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Cognitive biases as Bayesian
probability weighting in context

Bruno Kopp*

Cognitive Neuropsychology, Department of Neurology, Hannover Medical School, Hannover,

Germany

Introduction: Humans often exhibit systematic biases in judgments under

uncertainty, such as conservatism bias and base-rate neglect. This study

investigates the context dependence of these biases within a Bayesian

framework.

Methods: Forty-eight participants made subjective probability judgments in 12

scenarios requiring the integration of prior probabilities and evidence likelihoods.

Results: Results show that task context mediates the weighting of priors and

evidence: small-world scenarios (e.g., urn problems) emphasize priors, thus

amplifying the conservatism bias, whereas large-world scenarios (e.g., taxi

problems) increase sensitivity to evidence, leading to base-rate neglect.

Presenting probabilistic information as relative frequencies rather than

probabilities did not attenuate these biases.

Discussion: To explain these findings, we propose the Adaptive Bayesian

Cognition (ABC) model, which describes how individuals dynamically adjust

the weighting of priors and evidence. By integrating normative Bayesian

principles with psychological insights, the ABC model recasts cognitive biases

as adaptive strategies shaped by capacity constraints and meta-learning

in specific contexts. These findings bridge cognitive psychology, behavioral

economics, and computational modeling to provide a unified framework for

understanding subjective probability, probability weighting, and decision making

under uncertainty. This work also informs the design of decision support systems.

KEYWORDS

Bayesian inference, decision making, cognitive biases, learning from context,

computational models, decision support

Introduction

The experimental demonstration of cognitive biases, particularly narrower

probabilistic biases such as conservatism bias and base-rate neglect, has been taken

as evidence that human probabilistic reasoning deviates in significant ways from

normative Bayesian theory (Kahneman et al., 1982). These two probabilistic biases have

led to two different prevailing interpretations: In the case of conservatism bias, where

individuals inadequately update their prior beliefs in response to additional evidence,

it is often argued that these inherently Bayesian cognitive processes are systematically

biased in some way, perhaps due to certain cognitive limitations (Phillips and Edwards,

1966; Peterson and Beach, 1967). In contrast, base-rate neglect—the subsumed tendency

to underweight prior probabilities (or base rates) when evaluating novel evidence—has

often been taken as evidence that human cognition is fundamentally non-Bayesian in

nature, implying that intuitive cognition operates via heuristic processes (Gigerenzer and

Brighton, 2009; Brighton and Gigerenzer, 2015) rather than probabilistic computation

(Kahneman and Tversky, 1973). This research has led to the conclusion that at least

some aspects of human reasoning appear to be boundedly rational or even non-rational

(Kahneman, 2003; Barbey and Sloman, 2007), as Bayesian theory has often been equated

with rationality. This research has therefore threatened the validity of Bayesian models as
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descriptive of human cognition (Gigerenzer and Murray, 1987;

Anderson, 1990; Oaksford and Chater, 2007; Griffiths et al., 2010,

2024).

The current study focuses on understanding the context

sensitivity of these probabilistic biases. First, I examine how

task content influences the weighting of prior information and

evidence in belief updating. Traditionally, conservatism bias has

been studied in so-called small-world (Savage, 1954) tasks, such as

abstract urn tasks (Phillips and Edwards, 1966), with their statistical

look and feel of randomness, which may make prior probabilities

highly salient. In contrast, base-rate neglect has often been studied

in realistic large-world (Savage, 1954) scenarios, such as the well-

known cab problem (Kahneman and Tversky, 1972), where there

is an impression of potentially causal variables and seemingly

convincing eyewitness evidence (Tversky and Kahneman, 1977,

1980).

However, typical small-world and large-world tasks share a

common structure: they present prior information and evidence,

and require participants to update their beliefs in order to

report subjective posterior probabilities. Importantly, the relative

emphasis on prior information vs. evidence is not fixed, but

can be dynamically adjusted as a function of task characteristics

(Gigerenzer et al., 1988; Koehler, 1996). In particular, while the role

of prior probabilities may be emphasized in urn tasks, the emphasis

in realistic scenarios may shift to evidence due to its often salient

nature. It is immediately apparent that when priors dominate,

subjective probability judgments may reflect conservatism and

underweight the impact of evidence, whereas when evidence is

prioritized, this source of information may be over-relied upon,

possibly at the expense of priors.

Second, task context often implicitly influences the

diagnosticity of evidence by varying the amount of evidence

provided. In typical small-world tasks, multiple samples of

evidence are presented. This procedural detail increases the

normative impact of evidence on posterior beliefs. In addition,

repeated sampling clearly reinforces the random nature of the

problem, and facilitates a more deliberate weighting of prior beliefs.

In contrast, single instances of evidence are typically presented

in realistic, large-world scenarios such as the cab problem. The

limited presentation of evidence may lead individuals to rely

more heavily on causal interpretation tendencies (Tversky and

Kahneman, 1977, 1980). This, in turn, may reinforce seemingly

non-Bayesian strategies such as base-rate neglect.

Third, another important factor is the format in which

intuitive judgments are framed, specifically whether information is

presented in terms of the probability of a single event or in terms of

its relative frequency in a long series of events. Building on previous

research (Gigerenzer et al., 1988; Sedlmeier and Gigerenzer, 2001),

frequency framing is expected to favor probabilistic computation,

whereas probability framing is expected to be more closely aligned

with heuristic processing, potentially reinforcing seemingly non-

Bayesian strategies, including the neglect of base rates.

The current study examines the context sensitivity of

probabilistic biases by systematically manipulating three key

variables: task content, contrasting small-world (urn) with realistic

large-world (taxi) scenarios; amount of evidence, contrasting

single-event with multiple-event evidence conditions; and task

framing, contrasting frequency with probability framing. The core

idea is that cognitive attention mediates the dynamic, putatively

competitive integration of priors and evidence, with task context

shaping the influence of each, potentially allowing contextual

adaptation to optimize decision outcomes.

Based on these considerations, the prediction can be derived

that in large-world scenarios, such as the cab problem, cognitive

attention is biased toward evidence, leading to base-rate neglect and

sensitivity to the amount of evidence. In contrast, in small-world

tasks, such as the urn problem, priors are prioritized, leading to

conservatism and reduced sensitivity to evidence samples, so that

discrimination between single and multiple evidence conditions

is limited. In the current study, with its manipulation of task

content, amount of evidence, and framing, this analysis predicts

interactive effects of content and evidence on subjective probability

judgments, with the effect of the evidence manipulation being

stronger in large-world than in small-world tasks. According to

previous work, frequency framing should reduce both probabilistic

biases across task content and evidence conditions by facilitating

probabilistic computation.

Methods

General remark

The data reported in this study were collected in May 1988 as

part of an unpublished diploma thesis at the University of Konstanz

(Kopp, 1988; supervisors: G. Gigerenzer, W. Hell). The study

was designed to investigate cognitive processes relevant to human

judgment under uncertainty. Data were collected in accordance

with the ethical standards and research practices of the time,

including obtaining informed consent from all participants. The

written informed consent included personal information that was

collected only in a paper-and-pencil format. The digitized study

data on which the current re-analysis is based are anonymized and

cannot be linked to an individual with reasonable effort. With the

exception of an oral presentation at the Conference of Experimental

Psychologists (Bamberg, Germany, March 21, 1989), the data have

not been previously published.

Participants

All participants were recruited at the University of Konstanz

through local advertisements on bulletin boards. A total of 48

individuals participated (46 students, 2 staff members). There were

25 males and 23 females among the participants. The median

age of the sample was 23 years, ranging from 18 to 39 years.

Twenty-three students were enrolled in psychology and 23 in other

disciplines (10 humanities, 8 social sciences, 5 natural sciences).

Their median number of semesters was 2, ranging from 2 to 15

semesters. There were no other inclusion or exclusion criteria.

Although some of the participants, especially the psychology and

social science students, may have had formal training in statistics,

Bayesian statistics was not part of their statistics training at the time.

Three individuals indicated that they had heard of Bayes’ theorem,
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but their knowledge was rudimentary. Participants received either

course credit (relevant to the majority of psychology students) or

monetary compensation (DM 7.50 per hour).

Materials and measures

All participants received 12 probability judgment tasks,

designed to examine the effects of three independent variables

on human judgment under uncertainty. First, task content was

manipulated so that the task set included paradigmatic small-world

(urn tasks) and large-world (cab problems) scenarios in order to

examine the potential content-dependency of cognitive processes

relevant to human judgment under uncertainty.

Urn tasks are a paradigmatic Bayesian problem because they

illustrate the core process of Bayesian inference: updating prior

beliefs in light of evidence to derive a posterior probability.

Bayesian inference has three components: prior probability,

evidence (likelihood), and posterior probability. In the urn task,

the prior probability is the initial belief about the probability of a

selected urn being blue or green based on base rates, such as the fact

that 85% of the urns in a set of urns are green and 15% are blue. This

base rate represents the prior probability of selecting an urn of each

color. The evidence comes from drawing balls from the selected

urn with given probabilities (e.g., 80% blue balls in blue urns,

20% blue balls in green urns). This evidence provides additional

information that must be integrated with the prior belief to update

the probability estimate. The posterior probability is the updated

belief about the selected urn after considering some evidence.

The posterior probability is calculated using Bayes’ theorem

(Equation 1), which combines the prior probability and the

likelihood of the evidence. Mathematically, assuming a blue ball

was drawn as evidence, the posterior probability that a blue urn was

selected is

p(blue urn|blue ball) =
p(blue urn)× p(blue ball|blue urn)

p(blue ball)
(1)

The nominator is the product of the prior probability and

the evidence likelihood. The denominator, p(blue ball), accounts

for all possibilities, including the blue ball being drawn from

a green urn. This normalization ensures that the posterior

probabilities sum to 1 and correctly reflect the updated belief. In

the example above, by substitution,
p(blue urn)×p(blue ball|blue urn)

p(blue ball) =

0.15×0.80
0.15×0.80+0.85×0.20 ≈ 0.414. Therefore, the Bayesian posterior

probability is p
(
blue urn

∣∣blue ball
)
≈ 0.414. In other words, the

evidence of drawing a blue ball induces an update in the belief

that a blue urn was selected (from a priori 0.15 to posteriori 0.41),

but despite the evidence of a blue ball, it remains slightly less

likely that a blue urn was selected than a green urn under these

particular circumstances.

All of the large-world scenarios used were structurally

equivalent to small-world (urn) tasks. They were also equivalent to

or derivatives of the original cab problem, which is documented

below (Tversky and Kahneman, 1980):

“A Cab was involved in a hit and run accident last night. Two

Cab companies, called Green and Blue operate in the City. You are

given the following data:

• 85% of the Cabs are Green and 15% are Blue.

• A witness identifies the Cab as blue. The court tested the

reliability of the witness under the circumstances that existed

on the night of the accident and concluded that the witness

could correctly identify each of the two colors 80% of the time

but would fail 20% of the time.

What is the probability that the Cab involved in the accident

was Blue rather than Green?”

The problem structure of the cab problem mirrors that

of the small-world problem: base rates are provided by the

relative frequencies of green and blue taxis (equivalent to urns),

and the probability of witness testimony (equivalent to ball-

drawing likelihoods) is provided by the reliability of witness

testimony. However, despite the structural equivalence of small-

world and large-world scenarios, probabilistic judgments in small-

world and real-world scenarios often deviate in several content-

dependent ways from rational (i.e., Bayesian) judgments because, as

discussed above, they either neglect the base rate (base-rate neglect,

typically observed in large-world problems) or fail to properly

integrate the evidence (conservatism bias, typically observed in

small-world problems). The combination of these scenarios is

therefore an essential tool for studying these two probabilistic

biases and for understanding the content-dependent limitations of

Bayesian reasoning.

The task content actually comprised three levels: The first level

of task content included the paradigmatic small-world scenario (an

urn task), in which participants infer posterior probabilities based

on the composition of a set of urns (yielding prior probabilities)

and the composition of the balls in the urns (yielding evidence

likelihoods). The next two levels of task content consisted of two

large-world scenarios. The standard cab problem, in which the

relative frequencies of green and blue taxis in the city reflect prior

probabilities and witness reliability reflects evidence likelihood, was

complemented by a modified version of the cab problem in which

prior probability is made causally relevant by specifying the number

of drivers involved in hit-and-run incidents rather than general taxi

frequencies (Tversky and Kahneman, 1977, 1980).

Human decision making differs in small-world and large-world

scenarios (Savage, 1954). In small-world problems, people rely

on statistical reasoning characterized by well-defined probabilities

(e.g., Gigerenzer et al., 1988). Here they operate in a “non-

causal” framework, as in an “empire of chance.” In contrast, large-

world problems involve ill-defined probabilities and often contain

information that invites causal interpretations. Kahneman and

Tversky (1973) showed that people prioritize causal relevance over

base rates, while Koehler (1996) highlighted perceived causality

as key to the application of prior probabilities in large-world

problems. These findings emphasized a shift from statistical

reasoning to causality-driven reasoning in large-world scenarios.

The modified version of the cab problem, in which the prior

probability was made causally relevant, was designed to test

whether the perceived causal relevance of prior probabilities

mediates base-rate neglect as it occurs in the standard version of

the cab problem.

Evidence levels in judgment studies have been manipulated by

presenting either a single piece of evidence, such as a ball drawn
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from an urn or a single eyewitness identification, or multiple pieces

of evidence, such as three consecutive balls drawn from an urn

(with replacement) or three independent eyewitness identifications.

The biases of conservatism and base-rate neglect are closely related

to this structure of empirical evidence. Conservatism typically

involves cautious belief updating in response to multiple pieces

of evidence in urn tasks, leading individuals to underweight new

information relative to the Bayesian norm. In contrast, base-rate

neglect (Kahneman and Tversky, 1973; Bar-Hillel, 1980) often

occurs with single pieces of evidence in real-world scenarios,

where individuals tend to overlook prior probabilities in favor

of salient, case-specific details. These paradigms underscore the

critical role that the content and amount of evidence play in shaping

probabilistic reasoning, and unfortunately, these two factors are

deeply confounded in the literature.

Third, the task framing was adjusted to present the problem

as either a single-case problem, focusing on the probability of

a particular event, or a long-term problem, emphasizing relative

frequencies over repeated events. Previous work highlights the

influence of this type of framing on reasoning, particularly

the distinction between probabilities and frequencies (Sedlmeier

and Gigerenzer, 2001). When probabilities were presented in

abstract, single-event formats, people often struggled to reason

correctly, presumably because this format is poorly aligned with

intuitive cognitive processes. In contrast, frequency formats—

expressing probabilities as frequencies over repeated events—were

thought to be more consistent with how people naturally process

information. The study showed that frequency framing facilitates

Bayesian reasoning and reduces biases such as base-rate neglect.

These findings suggest that framing probabilistic information as

probabilities or frequencies has profound implications for human

judgment under uncertainty.

These three independent variables created a factorial design

with three levels of content, two levels of evidence, and two levels

of framing, resulting in 12 different versions of a structurally

identical Bayesian inference problem. This design allowed for the

investigation of how these changes in content, amount of evidence,

and framing affected probabilistic reasoning, particularly in terms

of adherence to Bayesian principles. The exact wording of the

12 different versions is documented in Supplementary material A.

Their construction was done by hand, and no software was used for

this task.

Participants received the 12 task scenarios in a booklet. At the

end of each task, participants were asked to report two posterior

probabilities (on a percentage scale). For example, in the original

cab problem, these probability judgments were prompted by the

questions: (1) What is the probability that the taxi involved in the

accident was blue? and (2) What is the probability that the taxi

involved in the accident was green? The general task instructions

emphasized that these two percentages should sum to 100.

Procedure

Participants completed the booklet containing 12 scenarios,

each requiring two probability judgments. After providing written

informed consent, they were given task instructions before

TABLE 1 Bayesian posterior probabilities for the 12 unique numerical

combinations of prior probabilities and evidence likelihoods, with three

prior probabilities (0.1, 0.15, 0.2) and four evidence likelihoods (0.7, 0.75,

0.8, 0.85), separately for the two levels of evidence (n = 1, n = 3).

n = 1 0.7 0.75 0.8 0.85

0.1 0.206 0.25 0.308 0.386

0.15 0.292 0.346 0.414 0.5

0.2 0.368 0.429 0.5 0.586

n = 3

0.1 0.585 0.75 0.877 0.953

0.15 0.692 0.827 0.919 0.97

0.2 0.761 0.871 0.941 0.978

beginning the scenarios, which took ∼45–90min to complete. The

study used a within-subjects design, with the order of scenarios

randomized for each participant. To prevent participants from

treating the scenarios as repetitive, the numerical values for prior

probabilities and evidence likelihoods were systematically varied,

as shown in Table 1. Each participant encountered each unique

combination of numerical values exactly once across all scenarios.

This approach required the construction of all 12 scenarios in all

possible value combinations, resulting in 144 different scenario-

value pairs. Each of the 12 unique numerical combinations per

scenario was used four times across the sample of 48 participants.

The average prior probability per scenario was 0.15, and the average

evidence likelihood per scenario was 0.775, resulting in average

Bayesian posteriors of 0.378 (n= 1) and 0.878 (n= 3).

Statistical analysis

JASP version 0.18.3.0 was used as the software for all data

analyses. The primary statistical analyses used to test hypotheses

were Bayesian repeated measures ANOVAs. The measures used for

these hypothesis tests were log odds, defined as logO = log
p1
p2

where p1 is the first (see definition above) subjective probability

(i.e., provided percentage divided by 100) and p2 is the second (see

definition above) subjective probability (i.e., provided percentage

divided by 100), with the constraint that p1 + p2 = 1 for

each scenario. If the sum of these two probabilities did not equal

1, a correction was made by multiplying both probabilities by

the scaling factor 1
p1+p2

. There were no dropouts. Regarding the

handling of missing data, there was a single missing probability

pair in one of the urn tasks from one participant, which was

replaced by the average of all probability pairs from the remaining

47 participants in the same scenario.

JASP’s power analysis module, based on jpower (Morey, 2021),

was used to provide a rough indication of the statistical power of

the analyses. Assuming a one-sample t-test rather than a Bayesian

repeated measures ANOVA, one would need a sample size of 44 to

be confident with a probability≥0.9 of detecting an effect size of |δ|

≥0.5, assuming a two-tailed criterion that allows for a maximum

Type I error rate of α = 0.05. One would need a sample size of

36 to be confident with a probability ≥0.9 of detecting an effect
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TABLE 2 Summary statistics (N = 48), separately for the 12 scenarios used, which were obtained by manipulating the task content (urn = urn task, cab s

= standard cab problem, cab m = modified cab problem), the level of evidence (evidence1: n = 1, evidence3: n = 3), and the framing of problems [pro,

probabilities; fre, (relative) frequencies].

pBayes M psubjective logOBayes M logO SD logO

urn1 pro 0.378 0.381 −0.498 −0.483 0.923

urn3 pro 0.878 0.363 1.976 −0.565 0.946

urn1 fre 0.378 0.435 −0.498 −0.259 0.948

urn3 fre 0.878 0.409 1.976 −0.367 0.951

cab s1 pro 0.378 0.601 −0.498 0.411 0.874

cab s3 pro 0.878 0.717 1.976 0.933 0.931

cab s1 fre 0.378 0.773 −0.498 1.228 0.831

cab s3 fre 0.878 0.840 1.976 1.659 0.928

cab m1 pro 0.378 0.653 −0.498 0.631 0.771

cab m3 pro 0.878 0.705 1.976 0.871 0.880

cab m1 fre 0.378 0.688 −0.498 0.792 0.764

cab m3 fre 0.878 0.835 1.976 1.621 0.894

All posterior probabilities mentioned here refer to the outcome with the lower prior probability. The normative Bayesian posterior probabilities, pBayes , the mean subjective posterior

probabilities, M psubjective , the Bayesian log odds (logOBayes), and the mean, M, and the standard deviation, SD, of the subjective log odds (logO) are provided for each scenario (with an

average prior probability of 0.15 and an average likelihood of evidence1 of 0.775).

size of |δ| ≥ 0.5, assuming a one-tailed criterion that allows for

a maximum Type I error rate of α = 0.05. Thus, the sample size

of 48 can be considered sufficient to detect a moderate-sized effect

with reasonable statistical power under standard types of analyses

and assumptions.

Results

Table 2 shows the averaged posterior probabilities (denoted

p) and the corresponding log odds (denoted logO), separately

for all 12 scenarios constructed by combining task content (urn

= urn task, cab s = standard cab problem, cab m = modified

cab problem), level of evidence (n = 1, n = 3), and framing

(probabilities, relative frequencies).

As shown in Table 2, there are notable differences in the

averaged subjective probability judgments based on task content,

particularly between the urn and cab scenarios. In the evidence1
conditions, the average subjective posteriors in the urn1 tasks,

ranging from 0.381 (urn1 pro) to 0.435 (urn1 fre), were well-

calibrated to the Bayesian posterior (0.378). In contrast, the average

subjective posteriors in the cab1 scenarios, ranging from 0.601

(cab s1 pro) to 0.773 (cab s1 fre), were strongly biased toward the

likelihood of the evidence (0.775). This indicates poor calibration

to the Bayesian posterior and is commonly referred to as base-

rate neglect.

Examining sensitivity to evidence reveals that average

subjective probabilities in the urn tasks are largely insensitive to

evidence manipulations. In the urn3 tasks, the average subjective

posteriors, ranging from 0.363 (urn3 pro) to 0.409 (urn3 fre),

were more or less indistinguishable from those in the urn1
tasks, indicating a strong conservatism bias. Thus, these average

subjective posteriors were poorly calibrated to the Bayesian

posterior of 0.878. In contrast, average subjective probability

TABLE 3 The percentage of subjects responding with prior probabilities,

correct posterior probabilities, and likelihoods for each problem type (for

evidence1: n = 1 problems only; urn = urn task, cab s = standard cab

problem, cab m = modified cab problem] and the framing of problems

(pro, probabilities; fre, (relative) frequencies] that are within a range

of ±0.03.

urn1
pro

urn1
fre

cab s1
pro

cab
s1
fre

cab
m1
pro

cab
m1 fre

Prior 0.354 0.292 0.229 0.042 0.146 0.104

Posterior 0.292 0.229 0.021 0.063 0.000 0.021

Likelihood 0.250 0.292 0.604 0.708 0.729 0.771

Other 0.104 0.187 0.146 0.187 0.125 0.104

For example, if the prior probability was 0.20, responses ranging from 0.17 to 0.23 would

be classified as prior probability responses. “Other” refers to responses outside these ranges.

Statistical mode values highlighted in bold.

judgments in the cab scenarios exhibited limited sensitivity to

evidence. Subjective posteriors in cab3 scenarios (ranging from

0.705 in cab m3 pro to 0.840 in cab s3 fre) more closely matched

the Bayesian posterior.

Tasks presented in a frequency format generally elicited slightly

higher average subjective posteriors than those presented in a

probability format, suggesting a framing effect that shifts subjective

posteriors toward the likelihood of the evidence. It is important to

note that these observations reflect group-level averages and do not

capture individual variability in responses across participants.

Table 3 shows how subjective responses vary among individuals

for evidence1 scenarios. It shows the percentage of participants

whose subjective probabilities fell within a narrow range (±0.03)

of the Bayesian prior, likelihood, or posterior. The modus is

depicted in bold. In the urn tasks, some participants gave responses

close to the prior, indicating that they paid more attention to it

than to the likelihood. Some participants gave responses close to
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TABLE 4 Model comparison results of Bayesian repeated measures ANOVA for the two versions of the cab scenario.

Models P(M) P(M|data) Log(BFM) Log(BF10) Error %

Model comparison

Null model (incl. subject and random slopes) 0.053 1.98× 10−4 −5.637 0.000

evidence+ framing 0.053 0.592 3.264 8.004 15.381

Evidence+ framing+ evidence> framing 0.053 0.166 1.273 6.729 3.108

Content+ evidence+ framing 0.053 0.093 0.613 6.152 3.681

Content+ evidence+ framing+ content> framing 0.053 0.040 −0.283 5.313 3.181

Content+ evidence+ framing+ evidence> framing 0.053 0.030 −0.592 5.014 3.238

Content+ evidence+ framing+ content> evidence 0.053 0.018 −1.104 4.515 3.978

Content+ evidence+ framing+ content> framing+ evidence> framing 0.053 0.015 −1.280 4.342 5.386

Evidence 0.053 0.013 −1.473 4.151 3.476

Framing 0.053 0.008 −1.900 3.729 2.430

Content+ evidence+ framing+ content> evidence+ content> framing 0.053 0.008 −1.935 3.694 3.547

Content+ evidence+ framing+ content> evidence+ evidence> framing 0.053 0.006 −2.205 3.426 5.919

Content+ evidence+ framing+ content> evidence+ content> framing+

evidence> framing+ content> evidence> framing

0.053 0.003 −2.864 2.770 7.096

Content+ evidence+ framing+ content> evidence+ content> framing+

evidence> framing

0.053 0.003 −3.000 2.634 5.954

Content+ evidence 0.053 0.002 −3.251 2.383 2.620

Content+ framing 0.053 0.001 −3.612 2.023 3.566

Content+ framing+ content> framing 0.053 6.66× 10−4 −4.423 1.213 3.784

Content+ evidence+ content> evidence 0.053 4.30× 10−4 −4.861 0.775 3.424

Content 0.053 3.50× 10−5 −7.368 −1.732 2.259

All models include subject, and random slopes for all repeatedmeasures factors. Themodel-averaged R2 of this repeatedmeasures Bayesian ANOVA reflects the proportion of variance explained

by the independent variables, averaged across the models considered. The model-averaged result of R2 = 0.471 suggests moderate effectiveness in explaining the variability in the data, but it

is quite high for a psychological study with inherent variability in human behavior. The result indicates that at least 42.7% and up to 51.3% of the variance was explained, providing a credible

interval within which the plausible values of R2 , based on the posterior distribution, are 95% likely to fall, reflecting a high degree of confidence in the proportion of variance explained.

the posterior, indicating good calibration between attending to

the prior and the evidence. In contrast, in the cab scenarios, a

much larger proportion of participants gave responses near the

likelihood, indicating attention to it at the expense of the prior (i.e.,

base-rate neglect) at the individual level (as in Bar-Hillel, 1980).

Notably, few participants provided responses close to the Bayesian

posterior in the cab tasks, confirming that group-level biases

reflect consistent individual patterns. Additionally, a considerable

number of responses in all conditions fell into the “other” category,

indicating variability beyond the main trends.

Inferential statistics of these data were performed on the

subjective posterior log odds in two steps. First, I examined the

effectiveness of manipulating the task content in the standard cab

problem and its modified version. The original scenario served as

a model for the standard scenario used here, and involves prior

probabilities based on the relative frequencies of green and blue

taxis in the virtual city. The modified scenario shifts the focus,

making the prior more causally relevant, by specifying the number

of drivers involved in hit-and-run incidents, rather than just using

general taxi frequencies.

In Table 4, model comparison by Bayesian repeated measures

ANOVA compares a null model (random effects including

subject and random slopes for all repeated measures factors)

with all models including content, evidence, framing, and their

interactions. All models started with a uniform prior probability

of 0.053. Given the data, the posterior probability of the null model

dropped to effectively zero, while the posterior of the best model

including only the main effects of evidence and framing increased

to a posterior probability of 0.592. The log(BF10) for this best

model, 8.004, strongly favored it over the null model. This suggests

that evidence and framing significantly affected the posterior log

odds. In contrast, content, either alone or in interaction with

evidence or framing, did not appear to affect the posterior log odds.

This is most evident in the analysis of effects shown in Table 5.

While both the inclusion of evidence (BFinclusion = 33.219) and

framing (BFinclusion = 22.865) were strongly supported by the

data, neither the inclusion of content (BFinclusion = 0.101) nor its

interactions (BFinclusion <= 0.163) were supported by the data.

Thus, the effects of the content manipulation in the two versions

of the cab scenario on the posterior log odds were negligible,

suggesting that manipulating the causal relevance of the prior

probabilities was ineffective. Therefore, the data from the two

versions of the cab scenario were collapsed by averaging for the

following analysis.
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TABLE 5 Analysis of e�ects by Bayesian repeated measures ANOVA for the two versions of the cab scenario.

E�ects p(inclusion) p(exclusion) p(incl|data) p(excl|data) BF(inclusion)

Analysis of e�ects

Content 0.737 0.263 0.221 0.779 0.101

Evidence 0.737 0.263 0.989 0.011 33.219

Framing 0.737 0.263 0.985 0.015 22.865

Content> evidence 0.316 0.684 0.038 0.962 0.087

Content> framing 0.316 0.684 0.070 0.930 0.163

Evidence> framing 0.316 0.684 0.223 0.777 0.620

Content> evidence> framing 0.053 0.947 0.003 0.997 0.057

TABLE 6 Model comparison results of Bayesian repeated measures ANOVA for the urn problem and the collapsed cab scenario.

Models P(M) P(M|data) Log(BFM) Log(BF10) Error %

Model comparison

Null model (incl. subject and random slopes) 0.053 5.34× 10−10 −18.461 0.000

Content+ evidence+ framing+ content> evidence+ content> framing 0.053 0.372 2.368 20.363 4.570

Content+ evidence+ framing+ content> evidence 0.053 0.359 2.309 20.325 5.217

Content+ evidence+ framing+ content> evidence+ content> framing+

evidence> framing

0.053 0.105 0.748 19.097 11.621

Content+ evidence+ framing+ content> evidence+ evidence> framing 0.053 0.086 0.522 18.893 5.539

Content+ evidence+ framing+ content> evidence+ content> framing+

evidence> framing+ content> evidence> framing

0.053 0.034 −0.462 17.964 9.729

Content+ evidence+ framing+ content> framing 0.053 0.010 −1.721 16.730 23.613

Content+ evidence+ content> evidence 0.053 0.009 −1.789 16.662 6.654

Content+ framing 0.053 0.007 −2.005 16.448 4.310

Content+ evidence+ framing 0.053 0.007 −2.021 16.432 5.730

Content+ framing+ content> framing 0.053 0.007 −2.044 16.410 4.162

Content+ evidence+ framing+ evidence> framing 0.053 0.002 −3.522 14.937 5.375

Content+ evidence+ framing+ content> framing+ evidence> framing 0.053 0.002 −3.580 14.879 4.615

Content 0.053 2.13× 10−4 −5.562 12.899 6.615

Content+ evidence 0.053 1.76× 10−4 −5.757 12.703 3.904

Framing 0.053 1.97× 10−8 −14.850 3.611 5.088

Evidence+ framing 0.053 1.62× 10−8 −15.047 3.413 3.697

evidence+ framing+ evidence> framing 0.053 3.991× 10−9 −16.449 2.012 3.982

Evidence 0.053 4.43× 10−10 −18.647 −0.187 3.330

All models include subject, and random slopes for all repeated measures factors. The model-averaged R2 = 0.448 suggests moderate effectiveness in explaining the variability in the data. The

result indicates that at least 40.5% and up to 48.8% of the variance was explained, providing a credible interval within which the plausible values of R2 , based on the posterior distribution, are

95% likely to fall.

In a second step, the effectiveness of manipulating the task

content from the small-world (urn) problem to the large-world

scenario was tested after collapsing the data from the two content

versions of the cab problem. In Table 6, model comparison by

Bayesian repeated measures ANOVA compares a null model

(random effects including subject and random slopes for all

repeated measures factors) with all models including content,

evidence, framing, and their interactions. All models started

with a uniform prior probability of 0.053. Given the data, the

posterior probability of the null model dropped to effectively

zero, while the posterior of the best model including content,

evidence, framing, and the content-by-evidence and content-by-

framing interactions increased to a posterior probability of 0.372.

The log(BF10) for this best model, 20.363, strongly favored it over

the null model. This suggests that content, evidence, and framing

significantly affected the posterior log odds. In addition, the

content-by-evidence and content-by-framing interactions affected

the posterior log odds.
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TABLE 7 Analysis of e�ects by Bayesian repeated measures ANOVA for the urn problem and the cab scenario.

E�ects P(incl) P(excl) P(incl|data) P(excl|data) BFincl

Analysis of e�ects

Content 0.737 0.263 1.000 4.09× 10−8 8.73× 10+6

Evidence 0.737 0.263 0.985 0.015 23.794

Framing 0.737 0.263 0.990 0.010 36.899

Content> evidence 0.316 0.684 0.965 0.035 59.219

Content> framing 0.316 0.684 0.530 0.470 2.441

Evidence> framing 0.316 0.684 0.228 0.772 0.639

Content> evidence> framing 0.053 0.947 0.034 0.966 0.630

FIGURE 1

The upper left graph shows the group means (±standard errors) of subjective posterior log odds with data collapsed across the two framing

conditions, separately for task content (urn = urn task, cab s = standard cab problem, cab m = modified cab problem) and level of evidence (n = 1,

n = 3). The raincloud plots show the inter-individual dispersion, separately for the urn (upper right graph), the cab s (lower left graph), and the cab m

(lower right graph) scenarios.

This is most evident in the analysis of effects shown in Table 7.

In addition to all of the main effects, the inclusion of the content-

by-evidence interaction received substantial support from the data

(BFinclusion = 59.219). However, the analysis of effects revealed that

the inclusion of the content-by-framing interaction received only

marginal support from the data (BFinclusion = 2.441).

Figure 1 shows the content-by-evidence interaction, with

evidence clearly affecting subjective posterior log odds in the large-

world scenario (such that log odds evidence3 > log odds evidence1),

but not in the small-world scenario (log odds evidence3 ≈ log odds

evidence1). The effects of the content-by-evidence interaction on

posterior log odds suggest that, when including paradigmatic small-

world and large-world scenarios, the manipulation of task content

enhanced cognitive attention to the evidence and its manipulation

in the large-world scenario, apparently at the expense of cognitive

attention to prior probabilities. These attentional settings may

have been reversed in the small-world scenario, with greater

attention to prior probabilities and less attention to evidence and

its manipulation. Notably, these data provide evidence for content-

dependent cognitive prioritization of either prior or evidence

information in human judgment under uncertainty as a function

of task content when its manipulation includes small-world and

large-world scenarios.

Discussion

This study examined how task context influences probabilistic

biases by manipulating task content (small-world vs. large-world

scenarios), evidence amount (single vs. multiple events), and

framing (frequency vs. probability). It predicted that in large-world

scenarios, such as the cab problem, cognitive attention prioritizes

evidence, leading to base-rate neglect and preserved evidence

sensitivity, whereas in small-world tasks, such as the urn problem,
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cognitive attention favors priors, leading to conservatism and

reduced evidence sensitivity. Results reveal a content-by-evidence

interaction: evidence affects posterior log odds in large-world

scenarios more than in small-world tasks, suggesting content-

dependent shifts in cognitive attention between priors and evidence

as predicted. However, contrary to previous research, frequency

framing does not appear to mitigate probabilistic biases by

facilitating probabilistic computation.

I hypothesized that making prior probabilities causally relevant

would increase their influence and reduce base-rate neglect.

However, the absence of a significant difference between the two

cab problem scenarios suggests that causal relevance alone may not

be sufficient to mitigate base-rate neglect.

The results highlight the coexistence of probabilistic biases

in human judgment, with task context playing a key role in

determining which bias emerges under specific circumstances.

This is consistent with previous research that has identified

such biases and confirmed their validity for describing human

judgment under uncertainty. However, the novel finding of the

coexistence of probabilistic biases suggests that the notion of

these biases is descriptive rather than explanatory. The notion of

probabilistic biases illustrates what happens in human judgment

under uncertainty, but does not fully explain why, when, and how

these biases occur. In other words, a process model of probabilistic

biases is still needed (Stengård et al., 2022).

A process model of probabilistic biases is presented in

the remainder of this discussion. It formalizes the current

results in the Adaptive Bayesian Cognition (ABC) model,

which builds on the literature on probability weighting. This

literature is further elaborated in Supplementary material C, which

provides an overview of important theoretical foundations and

mathematical formulations underlying probability weighting to

ensure accessibility for readers who may not yet be familiar with

it. By integrating probability weighting with Bayesian updating,

the ABC model captures how individuals process uncertainty,

adaptively weigh priors and evidence, and thus update beliefs in a

variety of environments.

The theoretical foundation of the ABCmodel is that it provides

a lens for understanding the construct of cognitive attention,

and its context-sensitive dynamics between priors and evidence.

A key feature of the ABC model is its ability to formalize

cognitive attention with a single free parameter (denoted γ ) that

represents the dynamic allocation of attention between priors and

evidence. This allocation of attention is modulated by the task

context (denoted by the subscript , i.e., the ancient Greek letter

koppa), which determines the relative influence of priors and

evidence. The ABCmodel thus provides a formal yet parsimonious

understanding of probabilistic biases and a computational tool

for exploring the mechanisms underlying human judgment under

uncertainty. Derived from the data in the current study, it has

a strong empirical foundation. This data-driven approach makes

the ABC model well-suited for future validation, refinement, and

broader application.

The mathematical formulation of the ABC model is based on

Bayes’ theorem expressed in log odds (denoted as LO), as derived in

Supplementary material B. In this linear-in-log-odds (LLO) version

of Bayes’ theorem (Equation 2), belief updating reduces to the

simple addition of two terms: the log prior odds of the hypothesis

(LOprior) and the logarithm of the likelihood ratio (L3evidence):

LOposterior = LOprior + L3evidence (2)

The ABC model (see Equation 3) extends Bayesian LLO belief

updating by introducing a dynamic weighting parameter (0≤ γ ≤

1) that represents the competitive allocation of cognitive attention

between the log prior odds and the logarithm of the likelihood

ratio. The setting of this parameter value is determined by the task

context (denoted by the subscript )

L̂Oposterior = γ × LOprior + (1− γ )× L3evidence (3)

where L̂Oposterior denotes subjective posterior log odds. As you

can see in Equation 3, the sum of these weights is constrained to

the capacity limit of 1. This reflects the competitive nature of the

weighting, where increasing attention to one source of information

antagonistically reduces attention to the other. The ABC model

thus imposes cognitive capacity constraints by specifying that the

combined weight of the two dimensions (priors, evidence) is strictly

bounded at 1. This constraint introduces a strong competition

between cognitive attention to priors and evidence, respectively:

Any increase in γ is necessarily associated with a decrease in

1–γ , and vice versa.

Crucially, this competitive interaction is sensitive to the

context. The setting of a small-world task, with its look and feel

of randomness, seems to favor high γ values (γ >> 0.5), so

that priors receive proportionally more cognitive attention. As a

consequence, the evidence [weighted by (1 – γ )], including the

manipulation of its strength, receives proportionally less cognitive

attention. This results in the conservatism bias, which increases

with the amount of evidence. In contrast, large-world scenarios,

have an impression of potentially causal variables and present

seemingly convincing evidence. They seem to favor low γ values

(γ << 0.5), with the consequence that the evidence [weighted

by (1 – γ )], including the manipulation of its strength, receives

proportionally increased cognitive attention. Because this occurs at

the expense of reduced cognitive attention to priors, it results in

what has historically been referred to as base-rate neglect.

Figure 2 illustrates this. As you can see, low γ values in

the ABC model cause posteriors to depend disproportionately

on evidence, minimizing the influence of priors and representing

hyper-flexibility when priors are low. This dynamic is consistent

with cognitive tendencies annotated as base-rete neglect and

jumping-to-conclusions (JTC) in psychopathological studies (So

et al., 2016), and possibly with related behavioral tendencies such

as distractibility or impulsivity (Kopp, 2025). Conversely, high γ

values anchor posteriors to priors even in the presence of strong

evidence, reflecting probabilistic biases such as conservatism and

possibly related behavioral tendencies such as perseveration or

rumination (Kopp, 2025).

As you can see from the pointwise KL divergences (see

Supplementary material D for definition) shown in the bottom

row of Figure 2, the ABC weighting effects are pervasive, as the

KL divergence is almost never zero, indicating that Bayesian and

ABC posteriors diverge under almost all constellations of priors
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FIGURE 2

Prior-to-posterior mappings for Bayesian (dashed black line) and ABC posteriors (colored lines) separately for the two evidence conditions (for 1 (left

panels) and 3 (right panels) pieces of evidence). (Top row) Prior-to-posterior mappings in log odds space. (Middle row) Prior-to-posterior mappings

in probability space. (Bottom row) Pointwise KL divergences between Bayesian and ABC posteriors (see Supplementary Equation S.D1 for definition).

Colors correspond to specific γ values in the ABC model: Blue: γ = 0.0 (mimics complete base-rate neglect), orange: γ = 0.25, green:

γ = 0.5, red: γ = 0.75, and purple: γ = 1.0 (mimics extreme conservatism). The dotted vertical lines at prior=0.15 indicate the specific (average)

prior used in the current study. The blue horizontal lines in the top row also indicate the two (average) levels of evidence used in the current study.

and evidence, including when γ values are perfectly balanced

(γ = 0.5). The pointwise KL divergences become particularly

pronounced when there is a strong mismatch between priors and

evidence (especially for relatively low priors and high evidence).

Taken together, these observations suggest that the highly

competitive interaction between priors and evidence considered

in the ABC model may account for a number of probabilistic

biases observed in a variety of empirical studies. The ABC model

balances the competitive interaction between priors and evidence

through the weighting parameter γ , which reflects context-

adaptive weighting (hence the subscript ). When γ = 1,

there is full reliance on the objective prior, reflecting extreme

conservatism, whereas when γ = 0, there is full reliance on the

evidence, reflecting extreme base-rate neglect. By modulating γ ,

the ABC model explains how otherwise Bayesian belief updating

adjusts between stability, up to full reliance on the priors with
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evidence neglect, and flexibility, up to full evidence sensitivity with

base-rate neglect, allowing adaptation to cognitive constraints and

contextual factors.

The ABC model is based on the LLO probability weighting

function (PWF) of Zhang and Maloney (2012), which is detailed

in Supplement Equation S.C2. An important difference between

these two models is the role of evidence, because in the ABC

model, the point where the PWF crosses the identity line is

defined as the objective logarithm of the likelihood ratio. In the

Z & M LLO model, the PWF crosses the identity line at a point

called p0, which is a free parameter estimated from the data (see

Supplementary Figure S.C2). Thus, the ABC model extends the

basic principle of the Z &MLLO PWF, which focuses on describing

subjective probabilities, to Bayesian inference. Both models use

similar, though not identical, LLO transformations, but differ in

their application: Following Tversky and Kahneman (1992), the Z&

M model describes weighted subjective probability, while the ABC

model dynamically integrates priors and likelihoods for Bayesian

inference. The ABC lens suggests that probability weighting arises

from the competition among probabilistic inputs (Juslin et al.,

2008; Juslin, 2015), not as a general distortion of probability. In

sum, the ABC model shows how subjective posterior probability

emerges from the integration of priors and likelihoods through

an LLO framework. This approach explains non-linear probability

weighting as a byproduct of balancing priors and likelihoods,

aligning subjective posterior probability with contextual demands

while maintaining capacity-limited efficiency.

Other work that inspired the ABC model includes the

Bayesian approach to PWF (Fennell and Baddeley, 2012), resource

rational analysis (Lieder and Griffiths, 2020), and the bounded

log odds (BLO) model (Zhang et al., 2020). Fennell and Baddeley

(2012) proposed a Bayesian approach to PWF and showed

that the combination of informative priors (based on past

experience) and uninformative priors of ignorance can robustly

and efficiently replicate observed PWFs, including overweighting

low probabilities and underweighting high probabilities. Lieder

and Griffiths’s (2020) resource-rational approach integrates rational

principles with cognitive constraints to model human cognition

as an optimal use of limited resources. In addition, Zhang

et al.’s (2020) BLO model theoretically explains the Z & M

LLO PWF through bounded, dynamically adjustable internal log-

odds representations that compensate for uncertainty, aligning

with the resource-rational analysis by demonstrating bounded

rationality as a principle that optimizes information use under

cognitive constraints.

The insights provided here have both theoretical and practical

implications. Theoretically, they highlight the fundamental

dynamics underlying probabilistic biases such as conservatism and

base-rate neglect. Practically, they provide avenues for strategies to

mitigate these biases. First, frequency framing may not be sufficient

to address these probabilistic biases. Amore effective approachmay

be to encourage thinking in terms of odds and likelihood ratios.

Second, one should explicitly instruct the expansion of the scope of

cognitive attention by encouraging the simultaneous consideration

of multiple pieces of information for integration. This simple idea

leads to a generalized ABC model (Equation 4) where the limited

scope of cognitive attention is modeled as a variable capacity limit,

denoted by λ, with 1 ≤ λ ≤ 2 and 0 ≤ γ ≤ λ

L̂Oposterior = γ × LOprior +
(
λ − γ

)
× L3evidence (4)

Note that the original one-parameter ABC model introduced

in Equation 3 is just a case of the generalized two-parameter ABC

model where λ is fixed at 1. In this model, γ reflects how priors are

incorporated into belief updating, while λ
2 serves as a threshold for

balancing priors and evidence with conservatism defined as γ >
λ
2 and base-rate neglect defined as γ < λ

2 .
1 The rational Bayesian

norm is another special case of the generalized ABC model where

λ is fixed at 2 and γ is fixed at λ
2 = 1. Increasing λ through

appropriate instructions to expand the range of cognitive attention

minimizes the risk of neglecting available evidence (conservatism)

or neglecting base rates.

Third, instructing the explicit rule to give equal weight

to priors and evidence, as in the Bayesian norm, provides a

structured method for appropriately balancing prior knowledge

with new evidence. Such guidelines should strongly emphasize

that a general principle of indifference should be to give equal

weight to priors and evidence. Deviations from this principle of

indifference should be considered only when the available priors

are of questionable relevance to the decision problem at hand,

justifying some degree of down-weighting, or when the available

evidence lacks utility in terms of reliability, precision, or validity,

allowing restricted down-weighting of less useful evidence in

belief updating.

Figure 3 highlights the importance of this principle of

indifference, which favors equal weights for priors and evidence,

when cognitive attention is extended such that λ ≫ 1. Using

λ = 2 as an example, it is clear that equal weights for

priors and evidence lead to normative Bayesian posteriors (being

achieved when γ = λ
2 ). However, more extreme γ values

introduce either strong hypo-flexibility (over-reliance on priors

as γ approaches λ) or strong hyper-flexibility (over-reliance on

evidence as γ approaches 0). Both cases lead to strongly biased

posteriors, as shown in the bottom row of Figure 3. Ultimately,

promoting adaptive Bayesian cognition requires tailoring strategies

to support context-sensitive yet balanced weighting of priors and

evidence under extended cognitive attention—ensuring flexible

1 The generalized ABC model (Equation 4) was already anticipated in Kopp

(1988), where I introduced the power model (see Equation 23 there)

Ôposterior = O
ρ
prior × 3δ

evidence

where Ôposterior is the subjective posterior odds. This power model assumes

a multiplicative combination of odds and likelihoods, with the weights ρ

and δ determining how much the prior and likelihood contribute with 0 ≤

ρ, δ ≤ 1. The exponent ρ controls for the influence of prior odds (i.e., the

non-logarithmic representation of prior belief), and the exponent δ controls

for the influence of lieklihoods (i.e., the non-logarithmic representation of

the likelihood of the evidence). The power model defines conservatism as

ρ > δ and base-rate neglect as ρ < δ. The power model is nonlinear and

operates in odds space, not log-odds space (see Supplementary material B

for more information). The logarithmic transformation of the power model

yields L̂Oposterior = ρ × LOprior+δ × L3evidence , which is equivalent to Equation 4,

with ρ replacing γ and δ replacing λ − γ .
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FIGURE 3

ABC prior-to-posterior transformations and KL divergences for di�erent values of γ (0.0, 0.5, 1.0, 1.5, 2.0) for fixed λ = 2. For γ = λ
2
= 1 (green

lines), the ABC posteriors are exactly equivalent to the Bayesian posteriors (hence, all pointwise KL divergences are 0). (Top row) Prior-to-posterior

transformations in log-odds space. (Middle row) Prior-to-posterior transformations in probability space. The blue horizontal lines in the middle row

indicate the two levels of evidence used [overweighted since here γ = 2 (blue lines)]. (Bottom row) Pointwise KL divergences between Bayesian

and ABC posteriors (see Supplementary Equation S.D1 for definition). The dotted vertical lines at prior=0.15 indicate the specific (mean) prior

probability used in the current study. Colors correspond to specific γ values in the ABC model: Blue: γ = 0.0 (mimics complete base-rate

neglect), orange: γ = 0.5, green: γ = 1.0 (i.e., the Bayesian norm), red: γ = 1.5, and purple: γ = 2.0 (mimics extreme conservatism). Note the

inverse S-shaped curvature of the PWF for γ ≤ λ
2
and the S-shaped curvature of the PWF for γ ≫ λ

2
.

belief updating without sacrificing the Bayesian norm of equally

weighted contributions from priors and evidence.

In summary, the generalized ABC model, defined by

Equation 4, provides an adaptive framework for Bayesian

inference. Distinctive features of the ABC model include its

use of log odds transformations to simplify the integration

of probabilistic information and its parameter flexibility,

where γ and λ − γ provide fine-grained control over

the influence of priors and evidence. This extends its

applicability beyond traditional descriptive Bayesian models

(Gigerenzer and Murray, 1987; Anderson, 1990; Oaksford

and Chater, 2007; Griffiths et al., 2010, 2024) for a more
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nuanced contextual representation of the influence of priors

and evidence.

The generalized ABC model, defined by Equation 4, can be

seamlessly integrated with recent meta-analytic results. These

provide empirical estimates of the weights assigned to priors and

evidence in sequential urn tasks (Zhu et al., 2023), in which

balls are drawn one at a time from an urn while beliefs about

the underlying probabilities are repeatedly updated during the

sequence of observed outcomes. From the perspective of the

generalized ABCmodel, γ captures reliance on prior beliefs, while

λ−γ adjusts the weight assigned to evidence, reflecting variations

in cognitive resources and task demands. The meta-analytic

results, which synthesize data from several such studies, show

that individuals tend to assign high weights to priors (γ
=urn

≈

0.90 . . . 0.95) and comparatively lower weights to evidence (λ −

γ
=urn

≈ 0.33 . . . 0.471), based on inverse variance-weighted

mean regression coefficients across studies. As expected, these

results confirm a tendency toward conservative Bayesian updating,

with belief updating heavily influenced by priors, reflecting the

conservatism bias. From the perspective of the generalized ABC

model, the analyses also indicate the need for a flexible λ parameter

with estimated values of λ > 1 (λ = γ
=urn

+ ( λ − γ
=urn

) ≈

1.23 . . . 1.42), highlighting the context sensitivity of both ABC

model parameters. These meta-analytic findings support the notion

that both γ and λ are dynamic and adapt to the task context.

This integrated framework highlights the importance of further

empirical investigation to disentangle the distinct contributions of

γ and λ in different task contexts.

According to the ABC model, probabilistic reasoning is

inherently Bayesian. However, it is influenced by resource

constraints that create biased competition between priors and

evidence. Rather than discarding Bayesian logic, individuals pay

more attention to the prior or likelihood, which is influenced

by cognitive limitations and contextual cues. When tasks present

transparent statistical information, such as in urn problems, people

tend to integrate priors and evidence more evenly. In contrast,

when diagnostic details are vivid and base rates are less salient,

as in cab problems, attention shifts toward the likelihood, leading

to underweighting of priors. A solid body of empirical findings,

including those presented here (see Table 3 in particular), shows

that context determines which source dominates the competition

for finite processing resources. This makes apparent deviations

from Bayesian updating adaptive approximations.

The ABC model posits that heuristics emerge from a Bayesian

inference system operating under resource constraints. In this

model, contextual salience biases an attentional “competition”

between priors and evidence rather than marking a categorical

departure from normative Bayesian reasoning. Based on

Gigerenzer and Gaissmaier’s (2011) concept that heuristics

essentially conserve effort by disregarding information, as

well as the biased competition metaphor from attention research

(Desimone andDuncan, 1995), the ABCmodel considers heuristics

to be approximate Bayesian computations. In these computations,

attention is drawn to the most salient cues when cognitive or

contextual pressures are present. When processing capacity is

limited, an attentional mechanism prioritizes either priors or

likelihoods based on factors such as salience, framing, or ease of

retrieval. Representativeness, for example, often dominates in cab

problems at the expense of base-rate information. In contrast,

in urn problems with a clearer probabilistic structure, attention

is distributed more evenly. Thus, what appear as “irrational”

shortcuts are reframed as adaptive, boundedly rational allocations

of limited processing resources within a Bayesian architecture (see

also Lieder and Griffiths, 2020).

In conclusion, within the ABC framework, heuristic reasoning

(e.g., representativeness) is not qualitatively different fromBayesian

reasoning (Gigerenzer and Brighton, 2009). Rather, heuristic

reasoning reflects approximate Bayesian computation under

resource constraints (Lieder and Griffiths, 2020). Limited cognitive

resources induce biased competition between priors and evidence,

which is determined by contextual salience. Thus, what appear as

heuristics are simply cases where attention is preferentially directed

toward certain cues, yielding adaptive yet bounded Bayesian

inference (Lieder and Griffiths, 2020).

Comparison with other models reveals both overlaps and

differences. The confidence-based model (Meyniel et al., 2015) also

emphasizes weighting priors and evidence based on confidence,

with the confidence variable similar to the role of γ in the ABC

model. However, the confidence-based model treats confidence

separately, whereas the ABC model uses weighted log odds

transformations for simplified integration. The context model

(Butz et al., 2025) extends Bayesian inference by embedding

temporal and contextual dependencies in the priors. While the

ABC model allows for context sensitivity through the γ term, it

does not explicitly model sequential dependencies in its current

form, focusing more on static belief updates. Predictive coding

models (Spratling, 2017) minimize prediction errors and rely on

iterative error correction. However, predictive coding emphasizes

continuous feedback loops, whereas the ABC model operates

with more discrete contextual updates. Resource-rational models

(Lieder and Griffiths, 2020; Zhu et al., 2023), which consider

cognitive constraints, overlap with the ABC model in that γ

and λ − γ adjust belief updates not only to task demands but

also to cognitive constraints. Kalman filter models (Kang et al.,

2024), often used for sequential updating, share similarities with

the ABC model in their modulation of priors and evidence, but

are more specifically designed for dynamic environments. Active

inference models (Friston et al., 2017), which integrate actions into

the Bayesian framework, share similarities with the ABC model in

terms of hierarchical inference and dynamic weighting. However,

the ABC model is a purely inferential framework without the

aspect of action selection. In summary, while the ABC model

shares basic principles with models such as the confidence-

based model, the context model, and others, its computational

simplicity and precision, and its adaptability and generalizability

via parameterized weighting make it a versatile and appealing tool

for exploring context-dependent probabilistic cognition and belief

updating within the Bayesian framework.

Metacognitive rules appear to dynamically adjust weighting

parameters—perhaps reflecting how cognitive resources and

contextual relevance interact with ecological sampling (Fiedler

and Juslin, 2006)—thus aligning human judgment under

uncertainty with both environmental demands and internal

capacity constraints. The ABC model integrates related models of

metacognitive learning (Binz et al., 2024), such as efficient coding

(Bays, 2024) and reinforcement learning (Lebreton et al., 2019;
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Steinke et al., 2020; Held et al., 2024), by framing perceptual biases

and cognitive control strategies as adaptive Bayesian processes.

The model of online metacognitive control of decisions (Bénon

et al., 2024) and the model of context-dependent adaptability of

Bayesian inference in perception (Bévalot and Meyniel, 2024)

complement the ABC model by framing decision making as an

adaptive Bayesian process and emphasizing the context-dependent

adaptability of resource allocation.

Study limitations and future directions

TheABCmodel presented in this work is not a priori, but rather

a posteriori. It emerged from reflection on a specific set of empirical

findings. In the context of this study, the model functioned as an

explanatory post-hoc account rather than a prescriptive, formalized

computational model. The model’s primary contribution is

providing a transparent, mechanistically motivated framework that

unifies decades of empirical phenomena, particularly those related

to conservatism, base-rate neglect, and probability weighting,

under the conceptual principles of γ-mediated contextual demands

and λ-mediated resource constraints.

As one reviewer noted, two important limitations must be

acknowledged. First, the model lacks formal parameter estimation.

Second, it has not been subjected to direct, head-to-head

comparisons with alternative models to assess quantitative fit. This

work does not claim to offer the definitive or “best” account

of the empirical phenomena in question. Rather, it represents

an early stage of scientific progress: the development of a

mechanistic synthesis that can serve as a generative framework for

future research.

Scientific advancement in computational modeling typically

proceeds in two phases: (1) an exploratory phase, in which

models are developed through a posteriori theorizing about

empirical observations and (2) a confirmatory phase, in which

models are formalized, parameters are estimated, and rigorous

model comparisons are conducted to evaluate their empirical

adequacy. The present work clearly resides within the first phase.

However, advancing a coherent conceptual synthesis is not merely

a preliminary step; it is a precondition formeaningful formalization

and exhaustive model evaluation.

Future research should aim to embed the ABC model

within a broader computational program and systematically

formalize its assumptions, particularly those concerning the rules

of contextualized meta-learning about the utility of information

across diverse environments. This refinement should include

the formal parameterization of the context-dependent weighting

parameter, γ, and potentially, λ. There should be a specific

emphasis on deriving a priori predictions. Furthermore, as

Howe et al. (2022) suggested, this effort should extend beyond

pointwise probabilities to the formal consideration of full

probability distributions.

One critical aspect of future work will be articulating

principled, generalizable rules for determining context-dependent

adjustments to γ and λ. According to the ABC model, competitive

weighting arises from two interacting sources: (1) limited cognitive

capacity, which necessitates prioritizing relevant inputs, and (2)

environmental variability, which requires adaptive strategies for

emphasizing the most reliable, precise, or valid information

available. Understanding the interplay between stability (reliance

on priors) and flexibility (evidence-based updating) is key to

explaining how cognitive systems navigate complex and uncertain

environments—a balance likely shaped by evolutionary pressures.

In summary, although rigorous quantitative model evaluation is an

essential next step, the present work is intended as a conceptual

foundation to facilitate subsequent computational formalization

and empirical testing.

The γ + (1 – γ) = 1 constraint applies to a single inference

episode, during which all cognitive resources are devoted to the

task at hand. In this case, paying more attention to evidence

necessarily reduces attention to priors.When resources are not fully

engaged, such as during lapses, shallow processing, multitasking,

or divided attention, that is captured by λ < 1. This allows total

weights to drop below unity. These dynamics warrant further

empirical investigation.

One reviewer noted that today’s posterior becomes tomorrow’s

prior. First, a piece of information is integrated as new evidence

with weight 1–γ. Then, it is reentered as the prior with weight γ in

the next update. In practice, any underweighting or overweighting

of evidence carries forward and compounds over successive

updates. If γ is low, new data are consistently up-weighted when

first observed and down-weighted when recycled as the prior. If

γ is high, the opposite occurs. This temporal cascade illustrates

how slight variations in γ can result in significant dynamic effects

over time when considered in discrete steps. It also suggests that

incorporating γ into genuinely sequential tasks, as opposed to one-

shot problems like the present ones, is a critical area for future

research, possibly including the allowance of dynamic changes in

γ itself.

One reviewer argued that the apparent divergence in bias—

conservatism in urn problems vs. base-rate neglect in cab

problems—may stem less from differences in inferential structure

and more from surface-level complexity. In particular, both tasks

require integrating a prior probability with new evidence; however,

urn problems nest one probability within another (“proportion of

urns” × “proportion of balls”), while cab problems present two

independent probabilities side by side. However, if this type of

complexity alone drove the effects, one would expect a uniform

decline in accuracy in the more complex situation rather than

systematic shifts in judgment direction. Consequently, the findings

do not seem to support explanations of the observed biases

based on complexity. Future work should directly and carefully

manipulate complexity across both task types to isolate its impact

on reasoning performance.

The study used a relative frequency format instead of the more

common absolute frequency format used in Bayesian reasoning

research. Absolute frequencies are known to facilitate probabilistic

reasoning because they align more closely with how people

naturally process information. Therefore, the current findings

should be interpreted with caution when generalizing to contexts

that use absolute frequency formats. Further research directly

comparing these two formats would clarify their respective effects

on reasoning performance.

Future research should focus on uncovering the principles of

context-dependent strategy formation that govern the allocation

of cognitive attention for probabilistic integration, allowing
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quantitative a priori predictions of weighting parameters

across contexts and individuals. This includes applications to

psychological disorders and neurological diseases, shedding

light on individual differences (Boos et al., 2016) and

clinical impairments (So et al., 2016) in human judgment

under uncertainty.

Concerning individual differences, in the ABCmodel, γ reflects

the degree to which individuals prioritize priors over new evidence.

As shown in this study, urn tasks yield higher γ-values, reflecting

conservative updating, while cab tasks produce lower γ-values,

indicating base-rate neglect. Boos et al. (2016) applied hierarchical

Bayesian modeling to estimate γ separately for each participant

and task, assuming these individual γi values were drawn from

a shared group-level distribution [γi ∼ Beta(α, β), where α and

β are weakly informed]. This approach demonstrated that γ

varies systematically across task types and revealed substantial

inter-individual variation. Such hierarchical modeling outperforms

parameter-free or fixed-group γ models, offering superior fit and

richer insight into cognitive strategies in probabilistic inference.

Therefore, individualizing the ABC model through participant-

specific γi parameters and appropriate hierarchical modeling

is a crucial step for future research on probabilistic belief-

updating behavior.

Future research should also explore the neuropsychological

underpinnings of the ABC model, examining psychopathological

patterns of belief updating and their neural correlates (Murphy

et al., 2024). In this way, the ABC model could become a valuable

framework for linking Bayesian cognition to its neural substrates

(Kopp, 2008; Kopp et al., 2016; Seer et al., 2016; Lin and Garrido,

2022), providing insights into both normal and disordered brain

function (Kopp, 2025). This approach has the potential to advance

reverse engineering of the neural mechanisms underlying adaptive

Bayesian cognition and discover the computational and neural

underpinnings of the Bayesian brain (Knill and Pouget, 2004;

Kolossa et al., 2015; Lin and Garrido, 2022).

Conclusions

The ABC model frames probabilistic biases, such as base-

rate neglect and conservatism, as adaptive responses to cognitive

constraints and contextual demands rather than as irrational

departures from Bayesian norms (Gigerenzer and Murray, 1987;

Anderson, 1990; Oaksford and Chater, 2007; Griffiths et al., 2010,

2024). According to this perspective, the apparent underweighting

or overweighting of priors stems from the flexible modulation

of Bayesian updating. When evidence is highly salient, priors

may be down-weighted, resulting in base-rate neglect. Conversely,

when evidence is weak or noisy, priors may dominate, leading to

conservatism. This competition for limited attentional resources

is similar to cue competition in associative learning, such as

Kamin’s blocking, and aligns with formal associative accounts,

like the Rescorla–Wagner model (Rescorla and Wagner, 1972;

Juslin et al., 2008; Kopp et al., 2002). This yields non-linear

probability weighting as an emergent property of adaptive,

capacity-limited integration.

Within the ABC framework, two parameters govern how

attention is allocated between prior information and likelihood

evidence: γ , which captures contextual demands, and λ, which

captures resource limitations. Specifying priors over γ and λ

allows one to generate specific candidate models tailored to

particular tasks or individuals, which can then be formally

compared (e.g., via Bayesian model comparison). This approach

enables both empirical validation and iterative refinement, as well

as an explanation of variability in reasoning. What appear as

opaque heuristics or biases become principled, resource-rational

approximations that are tuned by task structure and individual

capacity constraints.

The model predicts that shifts in framing or cognitive load

will systematically alter the relative weighting of priors and

evidence, thereby reproducing known bias patterns in simulations

of resource-rational inference (Lieder and Griffiths, 2020). The

model also suggests that decision aids can mitigate distortions by

directing attention to underweighted information and ensuring

the balanced integration of all information. These interventions

test ABC’s predictions and offer a practical means of improving

judgment under uncertainty. Therefore, future research should

aim to infer distributions over γ and λ in specific contexts or

populations, compare ABC-based models against alternative

explanations, and examine how interventions change effective

attention allocation.

The ABC framework advances our understanding of human

reasoning and guides the design of systems that support

more accurate decision-making by recasting probabilistic

biases as adaptive Bayesian approximations under cognitive

constraints. Furthermore, this Bayesian process model

provides a simpler explanation for cognitive biases than

the dual-process models that currently dominate cognitive

science’s approach to biases (Kahneman, 2003). It eschews

the idea of separate systems in favor of a unified, resource-

rational explanation of how attentional allocation leads to

biased behavior.
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