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Cognitive diagnosis models (CDMs) are restricted latent class models that are 
widely used in educational and psychological fields. Attribute hierarchy, as an 
important structural feature of the CDM, can provide critical information for 
inferring examinees’ attribute mastery patterns. Previous studies usually formulate 
likelihood ratio (LR) tests for full models and hierarchical models to validate attribute 
hierarchies, but their asymptotic distributions tend to become non-standard, 
resulting in test failures. This study proposes the Wald statistic to statistically test the 
a priori defined attribute hierarchy. Specifically, two covariance matrix estimators, 
empirical cross-product information matrix (XPD), and observed information matrix 
(Obs), are considered to compute the Wald statistic, referred to as Wald-XPD and 
Wald-Obs, respectively. Simulation studies with various factors were conducted 
to investigate the performance of the new methods. The results show that Wald-
XPD has an acceptable empirical performance with high or low quality items and 
a higher test efficiency. Real datasets were also analyzed for illustrative purpose.
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1 Introduction

Cognitive diagnosis models (CDMs) are essentially a popular class of multidimensional 
discrete latent variable models (Rupp et  al., 2010) that model the relationship between 
observed variables and multidimensional latent variables, and are able to infer fine-grained 
information about examinees’ mastery or non-mastery of a set of attributes according to their 
observed item responses. Theoretical studies on CDM have been of great interest to researchers 
in recent decades. The three most widely used saturated CDMs are the generalized 
deterministic input, noisy “AND” gate (G-DINA) model (de la Torre, 2011), the log-linear 
CDM (LCDM; Henson et al., 2009), and the general diagnostic model (GDM; von Davier, 
2008), respectively. Some special cases of saturated CDMs can be obtained under specific 
constraints, such as the deterministic input, noisy “AND” gate model (DINA; Haertel, 1989), 
the deterministic input, noisy output “OR” gate model (DINO; Templin and Henson, 2006).

With the widespread application of CDM in different disciplines, such as education, 
psychology, and medicine, the term “attributes” has taken on different scientific meanings, 
which can be knowledge or skills acquired by students (de la Torre, 2011; Junker and Sijtsma, 
2001), characteristics of specific psychological disorders (de la Torre et al., 2018; Templin and 
Henson, 2006), or pathogen characteristics of specific diseases (Wu et  al., 2017). In 
methodological studies of CDM, latent attributes are typically assumed to be sequentially 
ordered (Liu, 2018; Templin and Bradshaw, 2014), implying that mastery of attributes is also 
a progressive process, with mastery of lower-level attributes usually being a prerequisite for 
mastery of higher-level attributes (Jimoyiannis and Komis, 2001; Leighton et al., 2004; Liu, 
2018; Templin and Bradshaw, 2014; Wang and Gierl, 2011). This dependency between 
attributes has been formalized as an “attribute hierarchy” (Leighton et al., 2004) or “attribute 
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structure” (Liu and Huggins-Manley, 2016; Liu et al., 2017). Leighton 
et al. (2004) originally introduced the term “attribute hierarchy” to 
facilitate the description of prerequisite relationships between latent 
attributes in different domains and proposed four different types of 
attribute hierarchies: linear, convergent, divergent, and unstructured.

The attribute hierarchy can reveal an examinee’s mental processing 
of learning a set of latent knowledge or skills, provide meaningful 
guidance to the cognitive diagnostic assessment in designing test 
items and analyzing data, and generate guidance recommendations or 
remediation strategies accordingly (Ma et  al., 2023). However, 
accurately defining the attribute hierarchy is a very challenging task, 
and most of the applied studies did not likely use a hierarchy (Sessoms 
and Henson, 2018). Previous research has shown that misspecification 
of the attribute hierarchy directly affects the model-data fit at the item 
level as well as the classification accuracy (Liu et al., 2017; Liu, 2018). 
Therefore, any prespecified attribute hierarchy should be supported by 
theoretical constructs or data (Bradshaw et  al., 2014; Liu, 2018; 
Templin and Bradshaw, 2014).

Recently, attribute hierarchies in CDM have attracted increasing 
research interest. Gierl et  al. (2007) was the first to propose the 
attribute hierarchy method (AHM) for diagnosing examinees’ 
attribute mastery patterns, which explicitly defines an a priori attribute 
hierarchy and classifies the examinees into predefined structured 
attribute mastery patterns. However, AHM emphasizes the 
construction of attribute hierarchies according to the theory of 
construction in the adjacency matrix, it lacks inferential statistics to 
validate the a priori assumptions of the attribute hierarchy (Templin 
and Bradshaw, 2014). Templin and Bradshaw et al. (2014) considered 
attribute hierarchies in LCDM and proposed the hierarchical 
diagnostic classification model (HDCM), which restricts 
impermissible structural and item parameters in saturated LCDM to 
zero. Then, they formulated a LR test on the saturated model and the 
HCDM to validate the existence of a prespecified attribute hierarchy. 
Similarly, Hu and Templin (2020) performed an LR test on Bayesian 
inference networks based on a model comparison framework to 
validate the existence of a prespecified attribute hierarchy in Bayesian 
inference network models. Researchers (Ma and Xu, 2021; Wang and 
Lu, 2021) found that the asymptotic distribution of the LR test 
becomes non-standard, and this non-standard limiting distribution is 
very slow to converge, and even prone to test failure. Ma and Xu 
(2021) further proposed resampling-based (e.g., parametric and 
nonparametric resampling) LR to validate attribute hierarchies in 
CDM. Although the resampling-based approach avoids the series of 
problems of the traditional LR test, a general problem with the 
approach is the high computational and time costs, especially for 
large-scale datasets. In addition, when the attribute hierarchy is 
unknown, researchers have proposed several exploratory methods to 
infer the attribute hierarchy. For example, Wang and Lu (2021) 
proposed to learn the attribute hierarchy from the data using a latent 
variable selection method (Xu and Shang, 2018) and a regularized 
latent class modeling method (Chen et al., 2017). Liu et al. (2022) 
introduced a z-test based on the structural parameter standard errors 
(SEs) to explore the attribute hierarchy. However, the performance of 
this method is more sensitive to the structural parameter estimation. 
Zhang et al. (2024) further proposed an iterative method for exploring 
attribute hierarchies, aiming to solve the problem associated with the 
instability of standard error estimation. However, the problem of 
subjectivity in setting thresholds during the iterative process remains 

unresolved. When the goal is to explore an unknown attribute 
hierarchy, the exploratory approach described above is more 
appropriate. In contrast, this study focuses on the statistical testing of 
attribute hierarchies and aims to develop a statistical method to 
validate pre-specified attribute hierarchies that is not data-driven, and 
also avoids the problems associated with irregular standard error 
estimation and subjectivity associated with threshold setting.

The attribute hierarchy can be directly reflected in the set of latent 
attribute mastery patterns. Under the constraint of the attribute 
hierarchy, the number of attribute mastery patterns is much less than 
2K  because some attribute mastery patterns are impermissible (Liu 
et al., 2022), that is, the structural parameter estimates corresponding 
to these impermissible attribute mastery patterns should not 
be significantly larger than 0 in the saturated CDM. Validating the 
attribute hierarchy can essentially be  equivalent to testing the 
significance of a specific set of structural model parameter estimates 
under the attribute hierarchy constraint. If a set of impermissible 
structural parameter estimates specified by an attribute hierarchy is 
not significantly different from 0, then statistical evidence can 
be  provided to support the existence of an attribute hierarchy. 
Consequently, if a specific attribute hierarchy is assumed, the Wald 
statistic can be used to validate the existence of the attribute hierarchy.

The calculation of the Wald statistic is based on the covariance 
matrix of the model parameter estimates, and the accuracy of the 
covariance matrix estimation has a significant impact on the Wald test. 
The covariance matrix of the model parameters can be obtained by 
inverting the information matrix. In CDM, researchers have proposed 
a variety of information matrix estimation methods for complete data 
(Liu et al., 2019b; Philipp et al., 2018), such as empirical cross-product 
(XPD) matrix, observed information (Obs) matrix (Louis, 1982), and 
sandwich-type covariance (Sw) matrix (Huber, 1967), and these 
methods have important application value in the fields of model 
parameter’s standard error estimation (Philipp et al., 2018; Liu et al., 
2022), attribute hierarchy testing (Liu et al., 2022), differential item 
functioning detection (Hou et al., 2014; Liu et al., 2019a,b; Ma et al., 
2017), and model comparison (Liu et al., 2019a; Ma and de la Torre, 
2019; Ma et al., 2016; de la Torre, 2011). For example, Philipp et al. 
(2018) evaluated the performance of standard error estimation for 
complete versus non-complete XPD matrices, and found that 
complete information matrices provide more accurate SE estimation. 
Liu et  al. (2019b) systematically evaluated the performance of 
covariance matrix estimators based on complete Obs and Sw in the 
LCDM framework and found that, with a correctly specified model, 
both methods have good performance.

The main goal of this study is to propose a new method for 
validating attribute hierarchies based on the Wald statistic. It is not 
clear how well the available covariance estimators perform with the 
Wald statistic used for attribute hierarchy testing. Considering that the 
computation of the Wald statistic relies on the covariance of the 
structural parameter estimates, and the Sw covariance estimator 
suffers from estimation bias in the SE estimates of the structural 
parameters (Liu et al., 2022). Therefore, as a preliminary attempt, the 
Wald test in this study considers the Obs and XPD matrices, which are 
two covariance matrix estimators that have been widely discussed and 
used in the existing literature, and their selection will help in 
comparing and validating with the existing studies. For ease of 
presentation, these two statistics are referred to as Wald-XPD and 
Wald-Obs, respectively. Then, two simulation studies were conducted 
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to evaluate the empirical performance of Wald-XPD, Wald-Obs and 
LR statistics for validating attribute hierarchies in CDM. It is known 
that different covariance matrix estimators have different 
computational forms and do not perform exactly the same in the 
inferential statistics applications mentioned above, and one can 
anticipate that the two Wald tests may present different performances 
under specific conditions. Although the LR test is not affected by the 
estimation of the variance matrix, it tends to fail when the number of 
items is large (Ma and Xu, 2021), and whether the Wald statistic has 
certain advantages remains to be further explored.

The rest of the paper is organized as follows: First, the theory of 
HDCM and LR testing is briefly reviewed. Second, the newly 
developed attribute hierarchy validation methods are described in 
detail. Third, two simulation studies were conducted to evaluate and 
compare the performance of various attribute hierarchy validation 
methods in terms of empirical Type I error control rate and statistical 
power under different simulation conditions, and the attribute 
hierarchies of a common empirical dataset are analyzed. Finally, the 
study results were discussed and summarized.

2 Method

2.1 Hierarchical diagnostic classification 
models

Log-linear models with latent variables use latent class analysis to 
model the relationships between categorical variables and can easily 
be generalized to obtain CDMs (von Davier, 2008; Henson et  al., 
2009). The LCDM is a representative log-linear model, which defines 
attribute main effects and interaction effects. The LCDM can 
be  simplified into other constrained CDMs by applying different 
constraints to its parameters (Henson et al., 2009), as described below. 
The item response function of the LCDM is expressed as Equation (1):
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where ijx  is the response of examinee i with attribute mastery 
pattern iα  to item { }∈ …1,2 ,j J , jq is a row vector of a binary ×J K  
matrix Q , and K is the number of attributes. For item j, 

( )= … …1, , , ,j j jk jKq q qq , if the kth attribute is required for item j, then 
=1jkq ; otherwise, = 0jkq . Moreover, λ ,0j  denotes an intercept 

parameter, and ( ),T
j i jh qλ α  denotes the main effects and interaction 

effects between attributes, which have a size of −2 1K . ( ),T
j i jh qλ α  is 

expressed as Equation (2):
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where λ ,j k  is the main effect caused by αk , λ , 'j kk  is the two-way 
interaction effect between αk and α 'k , λ …,12j K  is the K-way interaction 

effect. In addition, the full LCDM includes a structural parameter 
vector ( )π π π= … … '

1, , , ,l Lπ , where π l describes the probability of a 
randomly selected examinee belonging to the lth attribute mastery 
pattern. The LCDM assumes that an examinee’s attribute mastery 
pattern can be one of the = 2KL  possible attribute mastery patterns 

and that π
=

=∑
1

1
L

l
l

. Therefore, in addition to the item parameters, the 

full LCDM includes −2 1K  structural parameters that should 
be estimated.

Suppose that the q vector of item j is ( )= 1,1jq , where attribute α1 
is a prerequisite for attribute α2. In the LCDM, the probability that 
examinee i correctly answers item j is expressed as Equation (3):
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there are four item parameters should be estimated, and three 

structural parameters must be estimated because π
=

=∑
1

1
L

l
l

. The model 

parameters of the LCDM are redundant if an attribute hierarchy exists, 
Templin and Bradshaw et al. (2014) proposed an HDCM model to 
accommodate the attribute hierarchy, this model is nested within the 
full LCDM, in which some redundant parameters are set to 0 to 
simplify the parameters. The item response function of an HDCM is 
expressed as Equation (4),

 
( ) ( )

( )
λ λ α λ α α

λ λ α λ α α

+ +
= =

+ + +
,0 ,1 1 ,12 1 2

,0 ,1 1 ,12 1 2

exp
1|

1 exp
j j i j i i

ij i
j j i j i i

P x α

 
(4)

where the main effect of attribute α2 is removed because α2 is nested 
in α1, and the structural parameters are simplified. In HCDM, Templin 
and Bradshaw (2014) proposed the LR test to validate the predetermined 
attribute hierarchy. The LR test can be written as Equation (5)
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where ( )rL γ  represents the likelihood value for an HDCM and 
( )ˆsL γ  represents the likelihood values for the corresponding 

saturated CDM. Under the null hypothesis, the HDCM with attribute 
hierarchy is the “true” model, and the statistics asymptotically follow 
a Chi-Square distribution with number of degrees of freedom equal 
to the difference in the number of free parameters between the 
saturated CDM and the reduced CDM (Templin and Bradshaw, 2014).

2.2 The Wald statistic for testing attribute 
hierarchy

If an attribute hierarchy exists, there are some structural 
parameters that are impermissible when the saturated CDM is used to 
fit the observed response data, which have true values of 0 and 
estimates that are very close to, or even equal to zero. Therefore, 

https://doi.org/10.3389/fpsyg.2025.1562807
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zhang et al. 10.3389/fpsyg.2025.1562807

Frontiers in Psychology 04 frontiersin.org

significance tests of the estimated structural parameters can provide 
statistical evidence in favor of the pre-specified attribute hierarchy.

In this section, we illustrate how the Wald statistic can be used to 
validate the attribute hierarchy. Specifically, the procedure for 
validating the attribute hierarchy in the CDM by using the Wald 
statistic is as follows: first, a saturated CDM was used to fit the 
examinee’s observed response data, and the item and structural 
parameter vectors of the model are estimated using the MMLE-EM 
algorithm. Then, the set of structural parameter vectors to be tested is 
determined based on the pre-specified attribute hierarchy. The focus 
of this step is to construct the constraint matrix R based on the 
attribute hierarchy to be  validated. To illustrate with a specific 
example, suppose item j measures three attributes and the q vector is 

( )= 1,1,1jq . For a saturated CDM, the number of possible attribute 
mastery patterns is and the structural parameter vector to be estimated 
is ( )π π π π π π π= 1 2 3 4 5 6 7, , , , , ,π̂ . If there exists a linear hierarchical 
relationship between attributes, that is, attribute α1 is a prerequisite for 
attribute α2 and attribute α2 is a prerequisite for attribute α3. The 
attribute mastery pattern ( )3 0,1,0α , ( )4 0,0,1α , ( )6 1,0,1α  and 

( )7 0,1,1α  are impermissible, that is the structural parameters π3,π4, 
π6, and π7 should not be significantly larger than zero. Validating the 
existence of an attribute hierarchy is equivalent to testing whether the 
structural parameters π3,π4,π6, and π7 are simultaneously significantly 
larger than zero. Specifically, the following constraint matrix R can 
be constructed as shown in Equation (6).

 

 
 
 =  
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0 0 0 0 0 1 0 0
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The vector of structural parameters to be tested is then obtained 
by matrix multiplication ˆRπ  as shown in as Equation (7),

 ( )π π π π= 3 4 6 7ˆ ˆ , ˆ, ˆ , ˆRπ  (7)

Subsequently, the Wald statistic for the attribute hierarchy test can 
be expressed as Equation (8),
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where ( )π π,Σ̂ is the covariance matrix of the estimated structural 
parameters. This covariance matrix is expressed as Equation (9):
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The accuracy of the estimated covariance matrix ( )π π,Σ̂  has a 
significant impact on the performance of the Wald statistic. In this 
study, two methods of information matrix estimation for observed 
data proposed by Liu et al. (2019b) and Philipp et al. (2018) are used 

to obtain the covariance matrices of the structural parameters, which 
are XPD and Obs matrix. Specifically, the XPD matrix is obtained by 
taking the cross-product of the derivative of the log-likelihood 
function of the observed data with respect to the model parameter 
vector ( )= ,γ λ π . This matrix is defined in Equation (10),
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The Obs matrix is the negative second derivative of the 
log-likelihood function of the observed data matrix with respect to the 
model parameters. This matrix is expressed in Equation (11),
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The covariance matrix of the model parameters can be obtained 
by inverting the information matrix (Liu et al., 2019a,b; Philipp et al., 
2018). Similar to the information matrix, the covariance matrix 
consists of four block matrices and can be written as Equation (12),
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where ( )λ λ,

XPDΣ  is the covariance matrix of the item parameter and 
( )π π,

XPDΣ  is the covariance matrix of the structural parameter. The Wald 
statistic calculated using the XPD and Obs matrices for the attribute 
hierarchy test is denoted as Wald-XPD and Wald-Obs, respectively.

Finally, a significance test is performed based on the values of the 
Wald statistics. In the Wald test, the null hypothesis H0 is “the value 
of the set of structural parameters to be tested is equal to 0” and the 
alternative hypothesis is “the value of the set of structural parameters 
to be tested is significantly larger than 0.” If fails to reject the null 
hypothesis at the pre-specified level of significance, then the Wald 
statistics for the structural model parameters will provide strong 
evidence to support the existence of the hypothesized 
attribute hierarchy.

3 Simulation studies

Two simulation studies were conducted to systematically evaluate 
the empirical performance of the Wald statistic computed by two 
covariance matrix estimators for validating attribute hierarchies and 
to compare it with the LR statistic under different conditions. Study 1 
investigated the empirical Type I error control rate of these statistics 
when testing a priori defined attribute hierarchy, and Study 2 
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examined the statistical power of these statistics when there are no 
attribute hierarchies in the data.

3.1 Simulation study 1

3.1.1 Design
Several factors that may affect the performance of attribute 

hierarchy testing are manipulated here, including sample size (N), 
number of attributes (K), item quality (IQ), type of attribute hierarchy, 
attribute distribution, and attribute hierarchy validation method. In 
this case, the attribute hierarchy validation verification method is a 
within-subjects factor and the other factors are between-subjects 
factors. Specifically, three different sample sizes were considered: 
N = 200, N = 500, or N = 1,000 for small, medium, and large sample 
sizes, respectively. This setting has been widely used in previous CDM 
methodology studies (e.g., Ma et al., 2016; Sen and Cohen, 2021; Sun 
et al., 2024). The number of attributes was K = 3 and K = 5, which is a 
more common design in simulation or real data studies of CDM (e.g., 
Sen and Cohen, 2021; Templin and Bradshaw, 2014). According to Liu 
and Huggins-Manley (2016) and Liu (2018) on attribute hierarch. 
When K = 3, there are three levels of types of attribute hierarchy 
structure: linear, pyramidal, and inverted pyramid (Liu, 2018). When 
K = 5, there are four types of attribute hierarchical structures: linear, 
pyramidal, inverted pyramid and diamond. Some researchers (e.g., de 
la Torre, 2009; Leighton et al., 2004; Liu and Huggins-Manley, 2016; 
Liu, 2018), use directed acyclic graphs and binary vectors to visualize 
the external shape and internal organization of attribute hierarchies. 
In this context, the internal organization refers to the assumed 
permissible and impermissible attribute mastery patterns, which are 
represented by 0–1 vectors. The different types of attribute hierarchies 
are listed in Table 1. Three levels of item quality were considered here: 
high, medium, and low quality, respectively. This setting has been 
widely used in previous studies (e.g., Ma and de la Torre, 2016, 2019; 
Ma and Xu, 2021; Sorrel et al., 2017). Item quality was defined by the 

parameters ( )0jP  and ( )1jP , respectively. For all items, ( )0jP  
represents the correct response probabilities of individuals who 
possesses none of the required attributes, and is fixed at ( ) =0 0.1jP , 
0.2, or 0.3 for high, medium, and low item quality, respectively. ( )1jP  
represents the correct response probabilities of individuals who 
master all of the required attributes, and is fixed at ( ) =1 0.9jP , 0.8, or 
0.7 for high, moderate, and low item quality, respectively. The attribute 
mastery patterns followed two distributions: uniform and 
non-uniform distribution. For the uniform distribution, all attribute 
mastery pattern is randomly generated from the permissible attribute 
mastery patterns with an equal probability. For non-uniform 
distributions, the design of Liu et al. (2022) was used here to obtain 
attribute mastery patterns. Specifically, the examinee’s attribute 
mastery pattern was generated from a dichotomized multivariate 
normal distribution whose mean vector was set to 0, and the 
off-diagonal elements of the covariance matrix were randomly drawn 
from the uniform distribution ( )µ 0.5,0.8 . In addition, three attribute 
hierarchy validation methods were used in this study, including the 
Wald test based on two covariance matrix estimators (Wald-XPD and 
Wald-Obs), and the LR statistic.

3.1.2 Data generation
The data generation model was the HDCM with the identity link 

function. The process of data generation is as follows: First, generate 
the attribute mastery patterns of the examinees based on uniform or 
non-uniform distributions. Second, generate the Q-matrix and item 
parameters. Specifically, the test length for the entire simulation 
experiment was set to 30 items, and the attributes measured for each 
item are shown in the Q matrix in Figure 1, the Q matrix contained 
two unit submatrices, and the remaining items were randomly 
generated. The Q matrix used here satisfies the identifiability 
conditions proposed by Gu and Xu (2020) for CDMs in general or 
with attribute hierarchies. Similar to Liu et al. (2022), the main and 
interaction effects for each item were set to the same value equal to 
( ) ( )−1 0 / jP P s , js  being the number of main and interaction effects 

TABLE 1 External shape and internal organization of attribute hierarchy.
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required for item j. Then, item response data were randomly generated 
based on the HDCM. Specifically, the probability of a correct response 
was calculated using the HDCM and compared to a random number 
ranging from 0 to 1. If the item response probability was greater than 
the random number, the item response was coded as 1, and vice versa 
the response was 0 (Sun et al., 2024). Finally, the G-DINA model with 
an identity link function is used to fit the response data.

In all conditions, each experiment was repeated 500 times in order 
to obtain stable estimates. In each case, the percentage of replicates 
where H0 was rejected was observed. All simulation experiment codes 
were written in R software. The GDINA R package (Ma and de la 
Torre, 2020) was used to estimate model parameters. The R code for 
estimating the covariance matrix of the structural parameters by using 
Obs and XPD matrices was modified from Liu et al. (2022).

3.1.3 Evaluation criteria
The empirical Type I errors rate was used as an evaluation criteria. 

Type I errors occur when a hypothesis test concludes that an attribute 
hierarchy does not exist in the data, in fact an attribute hierarchy exists 
in the data. In each condition, the empirical Type I error rate is the 
percentage of times that the hypothesis test makes the Type I error in 
n replications at a specific significance level. Due to sampling error. 
The Type I error rate may not be exactly equal to the pre-specified 
significance level. When the researcher chose a significance level of 
0.05 with n replications for each condition, the 95% confidence 
interval for the observed Type I  error rate can be  expressed as 

( )± −1.96 1 /p p p n, which means that there is a 95% chance that the 

observed Type I error rate will fall within the interval [0.031, 0.069].

3.1.4 Results
Table 2 presents the average empirical Type I error rates for the 

three methods under various conditions for high-quality items when 
K = 3. As shown, all three methods generally exhibit conservative 
Type I empirical error rates in most conditions for high quality items. 

Specifically, the Wald-XPD method yields an empirical type I error 
rate that is very close to zero, but not quite zero, and the Wald-Obs 
method performs similarly, with an empirical type I error rate close to 
the nominal level of 0.05 only when testing linear attribute hierarchies 
with N = 500 and 1,000. In contrast, the LR test is consistently overly 
conservative for high quality items, with Type I error rates equal of 
zero in all conditions, regardless of sample size, attribute hierarchy, or 
population distribution.

Table 3 presents the average empirical Type I error rates of the 
three methods under different conditions for moderate quality items 
when K = 3. Several observations can be made: First, as item quality 
decreases, the Wald-XPD statistic becomes more conservative for 
moderate-quality items, with empirical Type I error rates consistently 
zero across all conditions. Second, the Wald-Obs statistic exhibits 
inflated empirical Type I error rates for moderate-quality items, with 
rates exceeding the nominal level in all conditions. Finally, as item 
quality decreases, the empirical Type I error rates of the LR statistic 
increase under certain conditions. For instance, the LR statistic 
produces better Type I error rates under the linear attribute hierarchies 
at N  = 200, and under the Pyramid structure at N  = 1,000, but 
remained more conservative under the other conditions.

Table 4 presents the average empirical Type I error rates of the 
three methods under different conditions with low-quality items when 
K = 3. As item quality decreases, the Wald-Obs statistic produces 
increasingly inflated empirical Type I error rates. Similarly, the LR 
statistic also produces inflated empirical Type I error rates across all 
conditions. In contrast, only the Wald-XPD statistic performs 
relatively well. For instance, when testing the linear attribute hierarchy 
under both population distributions, the Wald-XPD statistic achieves 
empirical Type I error rates near the nominal level of 0.05, but remains 
conservative under other conditions.

Table 5 presents the average empirical Type I error rates of the 
three methods under different conditions for high-quality items when 
K = 5. It can be  seen that the empirical performance of both the 
Wald-XPD and Wald-Obs statistics improve as the number of 
attributes increases. The Wald-XPD statistic performs well when 
testing the pyramid, inverted pyramid, and diamond attribute 

FIGURE 1

Q-matrix design for the simulated data. (J): Number of items, (K): Number of attributes, (Value: 0): Attribute not measured, (Value: 1): Attribute 
measured.
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hierarchies under the uniform population distribution condition 
when N = 200, yielding empirical Type I  error rates close to the 
nominal level of 0.05, although it remains more conservative in other 
conditions. Under a uniform distribution, the Wald-Obs statistic 
produces an empirical Type I error rate close to 0.05 when testing the 
pyramid structure. Under non-uniform population distribution, the 

performance of both the Wald-XPD and Wald-Obs statistics is similar 
to that of the uniform distribution. In contrast, as the number of 
attributes increases, the LR statistic remains overly conservative under 
high quality items, and its empirical Type I error rates are consistently 
zero under all conditions, regardless of sample size, attribute hierarchy 
structure, or population distribution.

TABLE 2 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 3 and items were of high quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0.004 0.012 0 0.006 0.008 0

500 0.002 0.043 0 0.008 0.027 0

1,000 0 0.056 0 0.002 0.071 0

Inverted pyramid

200 0.02 0 0 0.004 0.006 0

500 0.006 0.004 0 0.002 0.006 0

1,000 0.004 0.001 0 0.004 0.004 0

Pyramid

200 0.012 0.002 0 0 0.000 0

500 0.008 0.008 0 0.01 0.004 0

1,000 0.008 0.004 0 0.008 0.006 0

Structure represents attribute hierarchy type; N is the sample size. LR is the likelihood ratio test; W-Obs is the Wald statistic calculated using the observed information matrix; W-XPD is the 
Wald statistic calculated using the empirical cross-product matrix; Uniform is the uniform population distribution; non-uniform is the non-uniform population distribution. Linear is a linear 
hierarchy; Inverted pyramid is an inverted pyramid hierarchy; pyramid is a pyramid hierarchy. The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.

TABLE 3 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 3, and items of moderate quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0 0.312 0.042 0 0.265 0.05

500 0 0.39 0.072 0 0.372 0.076

1,000 0 0.488 0.106 0 0.46 0.108

Inverted pyramid

200 0 0.057 0.004 0 0.145 0.022

500 0 0.093 0.014 0 0.125 0.024

1,000 0 0.119 0.02 0 0.18 0.016

Pyramid

200 0 0.085 0.016 0 0.112 0.016

500 0 0.089 0.024 0 0.128 0.014

1,000 0 0.312 0.042 0 0.265 0.05

The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.

TABLE 4 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 3, and items of low quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0.056 0.856 0.632 0.064 0.882 0.626

500 0.064 0.801 0.63 0.06 0.799 0.628

1,000 0.038 0.783 0.666 0.04 0.762 0.712

Inverted pyramid

200 0.016 0.761 0.454 0.046 0.769 0.494

500 0.006 0.632 0.288 0.054 0.714 0.426

1,000 0.002 0.574 0.264 0.034 0.676 0.386

Pyramid

200 0.018 0.757 0.432 0.026 0.771 0.454

500 0.01 0.653 0.358 0.032 0.681 0.378

1,000 0.014 0.57 0.302 0.018 0.661 0.372

The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.
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Table 6 presents the average empirical Type I error rates of the 
three methods under different conditions for moderate-quality items 
when K = 5. It is evident that as item quality decreases, the Wald-XPD 
statistic becomes more conservative under both population 
distributions, with its empirical Type I error rate approaching zero in 
most cases. The LR statistic shows some improvement under certain 
conditions, such as with the pyramid structure at N = 1,000, where the 
empirical Type I error rate produced by the LR statistic is close to the 
nominal level of 0.05. However, under all other conditions, it remains 
highly conservative. In contrast, the Wald-Obs statistic shows a clear 
advantage under moderate quality items, yielding good empirical 
Type I error rates under most conditions.

Table  7 presents the average empirical Type I  error rates for 
low-quality items when K = 5. It can be seen that under low-quality 
items, especially with a uniform population distribution, the 
Wald-XPD statistic shows improvement in some conditions. For 
instance, when N = 200, the Wald-XPD statistic controls the empirical 

Type I error rates close to the nominal level of 0.05 when testing the 
pyramid and inverted pyramid hierarchies. Under non-uniform 
distribution, the Wald-XPD statistic yields empirical Type I error rates 
close to 0.05 for linear and diamond structures at N = 200, and 
performs well for pyramid and diamond structures at N = 500. In 
contrast, both the Wald-Obs and LR statistics consistently exhibit very 
conservative Type I error rates under low-quality items.

In general, regarding the empirical Type I error rate, all three 
statistics are affected by item quality. When item quality was high, the 
LR test appeared to be overly conservative compared to Wald-XPD 
and Wald-Obs. When item quality was low, the LR test had an inflated 
Type I  error rate. In contrast, Wald_XPD seems like a feasible 
alternative in these scenarios. For moderate-quality items, when 
K = 3, LR performs better in some conditions, while Wald-XPD is 
overly conservative and Wald-Obs shows inflated Type I error rates. 
When K = 5, Wald-Obs produces better empirical Type I error rates 
in most conditions and significantly outperforms the LR statistic.

TABLE 5 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 5 and items were of high quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0.094 0.007 0 0.088 0.011 0

500 0.032 0.025 0 0.036 0.025 0

1,000 0.018 0.03 0 0.016 0.04 0

Inverted pyramid

200 0.07 0.013 0 0.026 0.007 0

500 0.014 0.014 0 0.014 0.014 0

1,000 0.01 0.026 0 0.004 0.012 0

Pyramid

200 0.044 0.035 0.006 0.058 0.009 0.002

500 0.026 0.039 0.002 0.016 0.026 0

1,000 0.006 0.037 0 0.004 0.014 0.002

Diamond

200 0.056 0.027 0.002 0.066 0.009 0

500 0.026 0.021 0 0.032 0.018 0

1,000 0.008 0.025 0 0.006 0.027 0

The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.

TABLE 6 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 5 and items were of moderate quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0.012 0.046 0 0.022 0.057 0.002

500 0.002 0.076 0.002 0.002 0.068 0.002

1,000 0 0.059 0.002 0 0.042 0.004

Inverted pyramid

200 0.008 0.064 0.012 0.014 0.052 0.01

500 0 0.025 0.008 0 0.038 0.01

1,000 0 0.036 0.002 0 0.038 0.006

Pyramid

200 0.004 0.217 0.218 0.012 0.079 0.06

500 0.002 0.065 0.028 0 0.034 0.014

1,000 0 0.047 0.048 0 0.021 0.016

Diamond

200 0.016 0.079 0.036 0.008 0.079 0.02

500 0 0.038 0.016 0 0.05 0

1,000 0 0.059 0.008 0 0.047 0.002

The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.
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3.2 Simulation study 2

3.2.1 Design
In Simulation Study 2, the factorial design was the same as in 

Study 1. However, the generating and fitted models were different. For 
both statistical test methods, the GDINA model with identity link was 
used to generate the data. For the Wald test, the fitted model was 
consistent with the data generation model, whereas the HDCM with 
identity links was used to fit the data in the LR test.

Study 2 evaluated the power of these statistical testing procedures 
(Cohen, 1992). Statistical power refers to the percentage of correctly 
rejecting the null hypothesis when it is not correct in n replications. 
When an attribute hierarchy exists, if the Wald statistic follows an 
asymptotic chi-square distribution, the observed Type-I error rate should 
conform to a pre-set theoretical Type-I error rate, such as 0.05. If there is 
no attribute hierarchy, the larger the proportion of the Wald statistic that 
correctly rejects the null hypothesis, the stronger the confidence that it 
can correctly test for the absence of an attribute hierarchy. As in de la 
Torre and Lee (2013) and Ma and de la Torre (2019), a test power of at 
least 0.80 is sufficient and greater than or equal to 0.90 is excellent.

3.2.2 Results
Table 8 presents the statistical power of each test method when 

K = 3 across various conditions. It can be seen that under the uniform 
population distribution, all three methods show strong performance, 
with statistical power equal to 1 or very close to 1 in the case of high 
and medium item quality. However, for low-quality items with 
N = 200, the power of the Wald-Obs and Wald-XPD statistics was less 
than 0.99 when testing the pyramid and inverted pyramid attribute 
hierarchies. Under non-uniform distribution, all methods perform 
well with high quality items, with power higher than 0.80. At moderate 
and low item quality, the statistical power of Wald-XPD and Wald-Obs 
remains stable above 0.80, while Wald-XPD shows more variability, 
especially at low quality items, with power less than 0.7 at a sample size 
of 200. Overall, LR and Wald-Obs are more reliable, and Wald-XPD 
is more sensitive to lower item quality, especially at sample sizes of 200.

Table 9 shows the statistical power of the three tests under various 
conditions when K = 5. Under the uniform distribution condition, the 

statistical power of the three methods is very high (close to 1) for both 
high- and medium-quality items, whereas the statistical power of 
Wald-XPD and Wald-Obs appears to be  significantly reduced for 
low-quality items, especially when the Wald-XPD statistic tests the 
pyramid structure down to 0.408 at N = 200, which may be due to the 
large number of attributes and small sample size leads to bias in 
parameter estimation, which affects the covariance estimation of 
structural parameters as well as the performance of the Wald test. 
Similarly, the statistical power of Wald-XPD is very small at a sample 
size of 200 under non-uniform conditions, which may indicate that 
the test is prone to failure under small samples. In contrast, the LR and 
Wald-Obs statistics show more stable performance and excellent 
statistical power. In general, the empirical power of the LR statistic is 
consistently better than the other methods under all simulation 
conditions, and Wald-XPD and Wald-Obs are also an alternative in 
large samples (N > 200). Regarding sample size, Wald-Obs and LR 
perform more consistently across samples, while Wald-XPD performs 
poorly under small sample conditions. For attribute distributions, all 
three statistics have better statistical power under uniform distribution 
conditions than non-uniform distribution. For item quality, with a few 
exceptions, all three statistics show good power for high and medium 
quality items. For low-quality items, the empirical power of the 
Wald-XPD and Wald-Obs statistics decreases significantly in 
most cases.

To evaluate the computational efficiency of different attribute 
hierarchy testing methods, Tables S1, S2 in the Appendix summarize 
the average runtimes of the parameter estimation based on the EM 
algorithm, as well as the average runtime of the three testing methods 
(including covariance matrix estimation, test statistic computation, and 
hypothesis testing). From Tables S1 and S2, it can be observed that the 
time-consumption of both the parameter estimation and attribute 
hierarchy testing procedures increases with the sample size, leading to 
a decrease in computational efficiency. Comparing the computational 
efficiency of different attribute hierarchy testing methods, the 
Wald-XPD method has the shortest runtime and the highest 
computational efficiency, followed by the LR statistic. In contrast, the 
Wald-Obs method has the lowest testing efficiency, with a computation 
time of up to 36 s. This result is expected, according to Liu et al. (2019b), 

TABLE 7 The empirical Type I error rates for Wald-XPD, Wald-Obs, and LR when K = 5 and items were of low quality (α = 0.05).

Uniform Non-uniform

Structure N W-XPD W-Obs LR W-XPD W-Obs LR

Linear

200 0.032 0.423 0.492 0.044 0.515 0.556

500 0.018 0.134 0.182 0.024 0.185 0.258

1,000 0 0.095 0.108 0 0.073 0.122

Inverted pyramid

200 0.038 0.512 0.664 0.016 0.389 0.518

500 0.07 0.21 0.334 0.014 0.162 0.296

1,000 0.002 0.059 0.102 0 0.094 0.15

Pyramid

200 0.038 0.58 0.72 0.014 0.477 0.614

500 0.22 0.331 0.596 0.064 0.274 0.444

1,000 0.134 0.087 0.284 0.022 0.095 0.208

Diamond

200 0.078 0.595 0.746 0.034 0.514 0.582

500 0.188 0.278 0.468 0.05 0.181 0.348

1,000 0.032 0.085 0.162 0.008 0.087 0.142

The bold font represents an acceptable empirical Type I error rates at a significance level of 0.05.
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the calculation of the information matrix in CDM requires traversing 
all observable response patterns of the test-takers. Therefore, as the 
sample size increases, the number of observable response patterns also 
increases, leading to greater computational complexity, longer 
computation times, and lower efficiency. Moreover, the computation of 
the Obs matrix includes the XPD matrix, making the Wald-Obs method 
more time-consuming and less efficient than the Wald-XPD method. It 
is worth noting that the results of the hypothesis testing can be used to 
guide model selection, which can further estimate examinees’ attribute 
mastery patterns, and facilitate examinee classification. The results of 
classification accuracy under different attribute hierarchy testing 
methods are presented in Tables S3 and S4 in the Appendix. Table S3 
shows that examinees’ classification accuracy is affected by item quality 
and sample size: higher item quality and larger sample size result in 
higher classification accuracy. Comparison of the different attribute 
hierarchy tests reveals that all three methods show consistent accuracy 
under high quality items, under medium quality items, Wald-XPD and 
LR perform similarly and both slightly outperform Wald-Obs, and 

under low quality items, Wald-XPD outperforms the Wald-Obs and LR 
methods in terms of classification accuracy. Similar results are shown 
in Table S4, and the classification accuracy of each method shows a 
significant decrease as the number of attributes increases.

4 Real data examples

4.1 Data and analysis

This section provides a practical illustration of how to validate the 
attribute hierarchy of the English Certificate of Proficiency Examination 
(ECPE; Templin and Hoffman, 2013) dataset using the Wald-XPD and 
Wald-Obs statistics. The dataset is available directly in the R package 
CDM (Robitzsch et  al., 2022). The ECPE dataset contains binary 
responses from 2,922 examinees to 28 items on the grammar section 
of the ECPE. These items are designed to measure three attributes: the 
application of (a) morphosyntactic rules (α1), (b) cohesive rules (α2), 

TABLE 8 The statistical power for Wald-XPD, Wald-Obs, and LR when K = 3.

Uniform Non-uniform

IQ Structure N W-XPD W-Obs LR W-XPD W-Obs LR

High

Linear

200 1 1 1 0.97 1 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Inverted pyramid

200 1 1 1 0.996 0.996 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Pyramid

200 1 1 1 0.964 1 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Moderate

Linear

200 1 0.998 1 0.968 0.994 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Inverted pyramid

200 1 1 1 0.914 0.99 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Pyramid

200 1 1 1 0.766 0.994 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Low

Linear

200 0.996 0.998 1 0.578 0.97 0.99

500 1 1 1 0.998 0.983 1

1,000 1 1 1 1 0.998 1

Inverted pyramid

200 0.964 0.982 0.996 0.458 0.925 0.946

500 1 0.992 1 0.956 0.953 0.998

1,000 1 1 1 1 0.992 1

Pyramid

200 0.97 0.985 0.996 0.658 0.963 0.986

500 1 1 1 1 0.981 1

1,000 1 1 1 1 0.998 1

IQ represents item quality; structure represents attribute hierarchy type; N is the sample size. LR is the likelihood ratio test; W-Obs is the Wald statistic calculated using the observed 
information matrix; W-XPD is the Wald statistic calculated using the empirical cross-product matrix; uniform is the uniform population distribution; non-uniform is the non-uniform 
population distribution. Linear is a linear hierarchy; inverted pyramid is an inverted pyramid hierarchy; pyramid is a pyramid hierarchy.
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and (c) lexical rules (α3; Buck and Tatsuoka, 1998). Figure 2 shows the 
Q matrix for ECPE from Templin and Bradshaw’s (2014) study.

The dataset has now been investigated as a common example in 
many DCM applications, and many researchers (e.g., Templin and 
Hoffman, 2013; Templin and Bradshaw, 2014; Liu et al., 2022; Wang 
and Lu, 2021) have demonstrated the existence of a linear hierarchical 
structure in the three attributes that ECPE examines. Specifically, the 
mastery of lexical rules (α3) is a prerequisite for the mastery of 

cohesive rules (α2), and the mastery of cohesive rules is a prerequisite 
(α2) for the mastery of morphosyntactic rules (α1). The present study 
verified whether the proposed methods were effective in detecting a 
linear hierarchical structure (α α α→ →3 2 1) in the ECPE.

First, the G-DINA model with identity link function was used to fit 
the ECPE dataset and the MMLE-EM algorithm was used to estimate all 
structural and item parameter estimates. Then, the covariance matrices 
of all structural parameters were estimated using XPD and Obs 

TABLE 9 The statistical power for Wald-XPD, Wald-Obs, and LR when K = 5.

Uniform Non-uniform

IQ Structure N W-XPD W-Obs LR W-XPD W-Obs LR

High

Linear

200 1 0.998 1 1 0.994 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Inverted pyramid

200 1 1 1 0.802 0.964 1

500 1 1 1 1 0.998 1

1,000 1 1 1 1 1 1

Pyramid

200 0.998 0.996 1 0.518 0.967 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Diamond

200 1 0.998 1 0.786 0.967 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Moderate

Linear

200 1 0.993 1 0.886 0.953 1

500 1 1 1 1 1 1

1,000 1 1 1 1 1 1

Inverted pyramid

200 0.998 0.994 1 0.17 0.88 1

500 1 1 1 1 0.998 1

1,000 1 1 1 1 1 1

Pyramid

200 0.956 0.96 1 0.188 0.858 1

500 1 1 1 1 0.994 1

1,000 1 1 1 1 1 1

Diamond

200 1 0.98 1 0.684 0.869 1

500 1 1 1 1 0.996 1

1,000 1 1 1 1 1 1

Low

Linear

200 0.984 0.957 1 0.498 0.929 1

500 1 0.985 1 1 0.974 1

1,000 1 1 1 1 0.996 1

Inverted pyramid

200 0.766 0.902 1 0.166 0.833 0.962

500 1 0.966 1 0.944 0.876 1

1,000 1 1 1 1 0.984 1

Pyramid

200 0.408 0.859 0.978 0.078 0.747 0.906

500 0.968 0.846 1 0.812 0.819 0.986

1,000 1 0.952 1 0.996 0.951 1

Diamond 200 0.816 0.92 1 0.276 0.859 0.996

500 1 0.964 1 0.982 0.925 1

1,000 1 0.996 1 1 0.986 1
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estimators. The structural parameter vectors to be tested were determined 
based on a linear attribute hierarchy defined a priori. Further, the Wald 
statistic was computed and a hypothesis test for attribute hierarchies was 
performed. The null hypothesis here is that all structural parameter 
vector estimates to be tested are not significantly different from zero. In 
the ECPE data, attribute mastery patterns ( )′=2 1,0,0α , ( )′=3 0,1,0α , 

( )′=5 1,1,0α , and ( )′=6 1,0,1α  are impermissible if the three attributes 
followed a linear hierarchical relationship, that is, structural parameters 
π2, π3, π5 and π6 of the saturated models that should not be significantly 
larger than zero. Therefore, for the Wald test, the set of structural 
parameters to be tested is ( )π π π π= 2 3 5 6ˆ , , ,π . At a pre-specified level of 
significance, if the Wald statistic fails to reject the null hypothesis, it 
indicates that there is a linear hierarchy of attributes in the data.

4.2 Results

In order to investigate the consistency of the Wald statistic with the 
LR statistic for testing attribute hierarchies, an HDCM with a linear 
hierarchy was also used to fit the ECPE data. The example of this LR test 
is based on previous work by Templin and Bradshaw et al. (2014), who 
specified HDCM for the item parameters and structural parameters in 
their study and verified the presence of a linear attribute hierarchy in 
the data by performing the LR test for saturated model and HDCM.

Table  10 provides the values of the Wald-XPD and Wald-Obs 
statistics and LR statistics and their corresponding p-values. From 
Table 10, it can be observed that the Wald-XPD, Wald-Obs, and LR 
statistics perform very similarly with their p-values of 0.017, 0.020, and 
0.020, respectively. From the simulation study, we know that these 
p-values are very conservative, so if we select a significance level of 
0.05, we would be very confident in rejecting the null hypothesis and 
concluding that there is no linear attribute hierarchy in the data, 
whereas by selecting a significance level of 0.01, we would fail to reject 
the null hypothesis and conclude that there is a hierarchical structure 
of attributes in these data. This result is similar to the results of a 
previous study by Templin and Bradshaw et al. (2014). In the simulation 
study, the performance of each method at K = 3 is affected by the 

quality of the items. For example, at high quality, both the Wald-XPD 
and LR statistics exhibit very conservative empirical Type I error rates 
but have excellent power. Although it is difficult to know the quality of 
the items in the ECPE data, by combining the performance of the 
Wald-XPD and Wald-Obs statistic in the simulation study, it is further 
possible to demonstrate the existence of a linear hierarchical structure 
in the ECPE data. For example, in the case of high quality items, both 
the Wald-XPD and LR statistics exhibit very conservative empirical 
Type I error rates, but have excellent power, which also leads to the 
conclusion that there is a linear attribute hierarchy.

5 Conclusions and discussion

Validating attribute hierarchies has important theoretical and 
practical implications for test development and diagnostic evaluation. 
Most of the early attribute hierarchies were obtained through 
theoretical analysis by domain experts, which are somewhat subjective. 
Previous studies have found that attribute hierarchy specification 
directly affects the accuracy of item-level and test-level model-data 
fitting, item parameter estimation, and examinee classification (Liu 
et al., 2017; Liu, 2018; Tu et al., 2019), and this negative impact cannot 
be compensated for by carefully setting up the test items or Q matrix. 
In view of this, it is necessary to provide evidence that the attribute 
hierarchy hypothesized by the researcher is supported by theoretical 
constructs and statistical evidence (Bradshaw et al., 2014). For the 
validation of the attribute hierarchy, researchers usually use the LR test 
based on the HDCM model. Due to the lack of regularity, the 
asymptotic distribution of the LR test becomes non-standardized, and 
Ma and Xu (2021) found that when the number of items is large or the 
item parameters are close to the boundaries, the non-standard limiting 
distributions converge very slowly, leading to possible failure of the 
hypothesis test. The z-statistic for attribute hierarchy test proposed by 
Liu et  al. (2022) is susceptible to the accuracy of standard error 
estimation in its computation, and this method requires a cumbersome 
process of testing the structural parameters one by one. Therefore, this 
study proposes the Wald statistic to statistically validate the a priori 
defined attribute hierarchy. A simulation study and empirical data are 
used to assess the empirical performance of the Wald statistic and LR 
statistic in testing attribute hierarchies. Practically, this study aims to 
provide a set of tools that can be  used with the CDM to provide 
researchers with a new way of thinking and an alternative approach 
when conducting attribute hierarchy tests for the CDM.

Simulation studies have shown that the LR test is overly 
conservative in terms of empirical Type I error rates when item quality 
is high, while the LR test produces more inflated Type I error rates 

TABLE 10 Results obtained for the Wald statistics and LR.

Method Value df p

WXPD 12.032 4 0.017

WObs 11.678 4 0.020

LR 25.509 13 0.020

df denotes the degrees of freedom, and p is the significance level.

FIGURE 2

Q-matrix for the ECPE.
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when item quality is low. In contrast, Wald_XPD seems to be  an 
alternative in these cases. In terms of statistical power, when the sample 
size is greater than 200, the statistical power of all three methods is 
excellent and robust in most cases. In terms of computational efficiency, 
the Wald-XPD method demonstrates a significant computational 
efficiency advantage. In contrast, the LR test is slightly less 
computationally efficient than the Wald-XPD method due to the 
complex parameter iteration process involved. In addition, a 
preliminary investigation of the computational efficiency of the 
Bootstrap-based Wald test method was conducted under the condition 
that each of the 500 independently repeated experiments contained 50 
resamples, and it was found that the average time consumed for the 
complete test was 6.293, 15.116, and 44.999 s for the sample sizes of 200, 
500, and 1,000, respectively. It can be seen that the larger the sample 
size, the higher the computational cost of the resampling method and 
the longer the processing time. These results confirm the warnings in 
the literature regarding the computational intensity of resampling 
methods (Ma and Xu, 2021; Liu et  al., 2022), particularly when 
handling large-scale data, where the time cost may become prohibitive. 
In addition, this study referred to the experimental design of Ma and 
Xu (2021), which considered the length of the 30-item test and could 
represent the long test situation. It was found that in this case, the two 
Wald statistics proposed in this study have some advantages in some 
cases compared to LR, and these results further verify the findings of 
Ma and Xu (2021) regarding the LR test. In addition, the simulation 
study found that, the LR test has a very small statistical power at K = 5 
with small samples, and we know that the smaller the power, the larger 
the p-value, which implies that the incorrect null hypotheses that 
we would not reject. This may be due to the fact that in statistical power 
analysis, we assume that all latent attribute profiles are present in the 
data generation process and that the distribution of true attribute 
mastery patterns is nonuniform distribution. When the number of 
attributes is large, the number of attribute mastery patterns is also large, 
and when the sample size is small, some attribute mastery patterns may 
be null, and the parameter estimation may be severely biased, and the 
bias in parameter estimation will be further transmitted to the LR test 
process, leading to test failure. In summary, we  recommend using 
Wald-XPD for attribute stratification testing in long tests.

Although the manuscript has yielded some promising findings, 
there are still some valuable issues worth investigating further. 
First, this study does not explore the performance of the new 
method with a large number of attributes. Due to the increase in 
the number of attributes, the structural parameters that need to 
be  estimated will grow exponentially, in which case there is a 
challenge of high-dimensional estimation, and the stability and 
accuracy of the existing attribute hierarchy testing methods 
deserve to be  further explored. Second, for the variables 
manipulated, it was found that there is little difference in the 
statistical results obtained by the various methods for different 
attribute structures. Many other factors that may affect attribute 
hierarchy validation were not addressed in this study. For example, 
the authors found factors such as test length, fitted model, and 
correct/incorrect specification of the Q matrix to be valuable in 
examining how these factors affect the statistical properties of the 
Wald statistic used to validate the attribute hierarchy. Additionally, 
a follow-up question of interest is how to estimate the attribute 
mastery patterns of examinees and classify examinees after 
validating the attribute hierarchy, researchers have proposed an 

attribute hierarchy-based approach to CDM parameter estimation 
(Akbay and de la Torre, 2020; Tu et al., 2019), and the effect of the 
specification of the attribute hierarchy on these methods remains 
to be further investigated.
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