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GPT is all you need

Yuwen Zhang*

School of Aeronautical, Mechanical, Mechatronics and Electrical, University of Sydney, Sydney, NSW,

Australia

The advent of Generative Pre-trained Transformer (GPT) models, exemplified

by systems like ChatGPT, has begun to reshape how humans think,

learn, and interact. This paper explores GPT’s role as a cognitive sca�old,

supporting structured thinking, conversational agility, emotional regulation, and

interdisciplinary learning. Grounded in established psychological frameworks—

Cognitive Load Theory, Social Cognitive Theory, and Zone of Proximal

Development—this work proposes theoretical mechanisms through which GPT

may influence cognition, including neuroplasticity, meta-cognition, and implicit

learning. While these claims remain speculative, the paper outlines future

research pathways for empirically testing GPT’s long-term cognitive impacts.

It also introduces the concepts of multi-modal GPT and Hybrid AGI, defined

as human-AI symbiosis systems that may extend cognition through sensory

integration and co-adaptive learning. Limitations such as hallucination, surface-

level learning, and cognitive overreliance are critically examined, alongside

practical recommendations for educators, users, and developers. By o�ering

a conceptual foundation and forward-looking agenda, this paper aims to

catalyze interdisciplinary dialogue on GPT’s evolving role in human cognition

and learning.

KEYWORDS

Generative Pre-trained Transformers (GPT), cognitive augmentation, Hybrid AGI, multi-
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1 Introduction

The adoption of Generative Pre-trained Transformer (GPT) models has introduced

profound changes in human-AI collaboration, with applications spanning education,

healthcare, and daily problem-solving (Ng et al., 2024; Sallam, 2023; Lee and Chung, 2024).

While GPT itself is a model that generates text based on input sequences, interactive

systems such as ChatGPT enable real-time engagement, allowing users to leverage AI-

driven language models for diverse cognitive tasks. Recent studies in cognitive psychology

demonstrate that GPT-4 can simulate human-like emotional reasoning (Tak and Gratch,

2024) and even exhibit decision-making heuristics observed in human cognition (Suri

et al., 2024). These findings suggest that human interactions with GPT models are

not merely transactional but influence cognitive processes such as structured thinking,

memory scaffolding, and problem-solving strategies (Grinschgl and Neubauer, 2022).

The development of GPT models traces back to OpenAI’s introduction of

the first Generative Pre-trained Transformer (GPT-1), which applied unsupervised

learning to large-scale textual data. Successive iterations, including GPT-2, GPT-3,

GPT-3.5, and GPT-4, progressively improved in fluency, contextual awareness, and

reasoning capabilities. These advancements stem from the Transformer architecture,

first introduced in Google’s seminal paper, Attention Is All You Need (Vaswani et al.,

2017), which revolutionized deep learning approaches to natural language processing.

Each successive GPT generation expanded the model’s ability to process longer

contexts, generate more coherent responses, and incorporate multi-modal capabilities,
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such as GPT-4’s integration of vision-based inputs. Other

conversational AI systems, such as Google Gemini (DeepMind,

2024), Deepseek (Liu et al., 2025), and Grok-3 (Musk,

2025), share similar functionalities but are based on

distinct architectures.

In this paper, GPT applications refer specifically to software

built upon OpenAI’s GPT models, including but not limited to

ChatGPT (OpenAI, 2022). For clarity, the term “GPT interactions”

will be used throughout to denote human engagement with

GPT-based applications specifically. While the discussion focuses

on GPT-based interactions, it is possible that similar cognitive

effects extend to other large language model (LLM)-powered

conversational AI systems, such as Google Gemini and Anthropic’s

Claude. However, given that different architectures may influence

user interactions in distinct ways, this paper limits its scope to GPT-

based applications, with the potential for future research to explore

broader generalizations.

From a psychological perspective, human interaction

with AI can be understood through established frameworks

such as Cognitive Load Theory and Social Cognitive Theory.

Cognitive Load Theory (Sweller, 1988) provides a framework for

understanding how cognitive burden impacts learning efficiency.

GPT applications may align with this framework by helping

manage cognitive load—structuring and simplifying complex

tasks to make information more accessible and manageable. For

instance, GPT models synthesize large amounts of fragmented

data into organized and digestible components, allowing users to

focus on higher-order processes like critical analysis and synthesis.

Social Cognitive Theory highlights the role of observational

learning and self-regulation in shaping behavior (Bandura,

1986). By modeling structured and adaptive communication,

GPT interactions encourage users to unconsciously adopt

similar strategies, fostering enhanced conversational agility and

problem-solving abilities.

In the short term, GPT applications assist users by structuring

fragmented information, allowing them to focus on higher-

order processes such as critical analysis and synthesis. These

immediate and mid-term benefits include enhanced conversational

agility and improved task-based problem-solving. With repeated

engagement over time, users may begin to internalize GPT’s

structured reasoning patterns, leading to the development of

meta-cognitive skills—such as self-monitoring, adaptive learning,

and interdisciplinary thinking. This progression aligns with

Vygotsky’s Zone of Proximal Development (ZPD), where external

scaffolds help learners move from supported performance to

independent mastery (Vygotsky and Cole, 1978). These layered

cognitive benefits raise important questions about how GPT

interactions may evolve from momentary support to enduring

cognitive transformation.

To explore these possibilities, the following section

draws upon well-established psychological theories to

provide a conceptual foundation for analyzing GPT

applications’ role in structured thinking, adaptive learning,

and cognitive scaffolding. Examining these frameworks

will serve as the basis for the Key Observations section,

which outlines how these mechanisms manifest in real-world

GPT interactions.

2 Mechanisms behind GPT models’s
cognitive e�ects

The transformative cognitive and behavioral changes observed

in GPT interactions can be understood through well-established

psychological mechanisms. These mechanisms explain how GPT

applications serves as a facilitator of structured learning, adaptable

thinking, and skill transfer, ultimately fostering both short-term

improvements and long-term cognitive growth.

2.1 Cognitive sca�olding and the zone of
proximal development

GPT applications, leveraging structured guidance, serve

as a powerful foundation for AI-driven applications, with

conversational systems like ChatGPT providing structured

responses that support cognitive scaffolding. While GPT models

generate language outputs based on probabilistic predictions,

ChatGPT offers a dynamic interface through which users can

iteratively refine queries, receive contextualized feedback, and

engage in structured dialogue. This aligns with Vygotsky’s seminal

concept of the Zone of Proximal Development (ZPD), which

delineates the range between what a learner can achieve unaided

and what they can accomplish with external guidance (Vygotsky

and Cole, 1978). Within this framework, GPT applications

function as an adaptive external support that helps users bridge

cognitive gaps, fostering both structured learning and skill

acquisition. According to ZPD, learning occurs most effectively

when individuals operate just beyond their current skill level but

within a range where assistance is beneficial (Wood et al., 1976).

GPT applications exemplify this process by offering structured

responses, clarifying concepts, and modeling systematic problem-

solving strategies. Over time, through repeated exposure and

engagement, users internalize these cognitive structures, enabling

them to transition from reliance on GPT applications’s guidance

to independent mastery. The mechanisms through which GPT

applications facilitate cognitive scaffolding include modeling

and structured thinking, guided problem-solving, and self-

regulated learning (Ng et al., 2024). By presenting clear, structured

explanations and step-by-step reasoning, GPT applications help

users develop an internalized framework for approaching complex

problems. These systems provide iterative feedback that refines

user thinking, akin to the role of a human tutor offering graduated

assistance. Additionally, GPT applications foster metacognitive

awareness by prompting users to engage in reflective questioning

and self-assessment, reinforcing essential skills for independent

learning. This aligns with Bandura’s (1977) self-efficacy theory,

which posits that repeated successful experiences enhance

confidence and autonomy in learning.

An example of this can be observed in academic research

and learning. A student initially relies on a GPT application to

generate structured outlines and synthesize relevant literature

for a complex academic paper. Through continued interactions,

the student internalizes these organizational strategies, gradually

reducing reliance on the GPT application and demonstrating
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autonomous cognitive control—precisely what ZPD theory

predicts (Vygotsky and Cole, 1978). This transition highlights

how GPT applications serve not merely as information retrieval

tools but as interactive cognitive partners that enhance structured

reasoning and learning transfer.

To further investigate GPT applications’ role within ZPD,

future studies should adopt longitudinal approaches to track

user interactions over extended periods, assessing how scaffolding

influences cognitive independence. Experimental designs could

include pre- and post-intervention studies measuring changes in

problem-solving efficiency, adaptability, and the transferability of

skills across different domains. Understanding these mechanisms

in greater depth will provide empirical validation for GPT

applications’ potential as cognitive augmentation tools.

By operating within users’ ZPD, GPT applications serve as

transformative cognitive scaffolds, not merely providing direct

answers but equipping individuals with structured reasoning

skills that enhance independent cognitive abilities. Future

interdisciplinary research should explore how these effects

manifest across different learning contexts, from academic settings

to real-world professional problem-solving. As GPT applications

continue evolving, understanding their role in scaffolding

cognitive processes will be crucial in optimizing their integration

into educational and professional environments.

2.2 Cognitive load theory and adaptive
sca�olding

Cognitive Load Theory (CLT) explains how the human brain

processes and retains information during learning, emphasizing

the importance of managing cognitive load for effective knowledge

acquisition. Sweller (1988) identified three types of cognitive load:

intrinsic load, related to the complexity of the material; extraneous

load, caused by inefficient instructional methods; and germane

load, which facilitates schema construction and learning. When

applied to GPT applications, CLT suggests that AI-driven systems

can optimize learning by reducing extraneous load and increasing

germane load through structured guidance. GPT applications

achieve this by filtering, summarizing, and organizing complex

information, preventing users from being overwhelmed while

enhancing cognitive processing.

Adaptive scaffolding plays a crucial role in managing cognitive

load. Research on dynamic scaffolding has demonstrated that AI-

assisted learning environments significantly improve knowledge

retention by adjusting the level of assistance in real time, helping

users transition from novice to expert-level cognition (Wu et al.,

2017). This aligns with how GPT applications dynamically adapt

to user input, providing explanations, restructuring information,

and breaking down concepts to optimize learning efficiency. Such

mechanisms parallel the principles of CLT, where external supports

are tailored to cognitive needs, ensuring that learning remains

within the user’s cognitive capacity.

By leveraging these principles, GPT applications foster a

progressive reduction in cognitive dependency, allowing users to

internalize structured reasoning and problem-solving strategies.

Future studies should explore how prolonged interactions with

GPT applications affect cognitive load distribution and whether

AI-assisted scaffolding leads to sustained improvements in users’

independent learning capabilities.

2.3 Social cognitive theory and
observational learning

Social Cognitive Theory (SCT) explains learning as a

process that occurs through observation, imitation, and

modeling (Bandura, 1986). A key mechanism of SCT is

observational learning, where individuals refine their cognitive

and communicative abilities by engaging with well-structured

examples (Bandura, 1986). GPT applications align closely with this

framework by providing structured demonstrations of reasoning,

language use, and problem-solving strategies, allowing users

to internalize cognitive patterns that enhance decision-making

and adaptability. In addition, GPT applications serve as highly

responsive models of structured reasoning, delivering clear,

context-aware explanations that users can internalize and later

apply independently.

One study by Kartika (2024) demonstrated how university

students using AI-powered writing assistants, such as Google

Gemini, improved their writing efficiency through targeted AI

feedback. The AI chatbot provided students with structured

corrections, grammar enhancements, and vocabulary suggestions,

allowing them to iteratively refine their writing. This tailored

feedback loop aligns with observational learning, as students not

only corrected their errors but also internalized the AI’s structured

articulation, improving their ability to compose clear and cohesive

text over time. The interactive nature of AI-driven writing support

also enhanced student engagement and motivation, reinforcing the

self-regulatory aspects of SCT.

Additionally, SCT emphasizes self-efficacy, wherein individuals

develop confidence in their abilities through repeated successful

experiences (Pintrich, 2000). GPT applications provide a safe, low-

stakes environment for iterative problem-solving, enabling users to

refine their approaches with immediate AI feedback. This process

fosters adaptability, allowing individuals to transfer acquired skills

across various domains, ultimately supporting interdisciplinary

expertise. Empirical evidence supports this alignment; for example,

a study found that AI-driven conversational models improved

conversational skill mastery by 17.6% in simulated interactions,

demonstrating how users can learn and apply structured

communication strategies through observation and practice (Lin

et al., 2024). These enhancements reinforce the role of AI as a

cognitive scaffold, supporting users’ self-regulation, adaptability,

and confidence in decision-making.

While this empirical evidence supports the theoretical

alignment between SCT and GPT applications, additional research

is needed to fully quantify these effects over time. Future studies

could explore how sustained GPT usage influences users’ cognitive

and behavioral adaptations, particularly in structured thinking

and communication efficiency. Examining these dimensions

longitudinally would provide deeper insights into AI’s role in

fostering meaningful cognitive development.
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By framing GPT applications within Social Cognitive Theory,

we highlight how AI serves as a transformative learning tool.

GPT applications not only provide users with information but

also facilitate structured cognitive development by modeling

clear, adaptive reasoning and communication strategies. Future

interdisciplinary research should further explore how AI-driven

cognitive scaffolds contribute to real-world skill acquisition across

different professional and educational contexts.

2.4 Critical limitations in GPT-assisted
cognition

Despite their transformative capabilities, GPT models

remain bounded by several critical limitations that constrain

their reliability as cognitive partners. These challenges must

be foregrounded to contextualize claims about cognitive

augmentation and learning enhancement.

One of the most prominent limitations is hallucination—GPT’s

tendency to generate plausible-sounding but false or unverifiable

information (Ji et al., 2023). This stems from themodel’s reliance on

statistical patternmatching rather than grounded truth verification,

making it especially problematic in high-stakes contexts like

healthcare, law, or scientific research. Users may unknowingly

integrate these hallucinated facts into their reasoning processes,

introducing epistemic risk and eroding trust in the model’s output.

Another key concern is surface-level learning. While GPT

models can generate text that mimics deep understanding, their

knowledge representations are ultimately shallow, lacking causal

reasoning, abstraction, or long-term memory (Bubeck et al., 2023).

This can lead to overestimation of the model’s conceptual depth

and a false sense of mastery in users who rely heavily on its outputs

without critical reflection. As such, GPT’s support for learning is

best seen as scaffolding rather than substitution.

A third limitation lies in the risk of cognitive overreliance. As

users increasingly delegate cognitive tasks—such as summarization,

coding, or ideation—toGPTmodels, theymay experience a gradual

erosion of independent reasoning skills. This phenomenon, similar

to automation bias in human-computer interaction, is especially

concerning in hybrid systems where AI continuously adapts to user

behavior. Without explicit boundaries and reflection mechanisms,

GPT use may unintentionally displace core human cognitive

functions rather than augment them.

Finally, GPT models lack contextual awareness beyond the

session’s input window, making it difficult for them to track

goals, intentions, or longitudinal learning processes. This limitation

restricts their effectiveness in educational or strategic domains

that require sustained coherence across time. Efforts to integrate

memory and personalization remain in early stages and carry

their own risks, including privacy, bias reinforcement, and loss of

serendipitous discovery.

Taken together, these limitations highlight the need for critical

engagement with GPT systems—not as flawless tools, but as

evolving collaborators that require human judgment, oversight,

and intentional use. The remainder of this paper explores the ways

GPT can augment cognition, but always with these foundational

caveats in mind.

3 Key observations

In summary, GPT interactions present a dual impact

on human cognition—offering significant enhancements while

posing short-term challenges. By fostering structured thinking,

conversational agility, emotional intelligence, and learning transfer,

GPT applications serve as a powerful cognitive scaffold that

empowers users to achieve deeper understanding and cross-domain

adaptability. However, limitations such as cognitive overload,

over-reliance, and surface-level learning underscore the need for

balanced, intentional usage.

To fully understand these cognitive transformations, it is

essential to examine the underlying psychological mechanisms that

drive GPT applications’s cognitive effects. The following section

explores these mechanisms through established cognitive theories,

including Cognitive Load Theory, Social Cognitive Theory, and the

Zone of Proximal Development. These frameworks offer insights

into how GPT applications facilitate learning, adaptation, and

problem-solving, ultimately shaping users’ cognitive development

over time.

3.1 Structured thinking and analytical
abilities

GPT applications, powered by GPTmodels, promote enhanced

structured thinking and analytical abilities by providing users

with structured responses that help break down complex ideas

into manageable components. However, it is to be noted that the

clarity and coherence of these responses depend on user input, as

different prompts can yield varying levels of systematic reasoning

and detail. This structured approach enables users to analyze and

organize information more effectively, fostering critical thinking

and decision-making. The cognitive benefits of this interaction

align with Vygotsky’s Zone of Proximal Development (ZPD),

which emphasizes how external scaffolding supports learners in

internalizing structured reasoning frameworks (Vygotsky andCole,

1978). By engaging with GPT applications’ logically sequenced

responses, users gradually develop an improved capacity for

organizing and synthesizing information

Beyond structured reasoning, GPT applications play a crucial

role in cognitive load management. By consolidating fragmented

information into coherent narratives, GPT allows users to focus on

higher-order cognitive processes such as synthesis and evaluation

rather than expending cognitive resources on organizing disparate

data points (Sweller, 1988). However, GPT applications are

not infallible; they can generate hallucinated content—incorrect,

outdated, or contextually irrelevant information—especially when

dealing with ambiguous or poorly framed queries. While studies on

cognitive offloading support the role of AI in enhancing problem-

solving efficiency (Risko and Gilbert, 2016), users must remain

critical of GPT-generated outputs and verify key information to

mitigate the risks of misinformation.

The practical applications of structured thinking facilitated

by GPT applications extend across multiple domains. In research

and writing, these AI-powered tools assist users in generating

well-organized outlines, synthesizing academic literature, and
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refining arguments (Ng et al., 2024). Similarly, problem-solving

benefits from GPT applications’ ability to provide step-by-step

guidance for complex challenges, fostering an analytical approach

to multifaceted issues (Tapia-Mandiola and Araya, 2024). Within

educational settings, GPT applications serve as interactive tutors

that model structured reasoning and logical argumentation,

helping students develop a more systematic approach to problem-

solving (Mitchell et al., 2019).

While these benefits present compelling insights into GPT

applications’ role as cognitive scaffolds, they should be regarded

as speculative, grounded in established psychological theory

rather than direct empirical evidence. Although frameworks

such as ZPD and anecdotal experiences provide conceptual

support, there is a notable lack of large-scale empirical studies

quantifying these effects. Future research should therefore focus

on controlled experiments—for instance, classroom interventions

or workplace trials—to assess whether repeated GPT use

reliably enhances structured thinking, analytical reasoning, and

decision-making across real-world contexts. The absence of such

statistical evidence underscores the novelty of this perspective

and highlights an opportunity for interdisciplinary research into

AI-assisted cognition.

3.2 Conversational agility and multitasking

GPT interactions appear to enhance conversational agility—

the ability to adapt communication style, tone, and content

based on context. These outcomes are theoretically aligned with

Social Cognitive Theory, which emphasizes learning through

observational modeling (Bandura, 1986), but should for now

be regarded as hypotheses rather than empirically confirmed

effects. By exposing users to dynamic, context-aware responses,

GPT applications help develop flexible communication strategies

that naturally transfer into real-world conversations. Over time,

repeated interactions encourage users to refine their tone and

style across different settings, from professional correspondence to

creative brainstorming (Fui-Hoon Nah et al., 2023). Additionally,

GPT applications enable clear and concise expression, even in

multi-faceted, fast-paced discussions (Akdilek et al., 2024).

Rather than asserting that GPT directly enhances cognitive

multitasking, this effect can be understood as a logical outcome of

cognitive offloading. Humans can delegate tasks to external tools,

reducing mental resource allocation and enabling simultaneous

focus on multiple cognitive demands. Research on cognitive

offloading (Risko and Gilbert, 2016) supports this, demonstrating

that offloading information to external aids lightens cognitive load.

Furthermore, AI-assisted offloading allows individuals to “deploy

their insights strategically instead of relying on memorized facts”

(Grinschgl and Neubauer, 2022), potentially fostering improved

multitasking capacity. By handling sub-tasks such as memory

recall and structuring responses, GPT may reduce cognitive strain,

allowing users to engage more effectively in complex, multi-

faceted conversations.

Empirical evidence further supports the role of AI-assisted

communication in enhancing efficiency. Brynjolfsson et al. (2023)

analyzed the impact of AI-driven conversational assistants among

5,000 customer support agents, finding a 15% increase in

productivity, particularly benefiting less experienced workers.

Similarly, Schmidhuber et al. (2021) investigated AI-facilitated

human-chatbot interactions in enterprise environments, reporting

that AI-assisted users experienced lower cognitive load and

improved productivity compared to traditional non-AI-based

solutions. These findings highlight GPT application’s potential as

a tool that not only refines communication but also optimizes

cognitive efficiency in demanding workspaces.

Despite these advantages, short-term challenges exist. The

rapid responsiveness of GPT applications can contribute to mental

stress, particularly during prolonged interactions that require

sustained engagement with AI-generated outputs (Nizamani et al.,

2024). The work suggests that frequent interactions with AI

technologies correlate positively with cognitive improvements

but also elevate stress levels and emotional strain, highlighting

the risk of cognitive overload and mental fatigue when users

over-rely on AI-assisted decision-making. Additionally, while

AI-driven exchanges enhance efficiency and reduce extraneous

cognitive load, over-reliance on AI-generated responses may also

reduce mental engagement and cognitive stimulation, potentially

impacting critical thinking and problem-solving skills over time

(Dergaa et al., 2024). This underscores the importance of balancing

AI-assisted communication with moments of cognitive rest and

active engagement to prevent mental exhaustion and maintain

cognitive adaptability.

Over the long term, repeated GPT interactions allow users

to internalize effective conversational strategies, enhancing their

ability to shift between different modes of communication with

ease. The capacity to seamlessly transition between diverse

topics, maintain clarity in high-demand discussions, and integrate

structured dialogue into everyday interactions represents a critical

step toward more effective, adaptable communication. As AI

becomes increasingly embedded in professional and social contexts,

understanding how users engage with these systems will remain

essential in refining their role in human cognitive development.

It is important to note, however, that many of the claims in

this section remain speculative, grounded in cognitive theory

and supported by small-scale or indirect studies rather than

large-scale empirical validation. Future research should therefore

design controlled experiments—for example, tracking how

repeated GPT-assisted interactions influence conversational

agility and multitasking in professional and educational

contexts—to determine whether these theorized benefits can

be empirically verified.

3.3 Emotional intelligence and social
engagement

Generative Pre-trained Transformer (GPT) applications’

ability to model empathetic communication and context-

sensitive responses may play a role in enhancing users’ emotional

intelligence. While GPT itself does not possess emotions, it is

capable of producing structured and adaptive conversational cues

that exhibit emotional intelligence in its interactions (Wang et al.,

2024). These outcomes are theoretically grounded in Bandura’s
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Social Cognitive Theory, which emphasizes learning through

observational modeling (Bandura, 1986), but should for now be

regarded as hypotheses rather than empirically confirmed effects.

By consistently presenting emotionally intelligent responses,

GPT serves as an effective model from which users can learn,

reinforcing their own ability to engage in empathetic dialogue.

Through repeated exposure to GPT-generated responses, users

may observe and internalize strategies for expressing empathy,

managing emotions, and navigating social contexts.

Empirical studies provide preliminary support for this learning

effect. For instance, Sharma et al. (2022) demonstrated that

AI-assisted conversational systems, where AI provides real-time

guidance in human interactions, led to a 19.6% increase in

conversational empathy between peers overall. While this study

involved an augmented system (AI + human) rather than

independent GPT use, it nonetheless illustrates how exposure to

emotionally adaptive AI responses can foster improvements in

human empathy. Similarly, Lin et al. (2024) found that AI-driven

conversational agents reduced negative emotions like fear by up

to 25% through structured simulations and feedback, providing

scaffolding for emotional regulation and conflict resolution while

enhancing interpersonal skills. These findings highlight promising

directions where structured AI interactions may serve as training

mechanisms for individuals seeking to refine their emotional and

social competencies in real-world environments. Over time, users

may refine their ability to recognize and adapt to emotional cues,

engage in emotionally intelligent dialogue across diverse social

settings, and strengthen interpersonal skills such as active listening

and conflict resolution.

A relevant example of this potential can be seen in educational

settings, where GPT applications are employed to assist teachers

in navigating difficult classroom interactions. A teacher using GPT

to draft responses for sensitive student interactions may, over

time, internalize strategies for managing conflicts empathetically.

GPT applications’ ability to detect sentiment and adapt tone

enables the teacher to enhance their own emotional awareness

and engagement with students. Similarly, professionals in customer

service, healthcare, and leadership roles may benefit from AI-

assisted emotional intelligence training, reinforcing their ability to

handle complex interpersonal challenges with greater sensitivity

and confidence.

Despite these promising applications, many of the claims

in this section remain speculative, supported by small-scale or

indirect empirical findings rather than large-scale, longitudinal

studies. Future research should examine whether sustained

engagement with GPT applications produces measurable and

durable improvements in emotional intelligence across diverse

contexts, such as education, healthcare, and customer service. Such

investigations would help distinguish temporary training effects

from genuine, long-term cognitive, and emotional adaptation.

3.4 Cognitive overload and learning
transfer

Generative Pre-trained Transformer (GPT) applications’ real-

time synthesis of large volumes of information can induce a state

of continuous partial attention (CPA)—a cognitive behavior where

individuals constantly scan and optimize incoming information

to avoid missing anything (Rose, 2010). Unlike traditional

multitasking, which is often motivated by productivity goals, CPA

is a network-driven process where individuals strive to remain

constantly connected to streams of new information. Linda Stone,

who coined the term, described CPA as the tendency to function as

a “live node on the network,” perpetually seeking novel input (Rose,

2010).

While CPA originally emerged in the context of digital

communication, its effects may be amplified by AI-generated

responses. GPT applications, by producing structured, context-

aware outputs, can facilitate rapid sequential information

processing, keeping users engaged in ongoing loops of AI-assisted

content consumption. This heightened engagement can increase

the risk of cognitive strain, leading to cognitive overload—a

state where information-processing demands exceed individual

capacity, hindering learning and decision-making (Sweller, 1988).

Research in neuroplasticity suggests that such cognitive

challenges, while demanding, may also strengthen adaptive

learningmechanisms. For example, Kleim and Jones (2008) showed

that experience-dependent neural plasticity, driven by repeated

cognitive challenges, is crucial for skill acquisition and adaptability.

Similarly, Fissler et al. (2013) found that engaging in novel,

demanding tasks enhances structural brain changes and cognitive

function. These studies indicate that GPT-assisted cognitive

overload could, hypothetically, reinforce neuroplasticity. Over

time, users may internalize GPT’s structured reasoning patterns

and interdisciplinary adaptability, enabling them to synthesize

knowledge across domains (Chauncey and McKenna, 2023).

Precedent exists in earlier AI-driven tutoring systems. Tools

such as AutoTutor and Cognitive Tutors have been shown

to improve critical thinking, problem-solving, and cognitive

adaptability by engaging learners in structured, interactive tasks

(Graesser et al., 2005; Aleven and Koedinger, 2002). Given GPT’s

far greater natural language and reasoning capabilities, it is

reasonable to hypothesize that these effects could be magnified,

with GPT interactions providing an implicit training ground

for higher-order reasoning and cross-domain adaptability. For

instance, a data analyst who frequently uses GPT to generate code

snippets while synthesizing research may gradually transfer this

structured problem-solving approach to other contexts, such as

financial modeling or healthcare analytics.

Despite this promise, cognitive overload presents a clear

trade-off: short-term fatigue versus potential long-term cognitive

flexibility. Prolonged engagement with GPT applications may

lead to temporary strain, especially during complex, multitasking

interactions (Nizamani et al., 2024). Thus, while GPT applications

may support knowledge transfer and interdisciplinary adaptability,

they also carry risks of fatigue, over-reliance, and reduced

independent reasoning if safeguards are not in place.

It is important to note that while principles of neuroplasticity

and knowledge transfer are well established in cognitive science,

their extension to GPT-assisted interactions remains hypothetical.

The claims in this section should therefore be regarded as

speculative, grounded in theory and supported by small-scale or

indirect empirical findings rather than large-scale, longitudinal

validation. Future research should examine whether sustained
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GPT use leads to measurable improvements in cross-domain

learning and problem-solving—for example, through controlled

experiments comparing pre- and post-GPT learning outcomes,

or longitudinal studies assessing durable changes in cognitive

flexibility. Such investigations will be crucial to clarifying whether

GPT-driven cognitive overload functions primarily as a risk factor,

a learning catalyst, or both.

4 Future directions

The transformative impacts of GPT interactions on cognitive

processes, behavior, and skill acquisition raise important questions

about its broader implications. This section outlines key areas

for future research and practical considerations to enhance GPT

applications’ role as a tool for cognitive growth.

4.1 Multi-modal GPT interaction

The future evolution of GPT models lies in their integration

with multi-modal inputs—technologies that enable AI to process

and respond to diverse data types, including text, voice, images,

video, and sensory signals. Multi-modal AI refers to systems

capable of synthesizing multiple forms of data simultaneously to

generate contextually rich and adaptive responses (Stryker, 2024).

This mirrors human cognition, where vision, hearing, touch, and

other senses operate in parallel to interpret the environment.

At present, multi-modal AI primarily engages with visual and

auditory data. Advances in computer vision, speech recognition,

and real-time language translation have made these interactions

increasingly seamless and context-aware (Stryker, 2024). GPT

models can analyze medical images, process spoken queries, and

produce cross-lingual responses—all of which already enhance

human-computer interaction.

Looking forward, future capabilities may expand beyond text,

image, and audio to include neural, haptic (touch), and olfactory

(smell) inputs. While still speculative, these modalities are backed

by emerging technologies. For instance, brain-computer interfaces

could allow direct communication between users and GPT

systems, bypassing conventional input channels (Neuralink, 2025).

Similarly, haptic feedback systems—such as soft robotic gloves

that deliver kinesthetic force cues—have demonstrated improved

immersion and precision in virtual environments (Jadhav et al.,

2017). Electrotactile interfaces are also under exploration for fine-

motor feedback in AR/VR contexts, though results remain mixed

(Kourtesis et al., 2022).

When paired with GPT models, such technologies could create

immersive learning environments for domains requiring physical

precision, like surgery, sculpting, or sports training. However,

realizing this integration at scale will require the development of

large, structured haptic datasets—analogous to the text and image

corpora used to train current GPT models.

Olfactory interfaces offer another emerging frontier. Wearable

scent-generating devices have been successfully integrated into VR

systems to deliver contextual smells, such as in art installations

or chemistry simulations (Liu et al., 2023; Lin et al., 2025).

While these applications are still experimental, they demonstrate

the technological feasibility of real-time scent output. To enable

GPT models to reason with or generate olfactory content,

however, standardized smell databases and mappings—linking

molecular profiles to human-perceived descriptors—would need to

be developed and embedded into training pipelines.

In short, the hardware required to sense and deliver haptic and

olfactory feedback is becoming available. The primary barrier now

lies in curating the corresponding sensory datasets and developing

frameworks for GPT models to process and respond to them

meaningfully. Once established, these sensory signals could flow

bidirectionally: users could send smell/touch input to GPT systems

via sensors, and GPT could generate sensory outputs back to

users via actuators or wearables. This bidirectional architecture

may become especially relevant in later stages of GPT evolution,

including the speculative development of human–AI symbiosis,

discussed in subsequent sections.

These future-oriented modalities open compelling possibilities

for multi-modal GPT systems to transform education, design,

and embodied learning. A user interacting with a GPT-powered

virtual kitchen, for example, could one day smell the ingredients

being discussed, feel the texture of virtual dough through a

glove, or receive real-time corrections on knife grip via haptic

feedback—all while receiving natural language guidance. While

such applications remain conceptual, the necessary components are

beginning to emerge.

Nonetheless, practical and ethical challenges persist. The fusion

of visual, auditory, tactile, olfactory, and neural data streams

increases the risk of cognitive overload, potentially diminishing

learning efficiency. Privacy concerns are especially pronounced

when dealing with brain-computer interfaces and bio-sensory

devices, as these may capture deeply personal information

(Yuste et al., 2017). Furthermore, aligning multi-modal GPT

outputs with human cognitive rhythms remains an open design

problem—effective learning hinges on intuitive, non-intrusive AI-

human coordination.

In summary, multi-modal GPT interactions represent

a promising next frontier in AI development. As sensory

input/output devices mature and datasets expand, GPT systems

may become capable of engaging users in deeply immersive,

multisensory experiences. The integration of touch and smell

alongside vision, audio, and text could significantly enhance the

depth, adaptability, and impact of AI-mediated learning. However,

translating technical feasibility into sustainable practice will require

careful attention to cognitive limits, ethical safeguards, and the

development of robust sensory corpora.

4.2 Expanding perspectives on hybrid AGI

The path to Artificial General Intelligence (AGI)—systems

with human-level adaptability across cognitive domains—has often

focused on standalone AI models achieving general-purpose

intelligence. However, a promising alternative lies in human-AI

integration, where intelligence emerges not from artificial systems

alone but from the combined capacities of humans and machines.

This concept is typically referred to as Hybrid Intelligence,

which describes systems where humans and AI collaborate to
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solve problems by leveraging complementary strengths. Hybrid

Intelligence aims to enhance decision-making, creativity, and

problem-solving by combining AI’s computational speed and

memory with human intuition, ethical reasoning, and contextual

awareness. As Dellermann et al. (2021) describe, human-AI teams

can outperform either component alone. Similarly, Krinkin and

Shichkina (2022) propose co-evolutionary models grounded in

cognitive interoperability between humans and machines.

Building on this foundation, this paper introduces the concept

of Hybrid AGI as an evolutionary step beyond Hybrid Intelligence.

While Hybrid Intelligence emphasizes cooperation for task-specific

gains, Hybrid AGI refers to a distributed general intelligence

system composed of both human and AI agents working

in continuous partnership. Rather than striving for artificial

systems to replicate all aspects of human cognition, Hybrid AGI

integrates human minds as irreplaceable components of a broader,

symbiotic cognitive system capable of general-purpose reasoning

and adaptation.

This evolution is enabled by what we term Cognitive

Symbiosis—a bidirectional process of co-adaptation where human

and AI cognitive processes influence and reshape each other

over time. In contrast to traditional AI tools, which operate

independently of user cognition, cognitive symbiosis involves

ongoing mutual learning. The AI system (e.g., GPT) adapts to

the user’s cognitive preferences, strategies, and feedback, while the

human adjusts their reasoning and decision-making patterns in

response to the AI’s suggestions, structures, and memory scaffolds.

Over time, this interaction forms a self-reinforcing loop that

enhances both parties’ capabilities.

This paper argues that cognitive symbiosis is not merely a

byproduct of human-AI collaboration but the core mechanism

that will define the next phase of general intelligence development.

Hybrid AGI is thus not a stopgap on the path to autonomous AGI,

but a final architecture in its own right—where general intelligence

arises through sustained, adaptive collaboration between human

and artificial cognition.

The preceding section explored howmulti-modal GPT systems

expand AI’s capabilities through sensory modalities such as

olfaction (smell) and haptics (touch). These technologies—while

promising—depend on hardware such as scent emitters or robotic

gloves, limiting their accessibility in everyday settings. Hybrid

AGI, as conceptualized here, proposes an alternative paradigm:

humans themselves become the sensory conduit. Rather than

relying on embedded sensors, individuals perceive textures, scents,

or emotional cues and communicate them through natural

language or neural signals to AI. This transforms the human

into an active sensor and interpreter—allowing GPT to adapt to

subjective and context-rich human experiences without the need

for external devices.

GPT models, as language-based AI, offer structured reasoning,

externalized memory, and dynamic knowledge synthesis. Future

developments—such as integration with neural interfaces or

wearable haptic systems—could elevate GPT from a conversational

tool to a full-spectrum sensory collaborator. While these

integrations remain speculative, they are grounded in emerging

experimental systems and research in brain-computer interfaces,

wearable haptics, and cognitive augmentation. Their potential

for Hybrid AGI warrants conceptual exploration despite limited

empirical evidence to date. Viewed this way, Hybrid AGI

becomes more than a passive assistant: it evolves into a real-time

cognitive feedback system that accelerates learning, reconfigures

reasoning strategies, and supports the continuous refinement of

human intelligence.

The integration of GPT models into human workflows

unlocks new possibilities across disciplines. In scientific discovery,

hybrid systems can accelerate research by combining GPT’s

large-scale synthesis capabilities with human intuition, enabling

novel hypothesis generation and cross-disciplinary insight. While

progress in AI-driven knowledge extraction is well established,

the direct impact of Hybrid AGI on discovery pipelines

remains an emerging area of study. In creative collaboration,

GPT models augment ideation in writing, visual design, and

filmmaking (Mitchell et al., 2019), offering real-time scaffolding

without displacing human agency. In complex decision-making

domains such as healthcare and engineering, hybrid systems

combine AI’s precision and analytical scope with human ethical

judgment and context sensitivity (Topol, 2019). Together, these

applications demonstrate Hybrid AGI’s potential as a broad-

spectrum amplifier of human cognition across both analytical and

creative domains.

While Hybrid AGI offers transformative potential, several

critical challenges must be addressed to ensure its ethical, safe, and

equitable development. One key concern is cognitive overreliance.

Prolonged dependence on AI may erode independent human

reasoning. As Hybrid AGI systems actively adapt to users, they

risk replacing—rather than supporting—human problem-solving

unless boundaries are clearly maintained. Another issue is trust

and transparency. Continuous co-adaptation between human and

AI makes decision processes harder to trace. Explainable AI

methods must evolve to handle the dynamic, context-driven nature

of Hybrid AGI outputs (Lipton, 2018). Ethical considerations

also arise in domains where outcomes affect lives, such as

medicine or law. Here, Hybrid AGI introduces tension between

AI recommendations and human accountability. Additionally,

unequal access to cognitive augmentation technologies may deepen

existing inequalities in decision-making capabilities. As AI systems

become increasingly embedded into thought processes, the line

between personal cognition and machine-augmented reasoning

may blur, raising complex questions about authorship, agency, and

expertise. Finally, since Hybrid AGI learns from human behavior

and simultaneously shapes it, feedback loops may reinforce

cognitive biases or narrow intellectual diversity. Safeguards will

be needed to ensure hybrid systems foster balanced and diverse

thinking styles.

Hybrid AGI marks a fundamental shift from AI as a tool to AI

as a cognitive partner. As these systems become more embedded

in how humans think, learn, and create, their influence will grow

both in scope and depth. Future research should explore the

cognitive effects of prolonged AI augmentation, the dynamics of

co-adaptation, and strategies for maintaining human oversight.

Ultimately, the goal is not to replace human intelligence—but

to cultivate a symbiotic partnership where human and artificial

cognition evolve together toward higher levels of insight, creativity,

and problem-solving.
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4.3 Outcome-agnostic research
framework

The development of GPT models necessitates a research

paradigm that embraces outcome-agnostic methodologies. Unlike

traditional AI research, which often pursues narrowly defined

objectives, outcome-agnostic approaches encourage exploration of

emergent properties and unintended applications, broadening the

scope of discovery and innovation. This approach is particularly

valuable in AI research, where the complexity and unpredictability

of intelligent systems often lead to unexpected findings and

applications (George, 2024). By not being constrained by specific

goals, researchers can investigate novel questions and phenomena,

laying the groundwork for future advancements that may not have

been initially anticipated.

Outcome-agnostic research, also known as exploratory

research, is characterized by its flexibility and openness to

new ideas. In the context of GPT models, adopting such a

framework allows for the investigation of a wide array of potential

functionalities and interdisciplinary impacts. This includes not

only enhancing language understanding and generation but

also exploring applications in diverse fields such as cognitive

science, healthcare, and the arts. A research model that prioritizes

open-ended inquiry fosters an environment where serendipitous

discoveries are more likely to occur, as researchers remain open to

exploring the full spectrum of AI capabilities.

Implementing an outcome-agnostic research paradigm

involves several core principles:

• Exploratorymodeling:Allowing AI systems to generate novel

insights and connections without predefined goals, fostering

serendipitous discoveries (George, 2024).

• Interdisciplinary collaboration: Engaging researchers

from diverse fields—such as psychology, neuroscience, and

sociology—to identify unexpected synergies and impacts of

GPT models.

• Iterative refinement: Continuously refining GPT models

based on emergent feedback, ensuring that both positive and

negative outcomes are systematically incorporated into future

iterations.

By embracing these principles, outcome-agnostic research

in GPT models can facilitate transformative applications across

multiple disciplines. Rather than confining AI research to pre-

established constraints, this approach unlocks new possibilities,

extending AI’s potential beyond traditional applications and

fostering innovative solutions that contribute to a deeper

understanding of artificial intelligence.

By embracing an open-ended research framework, GPTmodels

can unlock transformative potential across domains. Historical

breakthroughs, such as CRISPR and penicillin, highlight the value

of unstructured exploration. GPT models, when developed under

an outcome-agnostic framework, have the potential to reveal

novel methodologies or frameworks in unexpected fields. By

enabling autonomous pattern recognition and cross-disciplinary

synthesis, AI can facilitate discoveries beyond its originally

intended applications.

One area of unintended innovation is AI-driven rehabilitation,

where virtual therapeutic systems powered by AI have opened

new avenues for patient care, demonstrating the potential of

AI to revolutionize traditional medical practices (Gonzlez et al.,

2024). Similarly, in the arts, AI-generated creativity has led

to the development of unique artistic expressions, challenging

conventional notions of authorship and creativity (Van Hees et al.,

2024).

Beyond these domains, outcome-agnostic AI models have

also played an increasingly critical role in scientific discovery.

Large-scale AI-assisted simulations are accelerating drug discovery,

material science research, and environmental modeling, revealing

structures and patterns that might have taken decades for human

researchers to identify. In engineering, AI-driven optimization

algorithms are enabling more efficient and sustainable designs,

such as AI-enhanced aerodynamics for energy-efficient vehicles

and bio-inspired structures in architecture.

Another promising direction is AI-human creative

collaboration, where GPT models function as co-creators rather

than mere tools. This extends beyond traditional AI-generated art,

incorporating applications in film production, music composition,

and interactive storytelling. AI models trained on vast creative

datasets are now being used to generate adaptive narratives in

video games, assist musicians in composing new melodies, and

even produce entirely AI-directed short films.

By embracing an open-ended research approach, GPT

models and other AI-driven frameworks can continuously

expand their utility across domains, uncovering use cases that

are not immediately apparent at their inception. Rather than

being limited to predefined applications, AI can serve as a

catalyst for novel discoveries, reshaping industries and fostering

interdisciplinary innovation.

Outcome-agnostic research introduces risks that must be

carefully managed. For example, open-ended exploration can

lead to applications that raise ethical concerns, such as privacy

violations or misuse in manipulative contexts (Yuste et al., 2017).

In addition, outcome-agnostic research requires significant time

and computational resources, which may not always align with

immediate societal needs.

An outcome-agnostic research framework for GPT models

aligns with the principles of exploratory science, prioritizing

flexibility and interdisciplinarity to uncover transformative

applications. While this approach entails challenges, such as

resource demands and ethical risks, it remains essential for

fostering innovation and ensuring that the full potential of GPT

models is realized responsibly.

4.4 Risk mitigation in multi-modal GPT and
hybrid AGI

The advancement of GPTmodels into multi-modal and Hybrid

AGI systems introduces both opportunities and risks. While

these technologies offer unprecedented capabilities in human-

AI collaboration, they also present new challenges related to

cognitive dependency, AI-human alignment, and ethical concerns
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in multi-modal AI applications. Unlike traditional AI risks—such

as bias and misinformation—Hybrid AGI and multi-modal AI

require proactive strategies to mitigate risks emerging from deep

human-AI integration, evolving reasoning patterns, and expanding

AI autonomy.

4.4.1 Cognitive overreliance, fatigue, and
AI-human misalignment

As Hybrid AGI systems become more sophisticated, prolonged

reliance on AI for knowledge synthesis and decision-making may

reduce users’ capacity for independent reasoning and sustained

attention. Multi-modal AI—integrating vision, speech, neural

interfaces, and other sensory streams—further raises the risk of

cognitive fatigue and automation complacency. To mitigate these

effects, we recommend:

• For educators: Design learning activities that explicitly

differentiate between AI-assisted and unaided reasoning.

Encourage students to reflect on their cognitive processes

when using AI-generated suggestions.

• For users: Periodically perform high-cognition tasks without

GPT support to maintain intellectual resilience. Monitor

signs of fatigue or overuse, such as passive acceptance of AI

suggestions or declining curiosity.

• For developers: Implement adaptive scaffolding mechanisms

that allow users to adjust levels of AI assistance, promoting

engagement rather than dependence.

4.4.2 Bias and misinformation in multi-modal AI
As GPT models incorporate capabilities across modalities—

including image, voice, and even haptic inputs—they inherit biases

from those datasets (Bender et al., 2021). In sensitive domains

such as healthcare, education, or hiring, these biases can reinforce

inequality or misinformation. To address this, practical safeguards

include:

• For developers:Use cross-modal validation techniques, where

reasoning from one input (e.g., text) is tested against others

(e.g., image or speech).

• For users: Treat AI outputs as hypotheses rather than truths—

verify against external knowledge sources or through human

peer review.

• For policymakers: Enforce standards for dataset auditing

and transparency across all sensory modalities, especially in

regulated fields.

4.4.3 Privacy and ethical concerns in sensory AI
The convergence of Hybrid AGI and multi-modal GPT—

especially through neural interfaces and biometric-enhanced

devices—amplifies risks to privacy, consent, and data sovereignty.

These systems increasingly rely on intimate cognitive and

physiological signals. To ensure ethical implementation:

• For developers: Employ secure-by-design architectures, with

end-to-end encryption for brain-computer interface (BCI) or

wearable haptic inputs.

• For users: Understand what types of cognitive or biometric

data are being collected and retain the right to opt-out or

anonymize inputs.

• For institutions: Establish review boards and ethics protocols

specific to neural or sensory data collection, especially in

education, healthcare, and defense.

Hybrid AGI and multi-modal GPT models represent a shift

toward AI systems that do not simply process information

but actively shape human workflows and cognition. As these

technologies continue to evolve, risk mitigation must transition

from static safeguards to dynamic oversight models that integrate

user feedback, promote resilience, and protect human autonomy.

Future research should explore how human-AI collaboration

evolves over time, and how practical guidelines can help

maintain the AI-human relationship as one of augmentation—

not replacement.

5 Conclusion

The rapid adoption of GPT models has reshaped human

cognition and behavior, acting as both a tool for immediate

knowledge retrieval and a facilitator of long-term cognitive growth.

Grounded in established psychological frameworks—including

Cognitive Load Theory, Social Cognitive Theory, and Vygotsky’s

Zone of Proximal Development—this paper demonstrates GPT’s

potential role in supporting structured thinking, conversational

agility, emotional intelligence, and interdisciplinary learning

transfer. Evidence from related domains, such as AI-driven

tutoring and cognitive scaffolding, provides preliminary support

for these effects.

However, it is essential to distinguish between established

insights and forward-looking hypotheses. Well-documented

findings include the ability of AI systems to reduce cognitive load,

model structured reasoning, and scaffold users’ performance in

immediate tasks. In contrast, claims about long-term neuroplastic

effects, durable gains in emotional intelligence, or interdisciplinary

cognitive transfer remain speculative. These possibilities are

grounded in cognitive theory and small-scale empirical studies but

require large-scale, longitudinal validation to be confirmed.

The potential of GPT models to act as cognitive scaffolds

is promising but not without risks. Short-term limitations such

as cognitive overload, over-reliance, and surface-level learning

highlight the need for thoughtful design interventions, including

adaptive pacing, reflective prompts, and phased scaffolding.

Future research should also investigate whether sustained GPT

interactions produce enduring cognitive benefits, or whether risks

such as fatigue and reduced independent reasoning outweigh long-

term gains.

Looking ahead, speculative directions include the integration

of GPT with multi-modal inputs—such as virtual reality, neural

interfaces, and sensory technologies—and its role in emerging

hybrid AGI systems. While these remain conceptual at present, they

highlight potential trajectories for future human-AI collaboration.

In conclusion, GPT models represent more than a

technological innovation; they may serve as catalysts for cognitive

transformation. Yet the extent of this transformation remains

an open question. By explicitly distinguishing evidence-based
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claims from theoretical hypotheses, this paper underscores

both the promise and the uncertainty of GPT’s role in human

cognition. Advancing this field will require rigorous empirical

studies, interdisciplinary collaboration, and careful attention to

ethical safeguards.
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