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Multitasking and sequential motor learning research has advanced greatly in recent 
years, yet commonly accepted insights are largely based on simple, distinct tasks 
which cannot accurately reflect the variety of more complex and continuous tasks 
we encounter in everyday life. This study therefore aims to reassess the influence 
of task integration on motor sequence learning in complex, continuous tasks 
through the use of a virtual reality environment and an adapted SRT dual task 
suited for continuous movements. In our experiment, participants performed a 
complex, bimanual motor sequence task with varying degrees of suitability for 
task integration. We could successfully show that task integration has beneficial 
effects on complex task acquisition if covariations between tasks are consistent 
and detrimental effects if covariations are too inconsitent or missing. Minor 
inconsistencies within a repeated sequence can however be mitigated. These 
results highlight the distinct influence of task integration on complex, continuous 
motor learning, yet emphasize the need for further research beyond distinct, 
simple tasks.
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1 Introduction

Sequence learning is a research area of undiminished relevancy, as motor sequences 
frequently represent the basis for routinely performed or highly efficient tasks, from 
recreationally playing the piano or driving a car to competing with the world’s best athletes in 
professional sports. An interesting example for the latter can be found in speed climbing, 
which is one of three formats of sports climbing introduced during the 2020 Summer Olympics 
in Tokyo, Japan. Speed climbing can be described as a head-to-head vertical sprint up a 
standardized 15-meter wall (International Federation of Sport Climbing, 2022; Nguyen et al., 
2022) and represents a complex, continuous motor task which requires coordination of 
multiple effector-specific motor sequences. Task integration, the ability to (implicitly) perceive 
and learn two or more distinct tasks as one (Beißel and Künzell, 2024; Künzell et al., 2018; 
Schmidtke and Heuer, 1997), is bound to distinctively influence this skill. In order to compete 
with other climbers in this discipline, athletes first must identify, learn and integrate the 
individual set of sequences best suited to their respective anthropometric characteristics, 
power and strength (Winkler et al., 2023). The learning process of such complex motor tasks 
is of great interest to scientists and coaches alike, but motor learning research in the past has 
largely focused on simple motor tasks with discrete trials (Haar et al., 2021; Lee and Anderson, 
2001; Levac et al., 2019; Wulf and Shea, 2002; also Pelzer et al., 2022b; Röttger et al., 2021). 
These discrete trials usually omit anticipatory preplanning of subsequent trials parallel to 
motor execution (Ariani and Diedrichsen, 2019; Dahm and Krause, 2024) which is a feature 
and possible benefit of many everyday tasks. This is naturally owed to better experimental 
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control of simple tasks in the laboratory and the challenges of validly 
assessing more complex or continuous tasks, yet more research on 
complex skills is certainly needed (Haar et al., 2021; Levac et al., 2019; 
Wulf and Shea, 2002). However, insights about motor learning gleaned 
from simple task studies cannot directly be transferred to complex 
tasks or continuous tasks allowing for anticipation of subsequent 
motor execution decisions (Lee and Anderson, 2001; Levac et al., 
2019; Sternad et al., 2014; Wulf and Shea, 2002). We therefore identify 
three research gaps in contemporary motor learning research that 
need to be expanded upon: the influence of task integration on motor 
sequence learning is commonly accepted, yet details about its extent 
and robustness against disturbance remain largely unexplored. And as 
research in this field has widely focused on simple tasks with discrete 
trials, research needs to be expanded to both complex tasks, as well as 
continuous tasks that allow for anticipation of subsequent actions. 
Expanding research into these areas requires different experimental 
settings for validly researching motor skills, which recent advances in 
virtual reality (VR) technology might provide.

Despite the necessity for closer examination of task integration, 
past research has provided fundamental knowledge of its core aspects. 
It is currently understood as the implicit process of perceiving and 
then merging two or more distinct tasks into one gestalt during task 
acquisition (Klapp and Jagacinski, 2011; Künzell et al., 2018). Tasks 
and entire sequences are thus treated as functional, inseparable units 
(Schmidtke and Heuer, 1997). Depending on the structure of the 
tasks, task integration can have a beneficial or detrimental influence 
on the learning process, as it is a perpetually active process (Pelzer 
et al., 2022a; Pelzer et al., 2022b; Röttger et al., 2021; Zhao et al., 2020). 
The introduction of secondary tasks alongside a primary task usually 
leads to dual-task interference and a subsequent decline in 
performance due to competition for limited mental resources, a 
limited central capacity, or perturbations resulting from increased 
demands for judgement and decision-making (Broeker et al., 2018; 
Koch et al., 2018; Schmidtke and Heuer, 1997). Task integration can 
mitigate these detrimental effects if repeating covariations between the 
tasks can be identified and integrated into a joint memory episode 
through associative chaining, leading to improved learning and 
performance (Beißel and Künzell, 2024; de Oliveira et al., 2017; Pelzer 
et al., 2022b; Röttger et al., 2021; Schmidtke and Heuer, 1997; Swinnen 
and Wenderoth, 2004). Conversely, task acquisition can be severely 
disrupted if no covariations exist between two tasks and integration is 
nonetheless attempted, leading to task confusion as the dissimilar, 
distinct tasks can neither be integrated, nor separated (Beißel and 
Künzell, 2024; Hazeltine and Schumacher, 2016; Röttger et al., 2021). 
Task confusion and resulting motor detriments can also arise from 
discrepancies between successfully learned, reactivated memory 
episodes and altered task demands (Frings et al., 2020; Pelzer et al., 
2022b). We showed in a previous paper that this is by no means a 
binary distinction: task integration can still be effective in spite of 
partial random disturbances in the secondary task, as the cognitive 
system is capable of freeing up resources by focusing on the structured 
parts of a task (Beißel and Künzell, 2024; Broeker et al., 2021). There 
is however a limit to the benefits of this mitigating capacity, as 
comparatively small amounts of integrable items in an otherwise 
mostly random sequence seem to be  detected, but unsuccessful 
integration attempts lead to excessive resource expenditure (Beißel 
and Künzell, 2024). Yet this does not fully suppress other learning 
mechanisms as some effector-specific learning still takes place. 

We may summarize that successful task integration has beneficial 
effects on task acquisition and performance when covariations are 
consistent enough to be identified and integrated, while the effect is 
conversely detrimental when these conditions are not met (Beißel and 
Künzell, 2024; de Oliveira et al., 2017; Röttger et al., 2021; Schmidtke 
and Heuer, 1997). Yet the exact processes behind task integration are 
still not fully researched and perspectives on it have changed since the 
groundwork laid by Schmidtke and Heuer (1997). It is necessary to 
study the impact of task integration under more ecologically valid 
circumstances, such as in complex, continuous and predictable tasks 
which might be inherently detrimental to integration processes.

Task integration might impact more realistic tasks differently, as 
they often require continuous sensorimotor and cognitive attention 
(Johannsen et al., 2022). Most daily tasks also do not suddenly appear 
before being performed but can be anticipated and thus subsequent 
actions can be planned ahead (Ariani and Diedrichsen, 2019; Dahm 
and Krause, 2024). Such anticipatory cues might even hurt sequence 
learning and automatization, as a purely reactive mode without 
reactivation of motor memory episodes could be adopted (Dahm and 
Krause, 2024). In this context, Ariani and Diedrichsen (2019) 
distinguish between preplanning and online planning. Preplanning 
can be  utilized when sequence information is provided before 
movement is initiated but is unlikely to be effective when sequences 
are too long, or preparation time is too short (Ariani and Diedrichsen, 
2019; Dahm and Krause, 2024; Haith et al., 2016). Online planning 
refers to the selection of subsequent actions during the execution of 
current actions and thus allows for the successful handling of 
successive, rapid stimuli presentations, as playing the piano or speed 
climbing would entail (Ariani and Diedrichsen, 2019; Dahm and 
Krause, 2024). While previous studies have shown that anticipatory 
cues and concomitant planning can reduce dual-task costs, the effects 
of prediction on task integration and sequence learning remain 
unclear, especially for complex tasks (Broeker et al., 2017; Dahm and 
Krause, 2024).

Complex tasks might be impacted by task integration and other 
motor learning mechanisms differently than simple ones due to 
increased resource demands. Learners faced with a rather simple task 
will form a rudimentary action plan which will then be adapted and 
built upon in subsequent interactions until it is adequate for the task 
(Guadagnoli and Lee, 2004). When confronted with a more complex 
skill with more degrees of freedom or multiple viable solutions, 
however, learners might be forced to focus on parts of the new skill 
and as such parts of the developing movement representation might 
at first be divided into relatively independent subcomponents which 
can then be  learned easier and founded on more basic learning 
principles (Guadagnoli and Lee, 2004; Lee and Anderson, 2001). Lee 
and Anderson (2001) call this the reducibility hypothesis. This 
approach would consequently require more mental and physical 
resources compared to simpler tasks, as has been shown in previous 
studies. Meister et al. (2005) reported higher fMRI activations of the 
pre-supplementary motor area and the rostral part of the premotor 
cortex for complex sequences performed on a keyboard in contrast to 
simple sequences. In a more recent study, Mussini et  al. (2021) 
compared motor and cognitive preparatory brain activity during 
simple and complex visual motor discriminative response tasks and 
reported less neural activity in simple tasks in comparison to complex 
tasks. These and further studies (e.g., Deroost and Soetens, 2006; Jarus 
and Gutman, 2001) support the notion that research results from 
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simple tasks cannot directly be transferred to complex tasks (Lee and 
Anderson, 2001; Levac et al., 2019; Sternad et al., 2014; Wulf and Shea, 
2002), especially as simple motor skills, such as pressing buttons in 
response to distinct stimuli, are either learned quickly or already 
perfected. Complex skills, usually used in response to more complex 
or numerous stimuli, offer a wider solution space and thus require a 
greater degree of adaption (Levac et al., 2019; Sternad et al., 2014). Yet 
most previous studies do not explicitly define what constitutes a 
complex task and mention defining features such as higher time 
demands, higher rates of errors, more difficult sequences, greater 
practice requirements or cognitive demands (Du and Clark, 2018; 
Holper et al., 2009; Levac et al., 2019; Verstynen et al., 2005; also 
Deroost and Soetens, 2006; Gajewski and Falkenstein, 2013; Jarus and 
Gutman, 2001). We  agree with Levac et  al. (2019) definition of a 
complex task as having nested redundancy, meaning that next to 
having more execution variables than task defining variables, complex 
tasks also have intrinsic, extrinsic and task redundancy. Building upon 
the ground laying work of Bernstein (1967), these three aspects of 
redundancy describe the infinitely different configurations of effector 
joint angles, trajectories to the target and acceptable target locations 
to successfully complete a given task. This high degree of redundancy 
in turn introduces variability into complex tasks which represents 
exploration within the new task space that can adapt new motor 
responses or connect to existing, better suited ones by extracting 
communalities and differences (Cardis et al., 2018; Dhawale et al., 
2017; Hossner and Zahno, 2022; Latash, 2012). This intentional 
variability and exploration might inadvertently counteract task 
integration processes, which normally attempt to reduce 
environmental complexity through integrating covariations.

Based on these insights we argue that complex and predictable 
tasks impose conditions on motor learning that may diverge from 
prior findings derived from simple, discrete tasks. More studies on 
motor learning of complex tasks with nested redundancy are thus 
needed. There have been studies which have advanced the research in 
this area: Du and Clark (2018) have adapted the serial reaction time 
(SRT) task to study implicit motor sequence learning with a foot-
stepping task and could show successful sequence acquisition in 
several experiments (Du and Clark, 2017; Du et al., 2017). Similarly, 
Baird and Stewart (2018) used stereoscopic glasses, a projector, and an 
electromagnetic marker on participants’ index fingers in a whole-arm, 
three dimensional reaching task in a virtual environment. Kinematic 
data of participants reaching for nine different target spheres which 
appeared in either a repeated or random order revealed successful 
sequence learning in this complex task. Also, Sense and van Rijn 
(2018) adapted the classic SRT task to VR and had participants 
wearing a VR headset reach for four different target locations with 
their dominant hand. The target locations lit up following a 
probabilistic motor sequence, while response time and error rates 
were used as dependent variables. The results were comparable to 
traditional SRT experiments, thus validating VR as a viable research 
tool for motor learning. We believe that complex motor research can 
greatly benefit from using VR setups, as it is a viable and promising 
research tool, which is also a cost-effective, flexible and accessible 
approach to assessing complex tasks (Levac et al., 2019). In our own 
previous study, we could successfully show that task integration does 
affect the learning of complex, bimanual dual tasks positively if the 
underlying sequence structures are sufficiently compatible, and 
negatively if they are not. It appears to be  a dominant learning 

mechanism that is also to some degree resistant against random 
perturbations disrupting sequence acquisition. Yet while we could 
provide these novel insights into complex motor sequence learning, 
the experimental VR setup we utilized was comprised of distinctly 
separated trials without the possibility of anticipating upcoming trials 
beyond the learning of the underlying sequence. As this approach was 
still far removed from many motor tasks performed outside the 
laboratory, we  aim to re-evaluate our findings in the context of 
complex, continuous motor tasks that allow for predictive online 
planning. We utilized a VR environment to implement an adaptation 
of the SRT task incorporating a complex, bimanual dual task. Past 
studies have shown that bimanual tasks are a form of multitasking 
faced with performance limitations, increased complexity, and a 
reduction of task stability and accuracy, especially if the tasks assigned 
to each limb differ in regard to task execution and/or are performed 
simultaneously (Beißel and Künzell, 2024; Hazeltine et  al., 2006; 
Swinnen and Wenderoth, 2004; Wenderoth et al., 2002). We therefore 
used errors, accuracy and time as dependent variables. The dual task 
required continuous movement and allowed for predictive online 
planning to address previously mentioned research gaps. It also 
featured two parallel, underlying motor sequences. These sequences 
exhibited varying degrees of compatibility for integration, depending 
on our five groups, ranging from ideal to impossible for task 
integration. Additionally, an implicit learning score (ILS) was 
calculated for each dependent variable from the difference between 
performance in then familiar trials compared to a random catch trial 
(Beißel and Künzell, 2024; Rubino et al., 2025; Schmidtke and Heuer, 
1997). The ILS reflects the implicit learning gain derived from 
acquiring the motor sequences, compared to purely use-dependent 
learning (Wolpert et al., 2011). With this methodological approach, 
ensuring a complex, continuous, and predictable motor task, we tested 
two hypotheses. First, task integration affects performance and 
learning with more beneficial effects for more compatible sequence 
structures and more detrimental effects for less compatible sequence 
structures. This should mirror the results of studies on simple, discrete 
motor tasks and includes the assumption that motor improvement can 
be attributed to sequence learning beyond use-dependent learning. 
Second, we  assume that performance improvement through task 
integration can occur even if it is impaired by random sub-sequences, 
as long as the integrable, regular sub-sequences are long enough. Both 
hypotheses will be  mainly assessed based on differences between 
groups. As a secondary goal, for future use, we  aim to assess the 
validity of our methodological approach for assessing complex, 
continuous tasks with an adapted SRT task.

2 Materials and methods

2.1 Participants

One hundred participants took part in this experiment. Only 
self-reported, right-handed people between the age of 18 years and 
30 years were accepted into the experiment. The participants’ mean 
age was 23.65 (SD = 3.49) years, while 53 were female and 47 male. 
They were assigned to one of five groups (n = 20) based on their 
performance in the familiarization block (see below). As in our 
prior experiment (Beißel and Künzell, 2024), group size was 
determined through a G-Power (Faul et al., 2007) a priori sample 
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size calculation based on the implicit-learning score analysis by 
Schmidtke and Heuer (1997). For a one-way ANOVA with five 
groups, a main effect of group of f = 0.56, and an α error probability 
of 0.05, the power analysis (1 − β = 0.95) indicated a minimum of 
13 participants per group (N = 65). Group size was increased to 20 
to reduce the chance of type II errors and increase statistical power 
(Lakens, 2022; McKay et al., 2023). Findings of this study should 
generally be transferable to healthy, non-elderly and non-learning-
impaired adults.

2.2 Apparatus

Participants in this experiment wore a VR headset and controllers 
on both hands. The Valve Index VR headset contained two 
1,440 × 1,600 LCD IPS fast switching displays with refresh rates of 
144 Hz and a field of view of 135°. The Valve Index controllers were 
fastened to the hands and contained 87 sensors for measuring hand 
positions and applied pressure, as well as an accelerometer for 
measuring linear acceleration. Both were tracked by two stationary 
base stations with a Lighthouse 2.0 tracking system, positioned in 
opposite corners of a 6 m × 6 m area. While the latency between 
moving the controllers and the movement being displayed on this 
headset’s displays could be expected to be on average 28.7 ms for 
sudden movements and 12.1 ms for continuous movements 
(Warburton et al., 2023), we measured a maximal latency of 6.9 ms 
and average latencies of 3.6 ms. Values below 90 ms are generally 
considered to not affect participants’ performance (Kelkkanen et al., 
2023). As a basis for stimulus presentation, we used the level editor of 
the rhythm game Beatsaber, published by Beat Games and 
programmed in Unity.

2.3 Design and procedure

All participants performed a serial, bimanual dual task, using both 
arms simultaneously to interact with sequenced stimulus pairs 
appearing near them. The primary task was performed with the 
dominant, right hand, the secondary task with the left hand. 
Subsequent stimulus pairs beyond the most current one could be seen 
in advance. The groups were set apart by the respective sequence 
design of their secondary, left-hand task (see Figure 1). The groups 
will be referred to as the Random, Parallel, Integrated, Partial 1 and 
Partial 2 group. All groups had a fixed, repeating sequence of nine 
items on their right hand, which should be  long enough to evade 
explicit awareness (Baird and Stewart, 2018; Nissen and Bullemer, 
1987; Robertson, 2007; Sense and van Rijn, 2018). The Random 
control group had a random sequence on their left hand, making any 
attempts at successful task integration impossible. The Parallel group 
had a repeating, parallel sequence of eight items on their left hand, 
allowing for effector-specific sequence learning, but not for task 
integration. The Integrated group had ideal conditions for task 
integration with nine-item sequences on each of their hands. The 
partially sequenced groups Partial 1 and Partial 2 could potentially 
integrate parts of their left-hand sequence, with a distribution of six 
to three and three to six sequenced and random parts, to allow for 
assessment of partial sequence learning in the presence of random 
interferences. Based on our prior experiment, we  expected the 
Integrated group to exhibit the greatest learning improvements, 
followed in descending order by the Partial 1, Parallel, Random and 
Partial 2 group. This order reflects our hypotheses: First, the Integrated 
group should benefit most from task integration due to its ideal 
sequence compatibility compared to the three groups mentioned last. 
Second, despite the short random sub-sequence, the Partial 1 group 

FIGURE 1

Task structure for dual-task groups (n = 20). The repeating right-hand sequence shared by all groups is represented by the letters “A–F,” numbers 
represent repeating sequence elements and “r” random stimuli. For each non-catch-trial block, the sequence was repeated eight times for a total of 72 
trial pairs. The Parallel group continued the next sequence with the successor of the stimulus last completed, here with stimulus No. 2.
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should be  able to integrate the two tasks and therefore perform 
similarly well compared to the Integrated group, yet significantly 
better than the Parallel, Random and Partial 2 group. We did not 
expect major learning differences between the latter three groups as 
their potential for successful task integration is small or non-existent, 
but they still serve important purposes. If the Integrated and Partial 1 
group surpass the others, we  can assume that successful task 
integration facilitates learning of the underlying sequence and that 
minor disturbances can be mitigated. If Partial 2 were to improve 
more than Random and Parallel, it would indicate that even minor 
regularities within random interferences can be perceived and learned 
effectively. If the Parallel group were to perform well, it would indicate 
that alternative learning processes such as effector-specific learning 
are equally present and utilized, attenuating the importance of task 
integration in dual-tasks. The Random group, having the smallest 
chance for effective learning, serves as the control group.

At the start of the experiment, participants were informed that 
coordination and accuracy of movements in a bimanual task would 
be assessed. After moving to the center of the designated area, they 
were then instructed in the proper use of the VR headset and 
controllers. In VR, the participant stood on a virtual platform, with a 
path framed by lights leading towards it (see Figure  2). White 
footprints marked the ideal spot to stand on, participants were asked 
to remain on them. In their right and left virtual hands, respectively, 
they held a blue and red sword. The general task was hitting pairs of 
blue and red cubes with directional arrows on them which appeared 
some distance away from participants and then moved towards and 
ultimately past them. Participants were asked to hit the cubes in the 
indicated directions, to always aim for the center and, if possible, to 
use big, flowing movements for additional points. Successfully hit 
cubes disappeared immediately with a slashing sound. Pairs of stimuli 
appeared in a fixed 0.45 s rhythm, determined in pre-experiments, to 
ensure continuous movement without overwhelming participants. 
Participants could always see two pairs of stimuli during the 
experiment, allowing for anticipation beyond single trials. After a pair 

of cubes was hit or moved past the participant, the next pair of cubes 
appeared behind the remaining one. Stimuli appeared in an invisible, 
rectangular grid four columns wide and three rows high, with blue, 
right-handed cubes only appearing in the right half and vice versa. 
With a total of four possible hit directions in the horizontal and 
vertical axes, this resulted in 24 different stimuli per hand and a 
combined total of 576. Feedback for successful hits was given visually, 
auditorily and through vibration of the controller, as multimodal 
feedback can enhance complex motor task learning (Sigrist et al., 
2015). Feedback to misses was given visually and auditorily.

After the first instruction, participants completed a familiarization 
block with 112 random stimulus pairs appearing rather slowly in the 
beginning and then accelerating to standard speed towards the end. 
This block was repeated three times and a predefined minimal score 
had to be reached to participate. The score reached in the third block 
was used to assign participants to their respective groups and to 
ensure group homogeneity. After group assignment, participants went 
through two practice phases and a test phase, separated from each 
other by five-minute breaks. All phases consisted of six blocks, each 
block with 144 stimulus pairs, and separated by 30-s breaks. The 
aforementioned nine-item sequence structure was repeated eight 
times and used throughout all blocks, with the exception of blocks 
three and four in the test phase, which were random and used as a 
catch trial to assess learning in a post-acquisition test (Müssgens and 
Ullén, 2015). The experiment concluded with a short interview to 
evaluate the degree of implicit/explicit learning involved, although 
current research has shown that a clear distinction between those 
categories is close to impossible in methodology and practice alike, 
especially for SRT tasks (Hadjiosif and Krakauer, 2021; Maresch et al., 
2021; Moisello et al., 2009). The whole experiment lasted about 45 min.

The following dependent variables were measured during 
the experiment:

 • Correct Behavior (CB) [%], indicating whether both cubes of a 
pair were hit from the correct direction and with the correct 

FIGURE 2

Main task as seen from participants’ perspective. Cubes appeared towards the far side of the indicated path before moving towards participants on a 
straight trajectory. A combo counter on the left, which added the number of hits without mistakes, and a points multiplier on the right served as 
feedback for participants’ performance.
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sword. CB is represented by percentage of correct hits to total 
trials, with 100% indicating no mistakes. Correct Behavior 
should increase over time and be highest in the Integrated group, 
lowest in the Random group.

 • Distance to Center (DtC) [%], serving as an indicator for 
accuracy by measuring the distance between hit trajectory and 
cube center, with a perfectly centered hit showing 0% deviation 
and increasing percentages towards the edges of the cube. 
Accuracy should increase with practice (Moisello et al., 2009), 
leading to a reduction of percentages.

 • Time Deviation (TD) [ms], measuring the deviations from 
hitting the cubes in the ideal, predefined rhythm of 0.45 s in a 
spot within comfortable reach of the participant. Greater Time 
Deviation should indicate stress or hesitation, resulting in 
overreach or belated hits, while a reduction in Time Deviation 
should indicate successful learning.

Furthermore, the ILS was calculated for each variable and reflects 
the respective learning gain (see Data Processing and Analysis), which 
should be highest in the Integrated group, lower for the other groups 
as indicated earlier. Further data was collected during the experiment 
but not intended as main variables: effector-specific Correct Behavior, 
a multiplier increasing points with a factor of 2, 4 or 8 corresponding 
to 2/4/8 hits without mistakes and a point score composed of DtC, 
pre- and post-hit swing angle.

2.4 Data processing and analysis

Data and programs mentioned here can be accessed online.1 
Data used for dependent variables were extracted from Beatsaber, 
which records the controllers’ positional data as well as interaction 
with cubes, including hits, misses, and accuracy through point of 
contact with individual cubes. A unity-based plug-in using 
ModAssistant extracted data during the experiment and recorded 
it in individual .csv-files, one for each block of cubes. The data from 
these files was aggregated into one file containing the variables for 
all blocks and participants. CB was calculated from percentage of 
correct hits to total trials. For DtC and TD, means were used to 
summarize the participants’ performance in each block. Incorrect 
behavior was excluded for these variables so as to avoid data 
inflation or dilution through outliers, which should improve the 
signal-to-noise ratio and help with focusing on learning effects 
(Berger and Kiefer, 2021; Vankov, 2023). Also, errors are recorded 
through CB. To measure and compare learning effects, the ILS was 
calculated for each variable during the test phase, measuring the 
mean difference between the familiar blocks two and five and the 
random blocks three and four. Data was then analyzed using 
Jamovi, version 1.6.23 (The Jamovi Project, 2021). Shapiro–Wilk 
tests were used to check data sets for normality distribution and 
parametric or non-parametric tests were consequently used as 
indicated in results. Homogeneity of variance was tested for 
ANOVAs using Levene’s test and either Games-Howell or Tukey 
post-hoc tests were used accordingly.

1 https://rb.gy/wj57q9

2.5 Transparency and openness

We report how we determined our sample size, all data exclusions 
(none excluded), all manipulations and all measures in the study. This 
study’s design and its analysis were not pre-registered. The study was 
approved by the committee for ethics of the University of Augsburg.

3 Results

Prior to statistical analysis, the interview was evaluated and a total 
of 10 of 100 participants with a degree of explicit awareness of the used 
sequence were found. These were spread over the groups, with none 
in the Random group, two each in the Parallel and Integrated groups, 
five in the Partial 1 group and one in the Partial 2 group. Performance 
improvements can therefore be  cautiously attributed to implicit 
learning processes.

To ensure successful group assignment and the validity of 
between-group comparisons, we first verified no differences existed 
between groups with a baseline comparison of the last familiarization 
block using one-way between-groups analyses of variance (ANOVAs) 
with the dependent variables “CB” [%], “DtC” [%] and “TD” [ms], the 
grouping variable “group” No significant differences were found, F (4, 
95) = 0.24/0.46/0.23; p = 0.914/0.763/0.921; η2

part = 0.01/0.02/0.01. 
Means for the individual variables ranged from 58.0 (SD = 8.6) to 60.8 
(SD = 10.8) for CB, 24.0 (SD = 2.6) to 25.4 (SD = 4.6) for DtC, and 
9.75 (SD = 10.7) to 12.5 (SD = 12.9) for TD.

As the next step, we assessed whether any performance increase 
and thus learning had taken place during the practice phase by 
comparing the first and last block in regards to group-specific 
differences and differences between groups with a mixed ANOVA for 
each variable with the within-subject factor “block” (1st block, 12th 
block) and the between-subject factor “group” (Random, Parallel, 
Integrated, Partial 1, Partial 2) (see Table 1 and Figure 3 for overview). 
While significant main effects for “block” could be  shown for all 
groups and variables, a significant main effect for “group” could only 
be shown for DtC and no significant “block × group” interaction was 
found. Despite the lack of block by group interaction, we decided to 

TABLE 1 Practice phase learning: mixed ANOVA.

Dependent 
variables

Main effect 
“block”

Main effect 
“group”

Main effect 
“block × 
group”

CB [%] F (1, 95) = 94.4 F (4, 95) = 1.61 F (4, 95) = 0.583

p < 0.001 p = 0.179 p = 0.676

η2
part = 0.50 η2

part = 0.063 η2
part = 0.024

DtC [%] F (1, 95) = 6.22 F (4, 95) = 3.51 F (4, 95) = 1.36

p = 0.014 p = 0.010 p = 0.254

η2
part = 0.061 η2

part = 0.129 η2
part = 0.054

TD [ms] F (1, 

95) = 177.83

F (4, 95) = 0.727 F (4, 95) = 1.8

p < 0.001 p = 0.576 p = 0.141

η2
part = 0.65 η2

part = 0.03 η2
part = 0.07

CB = Correct Behavior, DtC = Distance to Center, TD = Time Deviation. F-, p-values, and 
effect sizes for dependent variables CB, DtC and TD.
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follow up with Dunn–Bonferroni post-hoc comparisons focused on 
within-group differences, as these are not sufficiently reflected in the 
ANOVA’s F-statistic and differences might not be detected (Midway 
et al., 2020).

The results showed a significant within-group increase in Correct 
Behavior and Time Deviation over the practice phase for all groups. 

No significant changes in accuracy could be found for Distance to 
Center, although all groups’ means except for the Random group 
improved on their accuracy. In summary, clear evidence for within-
group learning in two variables can be shown for the practice phase, 
yet no differences between groups could be found prior to the test 
phase (see Table 2).

FIGURE 3

Performance changes during practice phase. The graphs show the means (95% CI) of each practice block for each variable and group. All groups 
significantly improved their performance over the course of the practice phase. CB improved notably after the break between blocks six and seven, 
while DtC and TD improved more gradually. No significant differences between groups were found.

TABLE 2 Practice phase within-group learning: post-hoc comparisons for all groups.

Group Block CB [%] DtC [%] TD [ms]

Random Block 1 (SE) 57.6 (3.05) 25.8 (0.96) 11.0 (2.61)

Block 12 (SE) 66.0 (2.89) 26.6 (1.01) 26.7 (2.46)

p-value 0.006 0.999 <0.001

Parallel Block 1 (SE) 51.2 (3.05) 24.7 (0.96) 12.8 (2.61)

Block 12 (SE) 61.3 (2.89) 23.2 (1.01) 25.4 (2.46)

p-value <0.001 0.999 <0.001

Integrated Block 1 (SE) 60.8 (3.05) 24.3 (0.96) 15.3 (2.61)

Block 12 (SE) 67.8 (2.89) 21.7 (1.01) 28.6 (2.46)

p-value 0.045 0.697 <0.001

Partial 1 Block 1 (SE) 58.6 (3.05) 26.3 (0.96) 16.2 (2.61)

Block 12 (SE) 68.2 (2.89) 25.3 (1.01) 24.1 (2.46)

p-value <0.001 0.999 0.009

Partial 2 Block 1 (SE) 52.2 (3.05) 27.3 (0.96) 10.1 (2.61)

Block 12 (SE) 63.5 (2.89) 26.0 (1.01) 23.0 (2.46)

p-value <0.001 0.999 <0.001

CB = Correct Behavior, DtC = Distance to Center, TD = Time Deviation. Means and p-values for practice Blocks 1 and 12; dependent variables CB, DtC, and TD.

https://doi.org/10.3389/fpsyg.2025.1557618
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Beißel and Künzell 10.3389/fpsyg.2025.1557618

Frontiers in Psychology 08 frontiersin.org

We next analyzed the catch trial in the test phase (for overview, 
see Figure 4). We ensured the validity of calculating an ILS by first 
checking whether significant differences existed between familiar 
and random test phase blocks for all groups’ variables with either 
within-group dependent samples t-tests or Wilcoxon signed rank 
tests. This also ensures that performance increases can be attributed 
to learning of the underlying sequences and not just use-dependent 
learning. The Holm–Bonferroni method was used for α value 
correction. All catch trials for all groups registered significant 
differences, with the exception of DtC for the Random [t 
(19) = −1.77, p = 0.093, αadj = 0.025], Partial 1 [t (19) = 5.83, 
p = 0.048, αadj = 0.017] and Partial 2 [t (19) = −1.24, p = 0.230, 
αadj = 0.050] group, and TD for the Parallel [t (19) = 2.03, p = 0.057, 
αadj = 0.050] group.

Overall, Time Deviation and Correct Behavior were lower and 
Distance to Center higher in the random blocks compared to the 
familiar ones, which allowed us to proceed with a comparison of the 
ILS between groups (see Figure 5) to compare their respective extent 
of implicit learning. To this end, we used either Fisher’s or Welch’s 
one-way between-groups ANOVAs with the dependent variable 
“implicit learning score” and the grouping variable “group” for CB, F 
(4, 46.4) = 5.13, p = 0.002, η2

part = 0.31, for DtC, F (4, 46.9) = 0.87, 
p = 0.491, η2

part = 0.07, and for TD, F (4, 95) = 7.48, p < 0.001, 
η2

part = 0.24. For DtC, no significant differences between the groups’ 

ILS could be shown at all. We followed up with post-hoc comparisons 
for CB and TD using the Games-Howell post-hoc test.

The analyses overall show several differences between the groups. 
For CB, the Integrated and Partial 1 group displayed a stronger drop 
in Correct Behavior with the former being significantly different to the 
Parallel (p = 0.047) and Partial 2 (p = 0.009) group, while the latter was 
approaching significance to the Parallel (p = 0.067) and showing 
clearly significant difference to the Partial 2 (p = 0.015) group. Clear 
changes in the participants’ rhythm with significant ILS differences 
between groups could be shown for TD. Again, the Integrated and 
Partial 1 group had benefitted from their normally stable sequences 
the most, deviating from their usual timing, with significant 
differences for both groups to the Random (p (int) = 0.023; p 
(p1) = 0.017), Parallel [p (int) = 0.002; p (p1) = 0.001], and Partial 2 (p 
(int) = 0.011; p (p1) = 0.007) group.

In summary, the catch-trial analysis and ILS showed that the 
random catch trial has distinctively affected all variables in all 
groups, with the exception of DtC for the Random group and TD 
for the Parallel group. As evidenced by group difference in ILS, 
differences in the degree of disruption between groups could mainly 
be shown for the variables Correct Behavior and Time Deviation. 
However, the changes in accuracy seemed to be rather uniform in 
all groups. As for the individual groups, most successful learning 
overall was displayed by the Integrated and Partial 1 group, while 

FIGURE 4

Performance changes during test phase. The graphs show the means (95% CI) of each test-phase block for each variable and group. The catch trial in 
blocks three and four lead to significant performance detriments, except for the Random, Partial 1, and Partial 2 group for DtC, and the Parallel group 
for TD.
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the other three groups were not significantly different from 
each other.

4 Discussion

This paper focused on the influence of task integration on implicit 
sequence learning in complex, continuous tasks, using VR as a 
research tool. We tested whether implicit sequence learning occurs in 
complex, continuous, predictable tasks and can thus improve 
performance more for groups with more suitable sequence structures. 
In regard to sequence structure in this context, we hypothesized that 
task integration should affect learners in a similar way as it has been 
shown to influence simple tasks and discrete, complex tasks (Beißel 
and Künzell, 2024; de Oliveira et al., 2017; Ewolds et al., 2021; Röttger 
et al., 2021; Schmidtke and Heuer, 1997). We further assessed whether 
task integration for these tasks can mitigate random perturbations 
and remain beneficial for motor learning. As we  are assessing a 
continuous task, we sought alternative, yet comparable measures to 

the classic SRT task with an adapted VR SRT task and expected 
similar results.

In the interest of valid analyses and comparisons, we carefully 
assigned participants to their respective groups based on a pre-test to 
ensure that all groups would start out on a comparable performance 
level. We also interviewed participants at the end of the experiment to 
assess the level of explicit awareness they had reached about the 
repeating sequence used most of the time. The results of both 
assessments allow for the conclusion that differences in learning 
development can be attributed to the individual sequence structures 
used within each group and that for at least 90% of participants, no 
concrete explicit knowledge had been gained. As mentioned earlier, 
reliably drawing clear distinctions between implicit and explicit motor 
learning is a nigh impossible task and certainly not within the 
capability of a short interview to elucidate (Hadjiosif and Krakauer, 
2021; Maresch et al., 2021; Moisello et al., 2009). Yet as a tendency 
towards implicit knowledge can be  seen it allows for easier 
categorization and comparison of this study with earlier literature 
(e.g., Schmidtke and Heuer, 1997).

FIGURE 5

Implicit learning scores between groups. The respective implicit learning scores (mean 95% CI) for each group and each variable are shown. Fisher’s or 
Welch’s one-way between-groups ANOVAs with the dependent variable “implicit learning score” and the grouping variable “group” were used. Error 
bars represent standard errors. The Integrated and Partial 1 groups display the highest implicit learning scores for CB and TD, while the DtC scores are 
similar for all groups.
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In order to show that implicit sequence learning is present in 
complex, continuous tasks, we analyzed changes in performance 
within each group by looking at beginning and end of the practice 
phase, and the impact of the random catch trial in the test phase. 
During the practice phase, distinct changes could be shown for all 
groups for CB, indicating a reduction of mistakes made and 
consequently at least partial learning of the underlying sequence.

Significant changes to TD could likewise be shown, but contrary 
to our expectations, an increase in TD occurred. Participants started 
out with very low Time Deviation, thus closely adhering to the 
experiment’s instructions, then progressively and uniformly increased 
their Time Deviation. This is not to be confused with an increase in 
RT, however, as the temporal-spatial point of reference used for 
measurement of TD was placed at a predefined point. The progressive 
shift in TD indicates that the predetermined movement rhythm or 
point of contact did not agree with the participants, and they adapted 
to a more individual rhythm instead. While we did not predict an 
increase in Time Deviation but a decrease, it can still serve as an 
indication for practice-induced changes in variability, especially as it 
was also affected by the catch trial in the test phase. Accuracy did 
apparently not change significantly within-group over the course of 
practice, although the DtC values decreased for all groups except the 
Random one.

Overall, these results show distinct evidence for motor learning 
during the practice phase, which can further be supported by the 
clearer results of the test phase. The within-group catch trial analyses 
show a clear decline in performance in the random blocks compared 
to the practiced sequence structure in most groups for CB and DtC, 
as well as a disruption of the familiar movement rhythm in TD. The 
only exceptions were DtC in the Random, Partial 1 and Partial 2 
group, and TD in the Parallel group.

These results allow for several conclusions. First of all, we can 
assume that motor learning was successful overall as at least two 
variables within each group showed significant changes in 
response to the catch trial. The practice phase comparison further 
underlines this. This also indicates that not just bi-manual, 
integrated learning took place but also a certain degree of effector-
specific learning, as both the Random and Parallel group were 
affected despite their group design making task integration 
impossible. This does not come as surprise, however, as previous 
studies have shown that while task integration may be a dominant 
and active influencing factor (Pelzer et al., 2022a; Pelzer et al., 
2022b; Röttger et al., 2021; Zhao et al., 2020), alternative learning 
mechanisms are not suppressed and contribute to effector-specific 
learning for both simple (Bapi et al., 2000; Berner and Hoffmann, 
2008, 2009; Verwey and Clegg, 2005; Verwey and Wright, 2004) 
and complex skills (Beißel and Künzell, 2024). The significant 
changes to TD are likewise an indicator of successful learning and 
the influence of alternative learning processes, as TD could have 
remained unaffected by the catch trial due to identical temporal 
stimulus presentation compared to familiar trials. Only the cube’s 
hit-direction prompts were changed in the random trials, which 
was nevertheless disruptive enough to also affect TD. And lastly, 
indications for the distinct influence of task integration in this 
experiment can be deduced from these within-group catch trial 
analyses as well, as the groups with non-significant catch trial 
differences in variables mentioned above, were those with the least 
ideal task integration conditions.

The primary measure for the influence of task integration, 
however, was the comparison of the groups’ success in acquiring the 
underlying sequences, represented by the implicit learning score. 
We expected the Integrated group to exhibit the highest scores, closely 
followed by the Partial 1 group and then the other groups. Based on 
our previous experiments, we did not expect the Random, Parallel, 
and Partial 2 group to significantly differ from each other, as they each 
served as a control group in their own way. The results indicated 
similar performance of these groups, as no significant ILS differences 
for any variable could be shown between them. The means revealed 
the Random and Partial 1 group to be largely similar, with Partial 2 
displaying lower ILS values than both in almost all variables. In line 
with hypothesis 1, the Integrated group overall showed several 
differences towards the other three groups. In line with hypothesis 2, 
the Partial 1 group showed similar values as the Integrated group. The 
difference between the Integrated and the Partial 1 group to the other 
three groups was especially pronounced for the variable TD. In regard 
to DtC, the catch trial did apparently not influence accuracy at all, the 
reasons for which will be discussed later. For CB, the Integrated group 
was affected more than both the Parallel and Partial 2 group, while the 
Partial 1 group was only significantly different to Partial 2. In regard 
to our first hypothesis, these results show that task integration is 
indeed a beneficial factor in complex, continuous tasks. The two 
groups most suited for integrating their dual tasks, the Integrated and 
Partial 1 group, were overall more affected by the catch trial than the 
control groups and thus displayed greater learning success. This 
success can be explained by effective integration of the more favorable 
sequence structures used in their respective tasks. Regarding our 
second hypothesis, it also rather clearly shows that the Partial 1 group 
managed to mitigate the random interferences in their secondary task 
well enough to achieve a level of performance similar to the “ideal” 
task integration group. Task integration’s robustness against 
interferences seems to be  limited, however, as the repeating 
covariations in the Partial 2 group did not lead to improved 
performance over the Random and Parallel group, which both could 
not integrate their respective sequences.

Yet not all variables painted an equally clear picture in this regard. 
Especially for CB, several differences in learning effects could be found 
between the Random and Parallel group compared to the Integrated 
and Partial 1 group which approached, but did not pass the threshold 
for statistical significance. One explanation for this might be found in 
the range of standard deviation in the respective groups, with far 
larger SDs being registered for the Integrated and Partial 1 group. This 
shows that within the Integrated and Partial 1 group, some participants 
were more affected by the catch trial than others, which might 
be traced back to individual learning and performance factors, such 
as an internal or external focus of attention, the ability to adapt to a 
new situation and reduce variability quickly, or simply motivational 
and attentional factors (Hossner and Zahno, 2022; Wulf and 
Lewthwaite, 2016; Wulf et al., 2010). With less to learn and still less to 
integrate in their task structures, the other groups should be  less 
affected by the catch trial, leading to less variance. This tendency 
further supports the distinct results already gained from the ILS 
analyses and thus the arguments for the effects of task integration on 
complex, continuous tasks.

Overall, we  can confirm our proposed hypotheses in this 
experiment: First, we have found results in our experiment that 
mirror those of similar studies on the topic of task integration. 

https://doi.org/10.3389/fpsyg.2025.1557618
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Beißel and Künzell 10.3389/fpsyg.2025.1557618

Frontiers in Psychology 11 frontiersin.org

We show that dual-task interference in implicit motor learning 
can be mitigated if the sequence structure of the secondary task 
can be integrated with the primary task. This has been shown as 
a basic premise by Schmidtke and Heuer (1997) and reproduced 
in the context of complex motor tasks in our previous experiment 
(Beißel and Künzell, 2024). Similar results have been found by de 
Oliveira et  al. (2017), who researched task integration in 
continuous tasks, using a tracking task. We show that the same 
holds true for complex, continuous, and predictable tasks. The 
design of our groups further supports the assumptions of Röttger 
et al. (2021) on the importance of predictability of across-task 
stimulus and/or response events between two tasks. Second, 
we have found that task integration processes can to some extent 
mitigate random perturbations in underlying sequence structures 
and remain beneficial by focusing on repeating covariations. This 
effect is nevertheless not universal, as an insufficient amount of 
covariations appears to remain undetected. However, as we base 
our claims on a novel approach towards measuring complex 
sequence learning, a critical assessment of the variables used in 
this experiment is certainly warranted and will be undertaken in 
the following.

As mentioned above, we have aimed for similar results as are 
already established in the field of task integration using alternative 
variables. Response times and error rates are frequently used variables 
in this field of study (Schmidtke and Heuer, 1997; Schwarb and 
Schumacher, 2012) and as such, we sought to mimic these as closely 
as possible with the variables “Time Deviation” and “Correct 
Behavior.” Measuring changes in accuracy was made possible by the 
variable “Distance to Center.” It was intended to measure deviation 
from the ideal standard, a hit placed in the very center of the target. 
This approach is similarly used for tracking experiments in the study 
of motor learning and task integration (de Oliveira et al., 2017; Ewolds 
et al., 2021). Accuracy measurements are not uncommon in the study 
of variability either and were thus adapted to our task (Kumar et al., 
2017; Srinivasan et al., 2015).

Time Deviation was intended to measure the participants’ change 
in movement rhythm, as measured from a predetermined time point. 
A time point had to be set, due to the continuous nature of the task. 
Much as with classic RT measurements, we could compare TD at the 
beginning of the task with later points in time and could show 
significant changes. The changes in movement rhythm can 
be  interpreted as successful learning in the form of an adaptation 
towards behavior fitting both the task and the individual’s preferences. 
The disruption of TD by the catch trial further strengthens this 
argument. We therefore consider TD a fitting variable for measuring 
temporal aspects of a continuous task.

Correct Behavior as a measure of error or success rate was likewise 
a rather fitting variable, yet as mentioned earlier, it has been established 
as such in earlier experiments. We could show a distinct increase in 
the percentage of successful hits during the practice phase, which was 
also disrupted in the test phase by the catch trial. It therefore comes as 
no surprise that CB can serve as a valid variable for continuous, 
complex tasks, also in VR.

Distance to Center as a measure of accuracy did not follow the 
pattern outlined for the previous variables. We expected an overall 
improvement in accuracy and an advantage for the groups more 
suited to task integration, as mental resources freed up by the 

integrated tasks could be used to focus on more precise hits. Yet 
while we could show significant improvement in accuracy over the 
practice phase and even some differences between groups, DtC 
did not change much in the test phase and was unaffected by the 
catch trial. We therefore must conclude that the improvement of 
accuracy reflects learning of the task set-up, but not necessarily of 
the underlying sequences, as accuracy did not change after 
reaching a certain level. It might therefore not be an ideal variable 
for assessing task integration or motor learning in this context but 
could be useful for solely measuring changes in variability over 
the course of adapting to a task.

We thus conclude that our variables have overall been adequate 
as a measure for motor learning in this VR task and, excluding DtC, 
are also satisfactory for assessing task integration. Alternative 
variables for a valid assessment of complex, continuous tasks in a 
head-mounted VR environment may naturally be possible, starting 
from directly recording movement data using the inbuild or 
additional sensors and continuing with task-specific, indirect 
variables. This broad accessibility towards designing an ideal 
environment perfectly suited for almost any experiment makes VR 
a useful tool (Dobrowolski et al., 2021; Levac et al., 2019; Olivier 
et al., 2021; Rizzo et al., 2019), especially for complex motor tasks. 
Yet researcher should ensure that stimuli appear within the 
participants’ field of vision to avoid search behavior (Arif et  al., 
2022), as well as be cautious about transfer of insights and skills to 
realistic tasks (Kim et  al., 2019). More future research using VR 
should be encouraged and may help advance research on complex 
motor skill learning.

5 Conclusion

Sequential motor learning and task integration affect a great 
variety of motor skills in all aspects of life, making it a valuable 
research subject. We  highlight the importance of re-assessing 
previously gained insights on simple motor tasks in the context of 
complex, continuous dual tasks, due to higher degrees of redundancy 
and variability in the latter. We find virtual reality technology to be a 
suitable and versatile tool in the assessment of complex motor tasks as 
it provides stable and highly controllable research environments. 
Consistent with previous research, our experiment on complex, 
continuous tasks shows that task integration represents a dominant 
influence on the learning of two simultaneously attempted tasks 
(Pelzer et al., 2022a; Röttger et al., 2021) and can have mitigating 
effects on dual-task costs if covariations between the tasks can 
successfully be  identified and integrated (de Oliveira et  al., 2017; 
Röttger et al., 2021). Conversely, task acquisition is disrupted through 
task confusion if covariations do not exist or are too inconsistent to 
be integrated (Hazeltine and Schumacher, 2016; Röttger et al., 2021). 
Furthermore, minor inconsistencies in one motor task can 
be compensated to a certain degree and still lead to successful overall 
sequence learning. This study assesses task integration in the context 
of sequence learning for complex, continuous dual tasks. While it 
generally shows results consistent with previous research on simple 
tasks, more extensive research on complex tasks is needed to allow for 
an eventual transfer of knowledge out of the laboratory and into 
the field.
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