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Introduction: Aging is associated with a decline in essential cognitive functions 
such as language processing, memory, and attention, which significantly impacts 
the quality of life in later years. Despite the serious consequences of age-related 
cognitive decline, particularly in the formation of false memories, the underlying 
mechanisms remain poorly understood. This knowledge gap is partly due to 
limitations in current methodologies used to examine age-related cognitive 
changes and their origins.

Methods: In the present study, a hybrid approach was developed that combines 
optimized machine learning techniques with large-scale transformer-based 
language models to identify behavioral patterns distinguishing true from false 
memories in both younger and older adults. The best-performing model, a 
modified version of the Light Gradient Boosting Machine (LightGBM), identified 
nine key features using permutation importance. Feature interactions with age 
were further examined to understand their relationship with cognitive decline. 
Additionally, the modified LightGBM was integrated with a language model to 
enhance interpretability.

Results: The findings revealed that younger adults benefited from target 
encoding time during reading, which helped them correctly reject misleading 
information (lures), whereas older adults were more vulnerable to inference 
caused by semantic similarity.

Discussion: These results offer important insights into the mechanisms of 
false memory in aging populations and demonstrate the utility of hybrid 
computational methods in uncovering behavioral patterns related to memory 
decline. The modified LightGBM achieved the highest overall performance with 
an F1-score of 0.82 and recall of 0.88, outperforming all evaluated deep learning 
and transformer-based models.
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1 Introduction

Memory is one of the key cognitive functions that affects the performance and participation 
of older adults in daily activities, as well as their personal and social life in general. Age-related 
decline in memory has a profound negative impact on older adults’ quality of life, by reducing their 
autonomy and their ability to establish and/or maintain strong social bonds, which may lead to 
social isolation. Importantly, social isolation may, in turn, lead to mental health issues and reduce 
overall well-being. Unfortunately, age-related decline in memory function is a common cognitive 

OPEN ACCESS

EDITED BY

Diego Oliva,  
University of Guadalajara, Mexico

REVIEWED BY

Miodrag Zivkovic,  
Singidunum University, Serbia
Chenwei Xie,  
Hong Kong Polytechnic University,  
Hong Kong SAR, China

*CORRESPONDENCE

Elias Hossain  
 elias.hossain191@gmail.com

RECEIVED 18 February 2025
ACCEPTED 04 July 2025
PUBLISHED 23 July 2025

CITATION

Golilarz NA, Hossain E, Rahimi S and 
Karimi H (2025) A hybrid approach for pattern 
recognition and interpretation in age-related 
false memory.
Front. Psychol. 16:1579259.
doi: 10.3389/fpsyg.2025.1579259

COPYRIGHT

© 2025 Golilarz, Hossain, Rahimi and Karimi. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 23 July 2025
DOI 10.3389/fpsyg.2025.1579259

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1579259&domain=pdf&date_stamp=2025-07-23
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1579259/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1579259/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1579259/full
mailto:elias.hossain191@gmail.com
https://doi.org/10.3389/fpsyg.2025.1579259
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1579259


Golilarz et al. 10.3389/fpsyg.2025.1579259

Frontiers in Psychology 02 frontiersin.org

problem, affecting approximately 11.1% of the population in the 
United States (Centers for Disease Control and Prevention, 2019). Since 
memory loss is indeed a frustrating and life-changing cognitive problem, 
it is important to empirically investigate the associated underlying 
mechanisms to facilitate the development of effective diagnostic methods 
and treatments.

Moreover, a particular aspect of memory deterioration is the 
increased susceptibility of older adults to false memories—where a 
memory trace associated with an event is erroneously recalled or 
recognized as having occurred. The Inhibition Deficit Hypothesis (IDH) 
offers a widely accepted theoretical explanation, suggesting that aging 
impairs the ability to suppress irrelevant information during memory 
retrieval, thereby increasing cognitive interference. However, while such 
theory-driven frameworks have provided valuable insights, they typically 
rely on isolated hypothesis testing and focus only on predefined variables. 
The conventional approach may fail to capture important features or 
interactions that are not predicted by theory and may neglect complex 
and latent patterns in behavioral data. Consequently, reproducibility and 
generalizability frequently deteriorate, particularly when research 
conditions differ between studies (Open Science Collaboration, 2015; 
Johnson et al., 2017; Nosek et al., 2022). This exposes a critical gap: the 
absence of data-driven, scalable methodologies that can strengthen 
current theories and disclose concealed cognitive and behavioral patterns 
that contribute to memory decline and false memory susceptibility.

In light of this, the current study investigates the application of 
modern computational techniques—specifically, machine learning (ML) 
and large language models (LLMs)—to analyze a dataset on age-related 
differences in true and false memories. ML provides powerful tools for 
uncovering non-obvious relationships in high-dimensional data (Lv et al., 
2020; Naghshvarianjahromi et al., 2019), while LLMs enhance 
interpretability by offering natural language-based explanations of results. 
Together, these technologies offer a robust, hybrid framework for 
identifying key predictors and cognitive-behavioral patterns associated 
with memory performance across age groups (Bhatt et al., 2023; 
Nematollahzadeh et al., 2020; Wan et al., 2018).

Motivated by these challenges and opportunities, the present work 
explores how customized ML models, combined with semantic 
modeling and LLM-based prompt engineering, can enhance our  
understanding of cognitive aging and provide a scalable benchmark 

for future research in memory and aging. The key contributions of this 
study are as follows. We:

 • Customized existing machine learning methods to delve 
deeper into the dataset and identify significant regularities and 
factors contributing to memory performance and susceptibility 
to false memories.

 • Modified the LightGBM model to capture semantic relationships 
within the dataset for identifying cognitive decline and false memory 
patterns, providing a benchmark for the research community.

 • Integrated the LLM prompt engineering technique with the 
modified LightGBM model to generate consistent and 
conceptually informative responses for understanding false and 
true memory patterns across different age groups.

 • Conducted rigorous feature interaction modeling to determine 
the most important factors directly related to the underlying 
cognitive phenomena (see Figure 1).

The remainder of this paper is structured into four sections. 
Section 2 presents the prior research on cognitive aging and memory 
modeling. Section 3 outlines the research methods, including the 
machine learning models implemented and the strategies used for 
their enhancement through hyperparameter optimization. Section 4 
reports the findings, accompanied by detailed analyses and insights. 
Finally, Section 5 offers the main conclusions of the manuscript.

2 Prior research

Previous research has demonstrated that older adults are more 
susceptible to false memories than younger adults (Devitt and 
Schacter, 2016; Abichou et al., 2021). False memories occur when a 
memory trace associated with an event is erroneously recalled and/or 
recognized as having occurred in the past. An influential theory that 
provides an explanation for false memory in older adults is the 
Inhibition Deficit Hypothesis (IDH) (Zacks and Hasher, 1988; Lustig 
et al., 2007). According to this theory, aging leads to a decline in the 
ability to inhibit information that is distracting or irrelevant during 
memory retrieval. Importantly, availability of such irrelevant 

FIGURE 1

Visualization of the learning algorithm training procedures and integration with the LLM.
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information increases interference during the retrieval of target 
memory items, and if this interference is strong enough, the activation 
level of non-target (irrelevant) memory items may reach the 
recognition threshold, creating false memories for those items.

In other words, inability to suppress irrelevant information may 
reduce the discriminability of stored memory items, leading to false 
recognition and/or recall. Empirical evidence for the IDH comes from 
studies showing that older adults’ performance declines in tasks 
requiring the suppression of irrelevant information (May and Hasher, 
1998; Andrés et al., 2006), as well as studies showing that older adults 
exhibit more intrusions from irrelevant information during the 
retrieval of previously encoded information. In addition, this theory 
receives support from neuroimaging studies showing that, relative to 
younger adults, older adults have reduced activation in brain regions 
associated with inhibitory control (e.g., the prefrontal cortex; Gazzaley 
et al., 2005), when task performance relies on cognitive inhibition.

In a different domain, Antonijevic et  al. (2025) introduced a 
hybrid AI framework to improve the security of IoT devices integrated 
with the Metaverse. By combining CNN with machine learning 
models such as CatBoost and LightGBM, and optimizing them using 
metaheuristics, the framework effectively identified and classified 
intrusions in IoT networks. Their two-level architecture achieved 
multi-class classification accuracy of up to 99.83% in a real-world 
dataset. Additionally, explainable AI was incorporated to interpret 
model decisions and support future improvements.

Similarly, Villoth et al. (2025) proposed a dual-layer AI framework 
for software fault detection using a combination of natural language 
processing and machine learning. A CNN was employed for feature 
extraction, while boosting classifiers such as XGBoost, AdaBoost, and 
CatBoost were used in the second layer, all tuned via a modified firefly 
algorithm. With custom TF-IDF encoding, their model achieved up 
to 99.8% accuracy across seven experiments using public datasets.

Likewise, Dobrojevic et  al. (2024) addressed sexual harassment 
detection on Twitter through natural language processing and machine 
learning. They used TF-IDF and BERT for feature representation and 
employed XGBoost models optimized with a modified Coyote 
Optimization Algorithm. SHAP was applied to interpret model behavior, 
revealing insights into the patterns of online harassers.

While these studies illustrate the efficacy of hybrid deep learning 
and machine learning methodologies across diverse fields—such as 
IoT security, software testing, and online abuse detection—they do 
not explicitly investigate their relevance to age-related cognitive 
decline or false memory prediction. The current literature is deficient 
in data-driven frameworks that combine structured feature modelling 
with interpretability tools to elucidate the underlying patterns of 
memory failures in older individuals. Our proposed method solves 
this deficiency by utilizing machine learning to reveal the behavioral 
and cognitive patterns that contribute to false memory susceptibility 
in ageing populations.

3 Methods

To better analyze and capture insights in the dataset, several 
machine learning (ML) algorithms, deep learning (DL) models, and 
cutting-edge transformer models were employed. The modified ML 
models demonstrated more satisfactory performance compared to 
traditional DL or transformer-based approaches. As the objective was 

to uncover hidden patterns within the dataset, ML models were 
customized to maximize their efficiency. This customization was 
necessary because typical ML models function as black boxes, where 
internal parameter operations are not easily interpretable during 
runtime. These models are generally pre-configured for various 
downstream tasks in real-world scenarios. Therefore, existing models 
were modified to enable more appropriate extraction of information 
and patterns. To further enhance model efficiency and ensure 
generalization, hyperparameter configurations were performed using 
grid search cross-validation techniques, and regularization methods 
such as L1 (lasso) and L2 (ridge) were applied to mitigate overfitting 
issues. These steps supported the development of a more robust and 
unbiased model. In the following subsections, various cutting-edge 
machine learning models and their optimization settings are discussed, 
along with the hyperparameter tuning strategies employed in this study.

3.1 Decision tree

The decision tree algorithm has two main types: Classification and 
Regression Trees (CART) which handle both classification and 
regression tasks, and the Iterative Dichotomiser 3 (ID3) algorithm 
which is used specifically for classification tasks (Lu et al., 2022). These 
trees were constructed using a top-down methodology which implies 
that the tree’s root node always stays at the top of the structure and that 
the tree’s leaves represent the outcomes. These two varieties of trees 
differ significantly from one another. In contrast to CART, which 
performs better with continuous variables and is thus referred to as 
regression, the ID3 effectively classifies variables. Regarding the 
metrics, CART applies the Gini index, and ID3 applies the Information 
Gain. To further emphasize, the Information Gain is one way to 
quantify purity. The tree may produce more pure nodes if the 
information gain is higher. Conversely, the Gini index quantifies the 
purity of a node and goes to 0 when every member belongs to the 
same class. We used Scikit-Learn package (Pedregosa et al., 2011), 
which is based on CART. Thus, we  explain its mathematical 
justification in the following.

If we assume that there are C  classes and that cP  is the probability 
that an instance belongs to the thc  class [17], then the probability 
distribution of the Gini index can be  represented as shown in 
Equation 1:

 
( )

=
= −∑ 2

1
1

C

c
c

Gini q q
 

(1)

where,

 • ( )Gini q  represents the Gini index for a specific probability 
distribution q across the classes in a node.

 • 
=
∑ 2

1

C

c
c

q  indicates the total squared probability of all classes c, where 

c represents each distinct class.

 • 
=

−∑ 2

1
1

C

c
c

q  reflects the impurity, where a lower value corresponds to 

a better decision tree split.
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We optimized the model by adjusting hyperparameters such as 
“maximum depth,” “minimum samples to split,” and “minimum samples 
per leaf.” the “maximum depth” parameter regulates the trees’ maximum 
depth to mitigate overfitting issues. The “minimum samples to split” 
parameter ensures that a node will only be split if it contains a minimum 
number of samples, thereby improving model generalization. Similarly, 
the “minimum samples per leaf” parameter ensures that splits only take 
place when they enhance the performance of the model. However, the 
following values are applied in the parameters grid of the model: 
“maximum depth: [10, 20, 30],” “minimum samples to split: [2, 5, 10],” and 
“minimum samples per leaf: [1, 2, 4].”

3.2 Random Forest

Random Forest is an ensemble learning method in machine 
learning that uses the predictions of many trees to create a classification 
(Breiman, 2001). This model employs a technique known as bagging, 
where a subset of the original data is produced by replacement 
procedures and random sampling. The next step involves selecting a 
random collection of features for splitting at each node in the tree 
(Breiman, 2001). It then starts building decision trees on randomly 
selected features. After generating a large number of trees, they vote 
for the most popular class (Breiman, 2001).

Given an ensemble of classifiers ( ) ( ) ( )…1 2, , , Mh z h z h z , and with 
the training set randomly drawn from the distribution of the random 
vector ,X Y , the margin function can be defined by Equation 2:

 
( ) ( )( ) ( )( )

≠
= = − =X, avg X maxavg X .m m m m

c Y
mg Y I h Y I h c

 
(2)

where,

 • ( )X,mg Y  denotes the model’s margin on a specific input. A 
higher margin value corresponds to more confident predictions.

 • X represents the input feature vectors from the data samples.
 • Y  is the target label corresponding to the input X.
 • ( )Xmh  reflects the output of the m-th decision tree within 

the ensemble.
 • I(.) is the indicator function that returns 1 if the condition is true, 

and 0 if false.
 • avgm  is the average over all trees m in the forest.
 • ≠c Y  denotes the class that is predicted but does not match the 

actual class Y .

For hyperparameter configuration, different values were tested: 
“maximum depth: [none, 10, 20, 30],” “number of estimators: [100, 200, 
300],” “minimum samples to split: [2, 5, 10],” and “minimum samples 
per leaf: [1, 2, 4].” This tuning helps us understand the performance 
and effectiveness of the model.

3.3 Adaptive Boosting (AdaBoost)

Adaptive Boosting (AdaBoost) is a supervised machine learning 
algorithm that combines multiple weak learners (who make mistakes 
while predicting) and makes a strong learner (who can correctly 
predict the target) (Freund and Schapire, 1997). It should be noted 
that this method finds the optimal solution with the least error in the 

training data samples. This training set of data can be represented by 
a distribution known as R . Here, R  focuses on the likelihood of 
detecting distinct input values from the training data, while 
distribution Q reflects the likelihood of observing both input and 
output values. Usually, this distribution is uniformly set up such that 
( ) = 1R j

N
. In this case, ( )R j denotes the probability of selecting the j- 

th attribute from the dataset and N  is the total number of features.
Throughout the training process, the algorithm tracks a set of 

weights tw . By normalizing these weights tw , a distribution tq  is 
calculated at iteration t . Then a weak learner receives this distribution 
and uses it to produce a hypothesis tg  that has minimal error relative 
to the distribution. The boosting procedure updates the weight vector, 

+1tw , using the new hypothesis tg , and the cycle repeats. After T  
iterations, the final hypothesis, fg , is produced. The hypothesis fg  
aggregates the results of the T  weak hypotheses using a weighted 
majority vote. The final hypothesis can be defined by Equation 3:

 

( ) ( )
γ γ= =

  
≥  =   




∑ ∑
1 1

1 11 if log log ,

0 otherwise.

T T

t k
f k kk k

g z
g x

 

(3)

where,

 • ( )fg x  denotes the final hypothesis.

 • ( )
γ=

 
 
 

∑
1

1log
T

t k
kk

g z  is the weighted sum of predictions for all 

weak learners.
 • 

γ
1log
k

 represents the logarithmic adjustment to the weights for 

the k-th observation.
 • ( )t kg z  is the prediction result of the t-th weak learner for the  

k-th observation.
 • Value of 1 indicates the positive class, and value of 0 indicates the 

negative class.

However, to further improve the efficiency and configure the 
hyperparameters, the following values were used in the parameters 
grid of the model: “number of estimators”: [50, 100, 200], “learning 
rate”: [0.01, 0.1, 0.5, 1.0].

3.4 Gradient boosting

The gradient boosting algorithm is an ensemble method because 
it builds a robust predictive model by adding individual additive 
components to its pipeline (Friedman, 2001). We can denote them as 
regression trees. This algorithm uses the concept of function 
estimation to find the optimal line where each data point closely 
matches. The initial step in gradient boosting is to build a base model 
to predict the observations in the training dataset. It can be determined 
by taking an average of the target columns (Friedman, 2001), and 
mathematically it can be defined by Equation 4:

 
( ) ( )

β
β

=
= ∑0

1
arg min ,

M

j
j

H z L t
 

(4)
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where,

 • ( )0H z  indicates the initial prediction with respect to the input .z
 • βarg min  denotes the importance of finding the predicted value 
β  that reduces the overall loss function.

 • =Σ 1
M
j  is the sum of all data points, i.e., 1 to M .

 • ( )β,jL t  is the loss function that separates the actual or true value 
and the predicted value.

However, to enhance the performance of this model, the 
hyperparameters were configured using the following values: “number 
of estimators: [100, 200, 300],” “learning rate: [0.01, 0.1, 0.2],” and 
“maximum depth: [3, 5, 7].”

3.5 Extreme gradient boosting (XGBoost)

XGBoost is a machine learning algorithm, introduced by Chen 
and Guestrin (2016) which uses a new tree learning method for sparse 
data, optimizing the loss function with gradient descent and 
incorporating regularization to address overfitting. Assuming ( )ky u  
represents the anticipated k-th instance in the u-th iteration, we must 
add ug in order to minimize the following objective function defined 
in Equation 5:

 

( ) ( ) ( ) ( )−

=

 = + +Ψ 
 ∑ 

1

1
,

m
uu

k u k uk
k

h t y g z g
 

(5)

where,

 • ( )u  represents the loss function at iteration u . For every 
instance k, it evaluates the model’s performance in predicting the 
desired outcome kt .

 • ( )−


1u
ky  illustrates the expected outcome for instance k at 

iteration −1u .
 • ug  highlights the prediction result for a new tree for the 

instance k.

 • ( ) ( )− + 
 



1, u
k u kkh t y g z  expression indicates the loss function for 

every instance. It provides the difference between the true value 
kt and the predicted value ( ) ( )− +

1 )u
u kky g z .

 • ( )Ψ ug  denotes the regularization term, which helps in 
preventing overfitting in the model.

Turning into the parameters configuration to enhance efficiency 
of this model, the hyperparameters were optimized and experimented 
with different values for “subsample rate”: [0.6, 0.8, 1.0], “maximum 
depth”: [3, 5, 7], “number of estimators”: [100, 200, 300], and learning 
rate: [0.01, 0.1, 0.2].

3.6 Categorical Boosting (CatBoost)

A gradient boosting technique that excels at handling categorical 
features is called Categorical Boosting (CatBoost). The training dataset 

is generated randomly in CatBoost (Dorogush et al., 2018). It uses 
several permutations to boost the algorithm’s efficiency by sampling a 
random permutation and obtaining gradients. These permutations are 
identical to those that are employed in the statistical computation of 
categorical attributes. Then, it employs the permutations to train 
discrete models and prevent overfitting issues (Dorogush et al., 2018). 
It trains n distinct models iM  for every permutation σ . This implies that 
in order to construct a single tree, we must store and recalculate ( )2O n  
for every permutation σ  because a tree’s building time may rise 
quadratically with the amount of training samples, making it inefficient 
for bigger datasets. Thus, it requires to improve each model iM  by 
updating ( ) ( )…1 , ,i i iM X M X . As such, ( )2O n is regarded as the 
final operation.

To improve the efficiency and performance of the model, 
several parameters were optimized. More specifically, the 
following values were tested: “tree depth: [6, 8, 10],” “learning rate: 
[0.01, 0.1, 0.2]” and “number of iterations: [100, 200, 300].”

3.7 Support Vector Machine (SVM)

Support Vector Machine (SVM) aims to find the optimal 
hyperplane to separate data into two distinct classes (Boswell, 2002). 
Given k training examples( ), itiz , where ∈ n

iz   and { }∈ −1,1it , SVM 
seeks to maximize the margin between the two classes by finding a 
hyperplane defined as + =· 0cv z . The objective is to minimize ||v|| 
under the constraint ( )+ ≥· 1it civ z , which ensures the 
correct classification of the data. This can be  solved using the 
Lagrange multiplier method, leading to the following optimization  
problem, as shown in Equation 6:

 

( ) ( )

( )

β β β β

β

β

= = =

=

= − + ⋅

=

≤ ≤ ∀

∑ ∑∑

∑

1 1 1

1

1:
2

subject to :

0

0

k k k

i i j i j
i i j

k

i i
i

i

minimize G t t

t

D i

i jz z

 

(6)

where, the parameter D  controls the trade-off between 
maximizing the margin and minimizing classification errors.

3.8 Naïve Bayes algorithm

This algorithm is based on Bayes theorem (Huang and Li, 2011). 
In simple terms, the Bayes theorem calculates the likelihood of 
another event (Y) occurring given that one event (X) has occurred. 
Bayesian classification predicts the category of a new feature 
= …1 2,,, ,,, ,,, mb b bv based on its properties (Huang and Li, 2011). To 

determine the most likely outcome, denoted as BestW , we calculate the 
likelihood of each possible category using the attributes of the 
instance. Mathematically, this can be  expressed as shown in 
Equation 7:

 ( )= …Best 1 2argmax , , ,k mW P D b b b∣  (7)
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Using Bayes theorem, the expression in Equation 7 can 
be rewritten, resulting in Equation 8:

 

( ) ( )
( )

( ) ( )

…
=

…
= …

1 2
Best

1 2

1 2

, , ,
argmax

, , ,
argmax , , ,

m k k

m

m k k

P b b b D P D
W

b b b
P b b b D P D

∣

∣  

(8)

where,

 • BestW  represents the most probable class label.
 • argmax  refers to the value of a variable that maximizes 

the function.
 • ( )…1 2, , , mP b b b  is the prior probability of the 

attributes ( )…1 2, , , mb b b .

However, the Naive Bayes classifier assumes that the attribute 
values are conditionally independent, given the target value.

3.9 K-nearest neighbours (KNN)

This is a classification algorithm (Cunningham and Delany, 2020) 
in which closest neighbors k are used to determine the choice for each 
data point. Consider the number of k to 5 (five neighbors) for a data 
point p. Assume that two neighbors belong to class S and the other 
three belong to V . Since most of the neighbors belong to V , it will 
be categorized as class V . This categorization can be carried out by 
simple majority voting or distance-weighted voting.

Regarding the model’s optimization, the required parameters were 
adjusted: number of neighbors: [3, 5, 7, 9], “weighting method”: 
[‘uniform’, ‘distance’] and “distance metric”: [‘euclidean’, ‘manhattan’].

3.10 The voting algorithm

The Bagging algorithm (bootstrap aggregating) was introduced in 
1996 (Breiman, 1996) as a technique that combines multiple classifiers 
generated from various bootstrap samples of the training data. A 
bootstrap sample is formed by randomly selecting m instances from 
the training dataset, allowing some instances to be selected more than 
once (Breiman, 1996). Given a dataset of pairs ( ){ }= …, , 1, ,n nY X n N , 
where the y’s can be numerical values or class labels, we can develop 
a predictor ( )φ ,x   that estimates y for an input .x  By utilizing several 
training samples { }k  from the same original dataset, our goal is to 
enhance prediction accuracy compared to using a single 
dataset ( )ϕ ,x  .

For numerical predictions, results are aggregated by averaging 
predictions from the different samples, expressed as 

( ) ( )φ ϕ= ,A x E x  , where E denotes the expectation over the 
samples (Breiman, 1996). In the case of class predictions, a voting 
mechanism is employed, counting how many times each class is 
predicted across the samples, defined as ( ){ }φ= =; ,c kN nr k x c  
(Breiman, 1996). The class with the highest count is selected as the 
final prediction: ( )φ = argmaxA c cx N  (Breiman, 1996). This process, 
known as “bootstrap aggregating” or bagging, involves generating 

multiple bootstrap samples ( ){ }B  from the original dataset, each 

containing N  randomly chosen instances (with replacement) 
(Breiman, 1996).

3.11 Extremely randomized tree (Extra Tree)

The Extra Tree is a tree-based ensemble method, applicable to 
both regression and classification problems (Geurts et  al., 2006), 
which has two key parameters: the minimum sample size required to 
split a node and the number of features randomly selected at each 
node. This ensemble method can be trained on the complete set of 
original training instances multiple times, allowing for the 
construction of robust models that enhance predictive performance. 
The number of trees in this ensemble is denoted by M. In classification 
problems, the final prediction is determined by a majority vote, while 
in regression problems, it is determined by the arithmetic average of 
the predictions made by the trees. The rationale for the Extra Trees 
approach stems from the bias-variance perspective, which posits that 
rigorous randomization of dividing points and features, together with 
ensemble averaging, can significantly reduce variance compared to 
less randomized methods.

In place of bootstrap replicates, the complete original training 
sample is used to minimize bias. Similar to other tree-growing 
methods, the computing expense of the procedure is about equal to 
NlogN  when considering the size of the learning sample. N  in this 
instance indicates the total number of data points. NlogN  is considered 
to have a very efficient time complexity. It shows the algorithm’s 
performance does not decrease much as the dataset grows. To further 
enhance the model’s performance, the parameters were customized by 
adjusting the following values: “number of estimators: [100, 200, 300],” 
“maximum tree depth: [None, 10, 20, 30],” “minimum samples to split: 
[2, 5, 10]” and “minimum samples per leaf: [1, 2, 4].”

3.12 Light Gradient Boosting Machine 
(LightGBM)

Light Gradient Boosting Machine (LightGBM) is a gradient 
boosting framework introduced by Ke et  al. (2017) to enhance 
computational efficiency by reducing the number of data instances 
and features. This model employs two key techniques: gradient-
based one-side sampling (GOSS) and exclusive feature bundling 
(EFB) (Ke et al., 2017). GOSS selectively retains instances with large 
gradients while sampling from those with small gradients, adjusting 
information gain with a constant multiplier to mitigate sampling 
bias (Ke et al., 2017). For example, if = 0.4a , GOSS keeps the top 40% 
of instances based on gradient values and randomly selects ×100%b
from the remaining instances. EFB constructs a graph with weighted 
edges (Ke et  al., 2017) to represent feature conflicts, organizing 
features based on their degrees. Features with minor conflicts are 
bundled together, improving efficiency by using a ranking strategy 
based on nonzero counts rather than generating a complete graph 
(Ke et al., 2017).

To optimize LightGBM’s performance, hyperparameters were 
adjusted, including the number of boosting iterations, number of 
leaves, learning rate, and regularization strengths, with settings such 
as “number of boosting iterations: [100, 200, 300],” “number of leaves: 
[31, 50, 100],” “learning rate: [0.01, 0.1, 0.2],” “L1 regularization 
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strength: [0, 0.1, 0.5],” “L2 regularization strength: [0, 0.1, 0.5],” 
“subsample ratio: [0.8, 1.0],” and “feature fraction: [0.8, 1.0].”

3.13 Integrating LightGBM with LLM for 
interpretation of the outcome

Figure 2 illustrates the five phases of this study’s architecture: 
data acquisition, model training, prediction result, large language 
model (LLM) integration, and response generation. The data 
acquisition phase, which outlines the processes for collecting and 
preparing a high-quality dataset, is thoroughly explained in 
Section 3.1 and 3.2. In the second phase, model training, various 
machine learning techniques were applied to this dataset. After 
that, some of the model’s hyperparameters were adjusted using 
regularization strategies, and the outcomes were monitored to 
maximize performance. The experiments revealed that the 
modified LightGBM model outperformed other traditional 
machine learning models; therefore, this model was used as a 
benchmark, identifying the top features (using the permutation 
feature importance technique) that produced satisfactory results 
during training. Finally, a mixed-effects logistic regression model 
was employed to analyze feature interactions, revealing key trends 
related to cognitive decline and memory patterns.

In the third phase, prediction result, the modified LightGBM 
model provides the prediction results, starting with a training 
dataset. The data is first converted to float format and then used 
to create histograms, which facilitate the generation of bin 
decision trees. Subsequently, these decision trees are developed in 
a leaf-wise manner, meaning that new leaves are added one by one 

to the tree. The model is trained on the training set, and the 
predictions of all trees are aggregated to produce the final output, 
as seen in Figure 2.

During the fourth phase, LLM integration, the LLM (e.g., GPT-4) 
was employed to detect additional patterns related to memory. Specific 
prompts were designed to determine which factors most significantly 
influenced false memory across various age groups. The results from 
the modified LightGBM and logistic regression models were also 
input into the LLM. The logistic regression model provided statistical 
outputs, encompassing coefficients, standard errors, z-scores, p-values, 
and confidence intervals. These outputs offered insights into the 
strength and direction of each variable’s impact, the significance of 
parameters, the extent of deviation, statistical significance, and the 
range of parameters. By combining this data with the prompts, the 
LLM generated detailed explanations about the features that had the 
greatest impact on false memory (phase 5). Section 4.2.5 provides 
detailed explanations of the prompts and the responses 
generated by LLM.

4 Experimental results and discussion

4.1 Experimental design

This section discusses the dataset used in the study, the data 
cleaning process, and the evaluation techniques employed to assess 
the performance of the various models. Specifically, Section 4.1.1 
explains the dataset and its characteristics in detail; Section 4.1.2 
outlines the steps taken to prepare the dataset; and Section 4.1.3 
demonstrates the model validation techniques.

FIGURE 2

The architecture of this study, the five phases include data acquisition, model training, model prediction, LLM integration, and response generation, 
moving from dataset preparation to LLM-driven interpretation of model results.
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4.1.1 Dataset
A set of 60 experimental sentences was constructed for a self-

paced reading task. Each sentence was manipulated to include a target 
noun (e.g., bear) that was either post-modified (e.g., the bear that was 
injured and dangerous), pre-modified (e.g., the injured and dangerous 
bear), or unmodified (i.e., the bear). The unmodified sentences were 
minimally adapted from their modified counterparts so that the 
overall sentence structure remained consistent across all versions of 
an experimental sentence. This design choice was made to minimize 
confounding variables related to sentence length and verb position 
(i.e., chased) in the analysis. A sample experimental sentence is 
illustrated in Table 1: It was the injured and dangerous bear [target] 
that the hunters chased in the dense forest yesterday.

There were 20 sentences per condition—post-modified, 
pre-modified, and unmodified—for each experimental list, 
accompanied by 100 filler sentences, totaling 160 sentences per list. 
None of the experimental sentences were repeated in any of the lists. 
Additionally, comprehension questions were included for 40 
experimental sentences and 50 filler sentences to ensure participant 
attention during the task. A set of 300 experimental items was 
prepared for a subsequent surprise recognition memory task 
conducted immediately after the reading phase. During the memory 
test, participants were presented with single words and asked to make 
a binary decision regarding whether the words had appeared during 
the reading task. Each experimental sentence was associated with 5 
memory items: two words that were present in the corresponding 
sentence (e.g., bear, hunters, see Table 1), and three new items that 
were not present in any of the experimental or filler sentences but were 
semantically related to the target word (i.e., bear) to varying degrees.

4.1.2 Data preparation
Before analysis, the data were cleaned to ensure quality standards 

suitable for use in machine learning algorithms. The original dataset 
contained missing or extreme values that could distort analyses; therefore, 
such data needed to be filtered to maximize quality. Multiple cleaning 
procedures were applied, including categorical encoding, imputing 
missing values, mitigating skewed distributions, detecting outliers, feature 
scaling, and addressing class imbalance. Regarding categorical encoding, 
it is recommended to use vector or numerical data when implementing 
learning algorithms. To accomplish this, One-Hot Encoding was used 
(Potdar et al., 2017), which assigns numerical labels to categorical data.

To further preserve the semantic content in the dataset, 
missing records were filled with mean values rather than being 
removed entirely. A dataset distribution is considered skewed or 
asymmetric if its left and right sides are not evenly distributed 

around the mean (Sedgwick, 2012). To evaluate distribution 
symmetry, techniques such as box plot visualization, histograms, 
and quantile-quantile (Q–Q) plots were used. The dataset was 
found to exhibit skewness, and the Box–Cox method (Box and 
Cox, 1964) was applied to reduce this issue. Additionally, z-score 
and interquartile range (IQR) techniques were used to identify 
potential extreme values (i.e., outliers). To improve data quality, 
the Isolation Forest approach (Liu et al., 2008) was used with a 1% 
contamination rate to detect and eliminate probable outliers. 
Rather than replacing outliers with alternative values (e.g., 
maximum valid value for a participant), these values were entirely 
removed from the dataset.

Feature scaling was performed using the RobustScaler technique, 
which keeps the values within a consistent range. By scaling data 
based on the interquartile range and centering it on the median, 
RobustScaler minimizes the impact of outliers (de Amorim et al., 
2023). Finally, the dataset exhibited class imbalance, where each class 
did not contain equal amounts of data. To address this, the Synthetic 
Minority Oversampling Technique (SMOTE) library was utilized 
(Chawla et al., 2002), which generates synthetic data samples and 
effectively mitigates class imbalance issues.

4.1.3 Evaluation metrics
To further analyze the performance of different machine learning 

models, several validation techniques were applied, including the 
confusion matrix (Marom et al., 2010), receiver-operating 
characteristic curve (ROC), area under the curve (AUC) (Verbakel et 
al., 2020), and k-fold cross-validation (Wong and Yeh, 2019). 
Confusion matrices were used because model performance cannot 
be  determined from a single classification report alone. Since the 
confusion matrix provides detailed information about total prediction 
outcomes, it serves as a suitable method for evaluating model results. 
In addition, the ROC-AUC curve offers insight into how accurately a 
binary classification model can separate data points into positive and 
negative classes. Cross-validation techniques were also employed to 
minimize overfitting and reduce model bias. This method introduces 
variation into the training pipeline, providing a more comprehensive 
understanding of model performance. These validation methods are 
discussed in detail in Section 4.2.2.

4.2 Results and discussion

This section presents a detailed discussion of the experimental 
results and insights derived from various ML and DL approaches. 
Section 4.2.1 explains the classification reports of several ML models 
tested in the study. Section 4.2.2 describes the validation techniques 
used to evaluate the performance of ML models. Section 4.2.3 
demonstrates the importance of feature and interaction modeling. 
Section 4.2.4 provides a comparative analysis of different DL models. 
Section 4.2.5 illustrates the interpretation process involving the use of 
LLMs. Finally, Section 4.2.6 presents a qualitative comparative analysis 
of existing studies.

4.2.1 Classification report summary on multiple 
models

Table 2 provides information on different ML models and their 
classification reports, such as precision, recall, and F1-scores on binary 

TABLE 1 Example stimuli from the self-paced reading task.

Condition Sentence

Post-modified It was the bear that was injured and dangerous that the 

hunters chased in the cold forest yesterday.

Post-unmodified The video footage showed that it was the bear that the 

hunters chased in the cold forest yesterday.

Pre-modified It was the injured and dangerous bear that the hunters 

chased in the cold forest yesterday.

Pre-unmodified The footage showed it was the bear that the hunters chased 

in the cold forest yesterday.
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classification (0 and 1) tasks. In this classification report, twelve 
different ML models were used, including Naive Bayes (Huang and Li, 
2011), AdaBoost (Freund and Schapire, 1997), Support Vector 
Machine (SVM) (Boswell, 2002), Decision Tree (Lu et  al., 2022), 
K-Nearest Neighbors (KNN) (Cunningham and Delany, 2020), Voting 
Classifier (Breiman, 1996), Random Forest (Breiman, 2001), XGBoost 
(Chen and Guestrin, 2016), Bagging (Breiman, 1996), CatBoost 
(Dorogush et al., 2018), Gradient Boosting (Friedman, 2001), and 
LightGBM (Ke et al., 2017).

Table  2 illustrates that only the modified LightGBM model 
outperforms the other machine learning models. Other approaches, such 
as CatBoost and Bagging, exhibit slight variations in their precision, recall, 
and F1-score metrics. Notably, Bagging demonstrates a high recall and 
F1-score for class 0, whereas CatBoost achieves a high precision for the 
same class. In Class 1, Bagging exhibits higher precision than CatBoost; 
however, its recall value is lower. The Random Forest model demonstrates 
ideal performance across precision, recall, and F1-score, with both classes 
performing well. The results from the Voting Classifier show minimal 
significance, as reflected in Table 2. Additionally, KNN and AdaBoost do 
not produce satisfactory results. On the other hand, LightGBM and 
Gradient Boosting show minimal difference in recall. More specifically, 
LightGBM shows an improved recall of 73% for class 0 compared to 
Gradient Boosting, which yielded 72%. Finally, the Naive Bayes model 
demonstrated the weakest performance among all methods used to 
classify responses in the psychology dataset.

4.2.2 Model assessment and validation
This section describes the model evaluation techniques that were 

considered to measure the performance of several ML models. Firstly, 
a confusion matrix was used to evaluate the performance of different 
learning algorithms. It can be applied to both binary and multiclass 
classification tasks (Heydarian et al., 2022). The confusion matrix is 
formed based on four values: true positive (TP), false positive (FP), 
true negative (TN), and false negative (FN). In Figure 3, a total of 
3,619 samples were accurately predicted as class 0 (TN), and 4,394 
were recorded as class 1 (TP). The total FP count was 1,366, 
representing instances where class 0 was predicted as class 1. Finally, 

the FN value was 684, indicating instances that were expected to 
be class 1 but were predicted as class 0.

Subsequently, 5-fold cross-validation was applied to improve the 
performance stability of the modified LightGBM model. In addition, 
the ROC-AUC technique, shown in Figure 4, was used to further 
evaluate model performance. The ROC curve is constructed using the 
true positive rate (TPR) and false positive rate (FPR), while AUC 
provides a probability-based score to assess the overall classification 
capability. AUC values typically range from 0 to 1, with higher values 
indicating better model performance. According to Figure  4, the 
LightGBM model achieved an AUC of 0.88, indicating strong 
capability in distinguishing between classes 0 and 1.

4.2.3 Feature importance and interaction 
modeling

In this section, the importance of features extracted using the 
modified LightGBM model with interaction modeling is discussed. 

TABLE 2 Classification performance of different models.

Model Class 0 Class 1

Precision Recall F1 Precision Recall F1

Naïve Bayes 0.55 0.44 0.49 0.54 0.64 0.59

Modified AdaBoost 0.63 0.63 0.63 0.64 0.63 0.63

SVM 0.62 0.70 0.66 0.66 0.58 0.62

Modified decision tree 0.69 0.70 0.69 0.70 0.68 0.69

Modified KNN 0.68 0.87 0.76 0.82 0.59 0.69

Voting Classifier 0.74 0.77 0.75 0.76 0.74 0.75

Modified random forest 0.77 0.78 0.78 0.78 0.77 0.78

Modified XGBoost 0.80 0.74 0.77 0.77 0.82 0.79

Bagging 0.86 0.71 0.78 0.76 0.88 0.82

CatBoost 0.87 0.69 0.77 0.75 0.90 0.82

Modified gradient boosting 0.85 0.72 0.78 0.76 0.88 0.88

Modified LightGBM 0.84 0.73 0.78 0.76 0.87 0.81

Bold values indicate the highest performance scores for each metric across all models.

FIGURE 3

Visualizing confusion matrix for the LightGBM model in binary 
classification, displaying the true positives, false positives, true 
negatives, and false negatives.
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The permutation feature importance technique was used to identify 
essential features of the predictive model. The primary goal of this 
technique is to understand how model scores decrease when a single 
feature value is randomized (Galli, 2024). This technique provides an 
intuitive grasp of the function each feature plays in the model’s final 
conclusion, allowing for greater insight into what information the 
model relies on the most when making predictions.

Figure 5 displays the 9 most important features extracted from the 
LightGBM model. These features include “item” (i.e., the single 
memory words/items in the surprise recognition memory test), 
“participant,” “Cosine” (which quantifies the semantic similarity 
between the target word (i.e., bear), and the memory item), “Response 
time” (i.e., the time it took for a participant to make a decision about 
the current memory item), “Reading Time on Seen Words” (i.e., the 
average reading/encoding time on the two memory items that were 
present in the critical sentences), “Sentence Trial Number” (i.e., the 
linear position of the sentence associated with the current memory 
item which ranged from 1 to 160), “Memory Trial Number” (i.e., the 
linear position of the memory items, ranging from 1 to 300), “Item 
Type” (i.e., whether the memory item was present in any of the 
sentences or not, resulting in Seen and Unseen types), and “Average 
Reading Time” (i.e., the time spent reading the entire sentence 
corresponding to the memory item). These variables capture both 
behavioral (e.g., response time, reading time) and semantic (e.g., 
cosine similarity) aspects of memory performance, demonstrating the 
cognitive complexity of the recognition task.

As shown in Figure 5, the “item” is the most important feature, 
with a score of 805. “Participant” is in the second position with a score 
of 701. The “Cosine” feature is the third. “Response Time” is placed in 
the fourth position with a value of 244. “Reading Time on Seen 
Words” is in the fifth position with a value of 221. “Sentence Trial 

Number” is ranked sixth with a score of 168, while “Memory Trial 
Number” is ranked seventh. The remaining two features, “Item Type” 
and “Average Reading Time,” are ranked eighth and ninth, with scores 
of 134 and 117, respectively. The ranking of these features indicates 
that the model’s predictions were substantially influenced by both 
content-specific variables (e.g., semantic similarity and item identity) 
and individual-level or contextual variables (e.g., participant, 
trial positions).

To corroborate the effects of these features, and more importantly, 
whether and how they interact with Age, a logistic mixed-effects 
regression model was conducted predicting accuracy as a function of 
the five extracted features, as well as all their two-way and three-way 
interactions with Age and Item Type (Seen vs. Unseen). Two main 
results were observed: First, as shown in Figure 6a, longer reading 
times on seen words (i.e., bear and hunters) increased their correct 
recognition (true memory) for both younger and older adults (left 
panel). However, although longer reading times on the seen words 
increased correct rejection of lures for younger adults (Est. = 0.075, 
SE = 0.05, z = 1.37, p = 0.17), it did not have any effect on older 
adults. In fact, it slightly increased false memory for older adults 
(Est. = −0.018, SE = 0.04, z = −0.44; p = 0.66, right panel). Second, as 
shown in Figure 6b, greater semantic similarity (between the target 
word and the lures) increased correct recognition of seen words for 
both groups (left panel) and decreased false memory for lures in both 
groups (right panel). However, the decrease in accuracy for unseen 
words as a function of semantic similarity was relatively greater for 
older adults (Est. = −0.26, SE = 0.07, z = −3.38, p < 0.001) than for 
younger adults (Est. = −0.16, SE = 0.07, z = −2.43, p = 0.01). In other 
words, with increasing semantic similarity (operationalized by 
cosine), false memory increased more for older than younger adults 
(right panel). These interactions strengthen the model’s dependence 

FIGURE 4

The models’ total performance is shown by the ROC-AUC curve, which also illustrates how well it can differentiate between positive and negative 
classes.
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on cognitively significant traits and provide interpretable avenues for 
comprehending age-related differences in memory performance and 
false recognition.

4.2.4 Quantitative comparison with deep learning 
models

Table 3 presents the classification report of the deep learning models 
and compares them with the optimized LightGBM model (Ke et al., 
2017). Given the satisfactory outcome of the optimized ML model, 

several deep learning and transformer models were tested, including 
Convolutional Neural Network (CNN) (LeCun et al., 2010), Long Short-
Term Memory (LSTM) (Hochreiter, 1997), Bidirectional Long Short-
Term Memory (BI-LSTM) (Graves et  al., 2005), Recurrent Neural 
Network (RNN) (Rumelhart et al., 1986), Stack-LSTM (Wang et al., 
2018), Stack-BI-LSTM (Ran et al., 2020), Transformer (Waswani et al., 
2017), and TabNet (Arik and Pfister, 2021). These models were explored 
to determine whether they could capture semantic patterns from the 
dataset. According to Table  3, the traditional transformer model 

FIGURE 5

Demonstrating the significant features extracted using the LightGBM model.

FIGURE 6

Comparison of reading time and semantic similarity with mean accuracy across different age groups and item types. (a) Relationship between reading 
time on seen words and mean accuracy for correct recognition (true memory) and correct rejection (false memory) across age groups. (b) 
Relationship between semantic similarity and mean accuracy for correct recognition (true memory) and correct rejection (false memory) across age 
groups.
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performed the worst. This indicates that although the transformer 
architecture performs well on other downstream tasks, it is not as 
effective for this dataset where capturing meaningful patterns is crucial. 
Similarly, TabNet—a transformer-based model developed by researchers 
at Google Cloud for tabular data—also showed suboptimal performance. 
Among the deep learning models evaluated, Stack-BI-LSTM showed 
relatively better results. Nevertheless, the modified LightGBM model 
outperformed all other models examined in this study.

4.2.5 Interpretation using LLM
To further analyze the patterns and understand hidden insights, 

we used prompt engineering techniques based on the GPT-4 LLM. The 
goal of this prompt integration was to examine how each feature 
interacts with the others and to gain a better understanding of cognitive 
decline patterns, such as false memory for unseen words. Figure 7 
shows a prompt in which a human-written inquiry is sent into the 
model, and the model provides an output as a response. We initially fed 
the key elements that contribute to a greater likelihood during modified 
LightGBM training to the LLM. Once the important information was 
obtained, the LLM began integrating model interpretations using 
insights from the logistic mixed-effects regression model, focusing on 
how age interacts with other characteristics to influence memory 
performance. Then, the LLM responded with a narrative that explains 
the most significant aspects that have the best possibility of identifying 
a false memory pattern.

4.2.6 Qualitative comparative analysis of existing 
studies

Table 4 gives information about different ML and DL models 
that were used on various data modalities, such as numeric, DNA, 
image, speech, and longitudinal data. As shown in the table, it is 
evident that some of the studies included participants between the 
ages of 40 and 90, aiming to understand cognitive decline and 
associated patterns. It can also be  observed that most studies 
focusing on ML and DL techniques remain underutilized, suggesting 
that traditional ML models may still perform effectively in this 
domain. In terms of model validation, it was found that several 
recent studies did not validate their proposed ML models for 
detecting cognitive decline. Furthermore, it is noteworthy that LLMs 
have not been used in previous research, indicating significant 
potential for their application in the field of psychology. Although 

some studies applied ensemble techniques such as Random Forest, 
none utilized boosting methods like Gradient Boosting or 
LightGBM. Given the strong performance of boosting techniques in 
other healthcare-related downstream tasks (Ganie et al., 2023; Yang 
et  al., 2023; Fourkiotis and Tsadiras, 2024), exploring these 
approaches in cognitive decline and false memory pattern 
recognition appears promising.

On the other hand, the studies listed in Table 4 did not consider 
younger age groups when detecting cognitive decline. While false 
memory is more commonly observed in older populations, there 
may be contexts in which younger individuals also exhibit memory 
limitations. Therefore, a comprehensive comparison across age 
groups is essential to gain a fuller understanding of memory 
behavior. The present study addresses these gaps by comparing 
younger and older adults and extracting meaningful insights 
through analysis. For instance, instances were identified where 
older adults demonstrated better memory performance than their 
younger counterparts. With respect to ML, the LightGBM model 
was used and achieved optimal results through systematic 
evaluation. Additionally, various DL and transformer architectures 
were applied to detect significant patterns, although their 
performance in identifying cognitive decline and false memory 
patterns was found to be suboptimal. LLMs were also incorporated 
and combined with prompt engineering to further identify 
memory-related patterns. This qualitative comparison is expected 
to guide future research efforts focused on age-related 
false memory.

5 Conclusion

Aging is associated with cognitive decline in crucial functions 
such as language processing, memory, and attention which can 
affect the quality of life in older adults. Although there are negative 
consequences caused by this cognitive decline, little is known 
about the mechanisms of false memory. In this study, optimized 
machine learning algorithms combined with permutation 
importance and LLM were used to isolate the most important 
features affecting true and false memory in younger and older 
adults following a reading experiment. The potential interactions 
of the identified features with Age were then examined. The results 

TABLE 3 Classification performance of deep learning based algorithms.

Model Class 0 Class 1

Precision Recall F1 Precision Recall F1

Transformer 0.50 1.00 0.66 0.00 0.00 0.00

TabNet 0.56 0.56 0.56 0.56 0.56 0.56

RNN 0.59 0.66 0.62 0.61 0.53 0.57

CNN 0.65 0.72 0.68 0.68 0.60 0.64

LSTM 0.64 0.67 0.65 0.65 0.61 0.63

Stack-LSTM 0.68 0.71 0.69 0.69 0.67 0.68

BI-LSTM 0.68 0.76 0.72 0.72 0.64 0.68

Stack-BI-LSTM 0.72 0.80 0.76 0.77 0.69 0.73

Modified LightBM 0.85 0.73 0.78 0.76 0.88 0.82

Bold values indicate the highest performance scores for each metric across all models.
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revealed greater vulnerability of older adults to false memory (i.e., 
claiming to have seen words that were absent during reading), 
especially when the memory items were semantically more similar 
to the target words. This observation lends support to the 
Inhibition Deficit Hypothesis because it clearly shows that older 
adults are less capable of suppressing semantically similar words 
during memory retrieval. An inhibition deficit may lead to broader 
and stronger spreading activation from the target words to 
semantic neighbors for older relative to younger adults, boosting 
the memory activation for the semantic neighbors and resulting in 
greater false memory rates for older adults. In addition, unlike 
younger adults, older adults did not benefit from longer encoding 
time on seen words to correctly reject unseen memory items, 
which suggests that older adults may not be  able to encode 
information as robustly as younger adults, compromising their 
memory performance. Taken together, these results show that 
encoding time and similarity-based interference are two factors 
influencing false memory and highlight the importance of machine 
learning as a tool for uncovering the behavioral patterns underlying 
age-related cognitive decline.

Nevertheless, this study is characterized by numerous constraints. 
Although the dataset utilized is informative, it may not encompass the 
complete spectrum of contextual or semantic influences that are 
present in real-world memory scenarios. Furthermore, the 
generalizability of the results may be limited by the task specificity and 
the absence of multimodal or longitudinal data.

Future research should investigate the applicability of these findings 
by examining memory performance in various cognitive contexts and by 
utilizing a broader, more diverse set of datasets. Additionally, the 
interpretability of the model could be improved by incorporating real-
time behavioral monitoring and neurocognitive signals.
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