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Background: Health short videos, as an emerging mode of information 
dissemination, play a crucial role in enhancing health awareness and promoting 
healthy behavior among college students. It is crucial to optimize both the 
content and dissemination strategies of these videos to amplify their impact on 
health communication and to enhance the health literacy of this demographic.

Objective: This study aims to construct a comprehensive model to explore 
the key factors influencing the use of health short videos among Chinese 
college students, including perceived usefulness, perceived ease of use, 
and performance expectations, among other factors. The goal is to supply 
theoretical foundations and practical guidance for optimizing health short video 
content and dissemination strategies, thereby enhancing college students’ 
health literacy and quality of life.

Methods: An online survey was conducted among Chinese college students 
to investigate their inclination to acquire health information from health short 
videos. Based on TAM and UTAUT frameworks, a model was constructed to 
examine the factors influencing college students’ adoption of health information 
from health short videos. Through structural equation modeling, the study 
analyzed the impact of health short videos on the information adoption behavior 
of college students.

Results: This study included a total of 296 Chinese college students. Results from 
the structural equation model indicated that perceived usefulness (β = 0.443, 
p < 0.001), perceived ease of use (β = 0.398, p < 0.001), performance expectancy 
(β = 0.434, p < 0.001), effort expectancy (β = 0.456, p < 0.001), social influence 
(β = 0.443, p < 0.001), information quality (β = 0.427, p < 0.001), and perceived 
trust (β = 0.482, p < 0.001) significantly positively influenced intention to adopt 
health short videos. Conversely, perceived risk (β = −0.415, p < 0.001) and 
perceived disease threat (β = −0.480, p < 0.001) had significant negative effects 
on adoption intention. Additionally, facilitating conditions (β = 0.421, p < 0.001) 
positively influenced adoption behavior, and adoption intention significantly 
affected adoption behavior (β = 0.406, p < 0.001).

Conclusion: The adoption of health short videos by Chinese college students is 
primarily positively influenced by factors such as perceived usefulness, ease of 
use, performance expectancy, effort expectancy, social influence, information 
quality, and trust. Conversely, perceived risk and disease threat negatively affect 
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their usage. Therefore, to promote college students’ continuous attention to 
and adoption of health short videos, the quality and credibility of health short 
videos should be  improved, the user interface design should be  optimized, 
usability should be enhanced, and social influence strategies should be used to 
enhance the attractiveness and persuasiveness of health information.

KEYWORDS

health short videos, health information dissemination, information adoption behavior, 
Chinese college students, integrated model

1 Introduction

Health serves as the cornerstone of personal well-being and 
quality of life, fundamentally underpinning societal stability and 
development. A healthy workforce drives enhanced productivity and 
creativity, fundamentally underpinning individual well-being, family 
and societal stability, and economic progress (Hoy-Ellis, 2023). The 
“Healthy China 2030” initiative highlights that public health serves as 
a crucial barometer of national prosperity and individual well-being 
(Xuan et al., 2024). Under the strategic background of “Healthy China 
2030,” “healthy living” has emerged as a universal pursuit, with 
individuals increasingly seeking daily access to health information to 
elevate their overall well-being. The 14th Five-Year National Health 
Plan advocates for establishing comprehensive media channels to 
deliver health education and promotion, calling on healthcare 
institutions and professionals to actively engage in health education 
initiatives. The efficient dissemination of health information is crucial 
for improving national health standards (Liu et al., 2020).

Initially, American scholar Rogers defined health communication 
as the process of translating medical research findings into public 
health knowledge to enhance the quality of life and health, with a 
primary focus on preventing diseases such as HIV/AIDS, early-stage 
cancers, and substance abuse (Rogers, 1994). Subsequently, Rogers 
expanded this definition to include interpersonal communication on 
all health-related topics, a perspective that gained widespread 
scholarly acceptance (Rogers, 1996). With the rapid advancement of 
internet technology, researchers have explored its role in online health 
information dissemination (Tsao et al., 2021; Schillinger et al., 2020) 
noting that offline activities effectively complement this process 
(Gilmore et al., 2020). With the rise of major short video platforms 
like “Miaopai” and “Wesee” in 2013, short videos have emerged as the 
primary way for people to access information (Shi et  al., 2023). 
Currently, short video content has transcended entertainment to 
incorporate professional knowledge dissemination and health 
education (Gao et  al., 2021), serving as a bridge for interaction 
between individuals and health information. Health short videos are 
defined as videos where professional doctors or institutions condense 
health knowledge and information through new media platform 
editing and processing, with a duration of less than 5 min. These 
videos cover all aspects of daily life, aiming to improve public quality 
of life and health (Song et  al., 2021). According to relevant data 
analysis (Xie et al., 2024), health short videos on platforms like “Little 
Red Book” and “Douyin” have achieved cumulative views exceeding 
100 billion within just a few years, emerging as a pivotal channel for 
public health information acquisition.

While health short videos on major platforms are widely accessible 
and diverse, their quality remains inconsistent, often lacking scientific 

rigor and accuracy. This inconsistency leads to divergent dissemination 
effects and audience reception, characterized by a pronounced “head 
effect,” where a minority of creators receive disproportionate attention. 
The majority of creators, however, experience low dissemination 
efficiency (Osman et  al., 2022). Although existing research has 
explored factors influencing the adoption of health short videos (Huo 
and Huo, 2024; Wang et al., 2024), few studies have conducted specific 
and independent analyses of college students’ adoption behavior. 
College students, as key information recipients and disseminators in 
society, are at a critical stage of value and lifestyle formation, facing 
numerous challenges in making healthy choices (Deliens et al., 2015). 
As a key audience for health communication, college students 
demonstrate a higher receptivity to health information, a trait that is 
vital for facilitating the widespread dissemination and popularization 
of health knowledge. Understanding how they process health short 
video information can enhance college students’ health awareness and 
decision-making capabilities, while also enabling them to better 
comprehend their own health status. Health institutions can leverage 
this understanding to optimize promotion strategies, ensuring that 
college students acquire accurate health knowledge and enhance their 
health literacy (Woolf et al., 2005). Hospitals can also tailor health 
promotion content by identifying the specific health needs and 
behavior of college students, thereby fostering healthier 
behavioral patterns.

The concept of “information adoption behavior” was initially 
proposed by Stephani and Wendy (Sussman and Siegal, 2003), who 
defined it as the process whereby individuals select new information 
based on their attitudes and beliefs. Subsequently, Cheung et al. (2008) 
further elaborated on information adoption behavior as the process of 
leveraging information to achieve specific goals and actively seeking 
behavioral guidance. With the advent of the Technology Acceptance 
Model (TAM) (Davis, 1989) and the Unified Theory of Acceptance 
and Use of Technology (UTAUT) (Ajzen and Madden, 1986), these 
theoretical models have garnered extensive scholarly recognition in 
the domain of health information behavior research. Studies have 
demonstrated that the TAM model (Venkatesh et al., 2003; Ayeh, 
2015) and the UTAUT model (Mäntymäki and Salo, 2013; Philippi 
et al., 2021) are effective in analysing factors affecting user information 
adoption behavior. However, research that simultaneously applies 
both TAM and UTAUT models to study information adoption 
behavior among college students remains relatively scarce. Current 
research frequently employs models such as the Information Adoption 
Model (Zhou, 2022; Tao et al., 2020), the Theory of Planned Behavior 
(Yang and Wu, 2021), and the Dual Process Theory (Zhao et al., 2022) 
to explore the mechanisms and influencing factors of health 
information adoption. The TAM and its derivative, the UTAUT 
model, provide a comprehensive framework for explaining the factors 
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influencing college students’ adoption of health information, offering 
deeper insights into the process of their behavior. Therefore, by 
focusing on the novel research topics of health short videos and 
college students, this study aims to integrate the Technology 
Acceptance Model (TAM) and the Unified Theory of Acceptance and 
Use of Technology (UTAUT) to explore how factors such as 
information quality, perceived usefulness, and perceived ease of use 
in health short video content and format influence college students’ 
information adoption behavior. The findings will assist college 
students in effectively absorbing health information from short videos, 
cultivating healthier lifestyles, and enhancing the quality and 
dissemination of health information. This, in turn, will enhance the 
effectiveness of health knowledge dissemination, boost user 
engagement, and ultimately improve the sustainability of health 
information communication among college students 
(Abdelhamid, 2018).

The structure of this study is organized as follows: Section 2 
introduces the TAM and UTAUT models and formulates hypotheses 
based on these frameworks. Section 3 details the sample selection, 
data collection, and data analysis methods. Section 4 presents the 
findings from reliability and validity analyses, variance analyses, and 
structural equation model. Section 5 interprets these findings. Finally, 
Section 6 and Section 7 address the research implications 
and limitations.

2 Literature review and research 
hypotheses

2.1 Tam

The Technology Acceptance Model (TAM), first proposed by 
Davis (1989), is rooted in the Theory of Planned Behavior and the 
Theory of Reasoned Action, aiming to investigate the mechanisms 
through which individuals adopt and accept new information 
technologies. The TAM model posits that the user’s behavioral 
intentions determine their adoption behavior, where behavioral 
intention is shaped by the attitude toward use and perceived 
usefulness, while external factors determine perceived usefulness 
and perceived ease of use (Ajzen and Madden, 1986). Therefore, 
TAM has been widely applied across various industries to analyse 
user information behavior. For instance, in the field of artificial 
intelligence (AI) (Park, 2020; Sagnier et al., 2020; Shao et al., 2025), 
studies leveraging TAM have demonstrated that perceived ease of 
use and perceived usefulness significantly impact technology 
acceptance (Mohr and Kühl, 2021). In online education (Al-Adwan 
et  al., 2023; Li, 2023), studies have indicated that these factors 
positively influence college students’ attitudes, behavioral intentions, 
and actual usage of AI systems (Tao et al., 2022). In business and 
service sectors (Ruiz-Herrera et al., 2023; Agag and El-Masry, 2016), 
TAM highlights that attitude toward use, perceived usefulness, ease 
of use, and perceived trust are crucial for influencing consumer 
behavior. Similarly, in telemedicine (Kamal et al., 2020; Lu et al., 
2024), TAM identifies perceived ease of use, perceived trust, and 
perceived risk as key factors affecting people’s willingness to use 
these services. In short video studies (Guo et al., 2025; Wang et al., 
2022), it has been found that perceived usefulness and perceived ease 
of use have a significant impact on users’ attitudes and behavioral 

intentions toward using short videos. Existing research primarily 
uses TAM to assess the intrinsic characteristics of information 
technologies, their usefulness, and ease of use, thereby analyzing 
factors influencing user acceptance and information behavior. 
However, these factors may be too broadly generalized, potentially 
overlooking individual differences and situational contexts (Chen 
et al., 2023). Thus, other factors may need to be  incorporated to 
complement the model.

2.2 UTAUT

Venkatesh et al. (2003) proposed the Unified Theory of Acceptance 
and Use of Technology (UTAUT), building on the TAM model. 
UTAUT integrates four core variables: performance expectancy, effort 
expectancy, social influence, and facilitating conditions. It also 
considers moderating factors such as gender and age to enhance its 
predictive capability (Ajzen and Madden, 1986). Due to its 
comprehensiveness and applicability (Al-Saedi et al., 2020), UTAUT 
has been widely adopted to study user acceptance behavior toward 
technology (Abbad, 2021; Raffaghelli et  al., 2022). However, to 
increase its relevance in various contexts, additional factors are often 
introduced to address specific needs arising from different 
technological characteristics and cultural backgrounds (Zhao and 
Wang, 2020). For example, Dai et al. (2020) introduced the concepts 
of resistance to change (RC) and technostress anxiety (TA) to study 
caregivers’ acceptance of wearable devices for dementia patients. 
Huang (2023) incorporated the Theory of Planned Behavior (TPB) to 
supplement the UTAUT model in studying users’ intentions toward 
VR tourism behavior. Xu et al. (2023) explored the intention of users 
to seek travel information on short video platforms by incorporating 
various technological affordances and perceived enjoyment as 
supplements to the UTAUT model.

The TAM places greater emphasis on the intrinsic characteristics 
of technology and users’ direct experiences with it, whereas the 
UTAUT underscores the influence of social and environmental factors 
(Zhao and Wang, 2020). Although UTAUT extends TAM by 
incorporating additional constructs, the concepts of perceived 
usefulness and perceived ease of use from TAM offer a succinct and 
robust explanation for the initial adoption intention of health short 
videos. Integrating TAM and UTAUT addresses certain limitations 
inherent in UTAUT alone. By embedding the core elements of TAM 
into the UTAUT framework, the model’s comprehensiveness in 
explaining user technology acceptance is significantly enhanced. This 
integrated approach facilitates an analysis of the factors influencing 
technology acceptance from both the individual user perspective and 
the broader socio-technical environment (Rouidi et  al., 2022; 
Al-Adwan et al., 2025).

Therefore, this study constructs a model to investigate the factors 
influencing college students’ adoption behavior of health short videos, 
based on the TAM and UTAUT models. The model introduces ten 
independent variables: information quality, perceived usefulness, 
perceived ease of use, facilitating conditions, perceived risk, perceived 
disease threat, effort expectancy, performance expectancy, social 
influence, and perceived trust. Adoption intention is proposed as a 
mediating variable, while adoption behavior serves as the dependent 
variable. This comprehensive model aims to explore the complete path 
of college students’ adoption behavior toward health short videos.
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2.3 Research hypotheses

Perceived usefulness (PU) refers to users’ belief that using a 
specific system or technology will enhance their performance or 
effectiveness (Davis, 1989). Sussman et  al. positioned perceived 
usefulness as a critical factor in the context of knowledge 
acceptance, demonstrating its mediating role between information 
and adoption (Sussman and Siegal, 2003). In this study, perceived 
usefulness is defined as college students’ perception that watching 
health short videos will improve their health. For college students, 
who often experience high academic stress and limited access to 
formal health education, health short videos serve as a convenient 
and visual means to acquire essential health knowledge. These 
videos offer practical guidance on nutrition, mental health, and 
physical activity that aligns with students’ daily needs, making them 
more likely to perceive the content as highly useful. This perceived 
usefulness, in turn, strengthens their trust in such platforms, 
establishing it as a primary driver of adoption intention. Therefore, 
we propose:

H1: Perceived usefulness significantly influences adoption  
intention.

Perceived ease of use (PEU) refers to individuals’ perception of 
how easy and effortless it is to use a specific technology or tool 
(Davis, 1989). College students, as digital natives, are well-
acquainted with using mobile devices and social media platforms for 
both learning and entertainment. Short video platforms, 
characterized by their intuitive interfaces and minimal learning 
curves, enable students to quickly access health-related content even 
during brief intervals between classes or study sessions. 
Consequently, the perceived ease of use is anticipated to significantly 
influence their intention to adopt these platforms for health 
information. Based on this understanding, the following hypothesis 
is proposed:

H2: Perceived ease of use significantly influences adoption  
intention.

Performance expectancy (PE) refers to the degree to which 
individuals believe that using a new system will benefit them (Davis, 
1989). College students may anticipate that watching health short 
videos will provide actionable insights for managing stress, improving 
sleep quality, or adopting healthier eating habits—all of which are 
directly relevant to their current lifestyle challenges. When students 
perceive that interacting with these videos enhances their well-being, 
their intention to continue using them is likely to increase. Based on 
these considerations, the following hypothesis is proposed:

H3: Performance expectancy positively and significantly 
influences adoption intention.

Effort expectancy (EE) is commonly understood as the amount of 
effort individuals believe they need to exert when using a new system 
(Davis, 1989). Given the hectic schedules of college students, they tend 
to favor tools that demand minimal effort to retrieve health 
information. The more effortlessly college students perceive the 
process of searching for health short videos to be, the stronger their 

intention to adopt this technology. Based on this, the following 
hypothesis is proposed:

H4: Effort expectancy positively and significantly influences 
adoption intention.

Social influence (SI) refers to the degree to which an individual’s 
behavior is influenced by significant others (Ajzen and Madden, 
1986). For college students, peer groups exert a substantial influence 
on shaping attitudes toward new technologies. When peers frequently 
share or recommend health short videos, individuals are more 
inclined to perceive these resources as credible and valuable. 
Furthermore, endorsement from parents or instructors can also 
heighten students’ interest and willingness to engage with health-
related content. Thus, social influence emerges as a critical determinant 
of adoption intention within this demographic. Based on this, 
we propose:

H5: Social influence positively influences adoption intention.

Information quality (IQ) refers to the persuasiveness of the 
presented information and its attributes, such as authenticity and 
completeness (Cheung et al., 2012). College students, as an educated 
demographic, attach great importance to the accuracy and scientific 
validity of health information. They are more inclined to adopt health 
short videos if the content is evidence-based, logically structured, and 
presented by credible professionals. Conversely, poor information 
quality, such as misinformation or oversimplification can erode trust 
and discourage sustained engagement. Based on these considerations, 
we propose:

H6: Information quality positively influences adoption intention.

Perceived trust (PT) refers to the level of confidence individuals 
have in a service, product, or platform, including trust in brands, 
individuals, or viewpoints (Lăzăroiu et  al., 2020). Trust in the 
influencers or institutions behind health short videos plays a pivotal 
role in students’ decision-making processes. Many college students 
follow online health educators or medical professionals whose 
expertise they esteem. When students associate the content with 
trustworthy figures or reputable organizations, they are more inclined 
to accept the information and act upon it. Based on this understanding, 
this study proposes:

H7: Perceived trust positively influences adoption intention.

Perceived risk (PR) involves the uncertainty and potential negative 
consequences individuals associate with using a new system or 
product (Yi et al., 2020). While many health short videos provide 
valuable insights, some may contain misleading or unverified claims 
that pose risks to users. College students, who may lack the skills to 
critically evaluate health content, might hesitate to adopt such videos 
due to concerns about inaccurate advice or harmful recommendations. 
The perception of these risks can significantly impact their willingness 
to engage with the platform. Based on these premises, the following 
hypothesis is proposed:

H8: Perceived risk influences adoption intention significantly.
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Perceived disease threat (PDT) refers to individuals’ subjective 
perception of their susceptibility to a specific disease or their 
likelihood of becoming ill compared to others (Zheng et al., 2022). 
College students often face diverse health risks, such as stress-induced 
anxiety, irregular sleep patterns, and poor dietary habits. Individuals 
who perceive themselves as especially vulnerable to these issues may 
be more inclined to seek health information through short videos. 
Their heightened awareness of personal health threats can motivate 
them to adopt preventive behavior and engage more actively with 
health-related content. Based on these concepts, we  propose the 
following hypothesis:

H9: Perceived disease threat influences adoption 
intention significantly.

Facilitating conditions (FC) refer to the perceived technical and 
equipment support that individuals believe they have when using a 
new system (Al-Adwan, 2020). Most college campuses offer reliable 
internet access, and students generally own smartphones, enabling 
seamless access to short video platforms. These facilitating conditions, 
including stable connectivity and familiar devices, alleviate usage 
barriers and promote sustained engagement with health-related 
content. Therefore, this study proposes:

H10: Facilitating conditions positively influence adoption behavior.

Adoption intention (AI) refers to individuals’ readiness to adopt 
and utilize information (Jeyaraj et al., 2023). Among college students, 
behavioral outcomes, such as liking, sharing, bookmarking, or 
applying health advice in real life reflect deeper engagement with the 
content. Students who demonstrate strong adoption intentions are 
more inclined to translate these intentions into actual behavior, 
particularly when the content resonates with their daily experiences 

and concerns. Drawing on this discourse, the following hypotheses 
are formulated:

H11: Adoption intention positively influences adoption behavior.

2.4 Construction of the conceptual model

This study integrates the Technology Acceptance Model (TAM) 
and the Unified Theory of Acceptance and Use of Technology 
(UTAUT), incorporating eight variables: effort expectancy, 
performance expectancy, perceived usefulness, facilitating conditions, 
perceived ease of use, information quality, perceived trust, and social 
influence. These variables are used to construct a model that examines 
the factors influencing college students’ adoption of health information 
through short videos. The aim is to analyse how college student adopts 
health information via short videos, elucidate the factors influencing 
their adoption behavior, and explore the process of health information 
adoption in greater depth. The research hypotheses are illustrated in 
Figure 1.

3 Research method

3.1 Sample selection and data collection

Based on the hypotheses outlined above, this study initially 
employed in-depth interviews with 7 college students who have 
viewed health short videos to extract factors influencing their 
adoption behavior of health information through short videos. This 
approach aimed to refine the design of the survey questionnaire. This 
study has been approved by the Ethics Committee of Nanjing Medical 
University, Nanjing (Approval No. 2024781). Participants are 

Performance 

expectancy

Perceived ease 

of use

Perceived 

usefulness

Adoption 

intention

Perceived trust

Information 

quality

Social 

influence

Adoption 

behavior

Facilitating 

conditions

Effort 

expectancy
H4

H10

H11

 Perceived 

disease threat

Perceived risk

FIGURE 1

Model construction.

https://doi.org/10.3389/fpsyg.2025.1547402
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Han et al. 10.3389/fpsyg.2025.1547402

Frontiers in Psychology 06 frontiersin.org

informed about the purpose of the study and assured of anonymity 
before completing the questionnaire. After providing their consent to 
participate, they receive a survey questionnaire. Convenience 
sampling is adopted to efficiently collect a large number of responses 
while minimizing time and cost in data collection (Sinclair-Maragh, 
2017). To mitigate common method bias (CMB), this study reduced 
the order effect by changing the order of the questions and measuring 
the predictor and criterion variables at different time points (Podsakoff 
et al., 2003).

The questionnaire designed for investigating factors influencing 
college students’ adoption of health information through short 
videos is divided into three sections, corresponding to the model’s 
independent, mediating, and dependent variables. The first part 
assesses ten independent variables: “information quality,” “perceived 
usefulness,” “perceived ease of use,” “effort expectancy,” 
“performance expectancy,” “social influence,” “perceived trust,” 
“perceived risk,” “perceived disease threat,” and “facilitating 
conditions.” The second part evaluates the mediating variable 
“adoption intention,” while the third part measures the dependent 
variable “adoption behavior.” The survey was administered using 
the Wenjuanxing platform, a widely used online survey tool in 
China, enabling efficient and cost-effective data collection with 
prompt feedback.

A total of 300 questionnaires were distributed in this survey, all 
targeting college students. Among them, 296 valid responses were 
received, resulting in an effective response rate of 98.7%. Table  1 
provides an overview of the statistical information gathered from the 
collected questionnaires. According to existing research, the sample 
size for structural equation modeling should be determined based on 
the number of parameters within the model. The minimum sample 
size required for this study is 200, thus the sample size included in this 
study is adequate (Min et al., 2024).

3.2 Data analysis

“This study employed SPSS 22.0 (IBM Corp, Armonk, NY) to 
statistically analyse the 296 valid questionnaires collected, aiming to 
explore the factors influencing college students’ information adoption 
behavior related to health short videos. During the analysis, all tests 
were two-sided, with a significance level set at α = 0.05, and differences 
were considered statistically significant if the p-value was less than 0.05. 
The basic demographic characteristics of the study subjects, including 
gender, age, educational background, and major, were described using 
frequencies and proportions. The reliability of the questionnaire data 
was assessed using Cronbach’s Alpha coefficient (Wang et al., 2023), 
and the validity was evaluated using the Kaiser-Meyer-Olkin (KMO) 
(Lavebratt et al., 2014) and Bartlett’s test of sphericity (Dziuban and 
Shirkey, 1974) to assess the structural validity of the questionnaire.

4 Results

4.1 Common method bias

In this study, common method bias is procedurally and effectively 
controlled by adopting methods such as anonymous measurement 
and time-separated measurement. In addition, the collected data are 
checked for common method bias using Harman’s single factor test. 
The results of the analysis show that the overall variance of the first 
common factor is 48.68%, which is lower than the 50% criterion 
proposed by Podsakoff et al. (2003), so it can be concluded that there 
is no significant common method bias in this study.

4.2 Tests for multicollinearity

To examine whether multicollinearity exists among the variables, 
this study conducts a Variance Inflation Factor (VIF) test. The results 
are presented in Table 2. Since all VIF values are well below the critical 
threshold of 10, it can be concluded that multicollinearity is not a 
concern among the variables (Hair et al., 1995).

4.3 Reliability and validity

The reliability and validity of the model and its constructs were 
evaluated, with results detailed in Tables 3–5. The internal consistency, 
indicated by Cronbach’s alpha, ranged from 0.745 to 0.796, all exceeding 
the acceptable threshold of 0.7 (McNeish, 2018), demonstrating good 
internal consistency. Factor loadings for individual items were between 
0.67 and 0.78, surpassing the threshold of 0.6 (Shevlin and Miles, 1998), 
indicating good convergent validity. The composite reliability (CR) for 
each construct ranged from 0.74 to 0.80, all above the threshold of 0.7 
(Bacon et  al., 1995), suggesting excellent structural reliability. The 
average variance extracted (AVE) for most constructs exceeded 0.5, 
except for performance expectancy, which had an AVE of 0.49. This 
minor deviation did not significantly impact the overall convergent 
validity of the measurement model (Wei et al., 2016). Additionally, the 
square roots of the AVEs for all variables were greater than their 
correlations with other variables, indicating good discriminant validity. 
Furthermore, the KMO test value for the scale used in this study was 

TABLE 1 Demographic profile.

Measure Items Frequency Percent

Age

18–23 207 69

23–26 69 23

Above 26 23 8

Gender
Male 146 49

Female 150 51

Degrees

Below junior 15 5

Undergraduate 189 64

Master 70 24

Above doctor 22 7

Major
Medical 19 6

Non-medical 277 94

The frequency of 

users watching 

health short 

videos

Daily 82 27

Weekly 127 43

Monthly 88 30

The time of 

users watching 

health short 

videos daily

Less than 5 min 177 60

5–10 min 93 31

More than 10 min 26 9
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0.980, well above the threshold of 0.70. The approximate chi-square was 
6763.274 with a significance level of 0.000, less than 0.05, indicating 
strong construct validity and suitability for factor analysis.

4.4 Gap analysis

To examine the effects of gender, age, education, and major on each 
variable in the model, this study employed independent samples t-tests 
and one-way analysis of variance (ANOVA) to assess the impact of 
individual variables on others. The purpose of these analyses was to 
determine if these demographic factors significantly influenced the 
variables in the study. Independent samples t-tests were applied to gender 
and major, which have two groups of data each, while one-way ANOVA 
was used for age and education, as these categories involve more than 
two groups. Both independent samples t-tests and ANOVA rely on the 
significance value (Sig) to assess the significance of differences between 
variables: a Sig value less than 0.05 was considered statistically significant, 
indicating a meaningful difference between groups, whereas a value 
greater than 0.05 suggested no significant difference (Lakens, 2021).

4.4.1 Gender’s influence on each variable
According to the results presented in Table 6, the Sig values for 

gender across various variables are all greater than 0.05. This finding 
suggests that gender does not significantly influence factors such as 
perceived usefulness in the model of health information adoption 
through health short videos among college students.

4.4.2 Major’s influence on each variable
According to the data in Table 7, the Sig value for Perceived Ease 

of Use is 0.048, which is less than 0.05. This indicates that different 
majors (medical and non-medical) significantly impact Perceived Ease 
of Use. However, these differences do not significantly affect Perceived 
Usefulness, Performance Expectancy, Effort Expectancy, or 
Facilitating Conditions.

4.4.3 Age’s influence on each variable
According to the results presented in Table 8, the Sig values for age 

across all variables are greater than 0.05. This suggests that age does 
not have a significant impact on factors such as perceived usefulness 
in the model of health information adoption among college students 
using health short videos.

4.4.4 Degrees influence on each variable
According to the data in Table 9, the Sig values for convenience 

conditions, information quality, and perceived disease threat are all 
less than 0.05. This indicates that different educational backgrounds 
significantly influence these factors. However, educational background 
does not significantly impact perceived usefulness, performance 
expectancy, perceived ease of use, effort expectancy, or perceived trust.

4.5 Structural equation model

Structural Equation Modeling (SEM) is a statistical technique that 
constructs, estimates, and tests causal relationships between variables, 
making it suitable for analyzing variables that cannot be precisely 
measured. SEM requires a sample size of more than 200 cases; in this 
study, 296 valid responses were collected, enabling the use of SEM for 
analysis. The model of factors influencing college students’ adoption 
of health information from short videos is illustrated in Figure 2.

The evaluation of fit indices for the structural equation model 
primarily relies on the indicators in Table 10. Based on the data in 
Table 10, with X2/df = 1.103, GFI = 0.907, NFI = 0.918, CFI = 0.992, 
IFI = 0.992, PGFI = 0.719, PCFI = 0.831, PNFI = 0.769, RMSEA =  
0.019, SRMR = 0.027, RFI = 0.902, TLI = 0.990, and AGFI = 0.924, it 
shows that the model has high goodness of fit.

In the structural equation model, standardized path coefficients 
indicate the extent to which independent variables influence 
dependent variables. Analysis of the path coefficients and p-values, as 
presented in Table 11, reveals that perceived usefulness, perceived ease 
of use, performance expectancy, effort expectancy, social influence, 
information quality, perceived trust, perceived risk, and perceived 
disease threat significantly impact the adoption intention path 
(p < 0.001). Furthermore, facilitating conditions have a significant 
impact on the adoption behavior path, and adoption intention 
significantly influences the adoption behavior path (p < 0.001).

This study employs the Gaussian Copula approach proposed by 
Park and Gupta (2012) to test for endogeneity. As shown in Table 12, 
the results of the endogeneity analysis indicate that the p-values for all 
paths are greater than 0.05. Thus, it can be inferred that there is no 
significant endogeneity issue in the structural model, and the obtained 
results are reliable (Hult et al., 2018).

5 Discussion

The study integrated the Technology Acceptance Model (TAM) 
and the Unified Theory of Acceptance and Use of Technology 
(UTAUT) to construct a comprehensive model of factors influencing 
college students’ adoption behavior of health short videos. The 
findings reveal that perceived usefulness, perceived ease of use, 
performance expectancy, effort expectancy, and social influence 
significantly and positively influence students’ adoption intention. 
Additionally, higher information quality and perceived trust enhance 
the willingness to adopt, while perceived risk and perceived disease 
threat can deter adoption behavior. Ultimately, facilitating conditions 
and adoption intention play crucial roles in promoting actual adoption 
behavior. These insights offer a theoretical foundation for optimizing 
the content and dissemination strategies of health short videos, which 
can improve health literacy among college students, foster healthy 

TABLE 2 Variance inflation factor test.

Construct VIF

Perceived usefulness (PU) 3.773

Perceived ease of use (PEOU) 2.826

Performance expectancy (PE) 3.668

Effort expectancy (EE) 4.432

Social influence (SI) 4.411

Facilitating conditions (FC) 3.572

Information quality (IQ) 3.345

Perceived trust (PT) 3.794

Perceived risk (PR) 2.644

Perceived disease threat (PDT) 3.583
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behavior, and guide the optimization of content and services on health 
video platforms to better address students’ health information needs.

5.1 Perceived ease of use and perceived 
usefulness significantly affected college 
students’ health information adoption

Consistent with previous research (Luo et al., 2024), this study 
demonstrates that PU and PEU positively and significantly influence 

college students’ intention to adopt health information. PU reflects 
college students’ belief in the practical effectiveness of health short 
videos for acquiring health knowledge, improving health behavior, and 
enhancing health awareness. When college students believe that 
watching health short videos empowers them to effortlessly master 
scientific dietary combinations or fitness regimens, and that this 
knowledge can exert a tangible positive impact on their daily lives, they 
are more inclined to deem health short videos as valuable. PEU 
primarily manifests in the platform’s operational convenience, the 
clarity and comprehensibility of content presentation, and the overall 

TABLE 3 Model reliability and validity analysis.

Construct Item Item loading Cronbach’s Alpha Composite 
reliability (CR)

Average variance 
extracted (AVE)

Perceived usefulness (PU)

PU1 0.75 0.777 0.78 0.54

PU2 0.75

PU3 0.71

Perceived ease of use 

(PEOU)

PEOU1 0.72 0.771 0.77 0.53

PEOU2 0.75

PEOU3 0.72

Performance expectancy 

(PE)

PE1 0.69 0.745 0.74 0.49

PE2 0.70

PE3 0.71

Effort expectancy (EE)

EE1 0.74 0.781 0.78 0.54

EE2 0.75

EE3 0.72

Social influence (SI)

SI1 0.74 0.769 0.77 0.53

SI2 0.73

SI3 0.71

Facilitating conditions 

(FC)

FC1 0.73 0.757 0.78 0.54

FC2 0.69

FC3 0.78

Information quality (IQ)

IQ1 0.72 0.759 0.76 0.51

IQ2 0.73

IQ3 0.70

Perceived trust (PT)

PT1 0.77 0.788 0.79 0.56

PT2 0.70

PT2 0.77

Perceived risk (PR)

PR1 0.73 0.771 0.77 0.53

PR2 0.75

PR3 0.71

Perceived disease threat 

(PDT)

PDT1 0.76 0.796 0.80 0.57

PDT2 0.74

PDT3 0.76

Adoption intention (AI)

AI1 0.72 0.754 0.76 0.51

AI2 0.72

AI3 0.70

Adoption behavior (AB)

AB1 0.75 0.761 0.76 0.51

AB2 0.73

AB3 0.67
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convenience of viewing. Platforms featuring user-friendly interfaces 
and robust search functionality, when combined with short video 
content that presents health knowledge in an engaging and entertaining 
manner, can significantly boost college students’ acceptance of and 
willingness to use such content. These findings align with in-depth 
interview results, indicating that students prefer platforms with high 
usability, such as Douyin and Little Red Book, due to their low learning 
curve and efficient access to valuable health information. They also 
prefer platforms that meet most of their information needs. Health 
short videos on these platforms provide rich content that addresses 
their health requirements, offering targeted solutions and advice that 
positively influence their health behavior and decisions. In the context 
of health information dissemination, health short video platforms 
should further optimize operational workflows and minimize users’ 
learning costs to ensure students can navigate effortlessly and access 
relevant information promptly. Content creators are encouraged to 
employ plain language and vivid case studies to transform complex 
health knowledge into approachable content, thereby lowering 
comprehension hurdles. These efforts can effectively reduce barriers to 
students’ understanding and adoption of health information.

5.2 Information quality and perceived trust 
positively significantly affect the 
information adoption of health short video 
college students

The results of this study indicate that IQ and PT significantly and 
positively influence college students’ adoption of health short videos. 

This finding aligns with Pang et al., who demonstrated that IQ and PT 
exert positive impacts on the intention to adopt health information 
(Deng et  al., 2015). High-quality information content is typically 
marked by elevated accuracy, comprehensiveness, and authority, 
thereby boosting college students’ trust in and acceptance of the health 
knowledge delivered via health short videos. When college students 
perceive the health information in short videos as legitimate, reliable, 
and verifiable, particularly when it is sourced from government agencies 
or reputable international organizations, they are more likely to regard 
the information as trustworthy and adopt it. Perceived trust is primarily 
shaped by the creator’s professional background, the authority of the 
content, and positive user reviews and interactive feedback within the 
platform. These elements jointly inform users’ judgments of the 
content’s authenticity and credibility. Therefore, to enhance students’ 
trust and promote adoption, platforms should institute rigorous content 
review mechanisms and encourage contributions from certified medical 
professionals. Content creators should prioritize citing authoritative 
information sources, emphasize their professional credentials, and 
foster interactive user engagement through comments and feedback, 
thereby elevating both the credibility and reach of health short videos. 
Perceived risk and perceived disease threat significantly affect the 
information adoption of health short video college students.

Previous studies have demonstrated that PR can have a negative 
impact on an individual’s behavioral intentions (Li, 2025). This study 
also confirms this process. When college students encounter health 
short videos, when college students encounter health short videos, 
concerns about inaccurate or misleading information and its potential 
irreversible effects on their health can elevate their perceived risk, 
thereby reducing their willingness to adopt such content. The increase 
in perceived risk not only suppresses information adoption behavior but 
may also trigger negative emotions such as anxiety and fear, leading 
students to avoid healthy content and further diminishing their 
receptiveness. In contrast, PDT exhibits a positive influence. Faced with 
academic and personal stress, college students often tend to neglect 
health issues in their daily lives. However, physical symptoms or external 
health events may heighten their risk awareness and prompt greater 
motivation to seek health information. This risk-driven awareness can 
strengthen their intention to adopt health short video content. Based on 
the above findings, the design of health short video content should seek 
to balance perceived risk. On one hand, creators ought to explicitly 

TABLE 4 Square AVE values and correlation coefficients of each variable.

Factors PT PR PDT AI AB IQ FC SI EE PE PEOU PU

PT 0.74

PR 0.51 0.73

PDT 0.57 0.51 0.70

AI 0.49 0.42 0.48 0.74

AB 0.49 0.43 0.49 0.41 0.73

IQ 0.51 0.43 0.51 0.43 0.42 0.74

FC 0.51 0.44 0.50 0.45 0.42 0.46 0.71

SI 0.54 0.47 0.52 0.44 0.44 0.47 0.47 0.75

EE 0.53 0.44 0.50 0.46 0.43 0.46 0.49 0.49 0.73

PE 0.49 0.42 0.47 0.43 0.40 0.42 0.47 0.47 0.45 0.76

PEOU 0.49 0.48 0.45 0.40 0.39 0.42 0.44 0.47 0.45 0.41 0.71

PU 0.52 0.44 0.49 0.44 0.44 0.48 0.49 0.50 0.49 0.46 0.45 0.71

TABLE 5 KMO and Bartlett’s tests.

Measure Value

KMO measure of sampling 

adequacy

0.980

Bartlett’s test of sphericity

Chi-square test 6763.274

Degrees of freedom 630

Statistical significance 0.000
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indicate information sources, target audiences, and risk warnings in 
videos, while avoiding exaggerated or alarmist language to mitigate 
unwarranted concern. On the other hand, platforms can implement 
content labeling mechanisms such as “reassuring labels” or “doctor 
recommendations” to enhance user trust and alleviate uncertainty.

5.3 Facilitating conditions positively 
significantly affected the information 
adoption of health short video college 
students

In the structural equation model analysis, the path coefficient for 
FC is 0.421, indicating a significant positive effect on health 
information adoption, consistent with the conclusions of previous 
studies (Dwivedi et al., 2019). FC refers to the technical and equipment 
support available to college students when using short video platforms, 
enabling greater access to and engagement with health-related 
content. Specifically, the ease of operation on short video platforms, 
low-cost access to health information, abundant resources of health 

short videos, efficient personalized recommendation mechanisms, 
mature resource retrieval systems, and well-organized content sections 
(as exemplified by Little Red Book, which segments into categories 
such as “fitness and shaping,” “scientific popularization,” “psychology,” 
“weight loss,” among others, rather than a standalone “health 
popularization” section) collectively enhance the convenience of 
accessing health information for college student. Therefore, these 
conditions not only enhance the user experience on short video 
platforms but also significantly increase their willingness to adopt 
health information from these platforms. Therefore, short video 
platforms should continue to optimize the user experience by 
developing more intelligent personalized recommendation systems, 
efficient content classification mechanisms, and robust retrieval 
functions, thereby enhancing the convenience and relevance of health 
information access. Moreover, universities and public health 
institutions can collaborate to establish campus-specific health video 
channels tailored to college students’ needs. Such initiatives may 
include simplifying interfaces, providing technical support to reduce 
usage barriers, and ultimately expanding the coverage and 
dissemination impact of health information.

TABLE 6 Gender analysis of independent samples t-test for each variable.

Factors Metrics Levene’s test for equality of 
variances

Equality of means t-test

F
Statistical 

significance
t-value

Degrees of 
freedom

Sig.

PU
Assuming homoscedasticity 0.992 0.320 0.290 294 0.772

Assuming heteroscedasticity 0.290 292.150 0.772

PEU
Assuming homoscedasticity 0.042 0.838 −0.223 294 0.824

Assuming heteroscedasticity −0.223 292.768 0.824

PE
Assuming homoscedasticity 2.639 0.105 0.545 294 0.586

Assuming heteroscedasticity 0.547 285.599 0.585

EE
Assuming heteroscedasticity 0.241 0.624 0.935 294 0.351

Assuming heteroscedasticity 0.936 293.785 0.350

SI
Assuming homoscedasticity 0.073 0.787 0.381 294 0.704

Assuming heteroscedasticity 0.381 293.802 0.704

FC
Assuming homoscedasticity 0.464 0.496 0.991 294 0.323

Assuming heteroscedasticity 0.992 291.400 0.322

IQ
Assuming homoscedasticity 0.739 0.391 0.821 294 0.412

Assuming heteroscedasticity 0.823 286.953 0.411

PT
Assuming homoscedasticity 0.244 0.622 0.928 294 0.354

Assuming heteroscedasticity 0.930 292.275 0.353

PR
Assuming homoscedasticity 0.651 0.420 0.347 294 0.729

Assuming heteroscedasticity 0.348 289.697 0.728

PDT
Assuming homoscedasticity 1.911 0.168 1.001 294 0.317

Assuming heteroscedasticity 1.003 290.254 0.317

AI
Assuming homoscedasticity 1.364 0.244 1.678 294 0.094

Assuming heteroscedasticity 1.682 288.255 0.094

AB
Assuming homoscedasticity 0.794 0.373 0.506 294 0.613

Assuming heteroscedasticity 0.507 291.852 0.613
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5.4 Performance expectancy and effort 
expectancy positively and significantly 
affect the information adoption of health 
short video college students

The results indicate that PE and EE significantly influence college 
students’ information adoption. This finding is consistent with previous 
research findings (Al-Sharafi et al., 2023), emphasizing that when short 
video platforms provide high-quality health information and a 
convenient user experience, students are more likely to engage with and 
adopt the information presented. PE involves students’ expectations of 
obtaining high-quality, authoritative health information tailored to their 
needs through browsing health short videos, aimed at enhancing health 
knowledge and addressing practical health issues. For instance, students 
might use short video platforms before physical education classes to 
search for effective warm-up exercises, precautions, and sports 
techniques, or when facing health concerns like weight loss or fitness, 
they may seek effective methods or fitness guidance through short 
videos. EE refers to the convenience with which students can access the 
desired health information on short video platforms. If a platform allows 
users to easily access the information they need, students are more likely 
to continue using it. Due to their user-friendly interface and low time 

cost, short video platforms encourage students to prefer this method of 
obtaining health information, further increasing their willingness and 
actual behavior to adopt health information. In summary, platforms and 
content creators should collaborate to improve content quality and user 
experience by producing concise, targeted, and information-dense 
videos. These efforts should enable users to access practical and relevant 
health advice with minimal effort, thereby fostering deeper engagement 
and promoting the adoption of health behavior.

5.5 Social influence positively significantly 
affects the information adoption of health 
short video college students

The findings support the hypothesis and are consistent with previous 
studies that SI has a considerable positive impact on user intention to 
adopt information (Hameed et al., 2024; Gonzalez-Tamayo et al., 2024). 
This suggests that advice and recommendations from others have a 
significant impact on shaping college students’ intention to adopt health 
short videos. Most college students indicated that they began to pay 
attention to and use health short videos for information due to the 
influence of friends and family. As part of the short video user base, 

TABLE 7 Major analysis of independent samples t-test for each variable.

Factors Metrics Levene’s test for equality of 
variances

Equality of means t-test

F
Statistical 

significance
t-value

Degrees of 
freedom

Sig.

PU
Assuming homoscedasticity 0.309 0.579 −0.227 294.000 0.821

Assuming heteroscedasticity −0.312 23.512 0.757

PEU
Assuming homoscedasticity 3.746 0.054 −1.984 294.000 0.048

Assuming heteroscedasticity −3.971 33.527 0.000

PE
Assuming homoscedasticity 0.379 0.539 −0.274 294.000 0.784

Assuming heteroscedasticity −0.384 23.780 0.704

EE
Assuming homoscedasticity 2.188 0.140 −0.475 294.000 0.635

Assuming heteroscedasticity −1.004 36.503 0.322

SI
Assuming homoscedasticity 2.632 0.106 −0.978 294.000 0.329

Assuming heteroscedasticity −1.954 33.426 0.059

FC
Assuming homoscedasticity 0.349 0.555 −0.766 294.000 0.444

Assuming heteroscedasticity −1.120 24.424 0.274

IQ
Assuming homoscedasticity 2.225 0.137 −0.696 294.000 0.487

Assuming heteroscedasticity −1.083 25.566 0.289

PT
Assuming homoscedasticity 0.854 0.356 −0.697 294.000 0.486

Assuming heteroscedasticity −1.093 25.721 0.284

PR
Assuming homoscedasticity 1.467 0.227 −1.341 294.000 0.181

Assuming heteroscedasticity −1.630 22.056 0.117

PDT
Assuming homoscedasticity 1.090 0.297 −0.218 294.000 0.827

Assuming heteroscedasticity −0.313 24.138 0.757

AI
Assuming homoscedasticity 0.653 0.420 −1.099 294.000 0.273

Assuming heteroscedasticity −1.552 23.881 0.134

AB Assuming homoscedasticity 3.328 0.069 −1.007 294.000 0.315
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college students are particularly susceptible to the opinions of others. 
During decision-making processes, due to uncertainty about outcomes, 
advice from family, friends, and doctors, as well as recommendations 
from teachers and classmates, often significantly influences their 
decisions on adopting information. Particularly in the realm of health 
information, college students are inclined to adopt health short videos 
recommended by family members, peers, and authoritative sources to 
improve their health conditions. Therefore, it is essential to promote a 

socially driven approach to health information dissemination. Platforms 
can deploy social recommendation functionalities such as “Friends Are 
Viewing” and “Family Recommendations” to enhance interpersonal 
trust and facilitate information sharing among users. Moreover, health 
education programs can be integrated with peer support mechanisms, 
leveraging online check-ins and experience-sharing mechanisms to 
trigger positive imitation effects and foster the interactive diffusion of 
health information within college student communities.

TABLE 8 Effect of age on model variables - analysis of variance.

Factors Metrics ANOVA

Square sum
Degrees of 

freedom
Mean square F

Statistical 
significance

PU

Between-subjects design 1.092 2 0.546 0.936 0.393

Randomized block design 170.912 293 0.583

Total 172.005 295

PEU

Between-subjects design 0.98 2 0.49 0.722 0.487

Randomized block design 198.923 293 0.679

Total 199.902 295

PE

Between-subjects design 1.424 2 0.712 1.178 0.309

Randomized block design 177.002 293 0.604

Total 178.426 295

EE

Between-subjects design 2.935 2 1.468 2.45 0.088

Randomized block design 175.519 293 0.599

Total 178.455 295

SI

Between-subjects design 0.914 2 0.457 0.72 0.488

Randomized block design 186.073 293 0.635

Total 186.988 295

FC

Between-subjects design 2.929 2 1.464 2.425 0.09

Randomized block design 176.951 293 0.604

Total 179.88 295

IQ

Between-subjects design 1.613 2 0.806 1.409 0.246

Randomized block design 167.69 293 0.572

Total 169.303 295

PT

Between-subjects design 3.784 2 1.892 2.922 0.055

Randomized block design 189.753 293 0.648

Total 193.538 295

PR

Between-subjects design 2.192 2 1.096 1.545 0.215

Randomized block design 207.873 293 0.709

Total 210.066 295

PT

Between-subjects design 3.017 2 1.509 2.12 0.122

Randomized block design 208.541 293 0.712

Total 211.558 295

AI

Between-subjects design 0.182 2 0.091 0.151 0.86

Randomized block design 176.849 293 0.604

Total 177.032 295

AB

Between-subjects design 3.353 2 1.676 2.724 0.067

Randomized block design 180.297 293 0.615

Total 183.65 295
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6 Implications

6.1 Implications for theory

This study integrates the TAM model with the UTAUT model 
to explore the factors affecting the continuous adoption of health 
short videos among Chinese college students. It investigates how 

content quality and presentation styles of health short videos 
influence students’ perceived value, emotional responses, and 
information adoption intention. By integrating these two 
theoretical models, the study enriches and extends the existing 
theoretical framework, unraveling the complex psychological 
mechanisms underlying students’ adoption behavior and 
identifying key driving factors. The findings indicate that 

TABLE 9 Influence of degrees on variables - one-way analysis of variance.

Factors Metrics ANOVA

Square sum
Degrees of 

freedom
Mean square F

Statistical 
significance

PE

Between-subjects design 2.730 3 0.910 1.569 0.197

Randomized block design 169.275 292 0.580

Total 172.005 295

PEU

Between-subjects design 0.443 3 0.148 0.216 0.885

Randomized block design 199.459 292 0.683

Total 199.902 295

PE

Between-subjects design 4.172 3 1.391 2.331 0.074

Randomized block design 174.254 292 0.597

Total 178.426 295

EE

Between-subjects design 2.197 3 0.732 1.213 0.305

Randomized block design 176.258 292 0.604

Total 178.455 295

SI

Between-subjects design 4.153 3 1.384 2.211 0.087

Randomized block design 182.834 292 0.626

Total 186.988 295

FC

Between-subjects design 5.943 3 1.981 3.326 0.020

Randomized block design 173.937 292 0.596

Total 179.880 295

IQ

Between-subjects design 5.036 3 1.679 2.984 0.032

Randomized block design 164.267 292 0.563

Total 169.303 295

PT

Between-subjects design 2.083 3 0.694 1.059 0.367

Randomized block design 191.454 292 0.656

Total 193.538 295

PR

Between-subjects design 2.029 3 0.676 0.950 0.417

Randomized block design 208.036 292 0.712

Total 210.066 295

PDT

Between-subjects design 7.269 3 2.423 3.463 0.017

Randomized block design 204.289 292 0.700

Total 211.558 295

AI

Between-subjects design 0.778 3 0.259 0.430 0.732

Randomized block design 176.253 292 0.604

Total 177.032 295

AB

Between-subjects design 3.891 3 1.297 2.107 0.099

Randomized block design 179.759 292 0.616

Total 183.650 295
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Structural equation model.

perceived usefulness, perceived ease of use, performance 
expectancy, effort expectancy, social influence, information 
quality, and perceived trust have a significant positive impact on 
adoption intention. In contrast, perceived risk and perceived 
disease threat exert a negative influence. Facilitating conditions 
positively affect adoption behavior, and adoption intention 
significantly influences adoption behavior. By refining the 
content and presentation characteristics of health short videos, 
this study provides new perspectives for the field of health 
science communication and offers important guidance for the 
development and optimization of health science 
communication products.

6.2 Implications for practice

Given that university students are among the most active users of 
short video platforms, health-focused platforms must address their 
specific needs. To accommodate their fast-paced lifestyles and 
preference for mobile-first interactions, platforms should streamline 
access to health services and optimize interfaces for mobile devices. 
Integrating functions such as online appointments, teleconsultations, 
and health screenings into a single platform can provide a convenient 
and efficient “one-stop” service tailored to students’ needs. 
Furthermore, enhancing interactive and social features such as 
comment sections, peer support groups, and shareable health tips can 

TABLE 10 Analysis of overall model fit.

Hypothesis test Value range of goodness of fit Model goodness of fit Result

X2/df 1–5 1.103 Supported

GFI >0.9 0.907 Supported

NFI >0.9 0.918 Supported

CFI >0.9 0.992 Supported

IFI >0.9 0.992 Supported

PGFI >0.5 0.719 Supported

PCFI >0.5 0.831 Supported

PNFI >0.5 0.769 Supported

RMSEA <0.08 0.019 Supported

SRMR <0.08 0.027 Supported

RFI >0.9 0.902 Supported

TLI >0.9 0.990 Supported

AGFI >0.9 0.924 Supported
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significantly increase user engagement by tapping into students’ 
preference for peer-driven information and real-time interaction. 
Recommendation algorithms should be refined to exclude commercial 
or low-quality content and prioritize evidence-based health 
information, thereby meeting students’ needs for reliable and 
accessible resources.

For university students, ensuring the credibility of health-
related short videos is essential, as they often depend on digital 
sources for information but may lack the critical literacy to 
distinguish accurate content from misinformation. Given the 
widespread appeal of infotainment among young audiences, 
platforms should implement strict content moderation policies to 
curb the spread of misinformation and commercial bias. 
Establishing expert-reviewed content channels, partnering with 
university health centers, and incorporating user reporting 
mechanisms can enhance platform credibility and mitigate 
perceived risks. In addition, personalized recommendation systems 
should account for the diverse health concerns of university 
students, including mental health, sleep disorders, nutrition, and 
physical fitness. By analyzing user behavior and preferences, 
platforms can provide personalized, age-appropriate health content 
that improves comprehension and strengthens relevance and 

engagement. To balance diversity and simplicity in 
recommendations, platforms should ensure broad content coverage 
while accommodating individual learning styles and health needs.

7 Limitations

While this study has yielded valuable insights into the impact 
of health short videos on information adoption behavior among 
Chinese college students, several limitations remain. Firstly, the 
sample size of 296, although adequate for structural equation 
model analysis, is relatively small and may limit the 
generalizability and extrapolation of the findings. Secondly, the 
study primarily focuses on college students, which may not fully 
represent the health information adoption behavior of people 
from different age groups, professions, and educational 
backgrounds. In addition, the convenience sampling method 
used in this study lacks randomization, which may lead to sample 
bias, and the independent variables used are conventional 
variables, limiting to some extent, the study’s wider contribution 
to the literature. Future research could enhance representativeness 
by expanding the sample to include individuals from various 
regions, cultures, and socioeconomic backgrounds or by adopting 
more scientific sampling methods. Additionally, while the study 
design employs structural equation model to analyse the path 
relationships between variables, it is limited by its cross-sectional 
nature and cannot capture the dynamic processes and causal 
relationships over time. Future research could further explore the 
development of theoretical models specifically tailored to the 
dissemination of health short videos to more accurately identify 
influencing factors and dissemination mechanisms. These 
approaches could provide more comprehensive and in-depth 
insights for optimizing health short video content and improving 
health communication strategies.
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TABLE 11 Results of path analysis and hypothesis testing.

Hypothesis Path coefficient p Result

PU → AI 0.443 *** Supported

PEU → AI 0.398 *** Supported

PE → AI 0.434 *** Supported

EE → AI 0.456 *** Supported

SI → AI 0.443 *** Supported

IQ → AI 0.427 *** Supported

PT → AI 0.482 *** Supported

PR → AI 0.415 *** Supported

PDT → AI 0.480 *** Supported

AI → AB 0.406 *** Supported

FC → AB 0.421 *** Supported

*p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 12 Gaussian copula approach.

Hypothesis p-value

(GC) PU → AI 0.571

(GC) PEU → AI 0.834

(GC) PE → AI 0.867

(GC) EE → AI 0.726

(GC) SI → AI 0.238

(GC) IQ → AI 0.076

(GC) PT → AI 0.188

(GC) PR → AI 0.191

(GC) PDT → AI 0.926

(GC) AI → AB 0.572

(GC) FC → AB 0.541
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