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Interacting with fallible AI: is
distrust helpful when receiving AI
misclassifications?

Tobias M. Peters* and Ingrid Scharlau

Department of Psychology, Faculty of Arts and Humanities, Paderborn University, Paderborn, Germany

Due to the application of artificial intelligence (AI) in high-risk domains such

as law and medicine, trustworthy AI and trust in AI are increasingly relevant

to science and the public. A typical conception, for example, in the context

of medical diagnosis, is that a knowledgeable user receives AI-generated

classifications as advice. Research to improve such interactions often aims

to foster users’ trust, which, in turn, should improve combined human-AI

performance. Given that AI models can err, we argue that the possibility of

critically reviewing and thus distrusting an AI decision is an equally interesting

target for research. We created two image classification scenarios in which

participants received mock-up AI advice. The quality of the advice decreases

during a phase of the experiment. We studied task performance, as well as

participants’ trust and distrust, and tested whether an instruction to remain

skeptical and to review each piece of advice led to better performance compared

to a neutral condition. Our results indicate that this instruction does not

improve but rather worsens the participants’ performance. Repeated single-item

self-reports of trust and distrust indicate an increase in trust and a decrease

in distrust following the decline in AI’s classification quality, with no di�erence

between the two instructions. Furthermore, through a Bayesian Signal Detection

Theory analysis, we provide a procedure to assess appropriate reliance in detail by

quantifying whether the issues of under- and over-reliance have been mitigated.

We discuss the implications of our results for the usage of disclaimers before

interacting with AI, as prominently used in current LLM-based chatbots, and for

trust and distrust research.

KEYWORDS

trust in AI, trust, distrust, human-AI interaction, Signal Detection Theory, Bayesian

parameter estimation, image classification

1 Introduction

Given the widespread use and adoption of applications based on artificial intelligence

(AI), trustworthy AI and trust in AI have become areas of scientific and societal interest and

relevance. The possibility that AI affects decisions in high-stakes areas such as medicine,

law, or finance has especially accelerated this interest. Indicative of this, research on trust

in AI has increased rapidly across disciplines in the last few years (Benk et al., 2024), and

numerous guidelines and initial legislation provide recommendations, checklists, or legal

requirements that aim to ensure trustworthy AI (Thiebes et al., 2021; Hohma and Lütge,

2023; Regulation (EU) 2024/1689, 2024). In high-risk use cases, decisions should not be

made solely by AI. The dominant conceptions are that humans team up with AI (Capel and

Brereton, 2023), achieve complementary performance (Guo et al., 2024), or are advised by

AI (Dhanorkar et al., 2021; Agarwal et al., 2023). In a similar vein, adopting the EU AI act

would require human oversight for those applications categorized as high-risk (Regulation

(EU) 2024/1689, 2024, article 14).
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Ultimately, trustworthy AI should allow people to trust AI

in a way that maximizes the benefits of AI advancements while

preventing or at least mitigating its risks (Thiebes et al., 2021).

“People” in this context may refer to a single user, stakeholders,

or the broader public; correspondingly, the precise scope of the

objective of trustworthy AI differs. In addition to the differing

scopes, the meaning of trust in this context is often not explicitly

defined. As Bareis (2024) highlights, the European AI Act, which

is currently regarded as the most influential framework for

trustworthy AI, fails to define trust even once. This lack of an

explicit definition can also be observed in the current research

literature (Benk et al., 2024; Ferrario and Loi, 2022), which can

lead to a conflation of defined concepts of trust and common-sense

reasoning about trust.

This is problematic because trust is a complex concept, and

failing to define it can result in misunderstandings, misuse, or

neglect of its inherent qualities. Moreover, and central to this

paper, we find it important to consider distrust in this context

as well. Ideally, people should trust AI when it is correct and

distrust it when it is incorrect. This distinction and focus on

distrust may seem superfluous when considering trust and distrust

as opposing ends of one continuum.However, research increasingly

suggests that the two are better considered as related yet separate

dimensions (Lewicki et al., 1998; Kohn et al., 2021; Scharowski

et al., 2024). This two-dimensional model, prominently proposed

in organizational science by Lewicki et al. (1998), has since gained

relevance (Vaske, 2016), although it has received little recognition

in AI research (though see Kohn et al., 2021; Colville and Ostern,

2024; Scharowski et al., 2024).

Technological advancements preceding the recent

developments in AI have already resulted in increasingly

complex interactions between humans and technology that involve

both uncertainty and risk. These characteristics of interactions,

uncertainty and risk, are also common in interpersonal interactions

(Mayer et al., 1995). Interactions that can be highly complex, and

trust serves as a mechanism to reduce this complexity (Luhmann,

2009). This commonality led to the consideration of interpersonal

trust research in the context of automation. Prominently, the

foundational work on trust by Mayer et al. (1995), which clarified

the distinctions between trust, its antecedents, outcomes, and the

role of risk, has been adopted in the context of trust in automation

(Lee and See, 2004; Hoff and Bashir, 2015), subsequently

influencing research on trust in AI (Benk et al., 2024).

In current research on trust in AI, it is common to focus on

appropriate trust (or comparable concepts such as warranted or

calibrated trust; Mehrotra et al., 2024). The inclusion of adjectives

such as appropriate, warranted, or calibrated acknowledges that AI

is fallible and that there are situations where it is wrong to trust

and right to distrust. However, what exactly constitutes appropriate,

warranted, or calibrated trust remains largely descriptive and

conceptually vague. In their systematic review, Mehrotra et al.

(2024) report that 75% of articles on appropriate trust in AI did

not define appropriate trust or related concepts.

These concepts share the idea that ideally, neither under-

reliance nor over-reliance should occur; that is, one should not

rely on correct AI advice nor on incorrect AI advice, respectively.

Numerous studies on explainable AI (XAI; e.g., Samek et al., 2021;

Mohseni et al., 2021) are currently investigating various methods

to improve interactions with AI by incorporating explainability

methods. Typically, the use of explainability methods is assumed

to facilitate trust, which has been coined as the explainability-trust

hypothesis (Kastner et al., 2021). By scrutinizing this assumption,

we argue that it neglects the fact that explainability methods can

serve two functions (Peters and Visser, 2023). They can help not

only to identify reasons to trust but also to identify reasons to

distrust. This aligns with the observation by Kastner et al. (2021)

that there are more careful formulations of the explainability-

trust hypothesis, which do not aim to increase trust but rather to

promote appropriate trust instead (Kastner et al., 2021).

Such formulations of the explainability-trust hypothesis

acknowledge the second function—identifying reasons for

distrust—but the majority of user studies still primarily assess

trust. Only 14% of studies on appropriate trust consider distrust

(Mehrotra et al., 2024). The problem of over-reliance on AI

(e.g., Spatharioti et al., 2023; Vasconcelos et al., 2023) illustrates

that it may be beneficial for human-AI interactions to foster

distrust by using the second function of explainability effectively.

Furthermore, we see merit in focusing on trust and distrust as

two related yet separate dimensions because this allows for the co-

existence of the two, which may resolve a conceptual shortcoming

of the one-dimensional approach to conceptualizing appropriate

trust. For instance, a foundational concept of trust (Mayer et al.,

1995) defines trust as the willingness to rely, irrespective of the

ability to monitor or control. The majority of descriptions of

appropriate trust revolve around the alignment between the

perceived and the actual capabilities of an AI (Mehrotra et al.,

2024).

Evaluating this alignment process solely by trust may overlook

or only indirectly assess important aspects of it. Trust, as the

willingness to rely, may be present even if a person is unable

to perceive AI’s capabilities or specifically because a person can

accurately perceive them. Whether the former or latter holds true

cannot be distinguished by the amount of trust measured. However,

measuring whether some distrust is present may provide a way to

make this distinction because, in the two-dimensional approach,

aspects like skepticism, wariness, and vigilance are characteristics

of distrust (Lewicki et al., 1998; Cho, 2006).

Of course, in many cases, high trust is associated with low

distrust, which the two-dimensional models also assume (Lewicki

et al., 1998). However, the specific qualities of trust and distrust

differ, and trust and distrust can co-exist in certain situations

that align well with the description of appropriate trust. For

instance, Lewicki et al. (1998) describe that in situations where both

trust and distrust are high, individuals pursue opportunities while

continuously monitoring risks. Similarly, for AI applications, this

would mean that a user utilizes AI while double-checking certain

information (Scharowski et al., 2024).

Therefore, we find it helpful to theoretically base the notion

of appropriate trust on the two-dimensional conceptualization of

trust and distrust. Following Mayer et al. (1995); Lee and See

(2004); Hoff and Bashir (2015), we define trust in AI as the

willingness to rely on AI based on the expectation that this will help

achieve an individual’s goal in a situation characterized by risk and

uncertainty. Similar to Lewicki et al. (1998), we define distrust in
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the AI context in reciprocal terms to trust, i.e., as the hesitance to

rely, while at a detailed level, its characteristics are different from

those of trust, as described above.

1.1 Methodological background

In summary, we find both from a conceptual perspective and

from an application perspective that there is reason to focus on

distrust in the context of human-AI interaction. Distrust may be

an important ingredient for appropriate trust. XAI may foster

it, and only assessing trust and distrust one-dimensionally falls

short of evaluating this properly. To approach this empirically,

scenarios with fallible AI and means that aim to improve human-

AI interaction by mitigating over-reliance need to be investigated.

As a scenario, we chose AI-based image classifications. They

are increasingly adopted in different areas and contexts. Their

applications can range, for example, from classifying everyday

objects (Redmon, 2016), plants (Mäder et al., 2021), or mushrooms

(Leichtmann et al., 2023) to melanoma (Brinker et al., 2019)

or mammograms (Calisto et al., 2021). Therefore, we focus on

AI-interactions in which users encounter false classifications to

investigate how distrust may be helpful to prevent over-reliance

and thereby may improve the combined human-AI performance.

In doing so, this study investigates the following research questions:

• RQ1: Is it helpful to foster a user’s distrust before interacting

with erroneous AI?

• RQ2: Do people notice worsening AI advice, and how does it

affect their trust and distrust?

To this end, we study task performance, trust, and distrust in an

image classification experiment where participants are supported

by a mock-up AI. The quality of the AI’s classifications decreases

during a phase of the experiments. To investigate the first research

question, we test whether an instruction to remain skeptical and

critically review this AI advice (distrust instruction) leads to better

decision performance compared to a control condition with neutral

instructions (information-only instruction). Since the ground truth

of the AI classification in this mock-up scenario is known, we

can determine if any potential improvement arises from mitigating

over-reliance.

We approach the second research question by analyzing

whether, and if so, how the decreased quality of the AI’s

classifications affects participants’ self-reported trust and distrust.

The self-report is repeatedly measured. The actual reliance

behavior is assessed via the AI-advised categorization made by

the participants. The repeated measurement of trust and distrust

is chosen due to the dynamic nature of trust (Luhmann, 2009;

Hoff and Bashir, 2015). Self-reported trust and distrust, as well as

reliance, are both assessed due to the potential discrepancy between

trusting intentions and trusting behavior (Papenmeier et al., 2019,

2022; Wang and Yin, 2023). Although self-reported (dis)trust and

reliance behaviors are conceptually distinct, we included a self-

report measure of reliance as a control variable.

The study does not include actual AI-generated classification

(a procedure widely applied and described as the Wizard of

Oz Design; for example, see Lai et al., 2021). The supposed AI

classifications are constructed (see Section 2) to allow for a known

ground truth and to easily distinguish between cases in which

trust or distrust toward AI classifications would be appropriate.

Furthermore, the study includes only the classification without

any descriptors or XAI methods. This enables us to analyze

the classification’s correctness without any potentially influencing

factors (e.g., uncertainty estimates). During the second phase of

the study, the AI advice became substantially less accurate. If

participants relied on this advice, their performance was expected

to decline accordingly.

If the distrust instruction helps mitigate over-reliance,

participants who receive it should show a smaller performance

drop when given incorrect advice. Thus, as Hypothesis 1, we expect

better performance for the participants in the distrust condition

than for those in the information-only condition. Furthermore, we

expect participants to notice the worsening of advice. Therefore,

as Hypothesis 2a, we expect a decrease in self-reported trust and,

as Hypothesis 2b, an increase in self-reported distrust due to the

second phase of the study. Due to the prolonged exposure to,

and higher frequency of errors in, the second phase, we expect

participants to be more aware of wrong advice, which leads to an

improved rejection of wrong advice and, consequently, an increase

in performance. Therefore, as Hypothesis 3, we expect higher

performance after the second phase than before it.

2 Materials and methods

We conducted a study that was divided into two sessions. In

Session 1, all participants categorized the image material without

AI advice. In the main experiment of the study (Session 2), the

participants had to categorize the same image material but received

mock-upAI advice. Themain experiment consisted of the between-

subject factor Condition and the within-subject factor Advice

Correctness. The participants were randomly assigned to either the

distrust condition or the information-only condition. Depending

on the condition, they received different instructions about their

interaction with the mock-up AI. The within-subject factor Advice

Correctness varied depending on the phase of the study, which

includes the pre-error, error, and post-error phases.

We assessed the participants’ categorizations both without AI

advice (Session 1) and with AI advice (Session 2). This allowed

us to take the participants’ individual performance differences

into account. Both types of categorizations, combined with Advice

Correctness, enabled us to assess whether participants improved

due to correct AI advice and worsened due to incorrect advice,

which served as detailed indicators of appropriate reliance. For this

analysis of the behavioral data, we used Signal Detection Theory

(SDT), as explained in Section 2.5.1. In line with previous studies

on reliance (e.g., Zhang et al., 2020, 2022; Naiseh et al., 2023),

we also report acceptance rates and switch percentages as another

measure of reliance and compare them between conditions. We

calculated the acceptance rate using the frequency of how often the

participants’ decisions in Session 2 were the same as the AI advice

they received.We derived the switch percentage from the frequency

of how often the participants decided as advised by the AI, even

though they decided differently in Session 1.
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Furthermore, we repeatedly measured self-reported trust and

distrust. Self-reports were measured via single items on a 7-point

Likert scale (“How much do you ‘trust’/‘distrust’ AI advice?,” 1

= “not at all,” 7 = “completely”). In the same manner, we also

asked how much they used the advice. This measure served as

a control variable, as mentioned above. In each trial of both

sessions, the participants rated how certain they were about their

decision on a 7-point Likert scale ranging from very uncertain

to very certain. The certainty was assessed for purposes outside

the scope of this paper and is thus not included in the present

analysis.

To improve generalizability and compare different settings,

we developed two image classification scenarios (geometric forms

and real or fake images; see below). We ran two versions of the

same experiment for each of these scenarios, once in a laboratory

and once in an online environment. Therefore, we conducted

a total of four experiments, each divided into two sessions. In

Session 1, we assessed how well participants performed without

AI advice in order to consider their individual performance when

analyzing the results of Session 2. All experiments were approved

by the ethics committee of Paderborn University. The experiments

were created with jsPsych (Version 4.4.0) and hosted on a Jatos

server.1

2.1 Participants

For the laboratory experiments, we recruited German-

speaking students enrolled at Paderborn University. For the

geometric forms scenario, people with visual color deficiencies

were excluded from participation. Furthermore, we excluded

current or former computer science students, as they are less

likely to be convinced by the cover story of the experiments

(see below). Participation was compensated either with 10€

per hour or with course credit. In order to create some risk

for the participants, the three best participants in the AI-

supported classification task were rewarded with a bonus

payment as recommended by Miller (2022). The bonus

was 40€.

Before the first session, all participants provided their informed

consent to the terms of the experiment and data processing,

and they were informed about the potential bonus payment.

All participants in the laboratory experiments (N = 61) had

normal or corrected-to-normal vision and were between 18

and 39 years old (M = 21.69, SD = 3.48). 78.68 % of the

participants identified as female. For the online experiments, we

recruited participants via Prolific.2 We allowed only participants

who reported German as their first language. Participation was

rewarded with 9£ per hour, and the three best-performing

participants also received a monetary bonus. The online

participants (N = 70) were between 21 and 74 years old

(M = 34.5, SD = 10.64). 36.11 % of the participants identified as

female.

1 The full code is provided on GitHub; (see Data availability statement).

2 https://www.prolific.com/

2.2 Stimulus material

We created two classification scenarios: the Forms Scenario

and the Real or Fake (RoF) Scenario. The Forms Scenario involves

abstract figures that the participants classify based on unknown

rules, while the RoF Scenario includes pictures of faces or everyday

objects that are to be classified as real or fake. In the Forms

scenario, we present stimuli that are new to the participants. The

real images of the RoF material are stimuli which the participants

encounter frequently and with which they are thus highly familiar.

Furthermore, the Forms material is highly standardized and

visually less complex than the RoF material, and each stimulus

is easily comparable in terms of classification difficulty. The RoF

material is visually highly complex but less standardized and also

more difficult to compare in terms of classification difficulty. These

differences are not relevant to the present study. However, they

would be relevant for investigating and modeling the participant’s

perception of the stimuli in more detail.

In the RoF Scenario, images were classified as either real

(actual photographs) or fake (AI-generated images). Two types

of real or fake images were used: faces and everyday objects.3

We selected two subsets to create a stimulus set that is neither

too difficult nor too easy. Pilot studies indicated that the face

subset was very challenging for some participants, while the

object subset was relatively easy for others to classify. Combining

the two subsets yielded a satisfactory level of difficulty. Inspired

by whichfaceisreal.com, the fake images of faces were sourced

from thispersondoesnotexist.com.4 The real images of faces were

obtained from the flickr-faceHQ-database (Karras et al., 2019).

As a secondary subset, images depicting objects, landscapes, or

animals were used. The images of fake objects were created using

Bing Image Creator, while the real objects were sourced from the

THINGS database (Hebart et al., 2019).

For the Forms Scenario, we generated two-dimensional

geometric forms that can be categorized as belonging to one

of two categories. The categorization rules are based on the

form’s color, its width-to-height ratio, and the type of curvature

(convex vs. concave). The forms are categorized as Type A if they

are either:

• blue, have a concave line, and are wider than high, or

• red, have a concave line and are higher than wide.

They are categorized as Type B if they are either:

• blue, have a convex line, and are higher than wide or

• red, have concave lines and are wider than high.

The forms were created in Python with matplotlib.5 All forms

have five points, five straight lines, and one curved line. 50% of the

forms are clearly higher or wider (ratio between height and width

3 All stimuli and details on the material generation and selection can be

found on GitHub; see available data (Data availability statement).

4 For more information on the generation, see whichfaceisreal.com

and Karras et al. (2019).

5 The script can be found on GitHub; (Data availability statement).

Frontiers in Psychology 04 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1574809
https://www.prolific.com/
https://whichfaceisreal.com
https://thispersondoesnotexist.com
https://whichfaceisreal.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Peters and Scharlau 10.3389/fpsyg.2025.1574809

FIGURE 1

Study setup of Session 1 with Forms material (left) and study setup of Session 2 with RoF material (right). For illustration, we show an example of the

Forms material for the Session 1 setup and an example of the RoF material for the Session 2 setup. However, for the participants, only one type of

material was presented in both sessions.

above 1.5), and 50% are wider or higher (ratio between height and

width between 1.05 and 1.5). In a pilot study, we tested how well

participants could learn the categorization from the information

provided to them (see Section Procedure). Some participants solved

the task with very few mistakes. Some performances suggested

a partial understanding of the categorization rules, while a few

participants were unable to identify the rules and stayed at or near

chance level. This variance in task performance indicated adequate

task difficulty.

2.3 Procedure—Laboratory experiments

All participants included in the analysis took part in both

sessions. The sessions had to be at least one day but <10 days apart.

Both sessions were conducted in a dimly lit laboratory with one

indirect light source behind the PC screen. A 24" screen with a

resolution of 1,920 × 1,080px was used in all experiments. The

images were presented against a white background (RGB: 255,

255, 255). Throughout both sessions, short breaks were offered at

regular intervals.

2.3.1 Session 1
Depending on the scenario, the participants were informed that

they would be presented with 2D geometric forms or real or fake

images, which they had to categorize as one of two categories: Type

A or Type B, or real or fake, respectively. In the Forms Scenario,

the participants received more extensive information about the

material and were also given the chance to familiarize themselves

with it and complete practice trials.

The participants were informed that the color, the curved line,

and the width-to-height ratio of the forms can be decisive in their

categorization. They were told that all forms can be classified into

one of the two categories. During the familiarization part, the

participants reviewed four examples of correct classifications for

both types and a ninth form placed in the middle. They needed to

determine whether the middle form was Type A or Type B. They

were instructed to try to learn the categories by heart. In the practice

part, the participants saw a single form and had to judge whether

the form was Type A or B.

The familiarization and practice parts were each presented

twice, which the participants were informed of in advance. The

familiarization consisted of 8 blocks of 4 trials. For each block,

the presented examples changed. It was ensured that two blue and

two red examples were always presented and that their ordering

was (pseudo-)randomized. After that, the first short practice part,

consisting of 10 trials, followed. Then, the familiarization part was

repeated with different images, followed by a longer test practice

with 20 trials. In both parts, the participants received auditory

feedback based on the correctness of their decisions.

After the practice parts, the procedure was again identical for

both scenarios. The participants had to categorize single forms or

images as either Type A or B, or as real or fake, respectively (see

Figure 1 left). All participants saw the same stimuli. The order of

stimuli was randomized for each participant. The main experiment

comprised 8 blocks of 27 trials (i.e., 216 stimuli). In the Forms

Scenario, unbeknownst to the participants, 54 blue and 54 red

forms of each type were used. In the RoF Scenario, half of the
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images were faces and half were objects, with 50% being real and

50% being fake images. At the end of Session 1, participants could

answer two open-ended questions that asked how they determined

the category to which the stimuli belonged.

2.3.2 Session 2
Session 2 followed the same general procedure as Session 1.

The main difference was that participants were verbally informed

that they would receive AI support. They were informed about

the capabilities of the supposed AI depending on the condition

(distrust or information only; see below) they were in. This

information was provided in advance to ensure that participants

adhered to the instructions. At the beginning of the experiment,

participants were reminded of the potential bonus payment and

informed that it was based on their performance during the AI-

supported session. The task instructions were displayed on screen.

In the Forms Scenario, participants were informed that they

could refresh their memory with a few practice trials. They

completed three blocks comprising four training trials and 20 test

trials. If a participant answered fewer than 75 percent of the test

trials correctly, both the training and test trials were repeated once

with different stimuli. Afterward, all participants proceeded to the

experimental trials, which again followed the same procedure in

both scenarios.

The participants were informed that they would receive AI

support moving forward and were provided with information

about the AI’s benefits and potential issues. Participants in the

information-only condition were informed that a validation test

revealed that the current AI model was very good at the task and,

while some errors may still occur, the AI generally performs well on

the task and that they should make use of its classifications.

Participants in the distrust condition received the same

information but in a different order. They were informed that the

errors that may occur can be very obvious to humans, and that even

for errors which are not obvious, previous studies have shown that

human intuition provides a useful indicator for potential errors.

They were advised to make use of the AI classifications but to

remain cautious and decide for themselves when to rely on it

(The exact instructions and their translation can be found in the

Supplementary material).

For the AI-supported task, the setup of Session 1 was

simply extended by the mock-up AI advice that indicated AI

classification: Type A or Type B, or Real or Fake (see Figure 1 right).

Unbeknownst to the participants, the accuracy of the supposed AI

advice was determined by Bernoulli sampling with a likelihood

of 0.9 in the pre- and post-error trials. During the error trials,

this likelihood decreased block-wise (0.75, 0.6, 0.45). Each block

consisted of 24 trials, including three blocks of pre-error trials, three

blocks of error trials with decreasing accuracy, and three blocks of

post-error trials. In total, 216 forms or images were evaluated with

AI support.

After every two blocks and after the final block, participants

answered three questions. These time points were chosen so the

queries did not always coincide with changes in the likelihood of

receiving correct advice. Participants rated how much they used

the AI classification, how much they trusted it, and how much they

distrusted it on a 7-point Likert scale ranging from very little to very

much.

At the end of Session 2, the participants were asked again

how they determined to which category the stimuli belonged.

Furthermore, they were asked how familiar they were with AI-

supported image classification and how familiar they were with

AI-based applications in general. Afterward, participants were

debriefed about the purpose of the experiment.

2.4 Procedure—Online experiments

The procedure for the online experiments mostly followed the

steps described above. The participants were instructed that they

could not use mobile devices for participation. At the beginning

of each session, we recorded the participants’ browser type, width,

and height to ensure adequate conditions for participation. If the

minimum specifications (Forms Scenario: 1,600 × 920px; RoF

Scenario: 1,024× 768px) were not met, the participants were asked

to sufficiently adjust their browsers. If this was not possible, they

were excluded from participation.

The online participants received the same written instructions

as the laboratory participants and were required to summarize

them to ensure their understanding.

2.5 Statistical analysis

The results were analyzed using RStudio (R version 4.4.0)

and Jupyter Notebook (Python version 3.10.5). Within the Jupyter

Notebook framework, we used the pymc4 library for the Bayesian

SDT analysis. The Bayesian analysis of the contingency tables for

the acceptance rates and switch percentages, which was added for

reviews, and the Bayes factors were calculated with JASP (version

0.19.3, JASP Team, 2025). The remaining statistical analyses were

carried out in R. For the Bayesian linear mixed regressions, we used

the brms package (Bürkner, 2017).

2.5.1 Signal Detection Theory
For the SDT analysis, we adapted the Bayesian modeling

approach described in Lee (2008); Lee and Wagenmakers (2014).

Unlike the typical method, which calculates sensitivity and bias

parameters as single values, this approach enables us to quantify

the uncertainty associated with these values. By design, our data

include more trials where the AI advice is correct than incorrect.

This unequal count of observations results in differing certainty

about the SDT parameters. The Bayesian framework inherently

captures this aspect, whereas classical approaches do not (Lee,

2008).

hi = 8(
1

2
di − ci)

fi = 8(−
1

2
di − ci)

(1)

We used a hierarchical Bayesian model (see Figure 2) in which

for each condition, the d′ and c values of each participant are
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FIGURE 2

Hierarchical Bayesian SDT model structure. The indices of Dµ and Cµ represent the two conditions. The “x 3” stands for the shape of the priors, which

in this visualization is based upon the three phases of the experiment.

drawn from the overarching normal distributions Dµ and Cµ,

respectively. As priors for the precision of each participant’s

values, we chose the Gamma distributions λD and λC . The d′

and c values are reparametrized into the hit and false alarm rates

hi and fi, as detailed in Equation 1, with 8 representing the

standard cumulative Gaussian function. To avoid problems with

encountering frequencies of 0 and following (Hautus et al., 2021),

a log-linear correction was applied that adds 0.5 to all frequencies.

The priors we used are as follows:

Dµ ∼ Gaussian(0, 1.9)

Cµ ∼ Gaussian(0, .95)

λD|λC ∼ Gamma(.001, .001)

Di ∼ Gaussian(Dµ, λD)

Ci ∼ Gaussian(Cµ, λC)

(2)

The d′ and c priors (see Equation 2) were chosen based on

the theoretically possible values for these parameters. At most,

216 trials are included in the parameter estimations, and thus a

maximum of 108 hits and false alarms could occur. Given the

applied log-linear correction, the hit and false alarm rates can

range between 0.5
109 and 108.5

109 . Therefore, d′ values between −5.21

and 5.21 and c values between −2.61 and 2.61 are theoretically

possible. Thus, we ensured that the theoretically possible values

are within 3SDs of the Gaussian priors. For each session, we ran

individual models with four chains with 10,000 samples, while the

first 2,000 were used as tuning samples and were not included in

the posteriors.

From the d′ estimates of the two sessions, we calculated the d′

difference between Session 2 and Session 1 for each participant.

Thereby, we quantified individual improvement or worsening

based on AI advice they received in Session 2. This was done twice:

once using all trials from Session 2 and once by splitting the trials

from Session 2 according to Advice Correctness. The former is used

to quantify performance changes due to AI advice in general to test

Hypothesis 1. The latter allows us to inspect these changes in more

detail and is therefore referred to as the detailed d′ difference. A

positive d′ difference indicates that the participant benefitted from

the AI advice, a negative difference indicates that their performance

worsened due to the advice, and a difference of zero signals no

change due to the advice.

The detailed d′ difference provides two values for each

participant: the difference when the advice was correct and the

difference when the advice was incorrect. This enables us to

quantify whether the participants improved by generally relying on

the AI advice or by appropriately relying on it. In the case of general

reliance, the detailed d′ differences would be positive when the

advice was correct and negative when it was incorrect. The case of

appropriate reliance is indicated by a positive detailed d′ difference

when the advice is correct and a detailed d′ difference close to zero

when the advice is incorrect.

3 Results

3.1 Behavioral results

In Table 1, we report the descriptive statistics for the Bayesian

SDT performance estimate d′ from both sessions, along with the

detailed d′ differences. From this, we observe an improvement in

the participants’ performance in Session 2 compared to Session

Frontiers in Psychology 07 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1574809
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Peters and Scharlau 10.3389/fpsyg.2025.1574809

1. On average the d′ values were higher when the advice was

correct than when the advice was incorrect. This indicates that the

participants’ decisions were influenced by the advice they received.

TABLE 1 Descriptive statistics for d′ values of the Session 1 & 2.

n M SD Median Min Max

Session 1 131 0.95 0.83 0.96 -0.30 3.86

Session 2 131 1.83 0.90 1.71 0.15 4.46

Session 2 - advice

correct

131 2.46 1.09 2.24 0.14 4.85

Session 2 - advice

incorrect

131 0.28 1.56 0.43 –3.33 3.51

Lower half: d′ values of Session 2 split by Advice Correctness.

TABLE 2 Contingency table for the acceptance rate and switch

percentages split by Advice Correctness.

Advice
correctness

Advice
accepted

Switched to
advice

No Yes No Yes

Incorrect 3, 147

(54.81%)

2, 595

(45.19%)

1, 325

(34.55%)

2, 510

(65.45%)

Correct 3, 266

(14.48%)

19, 288

(85.52%)

5, 627

(74.19%)

1, 958

(25.81%)

Total 6, 413

(22.66%)

21, 883

(77.34%)

6, 952

(60.87%)

4, 468

(39.12%)

Difference by Advice Correctness for acceptance rate: BF10 > 10, 000.

Difference by Advice Correctness for switch percentages: BF10 > 10, 000.

Furthermore, the acceptance rates and switch percentages of the

participants were higher when the advice was correct than when

it was not (see Table 2).

Figure 3 shows the d′ values from Session 2 and their variation

across phases for each condition. In the pre-error phase, the d′

estimate in the information-only condition centers at 2.0 [1.8,

2.3] and at 2.0 [1.8, 2.2] in the distrust condition. In the error

phase, both estimates drop to mean values of 1.3 [1.1, 1.57] and

1.4 [1.2, 1.6] in the information-only and the distrust condition,

respectively. In the post-error phase, the mean d′ values are again

at 2 [1.7, 2.2] in the information-only condition and 2 [1.7, 2.2]

in the distrust condition. These results show the expected drop in

performance in the second, i.e., the error phase of the study for

both conditions. However, these results do not support Hypothesis

3; that is, they do not suggest that the performance is higher after

the second phase than before it.

To test whether the AI-advised performance of the participants

improved after receiving the distrust instruction, we compared the

d′ differences between conditions. Contrary to our expectations

formulated in Hypothesis 1, Figure 4 shows that the improvement

in Session 2 in the distrust condition was slightly lower (M =

0.85, [0.78, 0.93]) than the improvement in the information-only

condition (M = 0.89, [0.82, 0.95]).

Visualizing these differences for each study (Figure 5) shows

that the expected result pattern occurs only for the laboratory

version of the Forms scenario. In the online version of the same

scenario, a reverse pattern is present, while a strong overlap

between the conditions is observed in the RoF scenario in general.

The acceptance rates and switch percentages across all studies also

FIGURE 3

Posterior density distributions of d′ split by Condition and phase (A: pre-error phase, B: error phase, C: post-error phase).
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FIGURE 4

Posterior density distributions of the d′ di�erence between Session 2 and Session 1 split by Condition.

FIGURE 5

Posterior density distributions of the d′ di�erences of each sub-study (A: Forms laboratory, B: Forms online, C: RoF laboratory, D: RoF online).

did not differ between conditions (BF10 = 0.07, BF10 = 0.03; see

Table 3).

Next, we analyzed the detailed d′ differences. As Figure 6 shows,

when the advice was incorrect, the d′ values in the information-

only condition (M = −0.68, [−0.79, 0.57]) overlap with the d′

values in the distrust condition (M = −0.64, [−0.76,−0.52]).

When considering the data from the trials in which the advice was

correct, the d′ values in the information-only condition (M = 1.5,

[1.5, 1.6]) are higher than the values of the distrust condition (M =

1.4, [1.3, 1.5]). Looking at the difference of posteriors for the two

conditions (Figure 6 right side), we can see that 0 falls within the

95% highest density interval (HDI) for the incorrect advice values

and centers at 0.07. Thus, only a tendency of reduced worsening

due to incorrect advice in the distrust condition in comparison

to the information-only condition is observed. For the trials in

which the advice was correct, we see that the 95% HDI of the

condition difference does not include 0 with a mean value of –0.13.

This indicates a smaller improvement by correct advice in the

distrust condition compared to the information-only condition. To

interpret this in terms of reliance, the detailed d’ differences indicate

at most a small reduction of over-reliance in the distrust condition,

while this came at the cost of under-reliance in comparison to
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TABLE 3 Contingency table for the acceptance rate and switch

percentages split by Condition.

Condition Advice accepted Switched to
advice

No Yes No Yes

Distrust 3, 052

(23.16%)

10, 124

(76.84)

3, 199

(60.69%)

2, 072

(39.31%)

Info 3, 361

(22.23%)

11, 759

(77.77%)

3, 753

(61.03%)

2, 396

(38.97%)

Total 6, 413

(22.66%)

21, 883

(77.34%)

6, 952

(60.87%)

4, 468

(39.12%)

Difference by Condition for acceptance rate: BF10 = 0.07.

Difference by Condition for switch percentages: BF10 = 0.03.

the information-only condition. In Table 4, we report that the

acceptance rates were lower when the advice was incorrect than

when it was correct, with no difference between conditions. For

the switch percentages, we observed the same pattern (see Table 4).

This shows that the participants relied less on incorrect advice than

on correct advice, which did not differ between conditions.

3.2 Self-report

Figure 7 visualizes the mean values of the self-reported trust

and distrust for each of the five-time points. To analyze the repeated

self-report, we used a Bayesian mixed regression with Condition

and the time points of the self-report (queryCount) as fixed effects

and the variable participant as a random intercept (see Equation 3).

For the variable queryCount we used planned contrast to compare

the self-report measurements across the different time points. Their

specifications (see Table 5) allow for a group-wise comparison of

the time points of the self-report.

selfreport ∼ Condition ∗ queryCount + (1|Participant) (3)

Figure 7 shows the mean values of the self-reported trust and

distrust, each split by Condition. In Tables 6 and 7, we report the

results of the mixed regressions with contrasts.6 For the predictor

Condition, we report the values from the analysis without applying

the contrasts to the predictor queryCount. The remaining rows

consist of the values from the analysis with the contrasts. A

positive estimate value of the predictor Condition indicates higher

mean values in the information-only condition than in the distrust

condition across all time points.

For the self-reported trust, only the 95% credible interval (CI)

of Contrast 2 does not include zero. The estimate for this contrast

is 0.17[0.08, 0.25], indicating that at time point 3, lower trust was

reported than before, thus supporting Hypothesis 2a. The other

contrasts and their interaction with Condition are close to zero,

while their 95% CI includes zero (see Table 6).

6 In the Appendix, we also visualize the self-reported reliance that was

assessed as a control variable and report the results of the mixed regression

for this measure.

For the self-reported distrust (Table 7), a similar but reversed

pattern is observed. Again, for Contrast 2, the 95% CI does

not include 0, with an estimated value of −0.14[−0.21,−0.06],

indicating higher self-reported distrust at time point 3 compared

to time points 1 and 2, which supportsHypothesis 2b. Furthermore,

the interaction between Contrast 2 and Condition, with an estimate

of −0.11[−0.21,−0.01], suggests that this increase in distrust was

more pronounced in the information-only condition.

Furthermore, Table 8 presents correlations between the mean

self-reported trust and distrust and the d′ estimates from Session

2, the detailed d′ differences, and the acceptance rates and switch

percentages are reported. From that, we can see that higher trust

goes along with more positive detailed d′ differences when the

advice was correct and more negative detailed d′ differences when

the advice was incorrect. Distrust is correlated in the reverse

pattern to the detailed d′ differences. Both the acceptance rates

and the switch percentages are positively correlated with trust and

negatively correlated with distrust (see Table 8).

4 Discussion

The purpose of this study was to investigate whether distrust is

helpful for interaction with erroneous AI. Accordingly, the present

experiments examined whether the instruction to remain skeptical

and check each AI advice had a positive effect on the combined

human-AI performance when interacting with fallible AI. To that

end, we compared the d′ difference of the participants in a distrust

condition to the d′ difference of the participants in an information-

only condition. Overall, the distrust instruction led to no change in

performance, with a small tendency to worsen performance instead

of improving it. Out of four experiments, only one indicated a

benefit of the distrust instruction. The other three experiments

show no effect (RoF - online) or even a negative tendency (RoF -

lab and Forms - online).

The reasons for these differing effects of the instruction

manipulation are unclear. A clear pattern of results, e.g., similar

effects for one type of material or for the laboratory or online

setting, is not present. We expected neither a large nor a very

robust effect because it was only the initial instruction that was

manipulated, but the results were still contrary to our expectations

regarding the benefit of the distrust instruction. Instead of the

expected benefit, these results illustrate that the effect of instructing

to remain skeptical and check each piece of advice may fluctuate

or not be present at all. Therefore, the present results call the

usefulness of this or similar procedures into question.

Importantly, a parallel exists in the usage of disclaimers in

current LLM Chat-Bot applications. Typically, in this context, a

disclaimer is presented (Anderl et al., 2024; Bo et al., 2024) either

before submitting a prompt or within the chat interface. Such

disclaimers resemble our distrust instructions, as they indicate that

the generated output may be false or contain wrong information,

and should therefore be checked or approached with caution. The

present results indicate that such disclaimers may not be effective in

shaping how people interact with AI or how they use the generated

output. Overall, results regarding distrust instructions are mixed

so far. In line with our results, Metzger et al. (2024) reports that

a disclaimer about the limitations of an LLM-based conversational
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FIGURE 6

Posterior density distributions of the d′ di�erences between Session 2 and Session 1 split by Condition and Advice Correctness.

TABLE 4 Contingency table for the acceptance rate and switch percentages split by Advice Correctness and Condition.

Advice correctness Condition Advice accepted Switched to advice

No Yes No Yes

Incorrect Distrust 1, 490 (55.76%) 1, 182 (44.24%) 1, 181 (65.72%) 616 (34.28%)

Info 1, 657 (53.97%) 1, 413 (46.03%) 1, 329 (65.21%) 709 (34.79%)

Correct Distrust 1, 562 (14.87%) 8, 942 (85.13%) 891 (25.65%) 2, 583 (74.35%)

Info 1, 704 (14.14%) 10, 346 (85.86%) 1, 067 (25.96%) 3, 044 74.05%)

Difference by Condition for acceptance rate: BF10incorrect = 0.08, BF10correct = 0.04.

Difference by Condition for switch percentages: BF10incorrect = 0.04, BF10correct = 0.03.

FIGURE 7

Mean values of self-reported trust and distrust at the five time points during the experiments.

agent given prior to the interaction did not alter users’ attitudes

about the LLM’s outputs. However, in another study, disclaimers

mitigated over-reliance (Bo et al., 2024). What may be important

is that in this study, the disclaimer was presented continuously

throughout the interaction, which might be more effective than

displaying it only beforehand. Future research should continue

to explore this to determine whether repeated disclaimers or a

different distrust instruction led to different results than ours.

Recently, a qualitative analysis revealed that users’ distrust of the

generated outputs led to more critical and cautious usage (Colville

and Ostern, 2024).

Furthermore, the results of the present study do not indicate the

expected improvement in the participants’ performance in the post-

error phase compared to the pre-error phase. The performances
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TABLE 5 Contrasts used for the Bayesian mixed regression.

Weights

Contrast 1 –1 1 0 0 0

Contrast 2 –1 –1 2 0 0

Contrast 3 0 0 2 –1 –1

Contrast 4 0 0 0 1 –1

TABLE 6 Regression coe�cients of the Bayesian mixed regression for the

self-reported trust.

Estimate Est.
Error

l-95%
CI

u-95%
CI

Intercept 1.77 0.09 1.59 1.94

Condition 0.17 0.15 –0.12 0.46

queryCount -

contrast 1

0.08 0.05 –0.02 0.18

queryCount -

contrast 2

0.17 0.04 0.09 0.24

queryCount -

contrast 3

0.03 0.04 –0.05 0.10

queryCount -

contrast 4

0.00 0.05 –0.10 0.10

Condition:contrast1 0.04 0.07 –0.09 0.17

Condition:contrast2 0.03 0.05 –0.07 0.14

Condition:contrast3 0.01 0.05 –0.09 0.11

Condition:contrast4 –0.02 0.07 –0.15 0.11

l-95% CI = lower boundary of the 95% credible interval, u-95% CI = upper boundary of the

95% credible interval.

in both phases are very similar, which indicates that the error

phase did not alter the participants’ usage of AI advice and that

they used the advice because the performance in the pre- and

post-error phases was higher than the unadvised performance in

Session 1. Thus, on average, the participants improved due to the

advice, while the increased exposure to wrong advice did not alter

this. However, the self-reported trust and distrust indicate that

they noticed the worsening of AI advice during the error phase.

Participants’ distrust increased while their trust decreased because

of the error phase. This aligns with a typical pattern where people

lose trust upon noticing errors, a phenomenon observed in the

context of algorithm aversion (Madhavan and Wiegmann, 2007;

Jussupow et al., 2020).

Drawing from the algorithm aversion literature, one might

expect a reduction in participants’ reliance on advice after the error

phase. However, the data indicate no difference in performance

between the pre- and post-error phases, suggesting that advice

usage remained stable. It is possible that the occasional errors,

which occurred during the pre-error phase, may have diminished

the impact of the error phase. To explore this possibility more

systematically, future studies could ensure that an even higher-

quality AI advice is provided in the pre-error phase. Additionally,

aligning with recent work on algorithm aversion (Dietvorst et al.,

2015; Reis et al., 2024), it would be valuable to label the advice as

either human- or AI-generated, or to allow participants to choose

TABLE 7 Regression coe�cients of the Bayesian mixed regression for the

self-reported distrust.

Estimate Est.
Error

l-95%
CI

u-95%
CI

Intercept 2.12 0.09 1.94 2.30

Condition –0.16 0.15 –0.46 0.14

queryCount - contrast 1 –0.08 0.05 –0.18 0.01

queryCount - contrast 2 –0.14 0.04 –0.21 –0.06

queryCount - contrast 3 –0.02 0.04 –0.09 0.06

queryCount - contrast 4 –0.01 0.05 –0.10 0.09

ConditionInfo:contrast1 –0.03 0.07 –0.16 0.11

ConditionInfo:contrast2 –0.11 0.05 –0.21 –0.01

ConditionInfo:contrast3 –0.01 0.05 –0.11 0.09

ConditionInfo:contrast4 0.07 0.07 –0.07 0.20

l-95% CI = lower boundary of the 95% credible interval, u-95% CI = upper boundary of the

95% credible interval.

TABLE 8 Correlations between the self-report measures and the d
′ values

from Session 2, including the detailed d’ di�erences, acceptance rate, and

switch percentages.

Trust Distrust

r BF10 r BF10

d′ Session 2 –0.21 1.92 0.17 0.70

d′ difference - advice correct 0.38 2,195.49 –0.26 9.33

d′ difference - advice incorrect –0.39 3,899.03 0.32 104.56

Acceptance rate 0.37 1,261.06 –0.26 8.11

Switch percentage 0.43 >10,000 –0.25 7.31

r = Pearson correlation, BF10 = Bayes factor.

which type of advisor to follow. Both approaches could yield further

insights into research on algorithm aversion and appreciation

(Logg et al., 2019).

Interestingly, the contrast analysis of the self-report reveals that

the first drop in AI advice quality (from 90% to 75% correctness)

does not lead to a substantial change in the self-report. Only after

a further drop in quality (60% and then 45%) is a significant

difference in trust and distrust observed. This suggests that either

prolonged exposure to errors, a certain frequency of errors, or both

need to be present for distrust to arise and for trust to decline. One

reason for this may be that with an increased frequency of errors,

the errors occurred more continuously. Wang et al. (2024) show

that continuous errors are more detrimental to trust than when the

same number of errors occur non-continuously.

In addition, we did not observe any substantial changes

between the self-reported trust and distrust in the post-error phase

and the error phase. For self-reported trust, this aligns with trust

research in both interpersonal and human-AI contexts. In multiple

studies across different settings (e.g., Lewandowsky et al., 2000;

Hoff and Bashir, 2015; Slovic, 1993), it was observed that trust

decreases more quickly when expectations are not met (e.g., by

noticing errors) than it takes to (re-)gain trust. This is referred to

as the asymmetry principle (Poortinga and Pidgeon, 2004; Slovic,
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1993), which can be summarized as follows: trust is hard to gain but

easy to lose, while the opposite appears to apply to distrust (Vaske,

2016; Guo et al., 2017).

In accordance with previous research that highlights the

importance of distinguishing between self-reported trust and the

behavioral component of reliance (e.g., Papenmeier et al., 2019,

2022; Wang and Yin, 2023), our results also highlight the differing

dynamics of the self-report measures and reliance behavior. While

the combined performance in the post-error phase returns to the

performance level of the pre-error phase, we did not observe a

similar recovery for self-reported trust and distrust. In our study,

this discrepancy is also evident in the control variable of self-

reported reliance, as this measure returns to the initial level in the

post-error phase.

Regarding the conceptualization of trust and distrust as two

related yet separate dimensions, our results neither support

nor contradict this concept. Trust and distrust were strongly

negatively correlated; and correspondingly, trust was negatively

correlated with the d′ values of Session 2, while distrust was

positively correlated with those values. One possible reason for

this is that each concept was assessed by only a single item

and that participants may have reverse-scored one of them

(see below). In accordance with Scharowski and Perrig (2023),

we continue to advocate that, based on the underlying theory

and existing evidence, the two-dimensional approach is more

appropriate. Additional research on trust and distrust, as well as

their antecedents and consequences, is necessary to empirically

corroborate this.

Conducting two sessions enabled us to control for individual

performance differences. The SDT estimates from the two sessions,

combined with the correctness of the advice, allowed us to

assess whether under-reliance and over-reliance were present

and influenced by the manipulated instructions. Contrary to

our expectations, we observed only a slight reduction in over-

reliance in the distrust condition compared to the information-

only condition, while this appeared to result in a rise in

under-reliance.

4.1 Limitations

The degree to which we can interpret our self-report outcomes

is limited. By measuring trust and distrust with only one item

each, we have reduced these complex concepts to single statements,

which increases the likelihood of overlooking their more detailed

aspects. Moreover, the simplicity of this assessment may have

led participants to reverse-score the distrust item in relation

to the trust item. The single-item measurement of trust and

distrust was chosen because we wanted to assess self-reports

multiple times during the experiment. We decided in favor of

single items and against using a questionnaire due to feasibility.

This trade-off between the unobtrusiveness and extensiveness

of self-report measurements cannot be easily resolved. Instead,

depending on a study’s focus, one should be prioritized over

the other; however, both are generally very important. Trust

and distrust are dynamic, which is why multiple measurements

are beneficial. However, their complexity cannot be distilled

into single items. Therefore, we consider a more extensive

evaluation of self-reported trust and distrust through standardized

and validated questionnaires as a promising avenue for future

research.

Additionally, although we created some risk for our

participants via a monetary incentive, the stakes involved in

their behavior were considerably lower compared to the typically

high-stakes scenarios found in contexts such as law, finance, or

medicine. Thus, our results may not be directly applicable to

these contexts. Furthermore, it was not ensured or directly tested

whether the participants could accurately recognize the quality

of the advice. While the self-report measures indicate that the

participants noticed a drop in advice quality, we did not investigate

their assessment of the advice directly. For instance, in a study

by Miller et al. (2023), participants systematically mistook AI-

generated faces for real images due to their higher averageness and

familiarity with AI-generated images. Our two-session approach

accounted for individual performance differences arising from

such potential issues; however, we cannot assert that participants

developed true expertise in identifying correct or incorrect advice.

To quantify this expertise, future work using a similar approach

should involve a direct assessment of the quality of advice, such

as measuring the perceived accuracy of AI. Being an expert in the

subject at hand may be a key factor for distrust to be beneficial

or for having distrust at the correct time in the first place. Thus,

applying a similar procedure in different domains with domain

experts would be fruitful, and comparable efforts can already be

found (e.g., Morrison et al., 2024; Leichtmann et al., 2023).

4.2 Conclusion

We argued that trust in AI research may benefit from

considering and investigating not only (appropriate) trust but also

distrust. We conducted a study consisting of four sub-experiments

to investigate whether distrust is helpful when interacting with

erroneous image classifications of a mock-up AI. Furthermore, we

investigated if a worsening of this AI advice is noticed and how

this affected self-reported trust and distrust. Despite the limitations

outlined above, this paper makes three contributions.

First, contrary to our expectations, we show that fostering

distrust toward erroneous AI advice was not beneficial for the

advised performance in our mock-up scenarios. As discussed

above, this has implications for such instructions, such as the way

disclaimers are currently used in LLM-based chat applications.

Second, we provide evidence that people notice declining AI advice

and that this affects their self-reported trust and distrust. A decrease

in the quality of advice was followed by a drop in trust and a rise in

distrust, which did not revert to their initial levels after the advice

quality improved. Our data suggest that these shifts in trust and

distrust require either prolonged exposure or a higher frequency of

errors.

Third, by employing Signal Detection Theory, we were able

to analyze the participants’ responses without any potential

response biases. By conducting two sessions—one with

and one without AI advice—with a known ground truth,

we contribute an analysis that assesses reliance in detail
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to evaluate whether over- or under-reliance occurs and to

compare the extent to which they are mitigated. The unadvised

Session 1 controls for individual performance differences

in classifying the material. Simultaneously, the differences

in the d′ estimates of the two sessions quantify potential

improvements or deteriorations due to AI advice. In addition

to investigating between-subject factors such as the present

condition manipulation, this approach can also be applied to

within-subject manipulations; for example, to compare different

classification accuracies, designs, or the addition of various XAI

methods.

Future research on appropriate reliance should adopt

approaches like ours that allow for the investigation of mitigating

under- and over-reliance. By fully studying this underlying aim

of appropriate trust and related notions, their understanding

would progress. Despite the wording of these notions and the

focus on evaluating trust in this context, we advocate that distrust

should also be considered. Otherwise, one would evaluate only

the presence or absence of trust; while, due to the possibility of

errors, not the absence of trust, but the presence of distrust can be

warranted.
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Appendix

Additional results for the control variable
self-reported reliance

Table A1 reports the results of the Bayesian mixed regression

for the control variable self-reported reliance. The 95% CI of

Contrast 2, with an estimate of 0.18[0.10, 0.26], does not include

0, indicating a decrease at time point 3 compared to time points

1 and 2. Furthermore, the estimates of Contrast 3 (0.09[0.01, 0.16])

and Contrast 4 (0.11[0.01, 0.21]) are positive, indicating an increase

in self-reported reliance when comparing time points 3 to 4 and 5,

as well as when comparing time points 4 and 5.

TABLE A1 Regression coe�cients of the Bayesian mixed regression for

the self-reported reliance.

Estimate Est.
Error

l-95%
CI

u-95%
CI

Intercept 1.95 0.11 1.73 2.17

Condition 0.29 0.18 –0.06 0.63

queryCount -

contrast 1

0.02 0.05 –0.08 0.12

queryCount -

contrast 2

0.18 0.04 0.10 0.26

queryCount -

contrast 3

0.09 0.04 0.01 0.16

queryCount -

contrast 4

0.11 0.05 0.01 0.21

Condition:contrast1 –0.02 0.07 –0.15 0.12

Condition:contrast2 –0.05 0.05 –0.16 0.05

Condition:contrast3 –0.07 0.05 –0.18 0.03

Condition:contrast4 –0.09 0.07 –0.23 0.04

l-95% CI = lower boundary of the 95% credible interval, u-95% CI = upper boundary of the

95% credible interval.

FIGURE A1

Mean values of the control variable self-reported reliance at the five time points during the experiments.
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