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Latent variable modeling (LVM) is a powerful tool for validating tools and measurements 
in the social sciences. One of the main challenges in this method is the evaluation 
of model fit that is traditionally assessed using omnibus inferential statistical 
criteria, descriptive fit indices, and residual statistics, all of which are, to some 
extent, affected by sample sizes and model complexity. In the present study, 
an R function was created to assess fit indices after employing non-parametric 
bootstrapping. Furthermore, the newly proposed corrected goodness-of-fit index 
(CGFI) is presented as a means to overcome the abovementioned limitations. 
Using the data from Progress in International Student Assessment (PISA) 2022 
and Progress in International Reading Literacy Study (PIRLS) 2021, the analysis of 
instructional leadership and the construct of bullying results revealed differential 
decision-making when using the present function compared to relying solely on 
sample estimates. It is suggested that the CGFIboot function may provide useful 
information toward improving our evaluative criteria in LVMs.
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1 Introduction

Latent variable modeling (LVM) has become the primary means to test the validity of 
measurements comprising items to form latent constructs (Shevlin and Miles, 1998). Modeling 
latent variables at the measurement level involves model specification, parameter estimation, 
and model evaluation based on how well the constructed hypothesized model explains the 
variances and covariances in the observed variables. A critical discussion within the LVM 
literature is about identifying the appropriate evaluative criteria for judging the model fit (Pan 
and Liu, 2024; Sathyanarayana and Mohanasundaram, 2024; Urban and Bauer, 2021). Among 
the criteria are the omnibus chi-squared test and a large number of descriptive fit indices such 
as the root mean squared error of approximation (RMSEA; Steiger and Lind, 1980), the 
standardized root mean squared residual (SRMR; Jöreskog and Sörbom, 1981), the 
comparative fit index (CFI, Bentler, 1990), and the goodness-of-fit index (GFI; Jöreskog and 
Sörbom, 1982), among others. These indices are essential tools for researchers to assess how 
well their hypothesized models correspond to the empirical data (Thompson and Wang, 1999; 
Lei and Lomax, 2005); however, there is no consensus on cutoff values. Earlier 
recommendations suggested that fit indices should be <0.900 while more recent guidelines 
recommend values <0.950. The adoption of more stringent criteria followed seminal 
simulation studies that marked a shift from more lenient thresholds (Doğan and Özdamar, 
2017; Hu and Bentler, 1999; Kline, 2015; Schermelleh-Engel et al., 2003) aimed at distinguishing 
“exact” and “close” fit as noted by of MacCallum et al. (1996). Other recommendations point 
to two-index strategies combining information from descriptive fit indices and residual 

OPEN ACCESS

EDITED BY

Gudberg K. Jonsson,  
University of Iceland, Iceland

REVIEWED BY

Shaojie Wang,  
Guangdong University of Education, China
Mónica Gabriela Gutiérrez-Hernández,  
Technological Institute of Ciudad Juárez, 
Mexico

*CORRESPONDENCE

Georgios Sideridis  
 georgios.sideridis@childrens.harvard.edu

RECEIVED 17 January 2025
ACCEPTED 03 March 2025
PUBLISHED 26 March 2025

CITATION

Sideridis G and Alghamdi M (2025) Corrected 
goodness-of-fit index in latent variable 
modeling using non-parametric 
bootstrapping.
Front. Psychol. 16:1562305.
doi: 10.3389/fpsyg.2025.1562305

COPYRIGHT

© 2025 Sideridis and Alghamdi. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Methods
PUBLISHED 26 March 2025
DOI 10.3389/fpsyg.2025.1562305

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1562305&domain=pdf&date_stamp=2025-03-26
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1562305/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1562305/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1562305/full
mailto:georgios.sideridis@childrens.harvard.edu
https://doi.org/10.3389/fpsyg.2025.1562305
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1562305


Sideridis and Alghamdi 10.3389/fpsyg.2025.1562305

Frontiers in Psychology 02 frontiersin.org

statistics (e.g., Hu and Bentler, 1999). For example, one index must 
be the SRMR, with a value ≤8%, and the second index can be any one 
of the descriptive fit indices, with a value ≥0.950. Additionally, other 
recommendations strongly advocated in favor of using 95% confidence 
intervals (CIs; e.g., Browne and Cudeck, 1993). However, what 
confounds the picture further is not just the lack of consent but also 
the complexities arising from small sample sizes, actual misfit, model 
complexity, the presence of missing data, and so on (Marsh et al., 
2004). For example, small sample sizes have been reported to be a 
salient problem as a majority of studies engage <200 or 100 
participants (see MacCallum et al., 1999; Mundfrom et al., 2005) and 
consider associated problems derived from using small samples 
(Hogarty et  al., 2005). In the present study, we  aim to assist this 
process by providing an R function that includes a promising 
corrective procedure for the GFI and the inclusion of bootstrapping 
from the original data so that potential incidences of bias are also 
examined. The function is easily accessible in the link https://github.
com/GS1968/CFAtools/blob/main/CGFIboot.R.

The GFI, initially introduced by Jöreskog and Sörbom (1982), has 
gained widespread acceptance in LVM due to its intuitive 
interpretation as a measure of how well the model reproduces the 
observed variance–covariance matrix. Its downside, however, is that, 
for severely misspecified models, the index tends to provide inflated 
estimates (Bollen and Stine, 1993; Gerbing and Anderson, 1992; 
Marsh et al., 1988). Some researchers consider inflation, compared to 
deflation, a more serious problem because they jeopardize parsimony 
and theoretical coherence, and tends to favor a more conservative 
approach (Bentler and Bonett, 1980). Concerns on distorted estimates 
as a function of sample size have also been reported (Gerbing and 
Anderson, 1992; Marsh et al., 1988). Thus, the extreme sensitivity of 
the GFI renders it invalid, especially in small sample studies or nested 
model comparisons.

Early studies to mitigate the limitations of GFI led to the 
development of adjusted indices, such as the adjusted goodness-of-fit 
index (AGFI; Jöreskog and Sörbom, 1984) and the parsimony 
goodness-of-fit index (PGFI; Mulaik et al., 1989), which incorporate 
penalties for model complexity by adjusting for the degrees of 
freedom and the number of estimated parameters. Despite these 
advancements, subsequent studies pointed out that the adjusted 
indices are not immune to biases, particularly when models are 
misspecified (Fan and Sivo, 2005; Hu and Bentler, 1998) or sample 
sizes are small (Shevlin and Miles, 1998). The persistent need for a 
more robust fit index that can effectively address the biases associated 
with sample size and model complexity remains a critical issue in the 
field. Our contribution aims to provide an easy-to-implement 
correction via an R function, as proposed by Wang et al. (2020), 
which incorporates non-parametric bootstrapping to mitigate the 
effects of small sample sizes.

1.1 A proposal for a corrective procedure

Recently, Wang et al. (2020) proposed a corrective procedure 
to the GFI to account for both model complexity and sample size 
in light of the known downward trend observed in simulation 
studies. Using a systematic Monte Carlo simulation by varying 
sample size, estimation method, model misspecification, and 

model complexity, by Wang et al. (2020) demonstrated that the 
CGFI outperformed both the GFI and its adjusted counterpart 
(i.e., AGFI). The CGFI was found to be more stable across varying 
sample sizes and more sensitive to detecting model 
misspecifications, thereby overcoming the shortcomings of 
current fit indices (Kenny and McCoach, 2003; Shevlin and Miles, 
1998). This fact makes the CGFI a notable improvement over past 
corrections since it considers both the small-sample downward 
bias in all fit indices as well as the effects of model complexity in 
a more systematic way. While the AGFI imposes a penalty for the 
number of degrees of freedom used in the model and the PGFI has 
also been shown to have a low sensitivity to the model 
misspecification, it has been recommended that the CGFI was a 
better and more interpretable measure than these two for model 
fit and misspecification, particularly when used with 
bootstrapping techniques such as the ones employed in our 
analysis. Not only does this rationale further justify the need for 
the CGFI method, but it also clearly delineates its superiority over 
past GFI correction efforts, all of which support the contributions 
offered in this study via an easy-to-implement R function. Given 
that the function is based on the Lavaan package, all estimators 
that are available in the Lavaan package can be applied with the 
current CGFI function in R.

For the corrected indicator, the authors propose a cutoff estimate 
of 0.90 as indicative of acceptable model fit, citing the earlier cutoff 
criteria. However, given their reference to the CGFI to the CFI and 
NNFI, Non-Normative Fit Index; the revised criteria should likely 
be implemented with the CGFI as well (Hu and Bentler, 1999).

1.2 The CGFIboot function in R: description 
and application

To adjust for the downward bias in fit indices, Wang et al. (2020) 

proposed a correction factor 1
N

 proportional to a model’s complexity 

adjusting factor ( )1k k
p
+

 to the GFI. Consequently, the corrective 

version of the GFI (CGFI) is defined as shown in Equation 1:

 

( )1 1CGFI GFI
k k

p N
+

= + ×
 

(1)

Where k is the number of observed variables, p is the number of 
free parameters, and N is the sample size. In LVM, the degrees of 
freedom and the number of free parameters (p) for the test model or 
the theoretical model ( )Tdf  have a verified functional relationship as 
follows in Equation 2:
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T
1

2
k k

df p
+
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Thus, an alternative form of CGFI is as shown in Equation 3:
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The corrective factor for sample size, by a factor 1
N

, compensates 

for the potentially downward bias introduced by small samples as, 

when N is small, 1
N

is large, resulting in compensation; when N is 

large, then there is a negligible correction as large samples provide 
population-like estimates that are robust. Furthermore, the correction 

for model complexity by a factor of ( )1k k
p
+

 accounts for the number 

of observed parameters relative to the number of estimated 
parameters. Thus, if a model is complex (having more estimated 

parameters than the observed variables), then the corrective procedure 
adjusts for model inflation; if a model is simple, the correction is small 
to maintain model integrity in the estimation process.

The present function encompassed the Lavaan package to estimate 
additional descriptive fit indices such as the CFI, TLI, Tucker-Lewis 
Index; GFI, AGFI, RMSEA, and SRMR. Additionally, it provides 95% 
confidence intervals from simulated population distributions using 
non-parametric bootstrapping described next. The function allows for 
the employment of continuous, ordered categorical and dichotomous 
data. Missing data are addressed via the “NA” text as the function has 
been designed to read comma-delimited data (.csv). The user can 
modify the number of replicated samples as desired. Among the 
estimators, the current version of Lavaan we used allowed us to apply 
the following estimators: ML, Maximum Likelihood; MLR, Maximum 
Likelihood Robust; MLM, Maximum Likelihood Mean Adjusted; 
WLSMV, Weighted Least Squares Mean and Variance Adjusted; 
DWLS, Diagonally Weighted Least Squares; GLS, Generalized Least 

TABLE 1 CGFIboot function indicators for original and bootstrapped estimates in confirmatory factor analysis for the measurement of leadership in the 
progress in international student assessment (PISA) 2022.

Measure Original Boot Mean Boot SD CI_2.5 CI_95

Chi-Square 39.141 58.886 18.460 29.272 98.526

DF 14.000 14.000 0.000 14.000 14.000

P-Value 0.000 0.002 0.015 0.000 0.010

CFI 0.949 0.914 0.034 0.840 0.968

TLI 0.923 0.871 0.051 0.760 0.953

GFI 0.945 0.921 0.021 0.877 0.957

AGFI 0.889 0.842 0.043 0.754 0.914

RMSEA 0.099 0.130 0.028 0.077 0.182

SRMR 0.054 0.062 0.011 0.042 0.086

AIC 3068.588 3045.499 74.503 2896.160 3190.080

BIC 3113.444 3090.355 74.503 2941.016 3234.936

CGFI 0.950 0.926 0.021 0.882 0.963

lhs rhs est se z p-value ci.lower ci.upper

1 F1 =~ item1 1.000 0.000 NA NA 1.000 1.000

2 F1 =~ item2 1.247 0.177 7.064 0.000 0.901 1.593

3 F1 =~ item3 1.402 0.223 6.276 0.000 0.964 1.840

4 F1 =~ item4 1.493 0.243 6.137 0.000 1.017 1.970

5 F1 =~ item5 1.491 0.234 6.362 0.000 1.031 1.950

6 F1 =~ item6 0.660 0.159 4.158 0.000 0.349 0.971

7 F1 =~ item7 0.990 0.212 4.664 0.000 0.574 1.407

8 item1 ~~ item1 1.000 0.100 9.957 0.000 0.803 1.197

9 item2 ~~ item2 0.431 0.064 6.731 0.000 0.306 0.557

10 item3 ~~ item3 0.265 0.046 5.769 0.000 0.175 0.355

11 item4 ~~ item4 0.269 0.051 5.278 0.000 0.169 0.369

12 item5 ~~ item5 0.419 0.062 6.738 0.000 0.297 0.541

13 item6 ~~ item6 0.510 0.070 7.273 0.000 0.373 0.648

14 item7 ~~ item7 0.718 0.089 8.034 0.000 0.543 0.893

15 F1 ~~ F1 0.288 0.093 3.102 0.002 0.106 0.470

lhs, Latent variable; rts, item name; est., estimate of factor loading; se, standard error; z, Z-test; ci.lower, 2.5% Confidence Interval; ci.upper, 97.5% Confidence Interval.
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FIGURE 1

Densities of bootstrap distributions for the chi-squared statistic and the following fit indices: CFI, TLI, GFI, AGFI, RMSEA, SRMR, and CGFI, along with 
95% confidence intervals. Densities are based on 1,000 replicated samples in the measurement of instructional leadership.

Squares; ULS, Unweighted Least Squares; and ULSMV, Unweighted 
Least Squares Mean and Variance Adjusted. The availability of 
estimators depends on the version of Lavaan used; thus, it is not 
limited to the estimators mentioned here.

The non-parametric bootstrapping method involves resampling 
with replacement from the original sample data to form a number of 
pseudo-samples (bootstrap samples). These samples simulate the 
population distribution of a statistic, in this case, the fit indices (CGFI, 
CFI TLI, and RMSEA). Non-parametric bootstrapping is a particularly 
powerful type of resampling because it does not presume any distribution 
of the data, unlike parametric bootstrapping (Efron and Tibshirani, 
1994), which makes this method robust to use in approximating 
sampling distributions when the form of an underlying population 
distribution does not fit a known distribution. Thus, the advantages of 
the procedure are its distribution-free nature, its flexibility, and its 
accuracy with small samples (Davison and Hinkley, 1997). The 
procedure’s disadvantages are computational intensity, sampling bias, 
where sample-based idiosyncrasies are amplified, thereby creating biased 
population distributions and interpretation (if distributions are severely 

skewed or multimodal) (Chernick, 2008). For example, with a small 
sample, some observations (e.g., outliers) may be  replicated more 
frequently, reducing variability in the bootstrap samples and thus 
affecting the validity of the estimated parameters. Given that uncertainty 
is captured in the estimates of the 95% confidence intervals, 
non-parametric bootstrapping with small samples may result in overly 
optimistic (narrow) confidence intervals. Future updates of the function 
will include alternatives to non-parametric bootstrapping.

The output displays not only the original sample data estimates 
(lengthy Lavaan output) but also the averaged data from bootstrap 
distributions using user-defined replicated samples (1,000  in the 
presence instances). Discrepancies between the mean bootstrap 
estimates and those from the sample are likely indicative of enhanced 
variability, which may limit the generalization to the true population. 
For that purpose, standard deviations of the bootstrap distributions 
were added. Thus, our goal of displaying both original sample 
estimates and those from the bootstrap distributions is to highlight the 
potential concerns about findings’ generalization. As MacCallum et al. 
(1996) suggested, the inherent value of bootstrapping is the use of the 
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95% confidence intervals of the bootstrap distribution in which upper 
(for RMSEA) and lower bounds (for fit indices) may point to having 
a model with unacceptable model fit given the uncertainty introduced 
by the simulated population distribution.

1.2.1 Example 1: evaluating the instructional 
leadership scale in PISA 2022

Using the data from the Progress in International Student 
Assessment (PISA 2022), the CGFIboot function was applied to the 
measurement of instructional leadership using a sample of 193 
principals from Saudi Arabia (data are available at: https://www.oecd.
org/en/about/programmes/pisa.html#data). The instrument collects 
data from principals who are asked how often they or another member 
of their school management team have participated in or conducted 
teaching related to instructional leadership during the past 12 months. 
Response scaling included five items ranging from “Never or almost 
never” to “Every day or almost every day.” The analysis was run with 
the maximum likelihood estimator with robust standard errors, which 
has been recommended with Likert-type data with at least five items 

given the adjustments on the test statistic for non-normality 
(Beauducel and Herzberg, 2006; Muthén and Asparouhov, 2002; 
Rhemtulla et al., 2012). The scale includes seven items with sample 
content being as follows: “How often you collaborate with teachers to 
solve classroom discipline problems?” or “How often you work on a 
professional development plan?” Internal consistency reliability was 
measured at 0.846 using Cronbach’s alpha and 0.850 using 
MacDonald’s omega. Using a principal components analysis (PCA), a 
single component was extracted using the eigenvalue <1 criterion, 
explaining 52.287% of the item’s information. The Kaiser–Meyer–
Olkin (KMO) test of sampling adequacy was equal to 0.854, which is 
a good value for the amount of common variance making the data 
appropriate for use in factor analysis. Furthermore, Bartlett’s test of 
sphericity was also significant, suggesting that the item-factor 
correlation are substantial for use with the factor model 
[χ2(21) = 491.874, p < 0.001]. After applying the CGFIboot function, 
the results indicated model fit rejection using the omnibus chi-square 
test and, similarly, the descriptive fit indices assuming the more recent 
criterion of 0.950 (Table 1). Densities of the fit indices along with 95% 

FIGURE 2

Densities of bootstrap distributions for the Chi-square statistic, and the following fit indices: CFI, TLI, GFI, AGFI, RMSEA, SRMR, and CGFI, along with 
95% confidence intervals. Densities are based on using 1,000 replicated samples in the measurement of bullying.
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TABLE 2 CGFIboot function indicators for original and bootstrapped estimates in confirmatory factor analysis for the measurement of bullying in PIRLS 
2021.

Measure Original Boot Mean Boot SD CI_2.5 CI_95

Chi-square 590.326 638.515 52.825 540.805 749.133

DF 77.000 77.000 0.000 77.000 77.000

p-value 0.000 0.000 0.000 0.000 0.000

CFI 0.994 0.994 0.001 0.992 0.995

TLI 0.993 0.993 0.001 0.991 0.994

GFI 0.997 0.996 0.000 0.996 0.997

AGFI 0.994 0.994 0.001 0.993 0.995

RMSEA 0.038 0.040 0.002 0.036 0.044

SRMR 0.042 0.044 0.002 0.040 0.047

AIC NA NaN NA NA NA

BIC NA NaN NA NA NA

CGFI 0.997 0.997 0.000 0.996 0.997

lhs op rhs est se z p-value ci.lower ci.upper

1 F1 =~ y1 0.713 0.012 61.506 0 0.691 0.736

2 F1 =~ y2 0.713 0.011 63.070 0 0.691 0.735

3 F1 =~ y3 0.698 0.012 56.288 0 0.673 0.722

4 F1 =~ y4 0.729 0.012 58.428 0 0.704 0.753

5 F1 =~ y5 0.803 0.010 76.799 0 0.782 ss0.823

6 F1 =~ y6 0.639 0.014 45.313 0 0.612 0.667

7 F1 =~ y7 0.787 0.013 62.380 0 0.762 0.812

8 F1 =~ y8 0.722 0.013 54.907 0 0.696 0.748

9 F1 =~ y9 0.804 0.012 66.970 0 0.781 0.828

10 F1 =~ y10 0.801 0.014 58.416 0 0.774 0.828

11 F1 =~ y11 0.859 0.010 86.216 0 0.840 0.879

12 F1 =~ y12 0.802 0.011 73.637 0 0.781 0.823

13 F1 =~ y13 0.771 0.012 64.751 0 0.748 0.795

14 F1 =~ y14 0.794 0.011 73.785 0 0.773 0.816

15 F1 ~~ F1 1.000 0.000 NA NA 1.000 1.000

16 y1 | t1 −1.189 0.024 −49.000 0 −1.237 −1.142

17 y1 | t2 −0.816 0.021 −38.784 0 −0.857 −0.775

18 y1 | t3 −0.389 0.019 −20.336 0 −0.426 −0.351

19 y2 | t1 −1.323 0.026 −51.048 0 −1.374 −1.272

20 y2 | t2 −0.866 0.021 −40.525 0 −0.908 −0.824

21 y2 | t3 −0.334 0.019 −17.597 0 −0.371 −0.297

22 y3 | t1 −1.362 0.026 −51.485 0 −1.414 −1.310

23 y3 | t2 −0.969 0.022 −43.739 0 −1.012 −0.925

24 y3 | t3 −0.516 0.020 −26.427 0 −0.554 −0.478

25 y4 | t1 −1.504 0.029 −52.434 0 −1.560 −1.448

26 y4 | t2 −1.148 0.024 −48.185 0 −1.194 −1.101

27 y4 | t3 −0.735 0.021 −35.754 0 −0.775 −0.694

28 y5 | t1 −1.514 0.029 −52.466 0 −1.571 −1.458

29 y5 | t2 −1.213 0.025 −49.429 0 −1.261 −1.165

(Continued)
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TABLE 2 (Continued)

lhs op rhs est se z p-value ci.lower ci.upper

30 y5 | t3 −0.869 0.021 −40.633 0 −0.911 −0.828

31 y6 | t1 −1.502 0.029 −52.428 0 −1.558 −1.446

32 y6 | t2 −1.106 0.023 −47.284 0 −1.152 −1.060

33 y6 | t3 −0.599 0.020 −30.167 0 −0.638 −0.560

34 y7 | t1 −1.720 0.033 −52.084 0 −1.785 −1.655

35 y7 | t2 −1.447 0.028 −52.166 0 −1.501 −1.392

36 y7 | t3 −1.078 0.023 −46.631 0 −1.123 −1.033

37 y8 | t1 −1.448 0.028 −52.176 0 −1.503 −1.394

38 y8 | t2 −1.141 0.024 −48.053 0 −1.188 −1.095

39 y8 | t3 −0.811 0.021 −38.619 0 −0.852 −0.770

40 y9 | t1 −1.624 0.031 −52.497 0 −1.684 −1.563

41 y9 | t2 −1.372 0.027 −51.582 0 −1.424 −1.320

42 y9 | t3 −1.069 0.023 −46.417 0 −1.114 −1.024

43 y10 | t1 −1.835 0.036 −51.083 0 −1.905 −1.765

44 y10 | t2 −1.541 0.029 −52.524 0 −1.598 −1.483

45 y10 | t3 −1.228 0.025 −49.687 0 −1.277 −1.180

46 y11 | t1 −1.800 0.035 −51.439 0 −1.869 −1.732

47 y11 | t2 −1.469 0.028 −52.289 0 −1.524 −1.414

48 y11 | t3 −1.120 0.024 −47.604 0 −1.167 −1.074

49 y12 | t1 −1.676 0.032 −52.324 0 −1.738 −1.613

50 y12 | t2 −1.328 0.026 −51.111 0 −1.379 −1.277

51 y12 | t3 −0.932 0.022 −42.625 0 −0.974 −0.889

52 y13 | t1 −1.685 0.032 −52.282 0 −1.748 −1.621

53 y13 | t2 −1.362 0.026 −51.485 0 −1.414 −1.310

54 y13 | t3 −0.908 0.022 −41.888 0 −0.950 −0.866

55 y14 | t1 −1.671 0.032 −52.344 0 −1.734 −1.608

56 y14 | t2 −1.316 0.026 −50.967 0 −1.367 −1.266

57 y14 | t3 −0.828 0.021 −39.195 0 −0.869 −0.786

58 y1 ~~ y1 0.491 0.000 NA NA 0.491 0.491

59 y2 ~~ y2 0.492 0.000 NA NA 0.492 0.492

60 y3 ~~ y3 0.513 0.000 NA NA 0.513 0.513

61 y4 ~~ y4 0.469 0.000 NA NA 0.469 0.469

62 y5 ~~ y5 0.355 0.000 NA NA 0.355 0.355

63 y6 ~~ y6 0.591 0.000 NA NA 0.591 0.591

64 y7 ~~ y7 0.380 0.000 NA NA 0.380 0.380

65 y8 ~~ y8 0.479 0.000 NA NA 0.479 0.479

66 y9 ~~ y9 0.353 0.000 NA NA 0.353 0.353

67 y10 ~~ y10 0.358 0.000 NA NA 0.358 0.358

68 y11 ~~ y11 0.262 0.000 NA NA 0.262 0.262

69 y12 ~~ y12 0.357 0.000 NA NA 0.357 0.357

70 y13 ~~ y13 0.405 0.000 NA NA 0.405 0.405

71 y14 ~~ y14 0.369 0.000 NA NA 0.369 0.369

72 y1 ~*~ y1 1.000 0.000 NA NA 1.000 1.000

73 y2 ~*~ y2 1.000 0.000 NA NA 1.000 1.000

(Continued)
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confidence bands are shown in Figure 1. Interestingly, the GFI was 
equal to 0.945 (rejected using strict standards), but the corrective 
procedure resulted in a GFI estimate of 0.950. Thus, in this example, 
the CGFI would indicate a good fit of the data to the model, compared 
to the other fit indices, demonstrating a good adjustment for small 
sample sizes and a correction for the downward trend observed earlier 
(Wang et  al., 2020). Additional information provided by the 
confidence intervals and the estimated standard deviation of the 
bootstrap distribution suggested that the sample may be idiosyncratic 
and may not generalize to a coherent population as it is highly 
variable. This variability is evident with the mean chi-squared estimate 
from the bootstrap distribution that increased from 39 to 59 units. The 
uncertainty of sample estimates is also evident using the 95% 
confidence intervals that clearly include lower estimates of fit that are 
not acceptable.

1.2.2 Example 2: examining the psychometrics of 
bullying in PIRLS 2021

Using the data from the Progress in International Reading Literacy 
Study (PIRLS) in 2021, the bullying scale was selected for its solid 

psychometric properties across countries (data are available at: https://
www.iea.nl/data-tools/repository/pirls). In the present study, we utilized 
data from 4,540 eighth graders from Saudi Arabia who were part of the 
2021 cohort. The bullying scale comprised 14 items employing a 
frequentist-type scaling system ranging between “never” and “at least 
once a week.” Example items were “They said mean things about me” or 
“Spread lies about me.” The internal consistency of the scale was 0.895 
using both Cronbach’s alpha and McDonald’s omega coefficients. Using 
the exploratory PCA procedure and the eigenvalue >1 criterion, a single 
component was extracted, explaining 43.503% of the item’s variance. 
The KMO test of sampling adequacy was equal to 0.946, which is a very 
high value for the amount of common variance making the data 
appropriate for use in factor analysis. Furthermore, Bartlett’s test of 
sphericity was also significant, suggesting that item-factor correlation is 
substantial for use with the factor model [χ2(91) = 23190.428, p < 0.001].

The CGFIboot function was applied for defining ordered data and 
using the WLSMV estimator. Densities of the fit indices along with 
95% confidence bands are shown in Figure 2 for the measurement of 
bullying. As shown in Table 2, the sample-based data fit the model 
adequately. Given the large sample size, as expected, the omnibus 

TABLE 2 (Continued)

lhs op rhs est se z p-value ci.lower ci.upper

74 y3 ~*~ y3 1.000 0.000 NA NA 1.000 1.000

75 y4 ~*~ y4 1.000 0.000 NA NA 1.000 1.000

76 y5 ~*~ y5 1.000 0.000 NA NA 1.000 1.000

77 y6 ~*~ y6 1.000 0.000 NA NA 1.000 1.000

78 y7 ~*~ y7 1.000 0.000 NA NA 1.000 1.000

79 y8 ~*~ y8 1.000 0.000 NA NA 1.000 1.000

80 y9 ~*~ y9 1.000 0.000 NA NA 1.000 1.000

81 y10 ~*~ y10 1.000 0.000 NA NA 1.000 1.000

82 y11 ~*~ y11 1.000 0.000 NA NA 1.000 1.000

83 y12 ~*~ y12 1.000 0.000 NA NA 1.000 1.000

84 y13 ~*~ y13 1.000 0.000 NA NA 1.000 1.000

85 y14 ~*~ y14 1.000 0.000 NA NA 1.000 1.000

86 y1 ~1 0.000 0.000 NA NA 0.000 0.000

87 y2 ~1 0.000 0.000 NA NA 0.000 0.000

88 y3 ~1 0.000 0.000 NA NA 0.000 0.000

89 y4 ~1 0.000 0.000 NA NA 0.000 0.000

90 y5 ~1 0.000 0.000 NA NA 0.000 0.000

91 y6 ~1 0.000 0.000 NA NA 0.000 0.000

92 y7 ~1 0.000 0.000 NA NA 0.000 0.000

93 y8 ~1 0.000 0.000 NA NA 0.000 0.000

94 y9 ~1 0.000 0.000 NA NA 0.000 0.000

95 y10 ~1 0.000 0.000 NA NA 0.000 0.000

96 y11 ~1 0.000 0.000 NA NA 0.000 0.000

97 y12 ~1 0.000 0.000 NA NA 0.000 0.000

98 y13 ~1 0.000 0.000 NA NA 0.000 0.000

99 y14 ~1 0.000 0.000 NA NA 0.000 0.000

100 F1 ~1 0.000 0.000 NA NA 0.000 0.000

lhs, Latent variable; rts, item name; est., estimate of factor loading; se, standard error; z, Z-test; ci.lower, 2.5% Confidence Interval; ci.upper, 97.5% Confidence Interval.
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chi-squared test of exact fit was significant [χ2(77) = 590.326, p < 0.001]; 
therefore, preference was given to the fit indices. Among them, all were 
>0.950, showing an excellent fit of the data to the model. When viewing 
the bootstrap estimates, the results indicated that the bootstrap 
estimates of the descriptive fit indices were identical, with only minor 
deviations observed with the residual-based indices, all within the 
sampling error. Bootstrap confidence intervals were narrow and closely 
aligned with their point estimates. Therefore, for the measurement of 
bullying, all of the information collectively suggests good model fit and 
confidence that the sample-based data accurately reflect the population 
estimates. This finding is rather intuitive given that sample stratification 
and randomization procedures are closely monitored in international 
studies such as PIRLS.

2 Conclusion and future directions

Overall, the CGFIboot function represents a valuable solution to 
some of the limitations inherent to the use of classic fit indices applied 
within the LVM framework, especially with small samples and 
complex models. With the use of a correction factor and 
non-parametric bootstrapping to calculate bias corrected confidence 
intervals (CIs) for CGFI, the results from its application to both small 
and large sample datasets showed the robustness of the CGFI.

While the CGFI represents a significant improvement over 
traditional goodness-of-fit measures, particularly in addressing 
sample size sensitivity and model complexity, it is not without its 
limitations. Although the CGFI introduces a correction factor for 
model complexity, its performance under very large models with 
high-dimensional structures needs further empirical validation. In 
high-dimensional SEM models (e.g., involving multiple latent 
constructs, hierarchical structures, or many free parameters), the 
correction factor applied in CGFI may not fully compensate for the 
distortions caused by model complexity. In simulation studies, 
Wang et al. (2020) demonstrated that CGFI performed well across 
a range of model complexities. However, for models with a very 
high number of parameters relative to the degrees of freedom, the 
index might not penalize complexity as strongly as expected, 
leading to inflated fit estimates. Furthermore, the model has not 
been tested with longitudinal designs and nested data as additional 
complexity is introduced with variability in intraclass correlation 
coefficients and the presence of model constraints. Therefore, 
we  recommend, as is customary, that the CGFI is not used in 
isolation but can be combined with other descriptive fit indices, 
such as the CFI, RMSEA, and SRMR, which may better capture the 
aspects of model fit that CGFI alone cannot detect. For example, in 
models where high correlations among latent variables exist, CGFI 
might overestimate model fit, while RMSEA and SRMR might 
indicate significant model misfit. While the results highlight the 
function’s potential to enhance our “conclusion validity,” it is 
important to conduct further testing with diverse datasets and 
across a wider range of contexts, including different types of data, 
model complexities, and sample sizes, to assess its robustness and 
generalizability. Comparative studies in which the CGFI is evaluated 
with respect to other emerging fit indices under a variety of 
conditions could offer important information about its strengths 
and weaknesses. In addition, extending the scope of this function 

to longitudinal and multi-group LVM models might provide new 
avenues for fit evaluation in more complex research designs. Finally, 
to improve method transparency and replicability in LVM, we may 
need to develop more user-friendly interfaces/packages that would 
enable researchers to easily implement the present R function, 
which is a step in the right direction.
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Appendix A

Examples using the CGFI function in R

Example 1: Bullying
# Load the data.
data <−read.csv(“data.csv”).
# Define your LVM model in Lavaan.
model <− “F1 = ~ NA*y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14.
F1 ~ ~ 1*F1.”
# Call the function.
perform_cfa_with_bootstrap(data, model, estimator = “WLSMV,” data_type = “ordered,” n_bootstrap = 1,000).
Example 2: Instructional leadership
# Load the data.
data <− read.csv(“data.csv,” header = TRUE).
# Define your LVM model in Lavaan.
model <− “F1 = ~ item1 + item2 + item3 + item4 + item5 + item6 + item7.”
# Call the function.
perform_cfa_with_bootstrap(data, model, estimator = “MLR,” data_type = “continuous,” n_bootstrap = 1,000).
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