load and

individual absolute learning gain for both groups indicates

that students were deeply engaged in metacognitive processes

(Leppink, 2017). This suggests that, beyond simply gaining

knowledge, students were also able to correspondingly estimate

their improvement in understanding, consistent with findings

from previous studies (e.g., Huang et al., 2013). These results

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1544764
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hahn and Klein 10.3389/fpsyg.2025.1544764

further support the conclusion made above that students in

both the intervention and the control group demonstrated high

metacognitive abilities.

Following Cognitive Load Theory (Sweller, 2010), elevated

values in extraneous cognitive load suggest that the design of multi-

representational learning tasks imposed greater cognitive demands

during task processing compared to traditional, calculation-

based tasks. However, despite increased extraneous cognitive

load, students in the intervention group reported an amplified

perceived learning impact (germane cognitive load) and achieved

higher learning gains. These results do not align with findings

from previous studies in the context of vector fields (Hahn and

Klein, 2023a). However, similar findings have been observed in

previous studies where realistic graphics and immersive learning

environments, which induced task-irrelevant cognitive load, led

to improved performance (Makransky et al., 2019; Skulmowski

and Rey, 2020a). Recent research on disfluency suggests that

under certain circumstances harder-to-perceive learning materials

are able to trigger learners to invest more cognitive effort,

ultimately improving learning outcomes (Skulmowski and Rey,

2018). Specifically, interactive digital learning tools were found

to promote such an effect (Skulmowski and Xu, 2022). As

the interactive vector field visualization tool was used in

86% of all task completions, this may also apply to this

study. These findings align with recent research in educational

psychology advocating for the differentiation of extraneous

cognitive load components, particularly in digitally-supported

learning environments (Skulmowski and Rey, 2020b; Skulmowski

and Xu, 2022). This approach might be particularly promising

for learning environments such as the one used here, i. e.

learning tasks combining digital and text-based learning, as well

as incorporating various methods. Additionally, high values of

extraneous cognitive load might reflect unfamiliarity with the

instructional format, that means text- and representation-rich tasks

that require qualitative reasoning and sketching (Orru and Longo,

2019). Since verbalization plays a crucial role in physics and

mathematics reasoning (Sirnoorkar et al., 2020), this interpretation

suggests the need for targeted support, such as an introduction to

the task format. However, further empirical research is required to

clarify this line of reasoning. Regardless of the group comparison,

extraneous load values below 0.40 can generally be classified

as low—for students engaged in lab work or smartphone-based

experimental exercises similar or higher values have been reported

(Kaps and Stallmach, 2022; Thees et al., 2020).

Students who worked with multi-representational learning

tasks perceived higher intrinsic cognitive load, but this group

difference was reduced when taking students’ response accuracy in

the pretest into account. That means, when baseline differences in

students’ prior knowledge were adjusted, the perceived complexity

of the learning subject did not differ significantly between

students who worked with multi-representational and traditional

learning tasks. However, these findings contradict hypothesis H2

and suggest that sketching activities were not able to unfold

their expected relieving effect, as emphasized in theoretical

considerations (Bilda and Gero, 2005) and found in previous

studies in the context of vector fields (Hahn and Klein, 2023a).

The perceived complexity of the learning subject, however,

also depends on what the learner associates with the learning

subject. With higher prior knowledge—gained through working

on multi-representational learning tasks—students might consider

additional aspects as part of the subject matter, aspects that students

working on the calculation-based tasks might disregard. Such

aspects, for example, qualitative evaluation of vector field diagrams,

may add complexity to the learning subject, resulting in a higher

perceived intrinsic cognitive load (Endres et al., 2023).

4.3 Conclusion and future work

In this work, the impact of multi-representational learning

tasks on vector calculus implemented in weekly recitations

of an electrodynamics course in introductory physics studies

was investigated. Specifically, multi-representational learning was

integrated with sketching activities and an interactive vector field

visualization tool. Analyses focused on students’ response accuracy

and confidence in a vector calculus performance test, and students’

perceived cognitive load during task processing.

Besides showing an overall positive impact of the intervention

on students’ achievement, multi-representational learning tasks led

to significantly higher learning outcomes and promoted amplified

learning gains. Further, students who worked with these learning

tasks perceived higher germane cognitive load, reflecting that

they devoted more working memory resources to the subject to

be learned, despite perceiving higher intrinsic and extraneous

cognitive load. These results support a nuanced perspective on the

relationship between the three types of cognitive load, suggesting

that certain aspects of extraneous load–such as those induced

by interactive visualizations–can facilitate deeper processing and,

consequently, foster learning. As such, the findings provide

valuable insights for further research in educational psychology,

particularly in exploring the nuanced interplay between different

components of cognitive load and their effects on learning

outcomes. Future studies should explore in greater depth how

instructional design strategies, such as multiple representations

and and interactive visualizations in task-based learning, shape

learnersâĂŹ cognitive and metacognitive processes, and examine

the role of task format familiarity inmitigating extraneous cognitive

load.

The primary limitation of the study lies in its field study

nature, as it was implemented within university physics curricula.

While students indicated task assistance, the exact learning process

remained unknown and nontransparent. As a result, the findings

lack internal validity, meaning that causal interpretations of

the results are not unambiguous. Consequently, future studies

should include analyses of learning outcomes across different

universities with varying curricula to elaborate the conclusions and

implications for instructors made here.

Concerning the value of this article for research on learning

with multiple representations, it extends previous studies (Bollen

et al., 2018; Hahn and Klein, 2023a; Klein et al., 2018, 2019)

investigating multi-representational instructions by providing

empirical evidence regarding the effectiveness of such an

approach in university teaching, compared to a traditional control
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group. Specifically, multi-representational learning tasks, including

sketching activities and interactive visualizations, were shown to

enhance students’ performance in tasks addressing conceptual

understanding and representational competencies related to

abstract physics concepts. At this point, it should be emphasized

that the effectiveness of the learning tasks was demonstrated in a

very realistic setting. In contrast to previous clinical studies (Hahn

and Klein, 2023a; Klein et al., 2018, 2019), there was no control

over learning time; the tasks were completed at students’ own

responsibility and without supervision. Although the learning tasks

used here in this study required prior knowledge about vector field

representations, thus targeting university science students, some

implications can also be extended beyond physics teaching. For

instructors, learning tasks incorporating multiple representations,

sketching activities, and interactive visualization tools are highly

recommended. Particularly, for teaching complex concepts that

are typically calculation-based or not visually introduced, multi-

representational, sketching- and simulation-based learning proves

to be a promisingmethod that can also be applied outside university

settings, such as in school education. When using this approach,

it is recommended to closely link sketching tasks with interactive

simulations, such as creating a drawing from the tool (Kohnle et al.,

2020).

For STEM education, such learning tasks could provide

meaningful support in undergraduate physics lectures, as vector

calculus is fundamental to numerous fields of physics, for example,

electrodynamics and fluid mechanics. However, empirical research

on the application of vector calculus concepts in electrodynamics

or other physics fields after completing multi-representational

learning tasks is still lacking. Addressing this gap should be a

priority for future studies.

5 Preregistration and deviations from
the original analysis plan

This study was preregistered, meaning that the research

questions, methodology, and study materials were reviewed and

approved before data collection began (Hahn and Klein, 2023b).

The preregistration process ensures transparency and reliability by

committing to a specific research design in advance. Accordingly,

the study was conducted as outlined in the preregistration, using all

specified test instruments and analysis procedures.

However, one deviation from the preregistered plan became

necessary due to a high dropout rate. The core sample—

comprising students who completed all performance tests and

learning tasks—was reduced to only 10 participants (NIG = 6,

NCG = 4). This sample size did not meet fundamental statistical

assumptions, making some of the planned analyses infeasible.

As a result, contrary to the preregistered plan, analyses were

restricted to intervention phase I. This means that the originally

planned learning gain analyses for intervention phase II and

comparisons between both intervention phases could not be

conducted. Importantly, this adjustment does not alter the validity

of the study’s core findings, as the guiding question and research

hypotheses could still be addressed with the available data.

Beyond this change in the scope of analyses, the methodology

and study implementation remained fully aligned with the

preregistration. All test and scale analyses specified in the

preregistration were conducted as planned. The cognitive load

scales demonstrated acceptable reliabilities (Cronbach’s αC > 0.71).

However, due to a higher frequency of missing values in the later

items of the vector field performance test, analyses were limited to

the first 44 items. Similarly, the confidence scale was shortened to 34

items to ensure meaningful interpretation. These adjustments were

necessary to maintain the validity of the analysis, and critically, the

shortened scales exhibited psychometric properties comparable to

the full versions.

Despite these modifications, all analyses were conducted

within the preregistered confirmatory framework, and the study’s

methodological rigor remains intact.
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