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Introduction: Spatial ability is robustly correlated with science, technology, 
engineering, and mathematics (STEM) achievement, but schools have generally 
not differentiated with regard to this ability. Moreover, the level of involvement, 
focus, and motivation that students exhibit in school activities, specifically their 
engagement, also plays a central role in overall achievement. Therefore, this 
study aims to develop a STEM scale to identify differentiation needs based on 
spatial ability and engagement. These differentiation needs may be addressed 
by instructional methods such as making activities, where students design and 
construct physical objects. Because these activities enhance engagement, can 
improve spatial ability, and allow students to use their spatial skills, this study also 
aims to discuss the implications of using making activities for differentiation.
Methods: To address these aims, 535 students from grades 5 to 10 (9–16 years) 
from two medium-sized suburban and semi-rural municipalities were randomly 
split into one exploratory and one confirmatory sample, where participants were 
students. An exploratory and confirmatory item response theory (IRT) approach 
was used for the data analysis. Correlations of the latent variable were sought 
for spatial ability and engagement.
Results: The STEM scale demonstrated good psychometric properties, and the 
underlying factor of the scale correlated positively with engagement and spatial 
ability.
Discussion: Thus, the STEM scale can be useful for educational practice by 
identifying students needing differentiation concerning their spatial ability level, 
where their level of engagement is also considered. Making activities could 
potentially benefit some students more than others, depending on their STEM 
scale scores.
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1 Introduction

STEM education is central to preparing students to face real-world problems (Wai et al., 
2009), to develop technological solutions to address such problems, and understand the 
technology surrounding them (Norwegian Directorate for Education and Vocational Training, 
2018). Multiple countries’ policymakers have recognised this through funding of STEM-
educational programmes, such as Germany, Finland, and the US (Ertl et al., 2017; Lavonen 
and Laaksonen, 2009; Tanenbaum, 2016) in concurrence with generally increased importance 
given by governments to STEM subjects (Young and Muller, 2016).
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Spatial ability is a strong predictor of STEM achievement and 
STEM career choice (Wai et  al., 2009), as well as a systematic 
source for individual differences in STEM learning (Bongers et al., 
2020; Li and Wang, 2021). However, spatial reasoning is less 
emphasised in schools (Ramey et al., 2020). Most school curricula 
are primarily suited to students with high verbal and mathematical 
reasoning abilities, and a focus on spatial ability is lacking (Wai and 
Uttal, 2018; Wai and Worrell, 2016). In a recent study, students 
with high spatial ability and lower mathematical or verbal abilities 
had greater academic challenges and drop-out rates than students 
with high abilities in other domains (Lakin and Wai, 2020). This 
finding underlines the need for identification and differentiation 
based on spatial ability, because if these students were identified 
and differentiated for, their STEM achievement and retention rates 
would likely increase.

However, there is a lack of high-quality identification measures 
that define how to differentiate within STEM subjects for students 
based on their spatial ability (Kell et al., 2013). Such a measure should 
also include the assessment of student engagement because 
engagement has shown a positive relation with academic performance 
(Finn and Zimmer, 2012; Maxwell et al., 2017; Moubayed et al., 2020) 
and well-being (Gander et al., 2016), and a lack of engagement is 
connected to an increased risk of school drop-out (Finn and Zimmer, 
2012; Piscitello et al., 2022) which is very relevant to STEM retainment. 
Engagement is a multifactorial term concerning students’ involvement 
in school, with both subject matter and social interactions (Finn and 
Zimmer, 2012; Groccia, 2018). The most common factors are 
behavioural engagement (e.g., participation, interaction, collaboration, 
completion of learning activities), cognitive engagement (e.g., 
motivation and effort to learn, reflection), and affective engagement 
(e.g., attitudes and feelings directed at teachers, peers, and content) 
(Fredricks et al., 2016; Salas-Pilco et al., 2022).

Both engagement and spatial ability are essential for STEM 
achievement and for how advanced material students are willing and 
able to work with. So, when identifying student differentiation needs 
in STEM, basing the assessment on engagement and spatial ability is 
pertinent. Furthermore, because proper differentiation and teaching 
methodology can be beneficial for student learning and motivation 
(Amerstorfer and Münster-Kistner, 2021; Schmidt et al., 2016; Kong, 
2021; Smedsrud et al., 2024; Zeng et al., 2016), the identification of 
differentiation needs is important for improving future STEM 
education and outcomes, in particular for underserved student groups 
(e.g., with higher spatial ability than verbal/mathematical abilities).

“Basic science indicates that students throughout the ability range 
could profit from spatial ability assessments and the provision of 
educational opportunities aimed at developing spatial ability” 
(Wai et al., 2009, p. 818)

Furthermore, low spatial ability can form a barrier between novice 
and expert STEM achievement (Dawson, 2019), because spatial ability 
is central for STEM learning for novices. After more subject-specific 
expertise develops, drawing on specific knowledge tends to replace the 
need for general spatial reasoning, thus reducing the reliance on 
spatial abilities (Dawson, 2019). Accordingly, low spatial ability can 
act as a barrier due to loss of learning and motivation for a STEM 
novice with lower spatial ability, which never reaches the expertice 
level where spatial ability no longer matters as much. Furthermore, 

females generally score somewhat lower than males on spatial ability 
tests (Levine et al., 2016), turning this into a potential gender barrier 
as women are underrepresented in STEM careers (González-Pérez 
et al., 2020).

Fortunately, spatial ability is malleable (Uttal et al., 2013), and 
numerous interventions have been implemented for improving it. 
These interventions have traditionally focused on developing specific 
spatial abilities, often through video or digital gaming environments 
(Uttal et  al., 2013). More recently, the focus has shifted towards 
interventions that may develop spatial abilities concurrently with 
STEM subject learning (Munoz-Rubke et al., 2021; Plummer et al., 
2022) to avoid loss of valuable school lesson time (Stieff et al., 2018). 
One of the most promising avenues for such interventions is making 
activities where students design and make STEM-relevant physical 
artefacts. Several studies on such interventions have found that 
students use and improve their spatial abilities/skills (Bhaduri et al., 
2019; Falloon et al., 2020; Guo et al., 2022; Mercan and Kandır, 2022; 
Munoz-Rubke et al., 2021; Ramey et al., 2020; Simpson and Kastberg, 
2022; Smith, 2018; Trumble and Dailey, 2019), in addition to 
increasing their engagement and enjoyment (Konstantinou 
et al., 2021).

Spatial ability is central to STEM learning, and spatial ability-
based differentiation may facilitate increased STEM learning and 
engagement. Thus, the current study aims to develop a scale to identify 
differentiation needs based on individual differences in spatial ability 
and student engagement. To address the differentiation needs 
identified by this scale, we discuss the potential for making activities, 
as these activities are STEM-relevant, increase student engagement, 
and show promise regarding spatial ability improvement.

1.1 Spatial ability

Spatial ability can be defined in several ways, such as a “skill in 
representing, transforming, generating, and recalling symbolic, 
non-linguistic information” (Linn and Petersen, 1985, p. 1482) or “the 
ability to generate, retain, retrieve, and transform well-structured 
visual images” (Lohman, 2013, p. 98).

Spatial ability originated from psychometric testing as a spatial 
factor separate from general intelligence (Mohler, 2008; Malanchini 
et al., 2020). This spatial factor was divided into several key aspects 
such as spatial visualisation, mental rotation, perspective taking, and 
embedding/field independence (Ramful et  al., 2017; Hawes et  al., 
2015). Internal imaging/spatial visualisation is tied to visualising 
different objects and how they are connected, which is also closely tied 
to doing the corresponding practical task – such as paper folding 
(Castro-Alonso and Atit, 2019). Mental rotation in 2D or 3D deals 
with rotating shapes in the mind to see how they look from other 
angles (Castro-Alonso and Atit, 2019), while perspective taking is 
connected to visualising situations from other points of view and 
putting oneself in another position (rotating or moving the visualised 
self) (Kozhevnikov and Hegarty, 2001). Lastly, embedding/field 
independence is related to identifying the relevant visual information 
and is tied to the coherence principle – that higher spatial ability 
makes it easier to overlook redundant information (Castro-
Alonso, 2019).

There have been varied approaches to understanding spatial 
abilities, each providing a unique contribution (psychometric, 
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developmental, differential, and information processing), making it 
clear that this is a multifaceted set of complex cognitive abilities 
(Mohler, 2008). Accordingly, there has been a development towards 
multidimensional models for spatial ability, with a set of separate but 
correlated skills. The factors of spatial visualisation, mental rotation, 
perspective taking, and embedding/field independence arose from 
the bottom-up factorial analysis of cognitive tests; however, a more 
top-down theoretical approach has been sought to increase 
understanding of the cognitive processes involved (Buckley et al., 
2018). From a cognitive neuroscience point of view, a theoretical 
quadrant model proposed by Uttal and colleagues (Uttal et al., 2013; 
Newcombe and Shipley, 2015) argues that the construct can 
be divided along two orthogonal axes, namely extrinsic/intrinsic and 
static/dynamic. The intrinsic/extrinsic axis denotes whether the 
spatial information refers to an individual object or relations 
between several objects or frames of reference, and the static/
dynamic axis denotes whether there is motion involved (Uttal 
et al., 2013).

The most common spatial ability tests mainly assess the intrinsic-
dynamic quadrant, which does not represent what is needed in real-
world problem-solving contexts (Ramey et al., 2020). More recent 
developments argue for including all quadrants in assessment 
(Ramey et  al., 2020), which the developed scale seeks to do. 
Furthermore, the different spatial ability factors (spatial visualisation, 
mental rotation, perspective taking, and embedding/field 
independence) have demonstrated varying significance for different 
STEM areas (Buckley et al., 2022). To address these results in our 
scale, we intend it to be one-dimensional, capture the commonality 
between the four factors, and be  broad enough to be  useful for 
different STEM areas.

1.1.1 Malleability and making
Increasing spatial ability through interventions is possible, with 

Uttal et al. (2013) review identifying an overall effect size of 0.47. Their 
meta-analysis investigated interventions that aimed at increasing 
spatial ability through video games (12%), courses (21%), and spatial 
task training (67%). Moreover, transfer effects of these interventions 
were present, as training in spatial ability within one quadrant had 
positive effects on spatial abilities within another quadrant (Uttal 
et al., 2013). Furthermore, a recent study found that a curriculum 
designed to improve spatial ability also improved verbal reasoning and 
that spatial cognition gains predicted and mediated verbal reasoning 
improvement (Cortes et  al., 2022). These findings were further 
substantiated by fMRI-observed neural changes that predicted and 
mediated learning transfer. The results also support the in-school 
development of spatial abilities (Cortes et  al., 2022), which are 
currently lacking (National Research Council and Geographical 
Sciences Committee, 2005; Newcombe, 2017; Wai and Uttal, 2018) 
and that such improvements in spatial ability may also be transferable 
to verbal reasoning.

Recent research on spatial ability has investigated whether 
classroom-based interventions can increase students’ spatial ability 
with a more naturalistic rather than laboratory approach. Several of 
these studies used makerspace or making/engineering activities in a 
classroom setting, where students design and make STEM-relevant 
artefacts, to investigate the presence/need for spatial ability and its 
malleability (Bhaduri et al., 2019; Falloon et al., 2020; Guo et al., 2022; 
Mercan and Kandır, 2022; Munoz-Rubke et al., 2021; Ramey et al., 

2020; Simpson and Kastberg, 2022; Smith, 2018; Trumble and 
Dailey, 2019).

Observational and correlational studies have been conducted to 
identify a connection between making activities and spatial ability. 
Recent studies identified spatial reasoning in making activities in 
non-formal and formal educational settings, respectively (Simpson 
and Kastberg, 2022; Falloon et al., 2020). Falloon et al. (2020) found 
several instances of young students (5–8 years) needing/using 
mathematical knowledge in a makerspace program. These instances 
were connected to a 3D app to improve several skills, e.g., spatial 
awareness. In making activities, 3-D design and printing are 
prominent, and several studies have investigated the relation between 
such activities and spatial skills. One study’s findings highlight that 
students negotiate visualisation skills as they move between digital 
and non-digital technologies by manipulation through digital 3-D 
modelling, mental rotation, and mental representation (Smith, 2018). 
Whereas another study investigating a 3D modelling/printing 
summer school found that when curricular coherence is emphasised 
as a design goal and providing students with multiple avenues for 
engaging in 3D modelling, it can help to provide youth with 
opportunities to develop their spatial thinking skills (Bhaduri 
et al., 2019).

Furthermore, Ramey et al. (2020) found that students participating 
in school-based making activities engaged in frequent and diverse 
spatial reasoning. The students’ spatial reasoning developed over time 
and led to learning. The most frequent quadrant (according to the 
quadrant model) was extrinsic-static skills (57%), followed by 
intrinsic-static (24%), extrinsic-dynamic (11%), and intrinsic-
dynamic skills (8%) (Ramey et al., 2020). It is important to consider 
that most spatial ability tests primarily measure intrinsic-dynamic 
skills, such as 2D/3D rotation and paper-cutting tests. However, it is 
necessary to have a more comprehensive method of identifying 
students’ spatial abilities that includes other relevant aspects in real-
world problem-solving situations. Therefore, the current study aims 
to create a scale that includes items from all four spatial 
ability quadrants.

Moreover, several recent studies have investigated whether 
making activities can improve spatial ability, with promising results. 
Trumble and Dailey (2019) found that students participating in a 
STEM camp driven by maker pedagogy improved their spatial 
abilities significantly. Later studies included control groups in their 
design and found that 3D design can improve students’ spatial 
ability and that there was no significant difference in how 
considerable the improvement was for high/low initial spatial 
ability, i.e., both groups improved about the same (Guo et al., 2022). 
Other controlled studies identified improvement in visual–spatial 
reasoning skills in children (5–8 y) after a makerspace education 
program (Mercan and Kandır, 2022) and that making activities 
involving mechanical problem-solving improved students’ spatial 
ability by directly engaging with STEM content (Munoz-Rubke 
et al., 2021).

Because schools underemphasise spatial ability (Ramey et al., 
2020), spatial ability is not stimulated to be  developed as 
mathematical or verbal abilities are stimulated through specific 
mathematics and language subject teaching. This lack of focus may 
be one of the reasons why spatial ability is found to be so malleable 
through specific interventions, because spatial ability is not developed 
in schools. So that when comparing spatial ability gains between 
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students in an intervention to students only participating in ordinary 
schooling, the difference between the two groups is large. There is a 
need to address how to stimulate the development of spatial abilities 
through school-based interventions, due to this untapped potential. 
Such an intervention could be making activities that demonstrate the 
potential for increasing spatial ability in addition to engagement 
(Konstantinou et al., 2021) and learning (Flø, n.d., In review), as will 
be discussed in section 5.2.2.

1.2 Spatial ability connected to STEM

“Visual–spatial ability is a multifaceted component of intelligence 
that has predictive validity for future achievement in STEM 
occupations” (Andersen, 2014, p.114). In a recent study, the 
combination of mental folding (intrinsic-dynamic) and spatial scaling 
(extrinsic-static) accounted for 8% of the variance in science scores for 
children aged 7–11 years (Hodgkiss et al., 2018). This indicates the 
relationship between spatial abilities and STEM holds for young pupils 
using the quadrant model, namely the division of spatial ability into 
two axes, i.e., extrinsic/intrinsic and static/dynamic (Hodgkiss 
et al., 2018).

This connection is further substantiated by analysing decades of 
longitudinal research, showing that spatial ability has a robust 
influence on STEM domains (Wai et al., 2009). Spatial abilities add 
incremental validity beyond SAT-Mathematical and SAT-Verbal 
scores in predicting selected STEM criteria such as level of STEM 
education and STEM career choice (Wai et al., 2009), thus implying 
that students with different ability profiles, but relatively higher 
spatial abilities, could benefit from identification and intervention 
based on spatial ability criteria. The size of the association between 
different STEM fields and spatial ability is generally not apparent. 
However, a moderate association between spatial and mathematical 
skills independent of grade level and gender (r = 0.36) has been 
identified (Atit et al., 2021). Additionally, fluid reasoning and verbal 
skills mediated the relationship, but a unique relation between the 
spatial and mathematical skills remained. However, because this 
study was correlational, no conclusions on causality could be made. 
One study investigating the causality between improving spatial 
ability and STEM improvement (i.e., transfer from spatial ability 
training to STEM achievement) found that college students who 
received a spatial skills training course improved their STEM 
outcomes as well as showed increased female retention in engineering 
compared to students who did not receive the course (Sorby 
et al., 2018).

A recent review had mixed findings regarding the impact of 
spatial ability on science achievement (Chen et al., 2020). They argue 
that there seems to be an expert/novice effect where the experts no 
longer require spatial skills to solve specific tasks but instead use 
domain-specific knowledge. In contrast, the novices have yet to learn 
domain-specific knowledge and are thus more dependent on the 
general spatial skills needed to reason their way to a solution. It is 
further argued that certain STEM areas are only connected to a subset 
of spatial abilities (Chen et al., 2020), as also suggested by a cognitive-
neuroscience-informed study where behavioural measures of spatial 
abilities demonstrated different relations to different STEM areas (Li 
and Wang, 2021). Because the scale we wish to develop is meant to 
be used as broadly as possible for non-expert students to aid teachers 

with identifying differentiation needs, a domain-general spatial ability 
approach is sought when designing the scale items.

1.3 Differentiation and engagement

A common understanding that cognitive ability and capacity 
positively correlate with engagement and academic achievement exists 
(Lakin and Wai, 2020). However, some recent studies challenge this 
assumption. A study by Smedsrud (2018) suggests that the opposite 
can be true for the higher end of the cognitive spectrum. Thus, ability 
level and cognitive capacity do not necessarily correlate with 
engagement and academic achievement (Lakin and Wai, 2020). Some 
children may need to receive early academic challenges and 
opportunities for more advanced levels of understanding, to 
experience engagement and to reveal their potential to the 
environment, and not to face an increased risk of underachieving 
compared to their potential (Smedsrud et al., 2024; Steenbergen-Hu 
et  al., 2020). Studies also suggest that teachers find it difficult to 
differentiate their instructions for high-achieving students compared 
with the general student group (Brevik et al., 2018; Rotigel and Fello, 
2004), and thus, these students do not always receive proper cognitive 
challenges in the regular classroom (Diezmann, 2005), and they report 
less support by their teachers than lower ability students 
(Smedsrud, 2018).

Early identification of students’ optimal differentiation levels 
would enable teachers to adapt their instruction to such students. In 
this way, fewer students will potentially underachieve, thus 
increasing the number of students who fulfil their potential. 
Additionally, as a student’s engagement is often linked to feelings of 
mastery, which emerge when given suitably challenging tasks, 
we  argue that early identification could lead to greater STEM 
recruitment if students receive properly differentiated education in 
STEM subjects.

Such engagement outcomes have been the focus of much 
makerspace research (Mersand, 2021), and findings indicate that 
making and makerspace activities generally enhance engagement 
(Konstantinou et al., 2021). Moreover, there is an interaction between 
spatial skills and engagement concerning achievement, as a recent 
study found that students’ spatial skills significantly interact with 
motivation (an aspect of engagement) to predict mathematics 
performance for middle school students (Atit et  al., 2020). Their 
findings underline that achievement is not only due to ability, and 
engagement is also central.

Thus, students with higher levels of engagement can be more 
motivated to work with more advanced STEM material, and vice 
versa, than their spatial ability level would suggest. We  wish to 
incorporate this aspect into the scale and hypothesise that it will 
correlate with engagement as measured by the positive school 
engagement behaviour scale described in section 3.

There is a solid link between spatial ability and STEM achievement 
and career choice, but there is also a need for more spatial ability 
learning opportunities in school. Because makerspace activities 
include spatial thinking and skills and increased spatial ability, in 
addition to increasing student engagement, such activities may 
be beneficial for STEM achievement and recruitment purposes. As 
proper student differentiation is linked to increased motivation and 
engagement, the current study aims to develop a STEM scale to 
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identify individual differentiation needs based on students’ spatial 
ability and engagement levels in combination with their explicit STEM 
knowledge level. This is done to improve STEM learning, recruitment, 
and retention and to inform the instructional practice of making 
activities in STEM lessons in school. In pursuit of this aim, we seek to 
answer the following research questions.

RQ1: Does the proposed self-report STEM scale have acceptable 
psychometric properties in terms of (a) internal structure, (b) 
difficulty, (c) measurement precision, and (d) measurement 
invariance with respect to gender?

RQ2: How does the underlying general factor of the STEM scale 
relate to spatial ability (intrinsic-dynamic) and self-reported 
school engagement behaviour, and what are the implications for 
the educational practice of making activities?

2 Materials and methods

2.1 STEM scale design

We started by generating 22 qualitative items describing specific 
STEM skills based on the classical sub-factors of spatial ability, namely 
spatial visualisation, mental rotation, perspective taking, and 
embedding/field independence (Ramful et  al., 2017; Hawes et  al., 
2015). These 22 items can be found in Appendix A and consist of 
STEM skills regarding:

	•	 Spatial visualisation: Connecting graphs to functions and 
fractions’ relation to the number line.

	•	 Mental rotation: Checking whether two molecules are mirror 
images or not, also tied to constructing objects and putting things 
together (design-based STEM).

	•	 Perspective taking: Reading maps, following directions, or 
understanding movement in mechanical systems and anatomy.

	•	 Embedding/field independence: Finding relevant information in 
graphs and tables or multimodal representations.

Two independent experts were recruited based on their extended 
experience within spatial ability and STEM education and research to 
evaluate the items for theoretical suitability. All 22 items were 
approved by the experts. However, the exploratory multidimensional 
IRT calculations assessing dimensionality of the scale demonstrated 
that there was no single factor for the 22 items. To obtain the aim of 
constructing a one-dimensional scale tapping into the general spatial 
ability construct, the experts suggested a re-evaluation of the items 
with regard to theory. The authors evaluated all items theoretically, 
this time concerning a more explicit connection between spatial 
ability and STEM skills, which reduced the items to 10. This reduction 
in item number was then approved by the experts.

We also considered a study that combined astronomy and spatial 
ability, in which an intervention focusing on lunar phases and the 
seasons improved students’ perspective-taking and spatial thinking 
within astronomy (Plummer et al., 2022) when constructing items. 
Due to this connection, we included seasons and lunar astronomy 
items in the preliminary scale. However, exploratory psychometric 
calculations excluded the seasonal item as it was too similar to the 

lunar item. Such redundant items should be  eliminated in the 
development process so that the final scale contains sufficiently 
distinct items and does not artificially inflate reliability levels 
(Carpenter, 2018). Since we wished to develop a one-dimensional 
scale to cover the broader construct of spatial ability translated into 
STEM skills, the items needed to have about the same amount of 
similarities/differences to each other, i.e., all items needed to share a 
similar amount of variance with the remaining other items. The 
resulting scale thus consisted of 9 items.

These 9 items can be  placed within the quadrant model 
framework (Uttal et  al., 2013; Newcombe and Shipley, 2015); see 
Table 1. We found that all four quadrants were represented by these 9 
items, as opposed to the classical pencil and paper tests, which mainly 
focus on the intrinsic-dynamic quadrant, which is not representative 
of the diversity of spatial skills needed in real-world settings (Ramey 
et  al., 2020). This process of operationalising spatial ability into 
qualitative statements connected to STEM achievement and further 
refining the selection of items based on exploratory calculations and 
theoretical refinement caused the content to move into a broader 
construct in line with real-world classroom applications. This is in line 
with our aim of creating a unidimensional scale for STEM 
differentiation needs based on a broad spatial ability construct, rather 
than a spatial ability test to directly assess students’ skill level for 
each quadrant.

The participants answered the items on a five-point Likert scale, 
with the categories “Very poor fit,” “Somewhat poor fit,” “Neutral,” 
“Somewhat good fit,” and “Very good fit.” These categories were 
initially coded as 1, 2, 3, 4, and 5, respectively.

2.2 Other measures

The spatial reasoning instrument (SRI) (Ramful et al., 2017) was 
designed to assess spatial reasoning abilities in children. The SRI 

TABLE 1  An overview of the items in the STEM scale and which of the 
quadrants they belong to.

Items Quadrant

1. I am good at understanding coordinate systems. Intrinsic-static

2. I am good at finding what is important in tables or 

graphs.

Intrinsic-static

3. It is easy for me to find what is important in a text. Intrinsic-static

4. I understand what different molecules look like. Intrinsic-dynamic

5. I can easily understand the connection between a 

fraction and the number line.

Extrinsic-static

6. I am good at understanding the connection 

between a graph and its corresponding formula.

Extrinsic-static

7. I am good at making the right connections in 

electrical circuits.

Extrinsic-dynamic

8. I understand why the backside of the moon is 

always facing away from the Earth.

Extrinsic-dynamic

9. I am good at understanding what we are supposed 

to do in science experiments.

All categories, but 

dependent on the specific 

experiment

https://doi.org/10.3389/fpsyg.2025.1545603
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Flø and Smedsrud� 10.3389/fpsyg.2025.1545603

Frontiers in Psychology 06 frontiersin.org

consists of 30 multiple-choice tasks aimed at measuring different 
aspects of spatial ability. These aspects involve mental rotation, spatial 
visualisation, spatial orientation, and spatial relations (Ramful et al., 
2017). The latter is a description of the relations between the three 
former. The scale was constructed to assess middle school students’ 
spatial ability and shows robust psychometric properties in terms of 
validity and reliability (Ramful et al., 2017).

The Positive School Engagement Behaviour (PSEB) subscale aims 
to identify students’ positive engagement behaviour in school (Skinner 
et al., 2009). It has been validated for use in a Swedish school context 
(Ritoša et al., 2020), which is quite similar to the Norwegian context 
and language in the current study context. The PSEB subscale consists 
of five items, which are scored on a four-point Likert scale.

2.3 Participants

The first sample consisted of 293 students in grades 5 to 10 
(9–16 years) from a medium-sized semi-rural municipality with one 
small city in the southwest of Norway, with a population of 
approximately 20,000, see Table 2. The second sample consisted of 
242 students in the same age group from a medium-sized suburban 
municipality in the southeast of Norway with a population of 
approximately 40,000, see Table 3. The municipalities were recruited 
based on including rural, urban, and suburban areas that most closely 
represented the corresponding distribution for the whole country. 
Students were recruited through their respective municipalities, and 
whole randomised classes participated. This was done to ensure the 
participation of students of all ability levels, rather than a non-random 
selection of students. The two samples were similar in size and age/
class distribution, but any differences were removed by pooling both 
samples and then randomly splitting them into two groups to 
perform an exploratory and confirmatory model estimation.

We chose to include an age range which covers a period of much 
cognitive development. However, this may not be the case with regard 
to spatial ability because of the lack of spatial ability teaching in schools 
(Wai and Uttal, 2018; Wai and Worrell, 2016), which may hinder its 
further development during the adolescent years. This assumption will 
be checked through a comparison of the descriptive statistics for the 
SRI for this study’s sample with student groups encountering a ceiling 
effect (Harris et al., 2021) and those who do not (Lowrie et al., 2017). 
Moreover, the reading level changes during this period and is important 
to incorporate in scale development (Gorsuch and Venable, 1983), 
which was done through keeping items short and fit for the youngest 
participants while still being relevant for the older participants.

2.4 Data collection

Data was collected through an electronic form of the STEM scale, 
and all items were mandatory so that there were no missing data in 
our dataset.

2.5 Data analysis

We used R version 4.3.1 (R Core Team, 2023) with R studio 
version 2023.12.1 for the statistical analysis and estimated the IRT 
models with the R package mirt (Chalmers, 2012).

2.5.1 Descriptive statistics
We used item-to-total score Pearson correlations and item 

mean scores as an initial screening of item quality. Items with an 
item-to-total score Pearson correlation lower than 0.3 were 
selected for further review. We furthermore estimated Cronbach’s 
α to obtain a lower-bound estimate of the reliability of the 
sum scores.

2.5.2 Dimensionality assessment
We evaluated dimensionality by randomly splitting the entire 

data set into two equal-sized parts: one part for an exploratory 
analysis of dimensionality and one part for a confirmatory analysis 
based on the exploratory results. The data splitting resulted in 
sample A with 268 respondents and sample B with 267 
respondents. Initial analysis revealed that the lowest categories 
were rarely endorsed, and we  thus combined the two lowest 
categories into one. With the recoded data, we performed a full-
information exploratory item response theory analysis with 
sample A by fitting unrestricted item response theory models with 
one and two dimensions and selecting the model with the lowest 
Bayesian Information Criteria (BIC) (Cho et  al., 2016; Kim 
et al., 2019).

2.5.3 Item response theory estimation and 
evaluation

Similar to confirmatory factor analysis models, IRT views the 
construct of interest (i.e., STEM differentiation level) as a latent 
variable that cannot be directly observed. IRT models assume that the 
probability of a participant endorsing an item is a function of two sets 
of parameters. The first is their position on the STEM differentiation 
level continuum (person parameter), and the second is each item’s 
properties (item parameters).

Based on the exploratory IRT analysis results, we  fitted a 
confirmatory IRT model with sample B and evaluated the model and 
item fit. Model fit was assessed with the M2 hypothesis test (Liu et al., 
2016), the root mean square error of approximation (RMSEA), and 
the standardised root mean squared residual (SRMSR) fit statistics. 
We used a significance level of 0.05 for the M2 hypothesis test of 
absolute fit and the cut-off values RMSEA < 0.06 and SRMSR < 0.08 
for good approximate fit (Cai and Monroe, 2014; Maydeu-Olivares 
and Joe, 2006). Item fit evaluation was done with Sχ2 hypothesis tests 
(Kang and Chen, 2008) with a Bonferroni-adjusted overall 
significance level of 0.05 and by graphical evaluation of model-based 
and empirical item category response functions.

TABLE 2  The first student sample by self-reported gender and grade.

Number of 
participants

Male Female Unidentified Grade 5 Grade 6 Grade 7 Grade 8 Grade 9 Grade 
10

293 145 131 17 63 55 26 71 47 31
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2.5.4 Psychometric properties of the STEM scale
We evaluated the measurement properties of the scale using the 

estimated item response theory model. We estimated the reliability 
of the sum scores and IRT ability scores with model-based 
reliability coefficients (Cheng et al., 2012). The scale difficulty was 
evaluated with the expected test score function, which indicates the 
average sum scores for given values of the latent variable. The 
measurement precision of the scale was inferred from the test 
information function.

2.5.5 Measurement invariance
We investigated measurement invariance for gender by first 

fitting a configural model without any restrictions across groups and 
evaluating the model fit. We then fitted a semi-constrained model 
with all item intercepts set equal between the groups. This model was 
then compared against the configural model with a likelihood ratio 
test and a significance level of 0.05. We then fitted a fully constrained 
model with all item slopes and intercepts set equal between the 
groups. This model was then compared against the semi-constrained 
model with a likelihood ratio test and a significance level of 0.05.

2.5.6 Correlations with external variables
To obtain a clear interpretation of the STEM scale scores, 

we  estimated Pearson correlations between the STEM scale latent 
ability scores, the spatial reasoning instrument (SRI) latent ability 
scores, and the positive school engagement behaviour (PSEB) sum 
scores. We adjusted for unreliability with respect to the PSEB sum 
scores by utilising the sum score reliability coefficient, Cronbach’s alpha.

3 Results

None of the nine items of the STEM scale demonstrated a point 
biserial item-total correlation below 0.3. Thus, no items were removed 
from further analysis. We employed an exploratory dimensionality 
analysis where a fully unrestricted graded response unidimensional 
IRT model was estimated. To check for unidimensionality, a graded 
response model with two dimensions was also estimated and 
compared to the unidimensional model. According to the BIC, the 
best model was the unidimensional model (BIC = 5,715) compared to 
the two-dimensional model (BIC = 5,966).

We further inspected visual item fit by trace plots to evaluate if 
categories should be  collapsed to better fit the data. The plots 
demonstrated substantial overlaps between the first two categories. 
Therefore, it was decided to collapse the first two categories into only one, 
as there was no theoretical reason to keep all five categories. The two 
combined categories were named “Very poor fit” and “Somewhat poor 
fit” and were coded as 1. The other categories were named “Neutral,” 
“Somewhat good fit,” and “Very good fit,” and were coded as 2, 3, and 4, 
respectively.

The confirmatory model evaluation also collapsed the first two 
categories into one before the computation of the item mean, M = 21.4, 

standard deviation, SD = 6.46, and Cronbach’s α = 0.88. Item mean 
and item-total score correlations are given in Table 4.

Furthermore, we performed a model evaluation based on the 
model from the first sample with a confirmatory analysis. The 
unidimensional model from the exploratory analysis was applied to 
the second dataset from the combined sample. The assessed model-
data fit by the M2-statistic, provided the values RMSEA = 0.031 [90% 
CI = (0, 0.079)], SRMR = 0.052, TLI = 0.98 and CFI = 0.99, 
demonstrating good fit (Maydeu-Olivares, 2013). The equality of 
model versus data sum score distribution was estimated, resulting in 
a value of 0.88, which demonstrates an acceptable fit (Maydeu-
Olivares, 2013). The estimated reliability of the EAP (expected a 
posteriori) ability estimates were also calculated (Bock and Mislevy, 
1982), resulting in an acceptable value of 0.89 (Maydeu-
Olivares, 2013).

The S-χ2 test of item fit was performed to evaluate the fit of the 
individual items, where the Bonferroni corrected value of the 
probability was p = 0.0056 (for a confidence level of 5%). This value is 
very conservative, so we  considered any items with p > 0.007 to 
demonstrate adequate fit. As shown in Table 5, all items demonstrated 
adequate fit.

TABLE 3  The second student sample by self-reported gender and grade.

Number of 
participants

Male Female Unidentified Grade 5 Grade 6 Grade 7 Grade 8 Grade 9 Grade 
10

242 113 113 16 22 20 19 70 109 2

TABLE 4  The item means, item-total score correlation (pBIS), and internal 
consistency (α) if the item is deleted.

Item Item mean pBIS α if deleted

1 2.48 0.64 0.86

2 2.59 0.61 0.87

3 2.14 0.68 0.86

4 2.15 0.65 0.86

5 2.12 0.53 0.87

6 2.43 0.53 0.87

7 2.33 0.70 0.86

8 2.63 0.66 0.86

9 2.51 0.61 0.87

TABLE 5  The results of the S-χ2 test of item fit.

Item χS- 2 χS- 2 probability

1 39.37 0.281

2 42.38 0.127

3 37.91 0.218

4 27.25 0.660

5 40.59 0.171

6 52.74 0.147

7 33.49 0.218

8 23.66 0.699

9 38.31 0.322
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We then visually evaluated item fit by inspecting item trace 
plots to check for non-overlap in categories, and no overlaps 
were identified. Examples of item trace curves are shown in 
Figure 1.

Further, item fit was inspected visually by making empirical plots 
for each item, as shown in Figure 2. No items demonstrated poor fit 
due to large differences between the model estimated probability 
curves and the empirical data.

To evaluate differential item functioning and check for invariance 
with regard to gender, we used the Lavaan package version 0.6.16 
because the IRT analysis with two groups did not converge for the 
fully unrestricted model. First, we estimated a configural model (i.e., 
all parameters estimated freely in both gender groups), model 1. This 
was compared to model 2, which was estimated with restricted 
intercepts between the two groups by a likelihood-ratio test. The test 
resulted in a p-value = 0.95, demonstrating metric invariance for 

FIGURE 1

Examples of item trace curves are shown for items 1 and 3. The curves show the probability for endorsing one category for each item based on the 
value of the underlying trait, θ, assessed by the STEM scale.

FIGURE 2

Examples of empirical plots are shown for items 7 and 8. The plots are visual impressions of how close the empirical data points are to the theoretically 
estimated model for each answer category for each item based on the value of the underlying trait, θ, assessed by the STEM scale.
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gender. At last, model 2 was compared to model 3 with a likelihood-
ratio test, estimated with restricted intercepts and slopes. This test 
resulted in a p-value = 0.51, also demonstrating scalar invariance 
for gender.

The test characteristic curve and the test information curve were 
computed and are shown in Figure 3.

The SRI-scale (Ramful et al., 2017) for spatial ability estimation 
produced a mean value of M = 15.35 out of 30 possible points, 
standard deviation of SD = 5.72, and internal consistency of 
α = 0.83. These mean and SD values were lower than for a group 
of Australian 11-year-olds (Lowrie et al., 2017), which indicate 
that ceiling effects were not an issue even though the age range in 
the current study was quite large. A unidimensional 2PL model fit 
the data best based on likelihood ratio tests (based on lowest BIC 
indices) of 2PL models with one and two dimensions, as well as 
3PL models with one and two dimensions, which did not converge. 
The assessed model-data fit by the M2-statistic, provided the 
values RMSEA = 0.022 [CI = (0.008, 0.031)], SRMSR = 0.053, 
TLI = 0.98 and CFI = 0.98, demonstrating a good fit (Maydeu-
Olivares, 2013).

We found the Pearson correlation of the latent variables 
(EAP) estimated from the best-fitting models for both the STEM 
scale and the SRI. This resulted in a correlation of 0.28 
(p = 1.4e-06).

The positive school behaviour engagement scale with a 4-point 
Likert-type scale ranging from 1 (not at all true) to 4 (very true) 
(Skinner et al., 2009) produced a mean value of M = 13.62 out of 
20 possible points, SD = 3.69, and Cronbach’s α = 0.83. No suitable 
measurement models were identified by either IRT or factor 
analysis, causing us to use latent scores (EAP estimated) for the 
STEM scale and sum scores for the engagement scale for 
correlation check, correcting for attenuation only for the 
engagement scale. This resulted in a correlation of 0.51 when 
corrected for attenuation and 0.46 when not corrected for 
attenuation (p < 2.2e-16).

4 Discussion

We address the psychometric properties of the STEM scale first 
(RQ1) before we go on to issues relating to construct validity and 
implications for educational practice (RQ2).

4.1 Research question 1

Does the proposed self-report STEM scale have acceptable 
psychometric properties in terms of (a) internal structure, (b) 
difficulty, (c) measurement precision, and (d) measurement invariance 
with respect to gender?

The internal structure measures how well the individual items and 
their relationships adhere to the description of the underlying 
construct being measured (Rios and Wells, 2014). We assessed this in 
several ways, beginning with Cronbach’s a, which is a measure of the 
proportion of the latent variable variance to total score variance 
(Crocker and Algina, 1986) and the IRT equivalent measure of a 
model-based reliability coefficient, namely the expected a-posteriori 
reliability (Brown, 2018). The reliability coefficients were 0.88 and 
0.89, considered acceptable, although over 0.90 would be preferable 
(Boateng et al., 2018). However, according to Carpenter (2018), very 
high reliability coefficients may indicate that individual items in the 
scale are too similar so that the items do not tap into distinct aspects 
of the underlying construct, and the resulting scale describes a very 
narrow interpretation of the construct. Because we wanted to avoid a 
very narrow interpretation of spatial ability, to include items from all 
four quadrants of the quadrant model (Uttal et al., 2013; Newcombe 
and Shipley, 2015), these reliability coefficient values indicate a 
sufficiently broad construct being assessed by the STEM scale.

Another important aspect of internal structure assessment is how 
well the individual items fit with the other items and the overall 
measurement model. To assess whether each item fits in with the other 
items in the scale, we inspected their classical item-total correlations, 

FIGURE 3

The test characteristic curve (i.e., the expected test score function) and the test information curve for the STEM scale, where Theta (θ) is the normalised 
latent variable for the ability level assessed by the STEM scale.
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which examine to what extent the items tap into the same construct 
(Boateng et al., 2018). These values should be at least 0.30 (Boateng 
et al., 2018). The STEM scale’s item-total correlations were all in the 
range of 0.53–0.70. Having very similar item-total correlations across 
all items can ensure that the underlying latent construct is 
one-dimensional in an IRT analysis and that all items have similar 
relevance for the construct. However, if these values are all similar but 
very high, there is a risk of inflating the reliability coefficients by 
measuring a construct that is too narrow. From the item-total 
correlation values in our analysis, it seems likely that the need for 
balancing these correlations being similar, yet not too high, was fulfilled, 
as the reliability coefficients indicated a broader one-dimensional 
underlying construct. We identified the STEM scale as one-dimensional, 
implying that all nine items tap into one broad underlying construct.

Lastly, to assess how well the individual items fit with the 
estimated IRT model, we did a visual inspection of the item trace 
curves, which show the logistically modelled relationship between the 
level of the latent construct of the scale and the probability of 
endorsing each of the alternative answers (Edelen and Reeve, 2007), 
and the empirical plots which are a logistic parallel to scatter plots for 
linear regression (Kalinowski, 2019). In addition, we performed an 
S-χ2 test in which each item was checked for functioning consistent 
with the pattern predicted by the estimated IRT model (Kang and 
Chen, 2011). Because all these assessments yielded acceptable results, 
the internal structure of the STEM scale was deemed satisfactory.

The difficulty of the STEM scale was assessed through the expected 
test score function in Figure 3, which indicates the average test sum 
scores for different levels of the latent variable, i.e., how high the ability 
level needs to be to achieve a specific score (Edelen and Reeve, 2007). 
Measurement precision was assessed through the test information 
curve, which is a plot of how informative the test is based on the ability 
level of those tested, and this is inversely related to the standard error 
in such a way that estimated scores are most reliable when test 
information is high (Hambleton and Cook, 1977). Both plots in 
Figure 3 indicate that the STEM scale is most useful to identify students 
who are not very far below or above the mean, i.e., ±2SD (which equals 
95% of all students). Both curves are, however, somewhat shifted to the 
right of the mean so that the scale provides a more precise score 
estimation of above-average than below-average scores. Nonetheless, 
this effect is minimal, and we argue that it does not detract from the 
scale’s usefulness in identifying students with below mean scores.

In invariance testing, the goal is to compare whether a scale or 
items in the scale are understood or endorsed differently across 
different groups (Boateng et al., 2018). If there is both metric and 
scalar measurement invariance, the groups can be compared with 
regard to the latent variable using the scale in question (Rios and 
Wells, 2014). Because we  identified both metric and scalar 
measurement invariance with respect to gender, the STEM scale can 
be used to compare male and female scores regarding their need for 
differentiation level in STEM teaching.

4.2 Research question 2

How does the underlying general factor of the STEM scale relate 
to spatial ability (intrinsic-dynamic) and self-reported school 
engagement behaviour, and what are the implications for the 
educational practice of making activities?

4.2.1 Spatial ability, engagement, and the STEM 
scale

We aimed to develop a one-dimensional scale based on a broad 
understanding of spatial ability where all four quadrants of the 
quadrant model were represented (Uttal et al., 2013; Newcombe and 
Shipley, 2015). The results show that the nine STEM scale items cover 
all four quadrants (as reported in Table 1) and are best represented by 
only one dimension. Moreover, different spatial ability instruments 
within the same quadrant (but not measuring the same aspect of 
spatial ability) typically correlate between 0.22 and 0.45 and upwards 
based on seven studies with multiple correlations reported by Castro-
Alonso and Atit (2019). The STEM scale correlated 0.28 with the SRI 
scale for spatial ability assessment (which only taps into the intrinsic-
dynamic quadrant). This means that the nine qualitative statements of 
the STEM scale correlate with spatial ability at almost comparable 
levels to more traditional test instruments, whilst simultaneously 
tapping into a broader spatial ability construct based on the quadrant 
model. Spatial ability tests typically do not assess three of the 
quadrants (namely, extrinsic-dynamic, extrinsic-static, and intrinsic-
static). However, they are important for real-world applications, such 
as making activities (Ramey et al., 2020). Therefore, the broad spatial 
ability construct of the STEM scale could be  especially useful for 
such applications.

Because engagement is associated with achievement and retention 
in school (Finn and Zimmer, 2012; Moubayed et al., 2020; Piscitello 
et  al., 2022), we  also wanted to base the STEM scale on positive 
engagement as measured by the PSEB scale (Skinner et al., 2009). The 
correlation was 0.51 when corrected for attenuation and indicates a 
substantial overlap between the assessed construct by the STEM scale 
and the PSEB scale. So, while either a very high or very low score on 
the STEM scale implies both high or low spatial ability and 
engagement for the student, a more moderate score will mean that 
either both spatial ability and engagement scores are medium, or that 
one may be  high while the other is low. At first, this may seem 
problematic, but the differentiation needed for all three combinations 
may be quite similar due to the interaction between spatial ability and 
engagement for educational outcomes.

However, if engagement scores are very low and STEM scale 
scores are quite high concurrently, one could suspect that the student 
has very high spatial ability. This should be carefully considered as 
such a lack of engagement is linked to underperforming and risk of 
school drop-out (Finn and Zimmer, 2012; Piscitello et al., 2022). In 
this case, although it can be argued that the lower STEM scale score 
indicates a need for differentiation towards the lower part of the 
spectrum, somewhat more complex material is needed (Smedsrud 
et al., 2024). Students could also be given the PSEB subscale to identify 
their engagement level to disentangle the origin of medium STEM 
scale scores. Because this is only a five-item scale, it will not be much 
more time-consuming than giving the nine-item STEM scale to 
students. Moreover, some countries can have concerns with ability 
testing, which are omitted by combining the STEM scale and the PSEB 
subscale instead.

4.2.2 Making activities as practice for 
differentiation

The developed STEM scale demonstrates good psychometric 
properties and correlations with spatial ability and engagement as 
hypothesised. As argued above, it can be used to identify differentiation 
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levels in STEM subjects. Such a differentiation can be done in diverse 
manners, and we will discuss implications for using making activities 
due to their strong connection with spatial ability and increased 
student engagement.

Making activities can be differentiated by varying the openness of 
the task, i.e., how much structure and scaffolding is provided by the 
written materials for students (Flø and Zambrana, n.d., In review). 
These can range from purely open conditions where students explore 
without boundaries to recipe-like step-by-step walk-throughs of the 
task. Excluding the extreme points on the scale of the openness of the 
written materials, the rest of the spectrum can be used as a means of 
differentiation (Flø and Zambrana, n.d., In review), where those 
students scoring high on the STEM scale may be  provided with 
somewhat less scaffolded materials. Furthermore, the instruction by 
teachers can, to a lesser degree, be varied to facilitate differentiation, 
as it was found that in most cases, even gifted students required 
teaching of STEM concepts to connect the design and making of the 
physical artefacts with more theoretical STEM content (Flø and 
Zambrana, n.d., In review). Proper differentiation may increase 
feelings of mastery, and as making activities generally increase 
engagement and enjoyment (Konstantinou et al., 2021), this effect can 
be reinforced in a making environment. Such an effect can facilitate 
students’ motivation to engage with more difficult learning material, 
as ability and motivation interact to predict STEM achievement (Atit 
et al., 2020). Thus, potentially increasing STEM learning as a result.

Making activities can also act as a way of differentiating for 
students with higher spatial ability than verbal/mathematical ability, 
who do not have a particular offer in a more classical school STEM 
approach (Wai and Uttal, 2018; Wai and Worrell, 2016). These students 
are more at risk for drop-out, greater academic troubles, and 
behavioural troubles (Lakin and Wai, 2020), so that the increased 
valuation of their spatial talents and feelings of mastery induced by 
proper differentiation may benefit such students. There is also a 
gender perspective to these students, as one of the most consistent 
findings regarding gender differences within cognitive science/
psychology research is that average male spatial ability test scores are 
better than the average for females (and vice versa for verbal ability), 
although this has recently been somewhat contested due to suggested 
gender bias when constructing mental rotation spatial ability tests 
(Bartlett and Camba, 2023). However, if these gender differences are 
not purely bias-caused, they suggest that identifying students with 
above-average spatial abilities followed up by an intervention with a 
similar focus could result in a positive impact for males in particular. 
Because males are overrepresented in several negative life outcome 
statistics, such as school dropout rates in several countries (Greene 
and Winters, 2006; Pekkarinen, 2012), increased differentiation in 
school could benefit engagement, thus reducing school dropout rates. 
On the other hand, because lower spatial ability can act as a barrier to 
STEM learning (Dawson, 2019), an intervention targeted towards 
increasing this ability can positively impact females’ learning and 
interest in STEM. Differentiated making activities could be  an 
appropriate intervention for both increasing spatial ability and the 
valuation of such abilities.

Moreover, making activities can increase spatial ability in a 
curriculum-friendly way so that valuable classroom time is not lost to 
specific, non-relevant spatial ability interventions. Students also learn 
STEM from such activities if designed to do so (Falloon et al., 2020; 
Litts et al., 2017; Peppler and Glosson, 2013). Stieff et al. (2016) argue 

that interventions targeting representational competence may 
be  advantageous over training generic spatial ability, and another 
study found that more life-like representations lead to better learning 
(van der Meij and de Jong, 2006). As making activities consist of 
working with physical artefacts, i.e., the most life-like representations 
available, this could be  beneficial for STEM learning, as long as 
representational competencies are addressed as part of the activity. As 
such, a more naturalistic, contextualised, and educationally relevant 
spatial ability training would not be time away from the curriculum 
when spatial ability can be improved through directly STEM-relevant 
maker activities (Munoz-Rubke et al., 2021), indicating a benefit over 
a more traditional approach to spatial ability training interventions.

To summarise, the major contribution of the STEM scale to the 
field is threefold. First, that it correlates with spatial ability at a level 
almost comparable to spatial ability tests is particularly important for 
its use in countries where ability testing is uncommon. In such 
countries, the STEM scale can be used to gain some information on 
spatial ability and assess differentiation needs, if an engagement scale 
is used concurrently to control for the engagement part of the STEM 
scale. The second major contribution of the STEM scale is that it taps 
into all four quadrants of the quadrant model for spatial ability, which 
is broader than most other pen-and-paper spatial ability assessments. 
Because the spatial abilities associated with the less common 
quadrants are particularly useful in real-life situations, the scale is 
potentially more useful for such situations than existing instruments. 
An example of such real-life educational situations is making activities, 
which seem to be  a particularly beneficial type of spatial ability 
developing intervention in schools. The third major contribution of 
the STEM scale is its suitability to identify differentiation needs in 
STEM based on spatial ability, because receiving suitably difficult 
STEM tasks can facilitate both engagement and achievement for 
students with higher levels of spatial ability than verbal or 
mathematical abilities. This is a central contribution because such 
students are generally more likely to underachieve and drop out of 
school, and identifying them must be  done if they are to receive 
properly differentiated STEM education.

5 Limitations of the study

Regarding the joining of answering categories, this scale is 
validated based on providing five answering alternatives to students 
and, in later analyses, joining two of them. Thus, it cannot directly 
be inferred that these categories can be joined in the scale given to 
students, and we  recommend keeping all five categories for 
data collection.

Some items may be specific to the Norwegian curriculum for the 
age group used for validation. Furthermore, the scale is in Norwegian 
and should thus be validated for other contexts and languages as well. 
Also, there is a need to broaden the population for which the STEM 
scale is validated, as the current study validated the scale for 5th to 
10th graders.

6 Conclusion

The STEM scale demonstrated good psychometric properties, 
which were aligned with our purpose of tapping into one broad 
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spatial ability construct so that it could be relevant to most STEM 
subjects and real-life settings. Construct validity was deemed 
satisfactory based on the scale’s correlations with a spatial ability 
assessment instrument (the SRI) and one engagement scale (the 
PSEB). The scale correlated significantly with both, making it a 
suitable instrument for student differentiation needs, as these needs 
depend on both the student’s ability level and engagement level. To 
address the differentiation needs identified by the STEM scale, 
making activities may be particularly useful due to their general 
ability to increase engagement and allow students to use their spatial 
abilities in more ways than what is typical in school, as well as 
potentially increase spatial ability and STEM learning. Students with 
lower STEM scale scores could benefit from these activities because 
they will generally have lower engagement and spatial ability, which 
can be ameliorated by making activities. Moreover, students with 
high spatial ability can use their talents by designing and making 
STEM-related objects, experiencing feelings of mastery, which are 
central when verbal/mathematical abilities are significantly lower. To 
further address whether students may increase STEM learning 
through making activities and whether such learning can 
be  connected to STEM scale scores will be  investigated in 
future work.

The three major contributions of the STEM scale to the field are 
(1) that it can be used to gain some information on spatial ability levels 
where such testing is uncommon, (2) that it measures a spatial ability 
construct more relevant to real-life situations than most other 
assessments, and (3) that it can be used to identify differentiation 
needs in STEM to increase retainment and achievement.
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