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Introduction: Understanding the trajectories of cognitive aging provides 
important insights that might also be potentially useful for the early detection 
of cognitive impairments. Among many, multitasking abilities are particularly 
relevant in everyday life contexts across the adult lifespan.

Methods: We used web-based, self-administered, dual-tasks to measure 
performance and dual-task costs (DTCs) at different ages, accounting for the 
influence of cognitive efficiency and cognitive reserve. We also tested whether 
DTCs were task-specific or related to general abilities by employing three 
dual-tasks, each focused on different cognitive functions. We  measured the 
performance of 419 Italian-speaking healthy participants (18–76 years old) in: (i) 
a digital version of the Trail Making Test (A + B); (ii) the divided-attention subtest 
of the Test of Attentional Performance battery, adapted for online administration; 
(iii) a visuo-mnestic dual-task, validated in previous studies with healthy younger 
and older adults.

Results: Results showed that with increasing age and cognitive load performance 
significantly reduced across all tasks. DTC for TMT and MEMO showed a small 
yet non-linear age-related increase. Global cognitive functioning and cognitive 
reserve demonstrated a weak, negative association with DTCs across all tasks, 
suggesting a secondary role in mediating multitasking performance. DTCs 
correlations across tasks were very weak, supporting the hypothesis of task-
specificity for multitasking abilities.

Discussion: These findings highlight the feasibility of web-based testing while 
also emphasizing the heterogeneity of both age-related cognitive change and 
the cognitive processes involving dual-task performance.
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1 Introduction

Cognitive abilities undergo continuous transformations across the lifespan, shaped by an 
interplay of biological, environmental, and experiential factors. While aging is often associated 
with the idea of a progressive, neural as well as cognitive decline (von Bartheld, 2018), evidence 
suggests that this view is simplistic if not wrong. Different cognitive functions follow distinct 
trajectories, with some remaining stable or even improving until late adulthood. In the context 
of the well-documented modifications in cognitive functioning associated with aging (Bishop 
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et al., 2010; Murman, 2015), physiological cognitive decline does not 
represent a uniform process (see Brito et al., 2023 for a comprehensive 
review). Cognitive abilities evolve across the lifespan, with verbal skills 
remaining stable or improving until the 60s, while processing speed 
declines from early adulthood, and memory and reasoning weaken 
more noticeably after the age of 65 (Henninger et al., 2010; Kemper 
et al., 2010; Albinet et al., 2012; Bosnes et al., 2022; Salthouse, 2019). 
These trajectories are shaped by education, physical activity, social 
engagement, and cognitive reserve (Hertzog et al., 2008; Stern, 2009; 
Reynolds et al., 2022), making them critical factors for understanding 
cognitive functioning over time. Longitudinal studies showed that 
cognitive trajectories can help in predicting neurodegenerative risks 
(Liampas et al., 2024), reinforcing the urge for early diagnosis through 
sensitive tools to enable timely interventions (He et al., 2023).

In this study, we specifically examined from a lifespan perspective 
three key cognitive domains—executive functions, attention, and 
memory. To do so we used multitasking /dual-task paradigms, namely 
a promising approach for assessing cognitive functioning, particularly 
in the context of healthy aging or subclinical stages (Contemori et al., 
2022, 2024; Saccani et  al., 2022). These domains are crucial for 
everyday functioning and follow distinct aging trajectories, making 
them ideal for understanding lifespan cognitive changes. Multitasking 
leads to performance decline (Koch et al., 2018). Such detrimental 
effect can be explained by the limited capacity of attentional resources 
and working memory (Navon and Miller, 1987; Tombu and Jolicoeur, 
2003), with effects that, sometimes, tend to intensify with age (McNab 
et al., 2015). This vulnerability reflects the interplay between control 
processes and storage mechanisms, whereby individuals with higher 
working memory capacity are better at resisting interference (Lorenc 
et al., 2021), and filtering efficiency plays a crucial role in mitigating 
distractor-related decline, particularly in older adults (Geiter et al., 
2024). Dual-task paradigms belong to two main categories: motor-
cognitive dual-tasks (MCDT) and cognitive-cognitive dual-tasks 
(CCDT), each with specific implications for assessing cognitive decline 
(McIsaac et al., 2015). In their seminal work, Lundin-Olsson et al. 
(1997) found that performing MCDT, such as walking while talking, 
significantly impaired performance in a sample of older adults. Their 
study revealed that greater difficulty with MCDT was associated with 
an increased risk of falls among participants. This detrimental effect, 
known as Dual-Task Interference (DTI; Pashler, 1994), has been 
extensively investigated across a variety of clinical populations (Leone 
et al., 2015; Raffegeau et al., 2019; Hamacher et al., 2014) and different 
age groups within healthy individuals (Schaefer et al., 2010; Bianchini 
et al., 2022). Nevertheless, while MCDT-induced DTI has been widely 
documented, less is known regarding CCDT, in particular when it 
comes to its clinical potential related, for instance, to the early 
detection of cognitive impairment in degenerative disorders. The 
degree of interference, referred to as dual-task cost (DTC), for some 
tasks can also be relatively stable across different ages yet be influenced 
by individual factors like cognitive reserve and educational attainment 
(Contemori et al., 2022, 2024; Del Popolo Cristaldi et al., 2025).

In the present study we used a set of web-based tasks to measure 
multitasking performance from a lifespan perspective. The advent of 
web-based tools offers a significant opportunity to enhance the 
accuracy and efficiency of cognitive assessment, particularly in remote 
contexts. These web-based tools address the logistical limitations of 
traditional testing, ensuring a measurement reliability comparable to 
controlled laboratory settings (Del Popolo Cristaldi et al., 2022). They 

also enable the collection of detailed real-time data, such as reaction 
times (RTs) and response patterns, or simply present stimuli in a way 
which allows to uncover subtle or latent cognitive difficulties often 
missed by standard paper-based assessments (Bonato et al., 2010, 2013).

On top of the practical advantages of web-based tools (such as 
automated data collection, increased accessibility, and rapid feedback), 
their true potential lies in the possibility to closely mimic the 
complexities of real-world scenarios (Casaletto and Heaton, 2017). 
Digital multitasking tests can align with the increasing interaction 
between individuals and technology in daily contexts. As highlighted 
by Chen et al. (2023), the integration of these real-world features with 
rigorous cognitive testing has positioned digital tools as a critical 
resource in neuropsychological practice. The growing body of 
evidence supporting the use of digital cognitive assessments (e.g., 
Kessels, 2019; Lunardini et al., 2020; Staffaroni et al., 2020) underscores 
their transformative potential. To conclude, digital tests are not merely 
practical alternatives to traditional tests but they rather seem pivotal 
for advancing our understanding of cognitive multitasking, 
particularly in contexts requiring interaction with technology.

The aim of the present study was to explore the relationship between 
DTCs in CCDT and their variation across the lifespan. We examined 
how dual-task performance differs across different age groups, 
identifying potential cognitive trajectories in multitasking ability for 
each cognitive domain. We explored to explore whether and how DTCs 
increase with age, and whether their impact is influenced by cognitive 
reserve and general cognitive functioning. We  hypothesized that, 
regardless of the cognitive domain, performance in dual-task would 
have been worse than in single-task. We also expected that increasing 
age would have also increased DTC, with this effect potentially 
mitigated by protective factors such as cognitive efficiency and cognitive 
reserve. With the present investigation we also tested whether DTCs are 
associated with specific cognitive functions, reflecting task-specific 
effects, or whether they stem from a more global multitasking capacity, 
suggesting a transversal allocation of resources across different cognitive 
domains. This distinction is crucial for understanding the origin of 
DTCs. Task-specific effects would imply that certain cognitive functions 
are more susceptible to interference under dual-task conditions, 
whereas evidence for a general allocation of resources would indicate 
that all cognitive domains draw from a single, shared pool of limited 
resources, therefore leading to uniform performance decrements during 
multitasking. Additionally, determining whether DTCs are modular or 
transversal could have practical implications for designing targeted 
interventions, such as training programs tailored to specific cognitive 
skills. To achieve this, we compared DTCs across various dual-task 
paradigms focused on different cognitive domains, namely, memory, 
attention, and executive functions.

2 Materials and methods

2.1 Participants

The study initially included a total of 780 Italian-speaking 
participants, recruited through word of mouth and flyers distributed by 
the research team. Preliminary contact occurred either by phone or 
email, depending on participant availability. During this initial 
interaction, participants were provided with a general overview of the 
study but were kept unaware of the specific hypotheses and aims to 
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avoid influencing their responses. Participants who expressed 
willingness to join were further screened based on predefined exclusion 
criteria which were applied to ensure a cognitively healthy sample. They 
included uncorrected visual or auditory deficits, neurological or 
psychiatric disorders, a history of alcohol or substance abuse, and a 
confirmed diagnosis of mild cognitive impairment (MCI) or dementia. 
The entire protocol was web-based and conducted remotely, with 
participants completing the experiment independently. Participants 
who met the inclusion criteria received an email invitation containing 
a brief description of the study’s purpose, eligibility criteria, and detailed 
instructions to have better control over the setting conditions and 
reduce potential variability due to environmental factors. They were 
instructed to complete the experiment alone in a quiet environment, 
preferably at their home, and to maintain a fixed distance from the 
screen (approximately 57 cm). Additionally, they were required to have 
a ruler available, which would be used to calibrate the task proportions 
to the screen size through a built-in screen adaptation feature. The email 
also specified that the experiment would last approximately 35 min and 
that data would be collected and analyzed anonymously for research 
purposes only. Participants could contact the research team for technical 
support or additional information at the end of the experiment. Some 
participants did not complete all the tasks, and additional participants 
were excluded during the post-test data cleaning process.

Only participants with complete data for all tasks entered the 
analysis (see “Data Analysis” paragraph for a detailed description of 
data cleaning procedure). After these adjustments, the final sample 
consisted of 419 participants (265 females) aged between 18 and 
76 years (M: 41.85; SD: 15.56). The sample was stratified into six age 
clusters: emerging adulthood (18–27 years, N = 114), two clusters of 
young adulthood (28–37 years, N = 83; 38–47 years, N = 45), middle 
adulthood (48–57 years, N = 90), late adulthood (58–67 years, 
N = 69), and older age (68 + years, N = 18). The division into decade-
based groups for adults was informed by prior research in the aging 
literature (Borella et al., 2008, 2014; Park and Bischof, 2013). Ten-year 
clusters allowed reflecting distinct psychosocial life stages while 
avoiding excessive fragmentation of the sample. This stratification 
accounted for transitions such as the shift from working life to 
retirement around age 67 in Italy (Ministry of Economy and Finance, 
Department of General Accounts, 2020). Similarly, the range for 
emerging adulthood (18–27 years) encompassed a phase of important 
transitions in personal and working life, distinguishing it from the 
more stable period of young adulthood. This approach aligned 
biological age with meaningful social and psychological phases of life. 
The dataset we used was partly overlapping with the previous studies 
by Contemori et al. (2022, 2024) for participants aged over 50.

All participants provided explicit informed consent via an online 
form before being included in the experiment. They did not receive 
any compensation for their participation. The study protocol was 
approved by the University of Padua’s Ethics Committee for 
Psychological Research (3,744 and 3,947).

2.2 Materials and procedures

The experimental protocol was developed using HTML 
(HyperText Markup Language), CSS (Cascading Style Sheets), and 
jsPsych (de Leeuw, 2015), an open-source JavaScript library 
specifically designed for web-based psychological experiments. To 

ensure precise timing of visual and auditory stimuli, jsPsych’s 
capabilities were extended using the “jspsych-psychophysics” 
plugin (Kuroki, 2021), which allows for accurate stimulus 
presentation timing. This methodology enables remote 
measurement of accuracy and RTs for audiovisual stimuli with 
laboratory precision (Bridges et al., 2020; Gao et al., 2020; Sauter 
et al., 2020). jsPsych runs entirely on the participant’s computer, 
avoiding the need for external software. The experimental materials 
were uploaded to a web server with a JATOS (Just Another Tool for 
Online Studies; Lange et al., 2015) instance installed. JATOS is an 
open-source platform for managing data and links to 
the experiment.

Each participant received a unique, one-time-use access link, 
which directed them to a specific combination of tasks. Task order was 
counterbalanced (12 combinations) to control for carryover effects 
and minimize interactions. Participants were randomly assigned to 
one of these combinations and completed the session in a single 
sitting. To take part in the study, participants needed a computer with 
internet access, a mouse, a keyboard, and audio speakers. The online 
protocol has been debugged in advance on three widely used browsers 
(Chrome, Firefox, and Edge) to ensure its correct execution. It 
included three digital dual-tasks and one digital screening test for the 
assessment of general cognitive functioning.

One of the digital dual-tasks was an adaptation of the Trail 
Making Test (TMT; Reitan and Wolfson, 1988). TMT is a widely used 
task-shifting test and includes two parts to be  consecutively 
administered: TMT-A (the single-task condition) and TMT-B (the 
task-switching condition). TMT-A is a visual search and motor-speed 
task while TMT-B can be considered as a cognitive flexibility task 
(Crowe, 1998; Arbuthnott and Frank, 2000; Kortte et al., 2002). Several 
recent studies developed different digital versions of TMT, mostly with 
touch screen (Dahmen et al., 2017; Lin et al., 2021; Simfukwe et al., 
2022) or mouse-and eye-tracking (Linari et al., 2022) technology. In 
our computer-based version of TMT, in part A, participants were 
asked to sequentially click with the mouse on each of the numbers 
from 1 to 14 in ascending order. Conversely, in part B, participants 
were required to sequentially press each of the numbers from 1 to 7 
and the letters from “A” to “G” in ascending order but alternating 
between the two sequences. Numbers in TMT-A and numbers and 
letters in TMT-B were displayed on the screen in a fixed, semi-random 
order. This means that the arrangement of the targets was designed to 
appear random but was identical for all participants. Prior to 
performing the task, both TMT-A and TMT-B included written 
instructions on the screen accompanied by a video demonstrating 
how the task had to be performed. Participants could play the video 
example as many times as they wanted. The maximum time allowed 
for its completion was 120 s, after which the task was automatically 
interrupted, and participants were presented with the next task. Only 
one error was permitted; if participants made a second error, they 
were moved on to the next task. The number of correct responses and 
time of completion were recorded. While we considered the TMT-B 
a dual task yet it should be noted that, strictly speaking, its B version 
requires task shifting. Given that this component is, at least in part, 
present also in the other tasks for the sake of simplicity we referred to 
the conditions of the digital tests requiring parallel processing as 
“dual tasks.”

Another digital dual-task included in the assessment was the Test 
of Attentional Performance (TAP; Zimmermann and Fimm, 2002). 
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The TAP is a well-established computer-based battery used in the 
assessment of attention. Specifically, in this study we  adapted its 
divided attention subtest. The original divided attention subtest 
consists in performing two simultaneous sustained attention tasks 
involving visual and auditory sensory modalities. The visual task 
required detecting a 1 × 1 square formed by four tiny “X”s randomly 
moving on some of the 16 intersection points of a 4 × 4 grid (Figure 1). 
The number of “X”s present on the screen randomly varies from six to 
eight. The auditory task required detecting two identical tones 
consecutively within a stream of alternating high and low tones. In our 
TAP task we separately administered the visual and the auditory tasks 
as two single-tasks before the combination of the two in a dual-task 
paradigm. Participants responded in both the single- (visual or 
auditory) and the dual-task conditions by pressing the “X” key only. 
In the visual task a total of 100 visual stimuli (17 targets) were 
presented, with an interstimulus interval (ISI) of 2000 ms. In the 
auditory task a total of 200 auditory stimuli (16 targets) each lasting 
433 ms, were presented with a 1,000 ms ISI. A practice session 
encompassing 20% of trials was conducted prior to each 
experimental session.

The last dual-task paradigm we proposed will be referred to as 
MEMO. It consists in a digital task which has been validated in 
previous studies by our research group (see Contemori et al., 2022, 
2024). The MEMO involved a CCDT paradigm combining a primary 
visual memory task and a secondary auditory sustained attention task. 
During the primary task (visual memory recognition) participants 
were required to memorize 15 sequentially presented black-and white 
images of inanimate objects, displayed for 5 s each. During the 
recognition phase, participants were presented with 4 images 
simultaneously (1 target image and 3 distractors of varying similarity). 
The position of the target among the 4 images was randomized, and 
participants were asked to select the image they considered the most 

plausible by using the number keys (1 to 4) on the keyboard. There 
was no time limit for the response, allowing participants to reflect 
before making their choice. This design emphasized familiarity-based 
recognition over recollection, reducing the potential influence of 
recollective processes on performance (Mandler, 1980; Tulving, 1985). 
The secondary task involved an Auditory Continuous Performance 
Task (ACPT, Cohen et al., 1999; Seidman et al., 2012). Participants 
monitored a series of auditory stimuli consisting of the letters A, B, C, 
D, and X. The auditory stimuli were presented with a stimulus onset 
asynchrony (SOA) of 1,666 ms, so that each stimulus was separated by 
a short interval to avoid overlap. During the image encoding phase, 3 
auditory stimuli were presented during the exposure of each image, 
with a total of 45 auditory stimuli per session. Specifically, the MEMO 
paradigm (Figure 2) consisted of three experimental sessions: (i) No 
Load (NL): participants completed the memory task without 
performing the ACPT. They were instructed to ignore the auditory 
stimuli and focus solely on the images; (ii) Low Load (LL): during the 
encoding phase of the memory task, participants performed the 
ACPT with “X” detection, where they were required to respond 
whenever the letter “X” was presented; (iii) High Load (HL): during 
the encoding phase of the memory task participants performed the 
more demanding ACPT with “AX” detection, which required them to 
respond only when the letter “X” was preceded immediately by the 
letter “A..” A 2-trials practice session was conducted prior to the first 
experimental session. In the LL and HL conditions, participants 
responded by pressing the spacebar whenever the target stimulus 
appeared during the encoding phase.

We integrated the multitasking assessment with a measure of 
global cognitive functioning. Specifically, we used the Auto-GEMS 
(Pucci et al., 2024; see also Mondini et al., 2022 for the paper-and-
pencil version and Montemurro et al., 2023 for the telephone-based 
version), a recently-normed web-based, self-administered test 
designed to provide a rapid and global measure of cognitive 
functioning in approximately 10 min. The test included 11 tasks that 
measure short-and long-term memory, visuo-spatial abilities, 
executive functions, spatial and temporal orientation, verbal 
comprehension and abstract reasoning. It provides a 0–100 score of 
global cognitive efficiency.

Within the Auto-GEMS protocol, 6 preliminary questions are 
administered before the cognitive tasks. These questions are used to 
automatically compute a Cognitive Reserve (CR) score (adapted from 
Nucci et  al., 2012), a reliable predictor of overall cognitive 
performance. The CR score is composed of three subscores: 
CR-Education, which accounts for the level of formal education; 
CR-WorkingActivity, which reflects the type and number of years 
spent in various occupations; and CR-LeisureTime, which assesses the 
type and frequency of leisure activities. The total CR score, CR-Total, 
is the average of these three subscores, providing a comprehensive 
measure of an individual’s cognitive reserve. A value of 100 indicates 
the average score.

2.3 Data analysis

From the original sample of 780 participants we removed outliers 
and participants with incomplete data. Outliers were identified using 
the median absolute deviation (MAD) criterion (MAD > 3; Leys et al., 
2019) for Accuracy and RTs in the TAP (N = 40) and MEMO (N = 33) 

FIGURE 1

Schematic representation of the experimental paradigm for the TAP 
subtest in the dual-task condition. Each square represents a possible 
configuration of the matrix for the visual task. In the upper part gray 
and black volume icons represent single stimuli for the auditory task 
(low and high tones respectively). Specifically, the central screenshot 
contains the target configuration for the visual task [on the left side, 
four “x” forming a square, while the fifth volume icon (from the left) is 
a target for the auditory task (two consecutive high tones)].
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tasks. Additional participants were excluded in both TAP (N = 27) and 
MEMO (N = 14) due to technical issues or unreliable answers, such as 
entirely missing data or the absence of responses in at least one full 
block of the TAP. Finally, we excluded those participants who did not 
complete MEMO or (N = 162 excluded), or TAP (N = 142 excluded). 
After this, we proceeded with TMT data cleaning. Participants who 
either made two errors or exceeded 120 s in TMT-A were excluded 
from the analysis, along with their corresponding TMT-B data 
(N = 38). The final dataset included only those participants who 
completed TMT-A with fewer than two errors, while TMT-B data 
were retained as long as TMT-A data were complete and reliable. A 
summary of demographic characteristics of the excluded participants 
is reported in Supplementary Table S1.

The data cleaning procedure above described led to a final sample 
of 419 participants who completed the three cognitive tasks. This 
allowed us to examine the effects of Cognitive Load, Age, and 
Cognitive Efficiency/Cognitive Reserve (CR) on task performance, 
including dual-task costs (DTCs). Age was always included as a 
six-level factor reflecting the six age clusters previously described: 
18–27; 28–37; 38–47; 48–57; 58–67; 68+. The Cognitive Load factor 
was operationalized as the contrast of the divided attention/dual-task 
conditions (MEMO LL/HL, TMT-B, TAP dual) with the single-task 
condition (MEMO NL, TMT-A, TAP visual or auditory only).

The primary outcomes for all tasks included Accuracy, RTs, and 
DTC indices. For TMT we  computed an Efficiency Index (EI) 
combining completion time, accuracy and the number of errors in a 
single measure calculated as reported below:

 
= ×

+
 100

   
Correct ResponsesEI

Reaction Times Number of Errors

The EIs were normalized to guarantee comparability across 
participants. This procedure ensures that the EIs for TMT-A and 

TMT-B are reported on the same scale. Accuracy and EI were coded 
as continuous variables ranging from 0 to 1, reflecting proportional 
measures of performance. RTs were transformed using a logarithmic 
function to address the skewed distribution commonly observed in 
raw RTs data, ensuring a more normalized distribution suitable for 
statistical analyses and improving the reliability of model estimations 
(see Supplementary Table S2). The DTCs for both Accuracy and RTs 
in MEMO and TAP, and for EI and RT for TMT were calculated as the 
relative difference in performance between the dual- and the single-
task conditions according to the formula:

 

−
= ×100Dual SingleCost

Single

This formula captures the relative DTC performance when 
switching from a single-task to a dual-task condition, expressed as a 
percentage difference. Considering Accuracy or EI, a negative DTC 
indicates a decrease in performance in the dual-task with respect to 
the single-task. On the contrary, considering RTs the decrease in 
performance is indicated by a positive DTC, meaning a slowing down 
of responses in the dual-task condition.

The analyses were performed using (R Core Team, 2023) and 
had the same structure for the three experimental tasks. For all 
tasks, linear mixed-effects models (LMMs) were applied to 
analyze Accuracy/EI and RTs, with Cognitive Load, Age (as 
categorical variable with six levels) and their interaction as fixed 
effects, and random intercepts for participants. These models are 
well-suited for handling the hierarchical structure of the data, 
where repeated measures are nested within participants. This 
approach allows for the simultaneous modeling of both within-
subject variability (e.g., changes in performance under different 
cognitive load conditions) and between-subject variability (e.g., 
differences in baseline performance across age groups). 
Furthermore, mixed-effects models account for the 

FIGURE 2

Schematic representation of the experimental paradigm for the MEMO subtest, combining a primary visual memory task and a secondary auditory 
sustained attention task (i.e., ACPT). The encoding phase (left) differed across conditions. In the No Load condition participants encoded the images 
without performing the ACPT (no response required during encoding); in the Low Load they were required to encode the images while responding to 
the ACPT whenever the letter “X” was presented; in the High Load condition they were required encode the images, while responding to the ACPT but 
only when the letter “X” was preceded immediately by the letter “A. After the encoding of the whole set of images responses were collected for each 
condition by using a forced-choice procedure among similar alternatives (Recognition phase, on the right).
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TABLE 2 Descriptive statistics for Experimental tasks.

Task Condition Accuracy/EI RT (ms)

TMT

TMT-A 0.49 (0.16)
23,100 

(8660)

TMT-B 0.39 (0.15)
27,400 

(9860)

TAP

Single Visual 0.94 (0.06) 930 (166)

Single Auditory 0.99 (0.03) 647 (117)

Dual
Visual

0.95 (0.06)*
873 (144)

Auditory 690 (118)

MEMO Image 

recognition

Single 0.89 (0.13)
4,403 

(2037)

Dual Low 0.78 (0.18)
4,843 

(2274)

Dual High 0.69 (0.20)
4,976 

(2510)

MEMO ACPT

Single None None

Dual Low 0.97 (0.07)
863 

(323.32)

Dual High 0.97 (0.06)
754 

(377.44)

Summary of accuracy/EI and RTs for TMT (a) TAP (b) and MEMO (c). All the measures are 
reported as: mean (SD); accuracy and EI range is 0–1; RT = reaction times; s = seconds; 
ms = milliseconds. *Accuracy in the dual-task condition is coded as a unique variable 
independently of whether the stimuli were visual or auditory while RTs were recorded 
separately based on whether participants responded to a visual or auditory stimulus.

non-independence of observations within individuals and 
provide flexibility to include both fixed effects to estimate 
population-level trends and random effects to capture individual 
differences. This makes them particularly appropriate for 
analyzing complex datasets with repeated measures, ensuring 
robust and accurate inference even in the presence of unbalanced 
data. LMMs were implemented using the “lmer” function from 
the “lme4” package (Bates et al., 2015). DTCs related to Accuracy/
EI and RTs were further examined using linear regression models 
to assess the influence of age, cognitive efficiency (measured by 
the Auto-GEMS), and Cognitive Reserve (CR) with DTC as a 
dependent variable and Age (as categorical variable with six 
levels), Auto-GEMS, and CR score as predictors. We  did not 
include the interaction terms to avoid collinearity problems.

For the sake of brevity, results for all RTs analysis were 
reported in   Supplementary materials only. Moreover, the 
inclusion of RTs in the main text was avoided because the RTs in 
the MEMO task were  less reliable, as participants were not 
explicitly instructed to respond quickly. Nonetheless, the mean 
and standard deviation for RTs are still presented in the main text 
for completeness. In Supplementary materials we also reported 
the performance on the secondary task on MEMO (ACPT) even 
though our main interest was on the memory performance in the 
primary task (image recognition).

The significance of fixed effects and interactions was 
evaluated with the “Anova” function from the “car” package (Fox 
and Weisberg, 2019). We ran Type III ANOVA (Wald Chi-Square) 
for mixed models with interactions and Type II ANOVA (F-test) 
for linear regression with no interaction terms. Pairwise 
comparisons were conducted using the “emmeans” function from 
the “emmeans” package (Lenth, 2024) to explore differences 
across age clusters and conditions. The False Discovery Rate 
(FDR) adjustment method was used to control for Type I error 
inflation. For each model, we reported the Wald chi-square or 
F-test statistics for the predictors and interactions, as appropriate. 
When relevant, we  provided the corresponding model fit 
statistics, including the regression coefficients (β) and p-values. 
In cases where multiple comparisons were described, we reported 
the estimated means, standard errors (SE), degrees of freedom 
(df), t-values, and p-values for each comparison. We performed 
partial correlation analyses using the residuals from linear 
models that predicted DTCs across different tasks. These models 
controlled for the effects of Age, Cognitive Efficiency (Auto-
GEMS) and CR. By examining the correlations among residuals, 
we aimed to assess whether DTCs from different tasks exhibit 
shared variance beyond the effect of age, cognitive efficiency and 
CR indices. To further investigate the role of these variables in 
modulating the DTC, a mediation analysis was conducted for 
each DTC assuming Auto-GEMS or CR scores as mediating 
variables in the relationship between Age (coded as continuous 
variable ranging from 18 to 76 years old in this case) and DTCs. 
The analysis was implemented with two linear regression models: 
one predicting the mediator from age and the other predicting 
the DTC outcome from both age and the mediator. Mediation 
effects were tested using the “mediate” function from the 
“mediation” package (Tingley et al., 2014), with bootstrapping to 
estimate confidence intervals for indirect effects. The mediation 
analysis is reported in Supplementary materials.

3 Results

We examined potential sex differences in education levels 
(Table 1). No significant differences emerged for males vs. females 
within any age cluster (all p > 0.05).

3.1 Analysis of performance

3.1.1 Descriptives
Table  2 reports descriptive statistics for Accuracy/EI and RTs 

across all tasks and Cognitive Load conditions.

TABLE 1 Education differences by Sex across Age Clusters.

Age 
cluster 
(years)

Education (years) p-value 
(t-test)

F (N = 265) M (N = 154)

18–27 15.2 ± 1.90 14.5 ± 1.88 0.07

28–37 16.2 ± 3.13 15.9 ± 3.03 0.64

38–47 14.6 ± 3.71 16.0 ± 2.98 0.21

48–57 13.4 ± 3.48 12.2 ± 3.19 0.12

58–67 13.2 ± 3.10 12.3 ± 3.25 0.23

68+ 9.0 ± 5.04 10.3 ± 3.20 0.54

Each measure is reported as Mean ± SD. Both Age and Education are reported in years. F, 
female; M, male.
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3.1.2 TMT
ANOVA for the TMT showed a significant decrease in EI 

associated with increasing Age (Chisq(5) = 150.33, p < 0.001). The 
pattern could be better interpolated by a non-linear fit (quadratic 
curve, β = −0.057, p = 0.004). As expected, Cognitive Load significantly 
affected EI (Chisq(1) = 191.51, p < 0.001) with higher EI in TMT-A 
than in TMT-B (0.096, se = 0.007, df = 416, t = 13.771, p < 0.001). No 
significant Age X Cognitive Load interaction was observed 
(Chisq(5) = 8.49, p = 0.131). Results for the Wald chi-square tests for 
EI are summarized in Table 3. Age-related differences in EI for both 
TMT-A and TMT-B are shown in Figure 3. The same analysis was 
conducted for RTs (see Supplementary Table S3 and 
Supplementary Figure S1). In short, TMT-B was detrimental for 
performance, in a way that was similar for younger vs. 
older participants.

3.1.3 TAP
The ANOVA for the model on Accuracy in the TAP task showed 

a significant decrease due to increasing Age (Chisq(5) = 13.201, 
p = 0.024). Also, the modulation by Cognitive Load was significant 
(Chisq(2) = 876.165, p < 0.001). Performance in the dual-task was 
significantly worse than in the auditory single-task (0.040, se = 0.002, 
df = Inf, z-ratio = 24.354, p < 0.001). Despite a very small difference 

(−0.004), visual single-task Accuracy was lower than in the dual-task 
(se = 0.002, df = Inf, z-ratio = −2.394, p = 0.017). Moreover, a 
significant interaction between Age and Cognitive Load emerged 
(Chisq(10) = 41.299, p < 0.001). The 18–27 years group performed 
better in the auditory condition compared to the visual condition 
(1.12, se = 0.59, df = 120, t = 1.89, p = 0.04). In contrast, the 
58–67 years group exhibited a significant decline in performance in 
the visual condition compared to the dual condition (1.45, se = 0.64, 
df = 118, t = 2.27, p = 0.02). Results for the Wald chi-square tests for 
Accuracy are summarized in Table  4. The modulation of Age and 
Cognitive Load on Accuracy is shown in Figure 4. The same analysis 
was conducted for RTs (see Supplementary Table S4 and 
Supplementary Figure S2).

3.1.4 MEMO
In the MEMO task, the ANOVA showed that Accuracy in 

recognizing images was significantly modulated by Age, 
(Chisq(5) = 33.76, p < 0.001) and Cognitive Load, (Chisq(2) = 1674.48, 
p < 0.001). The Age X Cognitive Load significant interaction 
(Chisq(10) = 41.33, p < 0.001) suggested that the detrimental effect of 
increased cognitive load on performance becomes more pronounced 
with increasing age (Figure 5). Results for the Wald Chi-square tests 
are summarized in Table 5. Dual-task conditions negatively affected 

TABLE 3 Analysis of deviance for TMT EI as a function of Age and 
Cognitive Load (Type III Wald chi-square tests).

Dependent 
variable

Predictors Chisq (df) p-value

TMT EI

Age 150.33 (5) < 0.001

Cognitive load 191.51 (1) < 0.001

Age: Cognitive load 8.49 (5) 0.131

FIGURE 3

TMT-A and TMT-B EI across six Age clusters (in years). EI for TMT in both version A (cyan box-plots) and B (purple box-plots) condition is shown as a 
function of Age. Points show individual EI score.

TABLE 4 Analysis of deviance for TAP Accuracy as a function of Age and 
Cognitive Load (Type III Wald chi-square tests).

Dependent 
variable

Predictors Chisq (df) p-value

TAP accuracy

Age 13.201 (5) 0.024

Cognitive load 876.1655 (2) < 0.001

Age: Cognitive load 24.354 (10) < 0.001
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FIGURE 4

TAP Accuracy for the different Age clusters and conditions: visual single-task (left panel), auditory single task (middle panel) and dual-task (right 
panel). Each age cluster is represented by a distinct color (legend on the right). Each point represents individual accuracy. Each black line refers to the 
task-specific linear regression on Accuracy with Age as dependent variable. Shaded areas represent the corresponding standard errors. Y-axis origin is 
set to 0.6 instead of 0 to improve readability.

FIGURE 5

MEMO Accuracy in the primary task (image recognition) is shown as a function of Age across the three Cognitive Load conditions. Each age cluster is 
represented by a distinct color (legend on the right). Each point represents individual accuracy. Each black line refers to the task-specific linear 
regression on Accuracy with Age as dependent variable. Shaded areas represent the corresponding standard errors.

memory performance as shown by both the NL-LL comparison 
(0.116, se = 0.005, df = Inf, z-ratio = 23.597, p < 0.001) and the NL-HL 
comparison (0.201, se = 0.005, df = Inf, z-ratio = 40.988, p < 0.001). 
The same analysis was conducted for RTs (see 
Supplementary Tables S5, S6 and Supplementary Figure S3).

3.2 Costs analysis

3.2.1 Descriptives
Supplementary Table S7 reports DTC as a percentage calculated 

on Accuracy/EI and RTs for all tasks.
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3.2.2 TMT
The ANOVA for the model on DTC in TMT showed that EI 

was significantly influenced by Age (F(5, 3,763) = 38.335, 
p < 0.001), Auto-GEMS, (F(1, 3,763) = 16.867, p < 0.001) and CR 
(F(1, 3,763) = 34.374, p < 0.001). The overall pattern is reported 
in Figure  6 and shows a detrimental effect of Age, better 
interpolated by a non-linear fit (cubic curve, β = 6.18, p < 0.001), 
and a positive linear effect of CR (β = 0.14, p < 0.001) and 

cognitive efficiency as measured by Auto-GEMS (β = 0.22, 
p < 0.001). Results for DTC on TMT RTs are summarized in 
Supplementary materials.

3.2.3 TAP
Type II ANOVA for the model on DTC for Accuracy did not show 

significant effects either of Age (F(5, 3,763) = 1.412, p = 0.217) or CR 
scores (F(1, 3,763) = 1.107, p = 0.293). Auto-GEMS significantly 
modulated DTC on Accuracy (F(1, 3,763) = 37.470, p < 0.001). 
Participants with higher cognitive efficiency showed linear (β = 0.08, 
p < 0.001) reduction of DTC on Accuracy (see 
Supplementary materials). DTC on visual and auditory RTs are 
summarized in Supplementary materials.

3.2.4 MEMO
The ANOVA results for DTC on Accuracy model in the image 

recognition task revealed significant effects of Age (F(5, 3,763) = 12.93, 
p < 0.001), Auto-GEMS (F(1, 3,763) = 73.36, p < 0.001), and CR (F(1, 

TABLE 5 Analysis of deviance for MEMO Accuracy in the primary image 
recognition task as a function of Age and Cognitive Load (Type III Wald 
chi-square tests).

Dependent 
variable

Predictors Chisq (df) p-value

MEMO image 

recognition accuracy

Age 33.76 (5) < 0.001

Cognitive load 1674.48 (2) < 0.001

Age: cognitive load 41.33 (10) < 0.001

FIGURE 6

Predicted TMT DTC (percentage) on EI is shown as a function of Auto-GEMS score (A), CR (B) and Age Clusters (C). Each point (A,B) represents 
individual DTC. Shaded areas and vertical bars represent the standard error. More negative values indicate higher DTC.
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3,763) = 6.88, p = 0.008). The overall pattern (Figure  7) shows a 
detrimental effect of Age, better interpolated by a non-linear fit 
(quadratic curve, β = 2.37, p < 0.001). Performance shows a linear 
increase of DTC up to the age of 38–47 years, followed by a plateau 
between 38–47 and 48–57 years (1.803, se = 0.928, df = 3,790, 
t = 1.944, p = 0.098), with a slight decrease in the subsequent age 
cluster (48–57  – 58-67: −3.981, se = 0.82, df = 3,790, t = −4.857, 
p < 0.001). The apparent increase in DTC for the oldest participants is 
not statistically significant (58–67 – 68+: 2.035, se = 1.367, df = 3,790, 
t = 1.488, p = 0.165) and is likely attributable to noise resulting from 
high variability within these age group. A positive linear effect of CR 
(β = 0.04, p < 0.001) and cognitive efficiency as measured by Auto-
GEMS (β = 0.36, p < 0.001) was observed. Results for DTC on MEMO 
image recognition task RTs are summarized in 
Supplementary materials.

3.3 Correlation analysis: DTC on accuracy/
EI between tasks

Correlations between tasks (Supplementary Figure S9) were never 
significant for the Memo task (MEMO–TAP: rspearman = 0.016, 
p-value = 0.339; MEMO–TMT: rspearman = −0.027, p-value = 0.094). 
The TAP  - TMT correlation, albeit significant, was rather weak: 
rspearman = −0.045, p-value = 0.006). This suggests a lack of shared 
variance in DTC measures across tasks controlling for Age, Auto-
GEMS, and CR scores in the regression models. Each DTC measure 
therefore seems independent when these covariates are controlled. A 
similar pattern of results was observed in the correlation matrix for 
the raw DTC values (i.e., without controlling for covariates), which 
yielded comparable conclusions regarding the independence of DTC 
measures across tasks and the modest within-task correlations (fully 

FIGURE 7

Predicted MEMO DTC (percentage) on the primary image recognition task accuracy is shown as a function of Auto-GEMS score (A), CR (B) and Age 
Clusters (C). Each point (A,B) represents individual DTC. Shaded areas and vertical bars represent the standard error. More negative values indicate 
higher DTC.
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reported in the Supplementary materials). These findings underscore 
the task-specific nature of DTC measures and highlight the limited 
overlap in DTC variance across tasks, even when covariates are 
not controlled.

4 Discussion

In the present study we assessed the performance of 419 healthy 
participants, whose age ranged from early adulthood to older age, 
across three web-based self-administered tasks: TMT, TAP, and 
MEMO. These paradigms were chosen to capture core aspects of 
multitasking performance, including cognitive flexibility, attentional 
control, and memory, thereby providing a comprehensive 
understanding of how multitasking abilities varied across cognitive 
functions in the lifespan.

Concerning the overall performance, in the TMT and MEMO 
tasks we  observed, as expected, a significant worsening of 
performance with increasing cognitive load. These findings 
confirmed the effectiveness of cognitive load manipulation in 
affecting task performance. In contrast, in the TAP divided attention 
subtest, the effect of cognitive load was less clear: while a slight 
performance decline was observed in the auditory condition under 
dual-task, no difference were found in the visual condition between 
single and dual task performance, suggesting that the load 
manipulation was only partially effective in this task. Nevertheless, 
these results were not totally unexpected. Only a few studies have 
used this subtest with healthy adults, and they mostly focused on 
omissions as the main outcome (Merhav et al., 2019; Schättin et al., 
2019). In these studies, the number of omitted stimuli was generally 
low, ranging from 1 to 3 out of 33 target stimuli on average. Moreover, 
to the best of our knowledge, none of these studies compared dual-
task conditions with visual or auditory single-task. They focused on 
dual-tasks mainly to explore divided attention, while we investigated 
other potentially relevant aspects of performance.

After having determined the effectiveness of the cognitive load 
manipulation we focused on how the DTC varied across the different 
age clusters. Our findings showed a significant increase in DTCs with 
age for both TMT and MEMO tasks. The dual-task condition, which 
is more resource-demanding than the single-task condition, becomes 
more challenging with increasing age. These findings align with prior 
research suggesting that aging disproportionately affects higher-order 
cognitive processes, such as cognitive flexibility, working memory and 
divided attention (Harada et al., 2013; Xia et al., 2024), more than 
basic attentional processes (Commodari and Guarnera, 2008; Madden 
and Langley, 2003).

Our data suggest a non-linear trend in DTC in both the TMT and 
MEMO task. Specifically, for TMT we detected a period of relative 
stability in DTC up to the 40s, followed by a linear performance 
decrease beyond this age. This pattern suggests that the impact of 
aging on DTC in the TMT task is not uniform across the lifespan. In 
addition, in the MEMO task DTC increases almost linearly during the 
early adulthood up to the 50s. Beyond the 50s, the trend reverses with 
a slight decrease in DTC, which eventually stabilizes, reaching a 
plateau between the 60s and 70s. This pattern reinforces the notion 
that the detrimental impact of cognitive aging is not uniform and 
varies depending on the cognitive domain and task demands.

Previous studies (Contemori et al., 2022, 2024; Del Popolo Cristaldi 
et al., 2025) focused on the effects of age, cognitive efficiency and CR in 
the MEMO task in a sample of healthy participants which were overall 
older and with a more limited age-range (50–89 years). In contrast with 
their initial expectations they did not find any significant increases in 
MEMO DTC with increasing age. Older participants within this 40-year 
window exhibited similar DTCs as younger participants. Here we have 
shown that when the sample includes young adults a significant 
detrimental effect of age in DTC emerges.

DTCs in the TAP task did not show any significant age-related 
effects suggesting less influence of aging on multitasking in this type 
of task. However, it is important to note that this interpretation should 
be considered with caution. The order of task conditions was not 
randomized, with visual single-tasks always preceding auditory single-
tasks and then the dual-task condition. This fixed order could have led 
to improvements in performance due to repeated exposure, rather 
than reflecting actual age-related differences or cognitive load 
modulation effects.

In addition, we explored the role of cognitive efficiency and CR in 
modulating the DTC. CR resulted in a weak but significant negative 
relationship with DTCs in the MEMO and TMT tasks. Similarly, 
higher cognitive efficiency, as measured by the Auto-GEMS, was 
associated with reduced DTCs across all tasks. These findings, in line 
with previous studies (Contemori et al., 2024), underscore the need of 
accounting for individual differences when evaluating multitasking 
abilities, especially in aging (Vallesi, 2016).

Correlation analyses revealed minimal shared variance in DTC 
measures across the three tasks, even after controlling for Age, 
Cognitive Efficiency, and CR. The TMT is primarily a set-shifting task, 
whose B version imposes a higher cognitive load, albeit through 
different mechanisms than those involved in MEMO and TAP. While 
MEMO and TAP in the dual-task conditions require the concurrent 
execution of two tasks, the TMT-B demands alternating between two 
response sets. This difference in cognitive demands may explain the 
lack of strong correlations between DTCs across tasks, yet it reinforces 
the idea that DTCs are not merely the result of a general reduction in 
available cognitive resources  –which also occurs in TMT-B– but 
rather reflect the specific nature of each task and the type of cognitive 
control required. All correlations were either not significant or, when 
significant, very low, likely due the large sample size, which increased 
statistical power and detected even negligible effects. The weak 
associations observed suggest the absence of meaningful relationships 
between tasks. This mirrors findings in the visual abilities research 
field, whereby weak correlations between performances on different 
visual tasks suggest limited evidence for a visual common factor. These 
findings were replicated even with tasks designed to measure the same 
visual abilities (Cappe et  al., 2014; Shaqiri et  al., 2019; Garobbio 
et al., 2024).

4.1 Limitations

There are a few limitations that should be acknowledged. First, the 
cross-sectional design does not allow for causal interpretations of the 
role of age and cognitive resources in DTCs. Future longitudinal studies 
are needed to confirm the observed non-linear patterns and to better 
understand how aging interacts with specific task demands over time. 

https://doi.org/10.3389/fpsyg.2025.1561417
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Livoti et al. 10.3389/fpsyg.2025.1561417

Frontiers in Psychology 12 frontiersin.org

Second, the study was conducted using a web-based approach, which, 
while offering several advantages in terms of accessibility and ecological 
validity, introduces potential confounding factors such as variability in 
participants’ digital literacy and environmental conditions during self-
administered assessments. These uncontrolled factors may have 
influenced task performance. Another potential limitation concerns 
the representativeness of our sample. Although we did not directly 
measure digital literacy, the distribution of age and education among 
excluded participants does not suggest that older individuals with lower 
education  –and likely lower digital skills– were disproportionately 
excluded. On the contrary, the possibility of a selection bias should 
be acknowledged, as individuals who voluntarily participate in remote 
cognitive studies are expected to have at least a basic level of digital 
proficiency. This inherent limitation should be  considered when 
generalizing findings to less digitally literate populations. Third, the 
entire protocol was conducted remotely, with participants asked to 
complete the experiment independently. While indirect measures were 
implemented to ensure compliance and minimize potential 
environmental influences a direct monitoring of adherence to testing 
conditions was not possible. Fourth, the relatively small number of 
participants in the older age group (68+) limits our ability to examine 
potential cognitive transitions occurring within late adulthood in finer 
detail. Nevertheless, the use of mixed-effects models in our analyses 
accounts for the unbalanced sample sizes across age groups, mitigating 
potential biases due to the lower number of participants in the older 
age group. Our future objectives include expanding and balancing the 
sample of elderly participants to better investigate the significant 
cognitive changes that occur in this age group. Lastly, in the TAP task, 
the fixed order of conditions (visual single-task, auditory single-task, 
then dual-task) may have led to practice effects, potentially masking the 
true impact of cognitive load on performance. A counterbalanced 
design should have been adopted to mitigate this issue.

4.2 Implications for research and clinical 
practice

In a nutshell, we have shown that performance derived from tests 
of different nature is reliably modulated by age and dual-task 
requirements. However, the weak correlations across domains strongly 
suggest that multitasking ability is neither a general function nor 
strictly linked to overall cognitive performance. We can also conclude 
that also the broad notion of “task difficulty” does not seem to bring 
together heterogeneous DTCs. While task-specific processes primarily 
drive multitasking efficiency, the direction and magnitude of DTCs 
provide critical insights into cognitive trajectories across the lifespan. 
Increasing age did not progressively and uniformly affect all tasks in 
the same way. This heterogeneity was especially pronounced in tasks 
requiring cognitive flexibility and memory, whereas divided attention 
appeared less sensitive to age-related decline.

Our comparison across different cost measures highlights the 
potential of web-based tools in cognitive assessment. These tools 
provide a sensitive and accessible means to detect subtle cognitive 
deficits, particularly those that may not emerge in single-task 
conditions. Building on their established effectiveness in 
assessing individual differences in memory performance 
(Contemori et al., 2022, 2024; Del Popolo Cristaldi et al., 2025), 
our results suggest their applicability across a broader range of 
cognitive domains. Digital assessments offer transformative 

possibilities for neuropsychology, enabling precise and scalable 
evaluations of cognitive performance. Multitasking appears 
particularly suited for such implementations, given its relevance 
in everyday life and the lack of a standardized clinical 
counterpart. The future development and integration of these 
tools into clinical workflows could enhance personalized 
interventions, providing a more flexible and precise approach to 
assessing cognitive changes across the lifespan.

Beyond its theoretical contributions, our study could have 
some implications for cognitive assessment and intervention 
strategies. Web-based dual-task assessments, such as those 
employed here, could serve as valuable tools for the early detection 
of cognitive decline, particularly in at-risk populations. To this 
aim, a promising avenue could be  contrasting performance in 
those multitasking approaches resulting in age invariant-costs 
(Contemori et al., 2024) with performance in tasks characterized 
by a prominent age-related drop in performance/costs. By 
identifying task-specific patterns of decline, these assessments may 
inform targeted cognitive training programs tailored to deficits in 
executive function, attention, or memory. Additionally, the 
flexibility of online cognitive assessments makes them particularly 
suited for remote monitoring, allowing clinicians and researchers 
to track cognitive trajectories over time without requiring 
in-person visits. This approach could be especially beneficial for 
aging populations, individuals with mobility limitations, or those 
in geographically underserved areas. Integrating such tools into 
clinical workflows could optimize cognitive health management, 
offering a more adaptive and responsive framework for 
personalized interventions across the lifespan.
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