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Objective: In response to the challenges posed by mental health issues

among college students and the declining quality of campus environments,

this study aims to reveal the complex mechanisms underlying the relationship

between campus audiovisual environments and the quality of students’ attention

recovery. It further explores campus landscape optimization pathways driven by

multi-source data, providing scientific basis for sustainable campus planning.

Methods: Taking Fuzhou University Town as a case study, this study integrates

machine learning technology with multi-source data (street view images, social

media text, and PRS-11 questionnaires) to construct a “multi-modal perception

mechanism analysis-dynamic evaluation iteration” framework. The CNN-BiLSTM

model was used to predict attention recovery quality, combined with HRNet

semantic segmentation, GBRT soundscape prediction, and CSV-T4SA sentiment

analysis models to quantify audiovisual elements. XGBoost models and SHAP

interpretability analysis were employed to reveal the e�ects and interaction

mechanisms of variables.

Results: (1) Attention recovery quality is significantly higher in liberal arts and

agricultural/forestry universities than in science and engineering universities,

with boundary e�ects and the synergistic design of humanistic soundscapes

being key factors; (2) SHAP analysis identifies humanistic soundscapes, natural

soundscapes, and color complexity as core influencing factors, with their e�ects

exhibiting significant threshold characteristics; (3) Linear interactionmechanisms

among audiovisual elements are discovered, such as the interaction between

vegetation density and building enclosure degree enhancing recovery e�cacy,

and the synergistic design of musical soundscapes and paving materials can

optimize perceptual experiences.

Conclusion: By innovatively integrating multi-source data and machine

learning techniques, this study systematically analyzes the relationship between

campus audiovisual environments and attention recovery, breaking through

the limitations of traditional linear analysis. The proposed “threshold response

design” and “cross-modal collaborative optimization” strategies provide a new

paradigm for campus planning, validate the scientific value of multi-sensory
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interaction design for mental health promotion, and o�er a transferable

methodological framework for global university environmental upgrades.

KEYWORDS

Fuzhou, healthy campus, attention recovery, spatial perception, machine learning

1 Introduction

1.1 The real background of mental health
crises among college students

Reports from colleges and universities around the world say
that college students are having various mental health problems
(Karyotaki et al., 2020). A report from 2022 on the mental health of
Chinese college students says that almost 80,000 students in China,
aged 15–26, feel like their lives are full of doubt and instability.
They face multiple pressures, including shifts in their lifestyles and
learning methods and intense competition for higher education
and jobs, along with various other challenges (Fu et al., 2023). The
four dimensions of Attention Restoration Theory (ART)—being
away, extent, fascination, and compatibility—have been shown to
help students’ cognitive fatigue (Ma et al., 2023). Natural elements
on campus, such as soundscapes and green areas, can make this
happen. The quality of the campus setting is facing two problems
at the same time, which makes this figure even more important
as Chinese universities continue to grow. First, the amount of
green space built into new buildings has gone down from 35%
in 2010 to 28% in 2020 (www.pishu.com.cn). Second, the amount
of road noise on campus has gotten 6.2 decibels louder since last
year (Wang et al., 2010). As of 2018, China had 2,663 general
higher education institutions. These schools are home to 38.33
million college students who live, study, and do research on sites
across the country. Based on this size, China is the world’s largest
provider of higher education. Cuijpers et al. (2019) did a study of
college students and found that most of them were bored with the
mental health services their schools offered and felt uneasy about
asking psychological questions. Campuses of universities are not
only where students do most of their daily activities, but they are
also excellent places for organized social interaction, learning, and
communication, and they have a lot of potential to improve mental
health. As a result of making improving students’ mental health a
national priority, it is now more important than ever to give them
effective ways to deal with mental tiredness.

1.2 Environmental health theory and
current research

High-quality campus landscapes are an important part of
ecological city construction and campus habitat. They not only
meet the basic needs for ecological, aesthetic, and public activities
but also play a crucial role in supporting the environment necessary
for college students to study and live, thereby aiding in the
recovery of student attention (Malekinezhad et al., 2020). Previous
research indicates that greater perceived greenness is associated

with an improved quality of life among students. Additionally,
the restorative characteristics of certain campuses are shown to
be significantly influenced by mediating factors (Hipp et al.,
2016). Natural environments in campus spaces can foster enjoyable
experiences, enhancing students’ engagement in learning and
participation in campus activities (Hipp et al., 2016; Hajrasouliha,
2017). These settings also support emotional regulation and
contribute to maintaining mental health (Kexin et al., 2024).
However, extant research frequently focuses on the restorative
attributes of specific campus areas and primarily examines
public space design, including green spaces and waterfront
areas. In order to comprehensively understand the restorative
potential of campus environments for student mental well-being,
we draw upon three complementary theoretical frameworks.
Attention Restoration Theory (ART) (Kaplan, 1995) provides a
cognitive perspective, positing that exposure to natural settings
can mitigate attention fatigue and enhance cognitive function
through four key mechanisms: being away, extent, fascination,
and compatibility. Stress Reduction Theory (SRT) (Ulrich, 1983)
offers a psychophysiological perspective, suggesting that natural
environments rapidly reduce psychological distress and negative
affect by eliciting positive emotional responses and reducing
physiological arousal. The Biophilia Hypothesis (Kellert and
Wilson, 1995) provides an evolutionary perspective, proposing
an innate human affinity for nature, where natural elements
inherently attract attention and foster positive psychological states.
Critically, attention restoration (a core outcome of ART) serves as
a measurable indicator of the cognitive recovery process, which is
intrinsically linked to broader mental health outcomes targeted by
SRT and underpinned by the biophilic connection. For instance,
sustained attention fatigue is a recognized precursor to stress
and diminished well-being, while restored attention facilitates
coping and engagement. Therefore, assessing attention recovery
quality provides a focused and empirically tractable lens through
which to evaluate the broader restorative benefits (encompassing
stress reduction and biophilic fulfillment) of campus audiovisual
environments on student mental health. However, despite the
synergy between these theories, extant research has been deficient
in conducting a comprehensive, multidimensional analysis of
the restorative attributes of campus environments, particularly
integrating both auditory and visual perception within this
combined theoretical framework (Lu and Fu, 2019).

1.3 Current status of audio–visual
interaction research

While many studies acknowledge that perceptual restoration
in humans arises from both visual and auditory stimuli, current
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research has primarily concentrated on visual perception (Liu
et al., 2018; Yilmaz et al., 2023). Soundscape, as defined by the
International Organization for Standardization (ISO), refers to
the acoustic environment as experienced by individuals within a
specific context. This definition highlights its critical importance
in interpreting the surrounding environment, which plays a
fundamental role in promoting public health and overall well-
being. For example, White et al. (2010) demonstrated that natural
sounds have a significant impact on restoration outcomes. In
addition, human-generated noise, such as traffic noise, sounds of
mechanical activities, and human chatter, for example, adversely
affects public health. Li et al. (2024) explored how three different
spatial configurations of water sound influenced the perception
of traffic noise, employing a portable electroencephalogram to
capture participants’ brain activity. Although existing research
has revealed the synergistic effects of audiovisual interaction
on human perception recovery (Lindquist et al., 2016; Chen
L. et al., 2024), currently, research on the interaction between
audiovisual interaction and health benefits has mainly focused on,
for example, how urban park soundscapes promote psychological
and physiological recovery in children to a certain extent
(Shu and Ma, 2020), the objective is to identify the structural
characteristics of urban forest sound sources and to explore the
differences in soundscape characteristics of landscape spaces and
their influencing factors (Zhao et al., 2022), Audio information
influences perceptions of the naturalness of urban landscapes (Jeon
and Jo, 2020), and understanding how audiovisual interaction
specifically influences students’ perceptual recovery and health
benefits in university green spaces (Ma et al., 2023). The current
research paradigm still faces three key limitations: First, in terms
of research objects, most studies focus on natural-dominated
environments such as urban parks and forests (Shu and Ma,
2020; Zhao et al., 2022), while neglecting university campus
environments with unique cultural attributes and functional zones.
Different college buildings, historical areas, and teaching spaces
combine sounds and visuals in very distinct ways, and we haven’t
yet fully analyzed how people perceive these combinations in this
educational setting. Second, due to the lack of efficient research
methods for large-scale acquisition of audiovisual elements and
soundscape features, these studies have certain limitations in terms
of depth and breadth. This situation further highlights the necessity
of deepening research on the relationship between audiovisual
interaction and environmental restoration in different universities
and their campus cultural contexts to comprehensively enhance our
understanding of their interactive mechanisms and their impacts in
diverse campus and cultural landscapes. We have comprehended
the precise impact of audiovisual interaction on the restoration
of students’ perception and the health advantages in university
green spaces.

To effectively assess audiovisual impacts in different
environments, the high cost and small scale of current methods
have been addressed to some extent. However, the difficulty of
controlling the quality of these data suggests the need to investigate
new data sources for sound level assessment (Hsieh et al., 2015;
Verma et al., 2019; Gasco et al., 2020). In the context of research
methodologies and framework development for understanding
its influence mechanisms, advancements in machine learning

techniques and the proliferation of social media platforms have
opened new avenues for studying Attention Recovery Perception
among college students. These innovations significantly enhance
the efficiency of data collection and the analysis of complex
metrics. On this basis, many studies have analyzed the coupled
relationship between the environment and human emotions using
machine learning methods and user-generated content (UGC),
such as the GBDT model (Ma et al., 2023), XGBoost (Chen Z.
et al., 2024), and Word2vec (Zhang et al., 2023). The current
standardized evaluation system using big data is yet to be further
developed, for example, there are difficulties in how to adopt a
flexible and dynamic strategy on data collection, processing and
model training in the rapidly changing environment of social
media. Therefore, there is an urgent need to develop an urban
audiovisual prediction and assessment framework that can be
accurately assessed, low-cost, large-scale and high-resolution,
enabling design practitioners and managers to better utilize the
big data environmental assessment model, thus improving the
efficiency of university college renewal planning and further
enhancing the ease of use of contemporary experimental methods
and the practicability of experimental results.

1.4 Research objectives

To address the lack of research on the relationship between
audiovisual perception and attention recovery on university
campuses, this study selected a university town in Fuzhou, China,
as its research site. Utilizing machine learning technology, the
study focused on two key research questions: first, to reveal how
audiovisual perception in campus environments influences the
quality of attention recovery among university students through
complex mechanisms; second, to conduct an in-depth analysis of
the dynamic impact of audiovisual environments on this recovery
process. Current related studies lack structured frameworks
and interdisciplinary evaluation systems, and they overlook the
interactive effects between audiovisual perception and attention
recovery. Based on this, this study sets the following objectives:
(1) to explore the complex mechanisms through which campus
audiovisual perception influences attention recovery, adapting to
changes in the digital environment through data collection and
model training; (2) to construct an interdisciplinary evaluation
framework, integrating machine learning methods to study
the relationship between audiovisual perception and attention
recovery, and providing data support for related research; and (3)
to propose sustainable planning recommendations, optimizing the
design of Fuzhou University campus based on research findings,
and supplying reference for global campus planning.

2 Methodology and data

2.1 Research area

Fuzhou, the capital of Fujian Province in China, is home to
Fuzhou University Town, located in Shangjie Town, Minhou
County. This multi-functional park seamlessly integrates
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FIGURE 1

Study area.

education, culture, ecology, and daily life. Currently there
are 13 colleges and universities, including Fuzhou University,
Minjiang College, Fujian University of Technology, Fujian
Medical University, Fujian University of Traditional Chinese
Medicine, Fujian Jiangxia University, etc. This development
not only drives growth in the Shangjie area but also creates a
significant clustering effect in Jinshan New District. In terms
of location choice, Fuzhou University Town is located in the
strategic direction of the city’s westward development, with the
Qishan Mountain Range to the west and the Wulong River to
the east, providing a superior natural ecological environment.
In addition, the study area joins the Jinshan Campus of Fujian
Agriculture and Forestry University, which is known as an
“ecological garden university”. Guanyin Lake is the largest artificial
lake in the campus, which is also an important channel for
teachers and students to experience the natural landscape and
ecological culture, and it can provide a control experimental group.
Therefore, the study area includes Fuzhou University, Fujian
Normal University, Minjiang College, Fujian Medical University,
Fujian Jiangxia University, Fujian University of Traditional
Chinese Medicine, and Jinshan Campus of Fujian Agriculture
and Forestry University. Figure 1 shows the extent of the
study area.

2.2 Conceptual framework

To address the triple limitations of extant studies in campus
audiovisual restorative assessment—i.e., unimodal perception

limitation, linear analysis limitation, and static data limitation—
the present study integrates PRS-11, SVI, CSV, T4SA, soundscape
prediction, and geoanalysis methods through the innovative
framework of “multi-source perception fusion—non-linear
mechanism analysis—dynamic assessment iteration.” The
integration of T4SA, soundscape prediction, and geoanalysis
methods (Figure 2) has been shown to produce a synergistic
effect. The experiment integrates the unique strengths of various
machine learning methods and proposes a system that can be
regularly run offline or online by continuously learning from
streaming social media data. The “Cross-modal Distillation
Paradigm for Constructing Sentiment Perception (CSV-T4SA)”
was combined with Trueskill Matching Perception computation
(Allouche et al., 2006). The experiment was followed by the
utilization of Hrenet and Matlab high-resolution and compatible
processing to ensure the quantification of landscape image quality.
Concurrently, computer vision is employed to extract the visual
features of SVI at four levels: pixel-level features, object-level
features, semantic-level features, and scene-level features. These
features are then utilized to construct a soundscape prediction
model, in which the SVI features and soundscape labels are
employed as inputs to train a Gradient Boosted Regression
Tree (GBRT) model. The resultant soundscape of cities can
be mapped by feeding city-scale SVI features into the learning
model (Zhao et al., 2023). Finally, ArcMap software verifies the
autocorrelation between different variables and spaces through
its spatial autocorrelation analysis and hotspot analysis, which
ensures the visibility and readability of the results. Finally,
the XGBoost and SHAP algorithms were used to thoroughly
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FIGURE 2

Theoretical framework.

examine the reasons behind the changes in the quality of
attention restoration.

2.3 Variable selection

To ensure objectivity in selecting experimental metrics and
facilitate meaningful comparison with peer studies, we conducted a
review of key publications on the topic from the past decade. From
this, we identified quantifiable metrics of attentional restorative
perception (ART) used in relevant studies and enhanced them with
experimental innovations.

Among existing studies, Attention Restoration Theory
identifies four key factors for evaluating restorative environments:
Being-away, Extent, Fascination, and Compatibility. These factors
provide valuable conceptual frameworks for understanding
restorative perceptions of physical environments. The notion of
Being-away, for example, allows individuals to mentally detach
from the stressful environments frequently encountered in daily
life (Kaplan, 1984). Lee et al. (2015) further demonstrated that
briefly observing the outside world during a break can facilitate
mental relaxation. Extent aids in cognitive recovery by fostering
a sense of engagement and immersion. Certain studies have
classified this concept into coherence and scope. Coherence
describes the systematic alignment and interrelation of elements
within a scene, whereas scope highlights the possibilities offered
by the environment for discovery and participation, enhancing
the perception of spatial profundity (Hartig et al., 1997). Each
factor aids in the development of a cognitive environmental
framework that promotes active participation and deep focus.
Kaplan (1995) defines fascination as an innate attraction to the

environment, allowing individuals to engage without draining

their attentional capacity or requiring the recovery of depleted
cognitive resources. Compatibility is characterized by the harmony

between an individual’s goals and the activities facilitated by the

environment. It relies on the individual’s capacity to adjust to
their surroundings and remains adaptable over time (Celikors

and Wells, 2022). As this research emphasizes the visual attributes
of the environment, factors associated with compatibility were

excluded from the variable selection process. Tree canopy density
and views of greenery through windows have been shown to

exhibit a strong positive relationship with the well-being, life
satisfaction, and academic success of college students (Markevych

et al., 2017). Paths with level surfaces and hard sidewalks attract
students engaged in dynamic sports such as walking, running,

and biking (Holt et al., 2019). However, certain students prefer

water-rich areas for exercise (Massoni et al., 2018). Additionally,
the openness of the scene and the presence of artificial amenities

can also influence individuals’ emotional responses (Kotabe et al.,
2017). And it has been mentioned in the introduction that the

sounds of nature, traffic, mechanical activities, and human chatter
have some impact on people’s physical and mental health.

First, we adopted the PRS-11 scale proposed by Laumann to

assess the “Being-away,” “Coherence,” “scope,” and “Fascination” in

campus restoration effects (Laumann et al., 2001). To establish the
experimental ecological validity of attention recovery research, we

introduced a stress-inducing phase prior to the scale assessment:
participants were required to complete a 30-s positive mental

arithmetic stress test (two-digit multiplication), simulating real-
life stressors such as academic pressure to establish a baseline

state of individual attention resource depletion. This design
enables subsequent PRS-11 scale scores to effectively capture the
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TABLE 1 PRS-11 scale.

Restorative quality Descriptions Score (7-pointLikert scale)

Being-away “To stop thinking about the things that I mustget done I like to go to places like this.” poor 1–7 good

Coherence “It is easy to see how things are organized in this place.” poor 1–7 good

Scope “This place is large enough to allow exploration in many directions.” poor 1–7 good

Fascination “In this place, my attention is drawn to many interesting things.” poor 1–7 good

promotional effects of environmental characteristics on post-stress
cognitive recovery, aligning with the methodological framework of
attention recovery theory. Unlike traditional PRS scales, the PRS-
11 includes two indicators describing scope and three indicators
describing coherence and appeal. Drawing on Celikors’ research
(Celikors andWells, 2022), we selected themost descriptive phrases
for each quality and asked participants to rate their agreement
with the image descriptions on a scale from 1 (strongly disagree)
to 7 (strongly agree) (Table 1).This operational procedure ensures
that the scale measures immediate environmental perception
responses following stress exposure, rather than routine judgments
under steady-state conditions. The final questionnaire achieved a
Cronbach’s alpha coefficient of 0.815 (Table 1), primarily capturing
the cognitive restorative dimensions outlined by ART (Being-away,
Coherence, Scope, Fascination). To enhance ecological validity and
align with the stress-inducing contexts relevant to SRT, participants
performed a 30-s active mental arithmetic stress test prior
to the questionnaire, simulating real-life academic pressures to
establish a baseline state of attention resource depletion. Secondly,
acknowledging the notion that positive emotional responses (a
fundamental mechanism in SRT and an outcome associated with
biophilia) can mediate or co-occur with attention restoration (Ma
et al., 2023). For this reason, the assessment of “college students’
positive emotions” in this experiment utilized the CSV-T4SA cross-
modal distillation paradigm, which was specifically pre-trained
with multimodal (social platform text combined with image data)
to construct a model of sentiment perception. In conclusion, to
achieve a more accurate assessment of the visual experiences of
university students, we integrated visual analysis metrics, including
Visual Entropy and Color Complexity, which were analyzed using
Matlab software. Thesemetrics were used to assess the visual quality
of the landscape configuration (Table 2).

Furthermore, objective visual (e.g., Vegetation Density,
Waterscape proportion, Openness) and auditory metrics (e.g.,
Natural Sound proportion, Humanistic Sound proportion) derived
from SVI analysis serve as quantifiable proxies for the presence
of natural elements central to the Biophilia Hypothesis and
the restorative processes described by both ART and SRT. The
quantification of soundscape characteristics (e.g., Noise Intensity,
Musical Sound) further allows us to examine environmental factors
that may impede (SRT) or facilitate (ART, Biophilia) restoration.

2.4 Data acquisition and processing

2.4.1. Baidu street view images (SVI)
In August of 2024, we obtained road network data of varying

levels from the OpenStreetMap (OSM) of Fuzhou City. The “Create
Grid” tool in ArcGIS 10.8 was utilized, with the OSM road network

topology serving as the foundation. This approach yielded a set of
evenly spaced 50-meter sampling points (Ogawa et al., 2024). The
conversion of these points was executed through the utilization of a
projection coordinate system, a method that ensures the precision
of planar distances, with the road centerline serving as the reference
point. To guarantee the geographical accessibility of the sampling
points, BaiduMaps’ route planning API verified that all points were
situated on public roads. Subsequently, the Baidu Street View Static
Map API (version v3) was employed to retrieve historical street
view images corresponding to the sampling points. The images
under consideration were collected by Baidu between June and
October of 2021, 2022, and 2023.In order to ensure consistency
with regard to lighting and vegetation conditions (such as leaf
density), only images captured between 9:00 a.m. and 5:00 p.m.
local time were extracted. This was done to minimize the impact of
varying lighting conditions on image quality. Uniform parameters
were established, and Baidu Street View Static Map API (version
v3) was utilized for image crawling. The parameters encompass
an image resolution of 1,600 × 1,200 pixels, a horizontal field of
view of 90◦, a vertical field of view of 30◦, and a camera height
of 2.5m. This configuration was utilized to simulate a pedestrian’s
perspective. At each sampling point, four images were collected in
the compass directions of 0◦ (north), 90◦ (east), 180◦ (south), and
270◦ (west).These images were then stitched into a 360◦ panoramic
image using the OpenCV 4.5 stitching module. Consequently, the
discrepancies in images and deviations in sampling are manually
verified. Two processors independently assess the sampled images,
removing blurry images and overly exposed images, and verifying
the exclusion of non-traditional campus roads, such as highways
and construction-closed roads.

2.4.2. Cross-modal distillation paradigm for
constructing emotion perception models
(CSV-T4SA)

The CSV-T4SA model, constructed by Serra et al. (2023), is
an automated sentiment polarity classification model based on a
cross-modal distillation paradigm, specifically for visual sentiment
analysis of social media images. The core of the model is to utilize
multimodal (text + image) data to predict the sentiment polarity
of images by using the output of a textual teacher model to guide
the training of a student model on the visual modality. As user-
generated content (UGC) data on social media continues to grow
and change, themodel can be adapted to new data distributions and
features through continuous learning and updating. This allows
the model to maintain its sophistication and accuracy, serving the
field of social media sentiment analysis for a long time. When
tested on fivemanually labeled benchmarks, themodel outperforms
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TABLE 2 Research element breakdown table.

Research components Research metrics Metrics description Quantitative approaches

Dependent variable Attention restoration quality Attention restorative quality score in campus
landscape

Trueskill/CNN-BiLSTM

Independent variables Visual sentiment index visual perception score in landscape perception CSV-T4SA

Color complexity Color diversity in images Matlab

Visual entropy Image entropy value Matlab

Independent variables Surface paving The proportion of surface coverage in the image HRNet

Waterscape The proportion of water feature in the image HRNet

Architectural enclosure The proportion of architectural enclosure in the
image

HRNet

Vegetation density The proportion of green plants in the image HRNet

Openness The proportion of sky in the image HRNet

Independent variables Natural sound The natural sound of streetscape image
prediction

GBRT

Humanistic sound The humanistic sound of streetscape image
prediction

GBRT

Mechanical sound The mechanical sound of streetscape image
prediction

GBRT

Musical sound The musical sound of streetscape image
prediction

GBRT

Traffic sound The traffic sound of streetscape image prediction GBRT

Noise intensity The noise intensity of streetscape image
prediction

GBRT

Sound quality The sound quality of streetscape image
prediction

GBRT

the current state-of-the-art. This demonstrates the accuracy and
reliability of the model in predicting image sentiment polarity.

2.4.3. Perceiving soundscape models from street
view images

The connection between soundscapes and human visual
perception has been shown to be substantial, with visual
characteristics derived using three separate pre-trained deep
learning models. At the pixel level, features such as hue,
saturation, luminance, and edge detection values were obtained
using algorithms from the OpenCV library. For object-level feature
extraction, the Faster R-CNN model (Ren et al., 2017), trained on
the COCO dataset (Lin et al., 2014), was utilized to detect and count
elements within 91 object categories, including pedestrians, buses,
and traffic signals. Semantic-level feature extraction was conducted
using the DeepLabV3+ model (Chen et al., 2018), trained on the
Cityscape dataset (Cordts et al., 2016), which classifies over 19
categories, such as vegetation, sky, and architecture, from ground-
level imagery. Additionally, to estimate scene attributes in SVI, the
ResNet model (He et al., 2016), trained on the Places365 dataset
(Zhou et al., 2015), was implemented. This dataset spans 365
scene types, including green parks, school buildings, gymnasiums,
canteens, libraries, and other areas related to campuses. Leveraging
SVI, this research investigates the interplay between visual
attributes and human perception, aiming to pinpoint critical visual

elements that elicit specific perceptual responses (Herzog et al.,
1976).

In this study, the pre-trained gradient boosted regression tree
(GBRT) model developed by Zhao et al. was used for campus
soundscape prediction, and the specific process included three
steps: First, pixel-level feature, object-level feature, Semantic-level
feature, and overall scenes were gathered from the campus street
scene data; second, the pre-trainedGBRTmodel was used to predict
where artificial sounds (like human voices) and natural sounds
(like bird songs and running water) would occur on campus.
Secondly, the pre-trained GBRT model is used to spatially predict
artificial sound sources (e.g., human sound activities) and natural
sound sources (e.g., bird songs, running water sounds) in the
campus; finally, the model performance is evaluated by using the
Mean Absolute Error (MAE = 0.152–0.372) and the Coefficient of
Determination (R² = 0.521–0.689), and the results show that the
model can efficiently capture the spatial distribution patterns of
different soundscape elements.

2.4.4. High Resolution Network (HRNet) for
semantic segmentation

The HRNet model, renowned for its robust generalization
ability and consistent performance in analyzing landscape element
data from images, is applied in this analysis. By integrating
high- and low-resolution convolutions simultaneously, the model
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TABLE 3 Explanation of semantic segmentation recognition.

Research metrics Calculation of metrics

Surface paving (SP) SP= (Ppaving / Ptotal) ∗ 100%, where SP is the
percentage of Surface paving, Ppaving is the
number of paving pixels, and Ptotal is the total
number of pixels in the image.

Water feature proportion (W) W = (Pwater/Ptotal) ∗ 100%, where w
represents the water feature proportion in the
image; Pwateris the total number of pixels
identified as water elements by the model;
Ptotal refers to the total number of pixels
identified in the image.

Architectural enclosure (A) A= (PEnclosure/Ptotal) ∗ 100%, where A is the
percentage of the buildings and walls;
PEnclosure is the pixel count for architectural
structures identified by the model; Ptotal is the
total pixel count in the image.

Vegetation density (V) V = (PVegetation / Ptotal) ∗ 100%, where V is
the vegetation coverage percentage; PVegetation
is the pixel count of green elements; Ptotal is
the total pixel count.

Openness (O) O= (PSky/ Ptotal) ∗ 100%, where O is the
openness value of the image; PSky is the
number of pixels identified as sky elements;
PTotal is the total pixel count in the image.

significantly improves the accuracy and efficiency of semantic
segmentation tasks. HRNet achieves state-of-the-art results across
various semantic segmentation benchmarks, including Cityscapes
and PASCAL Context. On the Cityscapes dataset, in particular,
HRNet outperforms other advanced segmentation models such as
DeepLabV3+ and PSPNet, demonstrating exceptional proficiency
in managing complex visual scenes (Sun et al., 2019). The model
excels in handling intricate semantic segmentation tasks while
maintaining relatively low computational requirements, making
it well-suited for processing large-scale datasets, such as campus
landscape images. During the experiments, HRNet effectively
extracted critical metrics, including openness, water view ratio,
green view proportion, paving consistency, and building enclosure
levels, from the images. The methodologies for calculating these
landscape element metrics are grounded in the work of Wu
et al. (2023), with the detailed computational procedures for each
indicator provided in Table 3.

2.4.5 Convolutional Neural
Network—Bidirectional Long Short Term Memory
(CNN-BiLSTM)

The rapid advancement of artificial intelligence has made deep
learning a pivotal tool for handling complex datasets. Among
the various models, Convolutional Neural Networks (CNNs)
(LeCun et al., 1989) and Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) are two of the
most commonly employed deep learning architectures. With the
swift progress of artificial intelligence, deep learning has become a
crucial tool for processing complex datasets. Convolutional Neural
Networks (CNNs) (LeCun et al., 1989) and Long Short-Term
Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997)
are among the most widely adopted deep learning architectures

in this context. Combining these two models to form the CNN-
BiLSTM architecture can simultaneously.

By leveraging their respective strengths, a prediction model
is achieved through the integration of Convolutional Neural
Networks and Bidirectional Long Short-Term Memory Recurrent
Neural Networks for classification tasks. Traditional machine
learning models, such as SVM and Naive Bayes, depend on manual
feature engineering, which limits their ability to effectively capture
complex patterns and deep features within text. In contrast, the
CNN-BiLSTM algorithm excels with higher recognition accuracy,
a lower average leakage rate, and reduced latency.

2.4.6 Image computing method based on
matching mechanism (Trueskill)

In order to construct a training dataset with relatively stable
and uniform standards, the Trueskill algorithm is used for labeling
the training samples. Trueskill was originally applied to Microsoft’s
game ranking system, which is a Bayesian scoring system that
generates overall ranking scores based on the cumulative results
of two-on-two matches and iteratively updates the scores based on
the most recent each two-on-two matches to generate new winners’
and losers’ rankings, thereby converting the binary comparison
results into continuous ranking scores (Minka et al., 2018). In this
study, the logic of Trueskill’s algorithm was used to design web
pages available for comparison operations, and the back-end of
the web pages were made available for participants to compare
their strengths and weaknesses on the front-end of the web pages
by randomly selecting street images from 2 sample points in
the training dataset. In this study, the comparison modules were
established according to the PRS-11 scale for each of the four
categories of distance, coherence, scope, and attractiveness, and
based on the winners and losers of each round of comparison,
the ranking results of all the training sample points in each of
the four modules were iteratively recorded and the corresponding
ranking scores were output. For the study, a random selection of
2,980 campus SVIs (∼20%) was made (Figure 3). In October 2024,
a total of 114 student evaluations were gathered through a 2-week
online survey, consisting of 54 females and 60 males, with ages
ranging from 20 to 24 years (mean age: 21.7 years). Participants
were asked, based on the PRS-11 questionnaire, to choose the
image that most closely matched the one described on our platform
(Figure 3). Finally, we experimented to predict the recovery quality
scores using the CNN-BiLSTM model and the overall campus SVI
recovery quality scores based on questionnaire data from 2,980
randomly selected campus SVI, of which 20% were used as the test
set and 80% as the training set. Meanwhile, we assessed the validity
of the model using mean square error (MAE) and coefficient of
determination (R²), with R² ranging from 0.841 to 0.964.MAE
ranging from 0.040 to 0.109.

2.4.7 Matlab visual entropy and color complexity
calculation

Matlab software, known for its strong compatibility, was
selected to compute Visual Entropy and Color Complexity from
the image data. In landscape visual perception research, Visual
Entropy is commonly employed to quantify the overall complexity
of an image, while Color Complexity is used to evaluate the impact
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FIGURE 3

Trueskill algorithm interface.

of color in landscape configurations on human perception levels.
Equation 1 (Stamps III, 2004) and Equation 2 (Zhou et al., 2015)
demonstrate the calculation principles of Visual Entropy and Color
complexity, respectively.

H (x) = −

n
∑

i=1

P(ai) ∗ log P(ai) (1)

(1) where: n is the number of regions or units with significant
boundaries, i is the divided region, P(ai) is the probability that
region ai (i = 1, 2, . . . , n) the probability of occurrence, and the
amount of information given as H(x) denotes the total amount
of information generated for the entire visual object consisting of
n regions.

CK = −

m
∑

i=1
ni log

( ni
N

)

(2)

Ck denotes the complexity of the spatial distribution features
of a certain color; m denotes the number of different connected
regions in the general set; ni denotes the number of pixels in the
i-th connected region; and N represents the total number of pixels
of that color.

2.4.8 Extreme Gradient Boosting Tree (XGBoost)
model and SHapley Additive exPlanation (SHAP)
interpretability analysis

This study uses the XGBoost algorithm to create a regression
model, applies Bayesian optimization, and then analyzes the

results with the SHAP method to explore how the audiovisual
perception indicators of the campus landscape relate to the
quality of attention restoration. Because of its superior parallel
processing capabilities and capacity to handle complicated non-
linear interactions, XGBoost can successfully tackle machine
learning problems. Possible issues with regression modeling
overfitting (Chen and Guestrin, 2016). In addition, nowadays,
various researches utilize various machine learning methods such
as random forest (Feng et al., 2024), regression tree (Kesgin Atak,
2020), and XGBoost (Chen and Guestrin, 2016), among which
XGBoost has the advantages of high efficiency, performance, and
superior regression results that are widely utilized by researches
(Ma et al., 2024). However, Machine Learning and Artificial
Intelligence (ML/AI) was previously considered as a black-box
approach, and recent advances in scalable AI (XAI) have led to
increasing interpretability. In particular, the local interpretation
approach of SHAP (SHapley Additive exPlanations) provides
research with the flexibility to model, explain and visualize complex
phenomena and processes (Chen J. et al., 2024). The underlying
principle is illustrated in Equation 3:

g(z′) = ϕ0 +
∑M

i=1
ϕ
i
z′i (3)

g(z’)denotes the predicted value of z’ the influence of the
sentiment index of landscape elements, ϕ0denotes the average
indicator of the composition of landscape elements,M denotes the
number of variables in the model, and denotes the SHAP value
of the i-th study indicator. For each prediction, the Shapley value
is calculated by computing the average marginal contribution of
all possible combinations of explanatory variables. Finally, SHAP
performs a 50% discount cross-validation.
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FIGURE 4

Distribution of quality index of attention recovery in college students.

3 Results and analysis

3.1 Distribution of campus audiovisual
perception indicators and attention
restorative quality indices

Figure 4 maps campus restorative quality predictions from the
CNN-BiLSTM model (96.43% accuracy) using Trueskill-generated
PRS-11 scores averaged across 80-meter hexagons. The hexagonal
grid enables continuous spatial visualization while minimizing
localized interpretation errors, with lighter areas indicating higher
restoration quality. This approach supports targeted zone renewal
through regional condition analysis.

Figure 4 shows higher restorative quality in campuses with
rich humanistic heritage (e.g., Fujian Agriculture and Forestry
University, Fujian Normal University), particularly around
Guanyun Lake. Waterfront spaces enhance restorative effects
through cooling microclimates and meditation opportunities
(Burmil et al., 1999), contrasting with unexpectedly low-
quality water landscapes at Fuzhou University and Fujian
Medical University. Campus sports fields (e.g., FAFU-a, FNU-b)
demonstrate superior attention recovery through stress-relieving
outdoor activities (McCormack et al., 2010), while playgrounds at

Fuzhou University-c, Minjiang University-d, and Fujian Medical
University-e show weaker restorative performance.

Based on the data in Figure 5, the attention restoration
quality of universities in Fuzhou exhibits distinct variations. Fujian
Agriculture and Forestry University (3.961) and Fujian Normal
University (3.937) demonstrate the highest restorative efficacy,
correlating with their elevated vegetation density (0.216 and 0.161,
respectively) and higher proportions of natural sound (0.538
and 0.537), suggesting the positive impact of ecological elements
on cognitive recovery. In contrast, Fujian Jiangxia University
(3.886), despite having the greatest openness (0.268), shows
potential inhibitory effects from its high traffic sound proportion
(0.638). Notably, Fujian University of Technology (3.929) achieves
optimization through stronger architectural enclosure (0.272)
and musical sound elements (0567), reflecting an alternative
humanistic acoustic strategy. Visual complexity metrics reveal
nuanced relationships: Minjiang University’s moderate visual
entropy (8.933) and Fuzhou University’s high color complexity
(78.735) indicate potential synergies between controlled visual
stimuli and spatial design. The inverse relationship between
mechanical sound (0.468) and traffic noise (0.548) at Fujian
Medical University, compared to Fujian University of Traditional
Chinese Medicine (0.443 mechanical sound vs. 0.523 traffic sound),
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FIGURE 5

Average values for attention restoration and audiovisual elements across various institutions in Fuzhou.

highlights the critical balance of acoustic components in medical
institution environments. These patterns collectively emphasize the
multidimensional interaction between biophilic design, auditory
composition, and spatial configuration in shaping restorative
campus landscapes.

3.2 SHAP characteristic importance analysis

In this study, XGBoost modeling and SHAP analysis were
used to explore the effects of campus landscape environmental
factors and sound indices on the quality of college students’
attentional recovery. Various machine learning methods were
applied in the study, such as random forest (Feng et al., 2024),
regression tree (Kesgin Atak, 2020), and XGBoost (Chen and
Guestrin, 2016). People widely use XGBoost due to its efficiency,
powerful performance, and excellent regression results (Chen J.
et al., 2024). As shown in Figures 6, 7, the visual markers highlight
the importance of the various research metrics on the quality of
attention recovery and provide an understandable overview of the
research results. In Figure 6, the human voice contributes the most
to the model.

The importance of humanistic sound in this study is high,
but some of the humanistic sound have a negative impact, which
may be related to their ability to moderately stimulate the senses,
enhance the social atmosphere, and optimize the experience of the
environment. The effects of color complexity show both positive
and negative aspects, which are related to human processing
mechanisms of visual information. The visual sentiment, the higher
the proportion of waterscape, the greater the positive impact on the
model is illustrated in Figure 7. The indicators of color complexity,

visual entropy, music sound, traffic sound, and architectural
enclosure show a linear relationship, which may be related to
the scene in which they are located. Therefore further analysis is
needed. In addition, for example, indicators such as surface paving
and vegetation density when the eigenvalue is high, a few points
show a negative impact. This may be related to the rationality of
its design, the overall harmonization of the environment, and the
match between personal preferences and the use scenario.

In conclusion, a fundamental analysis was carried out on the
various research indicators, as detailed in Sections 3.1 (Distribution
of Campus Audiovisual Perception Indicators and Attention
Restorative Quality Indices) and Section 3.2 (SHAP Characteristic
Importance Analysis), focusing on both their spatial distribution
and the significance of their characteristics. Although certain
metrics revealed distinct patterns of feature importance, the
majority of the study’s metrics—such as color complexity, visual
entropy, and musical sound—demonstrated intricate interactions.
Nonetheless, these metrics significantly contribute to the model,
though the nature of their relationship with sentiment indices of
varying values requires further clarification. To address this, partial
dependency graphs will be employed in the experiment to delve
deeper into their interconnections.

3.3 SHAP partial dependency graph analysis

In Figure 8, the variables are ranked based on their contribution
values presented in Figure 7, with the inclusion of fitted curves
and marginal density plots for the eigenvalues. This approach
facilitates a more intuitive exploration of the distributions of the
eigenvalues. Figures 8a–c mainly represent the most important
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FIGURE 6

The importance of features in SHAP(p < 0.001).

influential variables. Figure 8a illustrates that some of the
eigenvalues of humanistic sound between −1 and −0.5 show
negative contributions, however, half of the eigenvalues greater
than −0.5 show positive correlations, which may be due to
a combination of sound type, visual characteristics, individual
preferences, and model complexity. Figure 8b presents natural
sound, which show positive correlations between −0.25 and 2,
peaking at 0.5, and negative correlations above 2. It’s possible
that the experience deteriorates due to excessive sound intensity,
which exceeds the human comfort threshold for natural sounds.
Figure 8c depicts the color complexity, whose value distribution
is bounded by 0, and <0 presents a positive contribution. Its
positive contribution portion is mainly clustered between −4 and
0, suggesting that keeping complexity between −4 and 0 enhances
the contribution to the positive aspects of the Attention Recovery
Quality Index.

Second, Figures 8d–g shows the important variables. Figure 8d
is the mechanical sound, which has a uniform distribution density
from the edges of its eigenvalues and lacks significant peaks
or dense areas, but presents a positive correlation with values
<0, which indirectly confirms a possible non-linear relationship
or threshold effect between the variables. For a more precise
interpretation, this can be further analyzed in conjunction with

the interaction plots in the next chapter. According to Figure 8e
visual sentiment presents a positive correlation at >0, but its
feature edge density is symmetrically distributed with 0 as the
boundary. It shows that the feature values of positive and non-
positive perceptions are statistically balanced, with neither obvious
bias nor clustering effect in specific areas. Figure 8f waterscape,
on the other hand, is rising to present a positive effect, but the
effect becomes unstable and presents a complex dynamic trend
after exceeding the threshold value of 5. Figure 8g visual entropy
eigenvalue density is mainly clustered between −5 and 2, showing
rising positive contribution, and negative contribution after >0,
indicating that the increase of visual entropy can help attention
recovery within a moderate range.

Finally, Figures 8h–o shows the less significant variables.
Figure 8h shows that the sound of music presents a positive
contribution beyond 0.25 with a value marginal density mainly
distributed around 1, which implies a threshold for school
music. Figure 8i shows that traffic sound presents a little positive
contribution mainly between −1 and 1. Figure 8j shows that the
surface paving presents a positive correlation at >0. Figure 8k
shows that the SHAP value of noise intensity mainly hovers
around 0 and exhibits a positive correlation within the eigenvalue
range of −1.5 to 0.5, suggesting that moderate noise intensity may
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FIGURE 7

Characteristic swarm diagram in SHAP (p < 0.001).

positively affect the target variable, but the overall effect is weak and
confined to a specific range. Figure 8l shows that the fitted curves
of architectural enclosure always show positive correlation, but
the contribution value hovers around 0, indicating that its positive
effect on the target variable is relatively limited. Meanwhile, the
characteristic edge densities are mainly concentrated between −1
and 1, reflecting a more concentrated distribution of architectural
enclosure, which does not show a significant effect of extreme
values on the SHAP values. Figure 8m shows that openness shows
a negative correlation after >1, and its value edge density is
mainly concentrated in positive contribution. Figure 8n shows
that the values of vegetation density are mainly clustered between
−1 and 1 and present a stable positive contribution to the
target variable in this range. However, when the value exceeds
3, it exhibits instability despite continuing to present a positive
contribution, suggesting that too high a vegetation density may
trigger complex dynamic effects that become unpredictable
or have increased volatility on SHAP values. Figure 8o
shows that sound quality presents a negative effect between
−1 and 1.

In summary, most indicators exhibit complex non-linear
effects and coupled correlations between their geographic spaces.

Therefore, in the next section, we use SHAP interaction
value analysis to further reveal how the interactions between
different indicators affect the quality of attention recovery among
college students.

3.4 Analysis of SHAP interaction values

As illustrated in Figure 9, a SHAP interaction plot is presented
to explore the mutual interactions among variables, thereby aiding
in the analysis of their coupling mechanism within the model. The
findings reveal that:

(1) Most of the indicators of the campus show a more balanced
effect of influence when interacting (the characteristic points
are evenly distributed around the zero line), but individual
indicators interact with different effects on the quality of
attention recovery. For example, color complexity was the
most negatively contributing of the campus environment
metrics, but color complexity positively affected the quality
of attentional recovery when interacted with sounds of
people moving, natural sounds, pavement rate, water view,
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FIGURE 8

SHAP feature edge density and dependency diagram. (a) Humanistic sound. (b) Natural sound. (c) Color complexity. (d) Mechanical sound. (e) Visual

sentiment. (f) Waterscape. (g) Visual entropy. (h) Musical sound. (i) Tra�c sound. (j) Surface paving. (k) Noise intensity. (l) Architectural enclosure. (m)

Openness. (n) Vegetation density. (o) Sound quality.

FIGURE 9

SHAP interactive analysis diagram.
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and openness (more feature points to the right of the
zero line).

(2) Although the overall contribution of the music sound and
surface paving metrics to the model was negligible or even
slightly negative, Figure 9 shows that when interacting with
metrics such as greenness and surface paving, openness led to
predominantly positive interaction values. When interacting
with metrics such as waterscapes and surface paving, the
music soundmetricsmainly lead to positive interaction values.
This suggests that music sound metrics can significantly and
positively influence the quality of attentional restoration in
specific situations (Shen, 2023). Where appropriate surface
paving has a positive contribution when interacting with traffic
sound, noise intensity and mechanical sound, but surface
paving can have a positive contribution when interacting with
natural sound and musical sound. Therefore, different paving
materials as well as the degree of paving may have an impact
on people’s appreciation of the soundscape (Ma et al., 2024).

(3) Finally, the campus in this study area is dominated by a
waterscape as the core of the campus, and the waterscape
and vegetation density showed the most significant threshold
ranges in the interaction plot. It further suggests that
waterscape and vegetation density elements may be the key
to campus landscape configuration. Their optimal values may
significantly influence changes in the quality of attention
restoration. For example, waterscape and vegetation density
interacted with humanistic and musical sound to produce
positive contributions, and these sounds and vegetation could
enhance the soundscape eventfulness of the lake body zone.
Where vegetation density also showed positive effects when
interacting with architectural enclosure.

This figure shows interaction effects that can lead to a better
understanding of issues in campus audiovisual environments and
college students’ attentional preferences by identifying metrics
with significant positive or negative tendencies in interaction
scenarios. In addition, it should be noted that similar metrics may
contribute differently between campuses due to different campus
landscape plans.

4 Discussion

4.1 Novel perspectives on key indicators
influencing the quality of attention
restoration among college students on
campus

4.1.1 The quality of green space restoration at
liberal arts and agricultural universities is better
than at science and engineering universities

This study reveals the significant impact of diverse audiovisual
elements on attention restoration among college students, with
cultural sounds, environmental sounds, and visual complexity
emerging as key factors. Research indicates that preferences
for natural environments vary significantly across regions and
groups (Gasco et al., 2020). In artificial environments, vegetation
density, building enclosure, and paved surfaces contribute little
to attention recovery. These environmental factors, which are

primarily influenced by human activities, are often perceived
by individuals as lacking uniqueness and failing to meet their
expected needs (Zhang et al., 2023). Additionally, excessive
vegetation density may trigger attention dispersion, suggesting that
unplanned wilderness landscapes may exacerbate the instability
of attention recovery effects. Research suggests that optimizing
artificial environment design by emphasizing uniqueness and
innovation can promote creativity and attention recovery. Such
designs can leverage the “soft charm” mechanism in Attention
Restoration Theory (ART) by employing artificial soundscapes
(e.g., simulated tea-picking sounds). Such soundscapes can trigger
cognitive labeling of “environmental background sounds” based
on their ecological effectiveness—the compatibility between sound
sources and cultural semantics—thereby effectively reducing
individuals’ active monitoring needs. This effect synergizes with
the “compatibility” dimension of Attention Restoration Theory
(Kaplan, 1995; Kexin et al., 2024).

The geographical distribution of students’ attention recovery
quality indicates that universities with a focus on humanities
and agricultural research, such as Fujian Normal University and
Fujian Agricultural University, exhibit superior attention recovery
quality. Conversely, universities with a concentration on science
and engineering, such as Fuzhou University, Fujian University of
Science and Technology, and Fujian Medical University, exhibit
inadequate attention recovery quality, which is associated with
the disparate dissemination of cultural genes. Fuzhou Agricultural
and Forestry University (FUAF) exemplifies its “farming culture”
through its distinctive landscapes, including the China Famous
and Excellent Plant Garden and the Agricultural Culture Corridor.
These features offer aesthetically pleasing ecological interfaces and
facilitate “five-sense immersion” through participatory farming
experiences, such as tea picking and mushroom cultivation
(Kexin et al., 2024). This culturally rich landscape design closely
aligns with the “compatibility” principle in Attention Restoration
Theory (ART). The influence of human and natural sounds, in
conjunction with color complexity, on landscape perception is
a subject of considerable interest. This influence is primarily
attributable to the substantial impact of natural events and
human activities on environmental perception (Diepstraten and
Willie, 2021). According to the principles of color psychology,
the color of a given environment has the capacity to influence
the emotional state of the individual (Zailskaite-Jakšte et al.,
2017). Specifically, the sounds produced by human activity within
informal learning environments (ILE) have the potential to induce
a state of relaxation, to create a phenomenon of sound masking,
and to enhance the motivation of the individual to engage
in the learning process (Zhang et al., 2024). Agricultural and
forestry schools manifest boundary effects, which are evident in
transition zones between natural and human-made landscapes.
These zones include, but are not limited to, the areas between
fields and laboratories, as well as the various agricultural zones (e.g.,
farmland, forestland, etc.).The existence of these boundaries fosters
the cultivation of unique “spatial” and “ecological” perceptions,
thereby establishing a psychological barrier between academic and
practical activities. This psychological barrier enables students to
refocus their attention and restore emotional balance in complex
work environments.

Conversely, universities with a strong emphasis on science
and engineering, such as Fuzhou University, Fujian University
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of Science and Technology, and Fujian Medical University,
demonstrate substandard attention recovery quality. This
phenomenon may be associated with internal planning, cultural
landscape design, and vegetation layout. In contrast, the study
revealed that augmenting plant density did not yield a substantial
enhancement in recovery quality, thereby contradicting the
findings of prior research (Bornioli et al., 2018). The SHAP
analysis results (Figures 6–8) indicate that mechanical noise has
a significant negative contribution to attention recovery, with
its impact intensity exceeding that of traditional environmental
factors such as vegetation density. This effect may be related to the
persistent mechanical noise commonly found in densely populated
laboratory areas of science and engineering universities. Notably,
the interaction between mechanical noise and color complexity
exhibits a non-linear characteristic (Figure 9), which explains why
simply increasing plant density is ineffective in improving recovery
quality at science and engineering universities. This finding
forms a structural contradiction with the “escape” dimension
in attention recovery theory: mechanical noise, as a derivative
signal of laboratory activities, continuously triggers individuals’
cognitive associations with academic stress (Zhang et al., 2023).
The strong coupling between soundscape elements and spatial
functions leads to a “cognitive-environmental” negative feedback
loop in science and engineering universities—laboratories are
both the core areas of knowledge production and the primary
sources of attention depletion. This necessitates that campus
restoration design must transcend traditional landscape planning
paradigms by employing soundscape masking (e.g., introducing
wide-frequency environmental sound barriers) and spatial buffer
zones to disrupt the spatiotemporal continuity of mechanical noise.

4.1.2 Environmental optimization path under the
SHAP interaction mechanism
(1) Synergistic optimization of audiovisual elements: In the

context of campus environment design, it is imperative
to consider the interplay between color and soundscapes.
In areas with high pedestrian traffic, such as plazas and
walkways, the dynamic integration of color complexity—for
example, multi-tonal ground paving and varying vegetation
layers—with natural soundscapes, including flowing water
and bird songs, or moderate human activity sounds, has
been shown to balance the potential distractions caused by
monotonous colors on attention recovery. This, in turn,
creates an immersive sensory experience. Furthermore, in
areas characterized by abundant vegetation, such as lakesides
or tree-lined pathways, the implementation of low-intensity
background music, including natural sound effects or gentle
melodies, can be considered. The positive interaction between
music and vegetation density has been demonstrated to
enhance the richness and eventfulness of the soundscape
while effectively mitigating the negative impacts of mechanical
noise. This results in a sound environment that harmoniously
blends relaxation and vitality.

(2) Adaptive design of ground paving materials: Select paving
materials based on functional zoning requirements: In areas
with significant traffic noise (such as school gates and vehicle

lanes), use sound-absorbing and permeable paving materials
(such as porous asphalt and ecological bricks) to suppress
noise propagation through the interaction between material
properties and traffic noise. In areas dominated by natural
soundscapes (such as waterfront walkways and meditation
gardens), use wooden or gravel paving to leverage their
synergistic effects with natural andmusical sounds, creating an
immersive “walkable soundscape experience.” Additionally,
through visual guidance design of paving textures (e.g.,
circular radiating geometric patterns or color gradients),
dynamic visual responses are created with open space
vistas, enhancing the intuitiveness of directional perception
while mitigating the potential distractions caused by spatial
enclosure on attention recovery.

(3) Threshold-based configuration of water bodies and
vegetation density: Using core water bodies (such as
artificial lakes) as acoustic landscape anchor points, extend
stepped vegetation buffer zones outward (transitioning
from high-density trees to low shrubs). Through the
interactive threshold effects of water body and vegetation
density, balance acoustic landscape screening and visual
permeability. Simultaneously, in enclosed building areas
(such as courtyards, corridors), integrate vertical greening
with dynamic water features (such as cascading walls and
mist sprays). By leveraging the synergistic effects of building
facades and vegetation, create composite spaces that combine
microclimate regulation with soundscape therapy functions,
thereby enhancing the immersive quality and comfort of the
environmental experience.

4.2 Planning and design recommendations
for campus audiovisual environments

4.2.1 Soundscape optimization and integration of
humanities activities

In the study of attention recovery campus environments, it
would be more effective to create an attention recovery space
that is consistent with spatial preferences. This process must
prioritize the cultivation of a unique campus character in the
landscape, while enhancing the attention recovery and emotional
perception of college students without destroying the inherent
cultural appeal of the campus. Figure 8 shows that humanistic and
natural sounds have a strong, albeit slightly fluctuating, effect on
the quality of attention recovery. The next positive contribution
is presented when plant density interacts with building enclosure.
This observation is slightly different from the previous ones, where
there were studies that showed a significant positive effect of green
space on recovery (Tang and Long, 2019), where there were also
studies that showed a significant negative effect of green space on
recovery (Chen Z. et al., 2024). The influence of this situation
is shaped not only by plant density and building enclosure but
also by several other factors, including design quality, spatial
usage, individual needs, and environmental noise. In the realm of
landscape architecture, it is crucial to explore how green spaces
contribute to enhancing attentional restoration, with a particular
focus on their interplay with auditory elements. The findings of

Frontiers in Psychology 16 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1572426
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Chen et al. 10.3389/fpsyg.2025.1572426

this study highlight the substantial role that optimal soundscapes
and enriching visual experiences play in enhancing sentiment
recovery and alleviating stress (Xu et al., 2024). Moreover, the
combined interaction of auditory and visual stimuli appears to
offer more substantial recovery benefits than either sensory input
on its own. Carefully crafted audiovisual settings, especially those
featuring balanced natural landscapes and calming soundscapes,
can significantly mitigate academic pressure, ease cognitive fatigue,
and enhance emotional health (Hong et al., 2019; Guo et al.,
2022; Liu et al., 2022; Pande et al., 2024). Previous studies have
highlighted environmental disparities across various campuses,
leading to the proposal of strategies designed to improve perceptual
recovery and emotional well-being of college students through
the adjustment of audiovisual element thresholds. This research,
in particular, identifies that attentional recovery perceptions were
notably lower in polytechnic institutions. This may be attributed
to factors such as the noise from laboratory environments and
the relative absence of humanistic elements in the campus design
(Chen J. et al., 2024). This can be done by the fact that in
learning spaces such as laboratories, classrooms and study rooms,
the interference of external noise can be reduced by optimizing the
building design and adding soundproofing measures, such as the
use of sound-absorbing materials, soundproof windows, and so on.

As shown in Figure 8, having water landscapes greatly affects
the sounds around us, with natural sounds and plants making the
area more lively. Consequently, the organization of activities such
as art exhibitions, concerts, and festivals in the vicinity of the water
body has been identified as a strategy to promote students’ physical
andmental relaxation, alleviate academic pressure, and enhance the
humanistic charm of the campus and facilitate social interaction.
In polytechnic institutions, the absence of vegetation design, as
well as activity events surrounding the water features, results in a
suboptimal restoration effect on the water features’ attention. The
restoration areas with minimal attention in liberal arts institutions
and agricultural and forestry institutions are predominantly located
in the campus periphery. To enhance this phenomenon, it is
recommended that a variety of landscape elements, including
small gardens, ponds, sculptures and walkways, be incorporated
into these areas. Research demonstrates that this approach
enhances the visual experience and boosts the environment’s
restorative function. Furthermore, the acoustic environment is
also a pivotal factor in enhancing the recovery of attention, thus
music nodes can be designed in the peripheral areas to utilize the
soundscape to enhance the sense of relaxation and recovery in
the space.

4.2.2 Adaptive management of intelligent
perceptual systems

Pouso suggest that the health advantages of blue-green spaces
become evident only when individuals engage with them directly
(Pouso et al., 2021). Consequently, before engaging in landscape
planning, it is essential to establish a comprehensive research
framework that evaluates and classifies landscape resources across
various campuses. This framework should provide data support for
addressing specific challenges, such as areas with high pedestrian
traffic density. To make timely adjustments, it is crucial to monitor
factors such as pedestrian flow, environmental shifts, and user

feedback (Yang et al., 2023). Most of the current machine learning
models, on the other hand, are for the analysis of a fixed-point
image, for this reason, this study considers applying the cross-
modal distillation paradigm to construct a sentiment perception
model (CSV-T4SA), which can be adapted to new data distributions
and features through continuous learning and updating. This
allows the model to maintain its sophistication and accuracy to
serve the field of social media sentiment analysis in the long
run. The model can be implemented on campus forums, bulletin
boards, and other relevant social platforms to quantitatively analyze
various forms of information, thereby facilitating the development
of tailored, real-time management strategies. Furthermore, the
results of the spatial analysis can be combined with public
input and management strategies aimed at promoting active
engagement from both students and faculty (Zhu et al., 2023).
Special attention should be given to the emotional interactions
between college students and the surrounding landscape in regions
demonstrating lower levels of attention recovery. By adopting this
approach, responsiveness to the needs of university students is
enhanced, while the overall management and upkeep of attention
restoration quality in campus landscapes is improved. This not
only contributes to the well-being of students but also supports the
long-term sustainability of urban ecosystems.

4.3 Application and contribution of the
framework for assessing audiovisual
environment and attentional restoration on
campus

This study primarily uses social media data and the PRS-
11 questionnaire for image quantification. The specific process
involvesmapping the average values of the four recovery perception
scores from the PRS-11 questionnaire onto a hexagonal grid
with an 80-m radius. The study employs techniques such as
XGBoost and SHAP importance analysis to delve deeper into data
insights. Current research has primarily focused on green spaces
and urban areas (Wei et al., 2022), while studies on the effects
of soundscapes on attention recovery in campus environments
remain limited. Recently, innovative data sources for soundscape
assessment have been increasingly introduced, such as social media,
complaint reports, and three-dimensional urban models (Aiello
et al., 2016; Stoter et al., 2020; Tong and Kang, 2021). Research
indicates that SVI data holds significant advantages in campus
audiovisual environment assessment, enabling large-scale, low-
cost evaluations. This study employs the SHAP framework for
quantitative analysis, focusing on feature importance rankings
and dependency relationships to reveal the model’s decision-
making mechanisms. Additionally, the newly introduced feature
value marginal density distribution aids in comprehensively
understanding how variables influence the model. The interaction
value analysis in Figure 8 illustrates the relationships between
variables in the audiovisual environment, providing guidance
for campus design. The study emphasizes the advantages of
machine learning in analyzing complex datasets and proposes a
structured approach. By mapping repair perception scores onto a
hexagonal grid, spatial performance can be easily observed, with
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lighter-colored areas indicating higher repair quality, ensuring
smooth results.

4.4 Limitations of the research and future
directions for exploration

This study integrates machine learning methodologies with
social media datasets to investigate the impact of campus
audiovisual environments on attention recovery. Although social
media has gradually become a powerful tool for academic research
(Hodorog et al., 2022), data security and regulatory restrictions
may hinder comprehensive research on the perceived experiences
of teachers and students of different age groups in campus
environments (Cortis and Davis, 2021).Therefore, to include a
broader student population, future research should incorporate
field survey data to enhance the external validity of the study.
The present study primarily collected SVI data during the summer
months, yet it did not engage in explicit temporal analysis of
social media or text data. It is important to note that summer
offers optimal vegetation visibility; however, the audiovisual
environment on campuses (e.g., vegetation density, water body
usage, and human activity patterns) may exhibit significant
differences during non-summer seasons (e.g., autumn, winter,
and spring). Such variations may impede the generalizability of
the study’s findings across seasons. For instance, increased leaf
fall in autumn, vegetation dormancy in winter, or vegetation
growth in spring may have the potential to influence the
effects of attention recovery. Consequently, the summer data
set in this study may not have fully captured such dynamic
changes. Furthermore, the summer period encompasses both
active academic terms (June and September to October) and
vacation periods (July to August). During these periods, there
may be notable variations in campus activity levels, pedestrian
density, and soundscape characteristics. However, this study did
not differentiate between specific time points for image collection
during the summer, which limits the representativeness of the
“typical” academic experience. The audiovisual dimensions of
the campus environment are significantly influenced by seasonal
characteristics. For instance, dense vegetation during the summer
monthsmay significantly enhance an organism’s recovery potential,
as postulated by attention recovery theory and biophilia theory.
Conversely, sparse vegetation during winter may reduce this effect.
Furthermore, the negative impact of traffic noise on recovery (social
recovery theory) may be particularly pronounced during peak
hours (Ratcliffe, 2021). Furthermore, the circadian rhythms of the
campus environment, such as the daytime bustle and nighttime
tranquility, may significantly alter perceived experiences and the
quality of attention recovery. It is imperative to acknowledge that
campus landscapes and infrastructure have undergone continuous
changes from 2021 to 2023, and these dynamic changes may not
be fully reflected in the application phase of the study (2024 and
beyond). Moreover, the data from 2021 to 2022 were influenced
by the ongoing pandemic and modifications to prevention and
control policies. These adjustments may have led to alterations
in summer campus usage patterns, such as a reduction in
activities or the implementation of specific preventive measures.

Consequently, the representativeness of the data may have been
compromised. In summary, while the static analysis method
employed in this study is well-suited for large-scale research, its
methodological nature precludes the capture of the aforementioned
dynamic effects. This may result in biases in the estimation of
the relationship between soundscape characteristics and attention
recovery effects. Future research could collect longitudinal data
across seasons and different time periods to clarify the impact
of time dependency on perceived recovery. The findings of this
study may be influenced by the unique subtropical climate of
Fuzhou, which significantly affects vegetation types and seasonal
change patterns (Diepstraten and Willie, 2021). To enhance the
generalizability of the results, replication studies in different climate
zones are particularly necessary.

In the context of soundscape prediction models, the present
study first focuses on the relationship between soundscape
indicators and attention restoration, without incorporating
multisensory interactions (e.g., visual landscapes, olfactory
perceptions, wind sensations, and tactile textures).Although
soundscapes are a fundamental dimension of environmental
experience (Kang et al., 2016), the quantification of “full-
sensory experiences” (e.g., the pleasantness of bird songs may
synergistically enhance visual perceptions of greenery and natural
odors) remains to be further elucidated. Future research should
integrate multimodal sensors to explore the impact of cross-
sensory interactions on restorative experiences (Jo and Jeon,
2020). Second, this study utilized a GBDT model to establish
a mapping relationship between soundscape indicators and
soundscape descriptors (e.g., pleasantness, event richness).
However, the study did not validate whether predicting
soundscapes can produce the same attention recovery effects
as actual environments. Currently, the study only extracts
479 feature indicators related to campus-specific object-level
features, semantic-level features, scene types, and pixel-level
features to predict campus soundscapes. However, acoustic
indicators from the visual domain cannot fully capture the
complex subjective auditory experience. This limitation manifests
in three aspects (Zhong et al., 2025): first, the introduction of
ecological acoustic indices (EIs) into traditional soundscape
indicators (SIs) improved the predictive power of all eight
soundscape descriptors. Second, EIs are more important
in predicting eventfulness and vitality, with total relative
importance ranging from 36.8% to 53.4%.Finally, indicators
such as biological richness (BIO), olfactory intensity (Ht),
event count (NP), and human disturbance level (NDSI) have a
significant impact on at least one soundscape descriptor and are
considered key EIs. Therefore, future research urgently needs to
integrate semantic analysis methods, deep learning methods, and
ecological acoustic indices (EIs) to achieve a more comprehensive
understanding of subjective soundscape experiences and enhance
their explanatory power.

5 Summary

This research, focusing on Fuzhou City University as a case
study, proposed a framework integrating image-based soundscape
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prediction, cross-modal visual emotion analysis, and visual
perception modeling to inform the strategic planning of campus
audiovisual environments. The methodology involved gathering
PRS-11 questionnaire data, performing street map crawling
and prediction, conducting large-scale analysis of 114 student
image evaluations using a CNN-BiLSTM-based framework, and
applying machine learning techniques to model the interaction
between campus audiovisual environment indicators and attention
restoration quality. Additional analysis and visualization were
carried out utilizing ArcGIS software. This study uncovered
pivotal elements of the campus audiovisual environment that
significantly impact attention restoration quality and outlined
strategic recommendations for the sustainable improvement of the
university setting. The key findings are summarized as follows:

(1) There are significant differences in the distribution of
the quality of attention restoration between each university,
and the quality of attention restoration in universities
dominated by liberal arts and agricultural disciplines is
significantly higher than that of schools in the science and
technology category, and schools in the agriculture and
forestry category have a boundary effect, which may be
reflected in the transition between natural and artificial
landscapes, for example, between fields and laboratories,
or the boundaries between different agricultural areas (e.g.,
croplands, woodlands, etc.). These boundaries help to create
a unique sense of “space” and “ecology” that provides a
psychological buffer between academic and hands-on tasks,
allowing students to regain focus and emotional balance in
complex work environments. The significantly higher quality
of attention recovery in liberal arts schools is partly due to
their unique academic atmosphere, humanistic environment,
and intertwined relationship with nature and culture, which
provides a good platform for students to recover through
various factors such as spatial design and social interaction.

(2) SHAP analysis results reveal that the most influential
ecological factors, ranked by importance, include cultural
soundscapes, natural acoustic elements, chromatic
complexity, mechanical noise, visual sentiment, and aquatic
features. Among them, humanistic sound is greater than
−0.25, and more than 1.25 will have destabilizing effects,
and natural sound should be controlled between −1 and
1. Color complexity alone is mainly clustered between −2
and 2, however, only between −2 and 0 can show a positive
contribution. It is also vital to pay attention to water feature
values, green space and enclosed space as they may have some
effect on individuals.

(3) This research highlights the critical need to account
for the non-linear impacts of environmental factors on
individuals when planning and designing campus audiovisual
settings. Greater enclosure levels can substantially amplify
the beneficial effects of vegetation density, while the
interaction between vegetation density and color complexity
with paving coverage can further elevate positive emotional
responses. Additionally, variations in paving materials and
the extent of paved surfaces may influence individuals’
perception and appreciation of soundscapes. Color complexity
serves as a moderating factor for emotional states in

human environments. High levels of musical acoustics,
balanced visual entropy, and the proportion of waterscape,
when combined, tend to generate predominantly adverse
emotional outcomes.

In conclusion, when planning campus audiovisual landscapes
for environmental sustainability, the design should focus on the
characteristics of institutions in different disciplinary categories,
where building infrastructure, audiovisual design environments
are crucial. This research underscores the significance of accurate
metrics within the campus audiovisual built environment in
enhancing university students’ attention restoration. It also
addresses a critical gap in prior studies regarding the assessment
of campus audiovisual environment indicators. These findings
provide practical insights for assessing and designing campus
audiovisual environments.
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