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Introduction: STEM education’s impact on student learning outcomes is 
nuanced, with differentiated effects across outcome types and academic levels.

Methods: This study uses meta-analysis to systematically analyse 66 
experimental and quasi-experimental studies on STEM education published in 
international English journals from 2000–2024.

Results: The study finds that: (1) Subgroup analysis showed that STEM education 
had the most significant impact on cognitive outcomes in high school 
(d = 0.58) and reduced heterogeneity (I2 = 62.1%), while the overall effect size 
was exploratory due to construct diversity. (2) Overall, STEM education has a 
moderate effect on students’ learning outcomes, but the overall moderate effect 
size masks these key differences. (3) The effect of STEM education on students’ 
learning outcomes is influenced by the moderating variables of sample size, 
academic level, subjects, experimental period and teaching method.

Discussion: These findings highlight the need to tailor STEM interventions to 
outcome type and academic level, strengthening the integration of theory and 
practice in STEM education.
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1 Introduction

STEM education is a brand new educational practice, and STEM education has rapidly 
received widespread attention from industry and academia since it was first proposed in 1986 
(Ortiz-Revilla et al., 2022). The main goal of STEM education is to cultivate students’ spirit of 
innovation, creativity, and practical ability. Traditional learning outcomes have centred on 
‘knowledge mastery’ in the cognitive domain (e.g., memory, understanding), but modern 
educational theory has expanded its objectives to include the affective domain and motor skills 
domain. For example, Piaget and Duckworth (1970) proposed constructivism, which lists 
‘creation’ as the highest level in the cognitive domain, clearly identifying problem-solving and 
creativity as higher-order learning outcomes (Runco and Pritzker, 2020); Bandura (1986) 
proposed social cognitive theory, which incorporates beliefs and attitudes related to ‘self-
efficacy’ into learning objectives and emphasises its driving role in cognitive behaviour. Sweller 
(1994) proposed the Cognitive Load Theory, which states that students’ ability to produce 
innovative results is considered an important indicator of the impact of STEM education on 
student learning outcomes (Capraro et al., 2016). This classification is not merely pragmatic, 
but theoretically driven, aiming to capture the multidimensional characteristics of STEM 
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education’s impact. However, STEM education is a multidisciplinary 
and complex learning-oriented process, and its impact on student 
learning outcomes has to be  verified with the help of rigorous 
experiments rather than simple experiences or subjective judgements 
(Considine, 2014). As a result, a number of experimental or quasi-
experimental studies on STEM education have been conducted by 
researchers (Gülen, 2019; Khalil et al., 2023), exploring the relationship 
between STEM education and student learning outcomes, and 
arriving at three very different conclusions.

The first finding suggests that STEM education has a positive 
impact on student learning outcomes. For example, a study by found 
that STEM education had a positive impact on the science and maths 
achievement of fourth-grade students. Kurt and Benzer (2020) 
conducted a study with sixth-grade students and found that the 
experimental group that received STEM education scored higher in 
academic achievement than the control group that used a 
constructivist approach. Lin et  al. (2019) conducted a quasi-
experimental study with 10th grade students and found that students 
with STEM-based education performed better in programming and 
physics achievement and had a higher sense of self-efficacy in 
modelling. Sirajudin and Suratno (2021) used a sample of all the 
students in the biology education research programme at Khairun 
University and found that STEM can be used as an alternative method 
of learning biology, especially in improving students’ creative 
thinking skills.

The second finding confirms that STEM education only enhances 
some learning abilities. For example, Yildirim and Sidekli (2018) 
found that STEM education does not have a significant effect on 
primary school students’ creativity but positively promotes primary 
school students’ interest in learning and hands-on ability. Kurt and 
Benzer (2020) study showed that STEM education has a significant 
effect on primary school students’ self-efficacy, problem solving, group 
collaboration and communication skills, but had no positive effect 
on creativity.

A third finding comprehensively rejects the impact of STEM 
education on student learning outcomes. For example, found no 
statistically significant difference between the academic performance 
of students using T-STEM education and non-T-STEM education. 
Cervetti et al. (2012) conducted a study of 937 primary school students 
on STEM education with the themes of reading comprehension and 
scientific writing, and showed no significant change in primary school 
students’ learning outcomes did not change significantly. The study 
conducted by Townes (2016) similarly showed that STEM education 
did not significantly enhance learning outcome metrics such as 
attitude towards learning and creativity levels among high 
school students.

In summary, there is no consistent conclusion on the impact of 
STEM education on student learning outcomes. In fact, the learning 
outcomes of students based on STEM education are influenced by a 
variety of factors such as sample size, academic level, subjects, 
experimental period, and teaching method (Wahono et al., 2020).

Meta-analysis is a quantitative research method that analyses the 
results of multiple experiments on the same topic. It allows for the 
synthesis of existing studies and a more accurate and objective 
assessment of their corresponding metrics (Pigott and Polanin, 2020). 
Meta-analysis differs from traditional literature review methods in 
that it focuses on comparing the results of different studies and 
providing an overall effect size through the same criteria (Rosenthal 

and DiMatteo, 2001). Meta-analysis, as a combination of qualitative 
and quantitative analyses, is able to synthesise the commonalities 
between individual studies with inconsistent findings on the same 
research topic, and ultimately develop consistent, generalised, and 
more precise findings by integrating individual studies (Zhao et al., 
2024). Due to the differing purposes of the tests included in the study, 
this research adopts a broad definition of learning outcomes to avoid 
publication bias caused by indicator limitations. According to meta-
analysis methodology by Cohen (1992b), when original studies exhibit 
measurement heterogeneity, integrating multi-dimensional indicators 
better reflects the overall effect of the intervention. This study 
references Linnenbrink-Garcia et  al.’s (2010) “three-dimensional 
learning outcomes model,” defining learning outcomes as a 
combination of cognitive acquisition, motivational development, and 
skill transfer. Self-efficacy (Schwarzer and Jerusalem, 1995) reflects 
learners’ psychological resource reserves, problem-solving ability 
(Jonassen, 2011) and creativity (Runco and Pritzker, 2020) reflect the 
application and innovation of knowledge, aiming to comprehensively 
capture the multidimensional effects of educational interventions.

Based on this, this study used meta-analysis to analyse 66 
experimental and quasi-experimental studies on the effects of STEM 
education on student learning outcomes, to explore the effects of 
STEM education on student learning outcomes, and to further explore 
how student learning outcomes are affected by five moderating 
variables: sample size, academic level, subjects, experimental period 
and teaching method. These variables were identified as moderators 
in previous studies and formed the basis for the use of these 
moderating variables in this study (Coban et al., 2022; Wu et al., 2020; 
Yu, 2023). The learning outcomes in this study are not a single concept 
but follow the classic framework of ‘cognitive-affective-motor skills’ in 
educational measurement (Bloom et al., 1956), divided into cognitive 
ability, non-cognitive ability, and skill performance. Cognitive ability 
include academic performance and knowledge retention rates, which 
are measured using standardised tools(Younas et  al., 2025). 
Non-cognitive ability encompass psychological traits such as self-
efficacy (Bandura, 2006) and learning interest (Yildirim and Sidekli, 
2018). Skill performance includes observable behavioural 
manifestations such as problem-solving ability and collaborative 
ability (Kurt and Benzer, 2020).

2 Materials and methods

2.1 Literature search

In this study, the keywords of STEM education and learning 
outcomes were used to conduct the literature search in the 
scientific databases Scopus, Web of Science, and Google Scholar 
in strict accordance with the guidelines of PRISMA, which has 
detailed process standards that can be  applied to most other 
literature review types of studies. The keywords for STEM 
education are ‘STEM’, ‘STEM Education’, ‘STEM Teaching’, ‘STEM 
Learning’. The keywords for learning outcomes are ‘Learning 
Result’, ‘Study Outcomes’, ‘Learning Effect’, ‘Study Performance’, 
‘Learning Effect’ and ‘Study Performance’. Use search formulas to 
combine keywords from each category with the Boolean operator 
OR, and then further connect each combination of keywords with 
the operator AND. For example, (STEM OR STEM Education OR 
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…) AND (Learning Outcomes OR Learning Results OR …). A 
search of journal literature from the above mentioned scientific 
databases for the period 2000–May 2024 was conducted, and the 
selected literature were all from international refereed journals 
listed in SSCI, AHCI or SCI, and a total of 2,568 literature were 
found to meet the requirements, of which 568 literature were 
from Scopus, 763 literature from Web of Science, and 1,237 
literature from Google Scholar.

2.2 Literature screening

Since not all of the retrieved literature meets the requirements, it 
is necessary to screen the literature, this study used Cohen’s Kappa 
consistency test to verify the reliability of each literature screening 
process, and established the following screening criteria: (1) the 
literature is experimental or quasi-experimental research, review 
articles and theoretical articles were excluded; (2) the literature should 
report the indicators of learning effects (e.g., academic performance 
or creativity), and articles with no learning effects were excluded; (3) 
there should be  an experimental group and a control group, and 
literature without a control group was excluded; (4) Literature that 
provided sufficient data to be able to calculate the experimental effect 

size, literature that could not be calculated was excluded, e.g., data that 
included the Mean, SD, and N of the experimental and control groups; 
(5) Duplicates were excluded, if the same piece of literature was 
published in different journals, or in different formats, only one 
was selected.

The 2,568 literature data searched were imported into Endnote, 
and 795 literature were left after deleting duplicates, and 795 
literature were left after completing the initial screening. Then the 
literature was double screened by two experts in related fields based 
on topics and abstracts, and Cohen’s Kappa coefficients were 0.89, 
0.88, 0.91, and 0.89, respectively, which were all greater than 0.8 
(almost perfect agreement), which proves that the screening results 
have good reliability (Borenstein et al., 2021), and 795 literature 
were screened to obtain 59 literature. The study applied the 
snowball method, which tracks citations forward and backward on 
top of this literature to find other relevant literature (Lim et al., 
2018). Seven literatures were added using the ‘snowball’ method, 
resulting in 66 literatures as shown in Figure  1. The snowball 
method was chosen because it involves references cited in the 
selected literature (Wohlin, 2014). This approach not only benefits 
from checking the initial list of references only, but also 
complements it by checking the references cited in the literature 
(Suárez-Eiroa et al., 2019). The snowball method is a better method 

FIGURE 1

PRISMA process for literature screening.
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to extend systematic literature research than searching databases 
(Wohlin, 2014).

2.3 Literature coding

The impact of STEM education on student learning outcomes may 
be influenced by moderating variables such as sample size, academic 
level, subjects, experimental period and teaching method (Garzón and 
Acevedo, 2019; Zhang et al., 2020). This study is based on the meta-
analysis framework proposed by Cooper et al. (2019) and employs a 
multi-dimensional hierarchical coding model to categorise moderator 
variables into three layers: contextual layer (sample size, academic 
level), intervention layer (subjects, experimental period, teaching 
method), and outcome layer (learning outcomes). In the sample size 
category, class sizes are categorised as small (1–50), medium (51–100), 
and large (>100) based on the recommendations proposed by Chingos 
(2013). In the academic level category, participants are categorised as 
primary school, secondary school, and university students based on 
Piaget’s stages of cognitive development (Diamond, 2013). In the 
subjects category, according to the framework of the National 
Research Council (2014), STEM corresponds to science (research 
focused on natural sciences), technology (research involving digital 
tools or robotics), engineering (research centred on design or 
manufacturing), and mathematics (research emphasising quantitative 
reasoning). In the teaching method category, based on the three-
dimensional teaching model of STEM education, and corresponding 
to the knowledge integration model proposed by Bransford et  al. 
(2013), it is divided into problem-oriented, project-oriented, and 
inquiry-oriented. Therefore, in addition to coding the overall learning 
outcomes and groups, it is also necessary to code the above moderator 
variables. The specific coding is shown in Table 1.

Two researchers with a major in education were selected for this 
study to content analyse 66 pieces of literature. First, training was 
provided on the meaning of the coding system and the coding 
methodology. Then, 10 randomly selected literature were pre-coded 
and inconsistent codes were explained and analysed so that a 
consistent understanding of the coding system could be  reached. 
Finally, two researchers independently coded all the literature. After 
coding, the coding results of the two researchers were checked again 
and the reliability of the codes was calculated. For the inconsistent 
coding, the results of the discussion between the two researchers were 
selected. In this study, Cohen’s Kappa coefficient was used to calculate 

the consistency of the coding results, and the consistency coefficient 
was 0.88, which indicated that the coding results had good reliability.

2.4 Data analysis

In order to comprehensively explore the impact of STEM 
education on student learning outcomes, this study followed the 
analytical steps of Cooper et al. (2019) and used the Comprehensive 
Meta-Analysis (CMA) Version 3 software developed by Biostat to 
process and deeply profile the data. The meta-analysis study mainly 
used the fixed effects model and random effects model proposed by 
Borenstein et  al. (2021). This study found that the relationship 
between STEM education and learning outcomes may be influenced 
by complex factors such as sample size, academic level, subjects, 
experimental period and teaching method. When different valid 
literature eigenvalues affect the results of meta-analysis, the random 
effects model should be  chosen as the statistical model for meta-
analysis, and the impact of STEM on students’ learning outcomes 
should be explored through publication bias test, heterogeneity test, 
overall effect value analysis and moderator variable analysis (Qiu 
et al., 2024).

In this study, the effect size calculation method proposed by 
Cohen (1988) was used as the combined effect value to assess the 
extent of the impact of STEM education on students’ learning 
outcomes (Cohen, 1988; Cooper et al., 2019), as shown in Equation 1. 
Where XE and XC represent the mean of learning performance of the 
experimental and control groups respectively, NE and NC represent 
the sample size of the experimental and control groups respectively, 
SE and SC represent the standard deviation of learning performance 
of the experimental and control groups respectively, and ES represents 
Cohen’s d.
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3 Results

3.1 Publication bias test

Bias refers to the deviation of a study’s results or inferred values 
from their true values. In the field of social science research, research 
reporting bias is prevalent, and the test for publication bias is 
indispensable because only when the degree of publication bias is 
correctly evaluated can its impact on the results of meta-analysis 
be minimised (Thornton and Lee, 2000). Commonly used testing 
methods include the funnel plot method, Egger’s test, Begg’s test and 
loss of safety factor. Since Begg’s test is slightly more effective than 
Egger’s test and Begg’s is more sensitive to large samples (Pelletier 
et al., 1998), this study chose Begg’s test with funnel plot to detect 
publication bias.

The funnel plot is characterised as being more intuitive, allowing 
the researcher to visually determine whether there is bias in the 
findings. The funnel plot centres on effect size (x-axis) and uses 

TABLE 1  Coding of moderator variables.

Moderator variables Code

Sample size a1 = 1–50, a2 = 51–100, a3= > 100

Academic level
b1 = Primary Schools, b2 = High 

Schools, b3 = Universities

Subjects
c1 = Technology, c2 = Engineering, 

c3 = Science, a4 = Mathematics

Experimental period
d1 = <1 weeks, d2 = 1–5 weeks, 

d3 = 5–10 weeks, d4 = > 10 weeks

Teaching method
e1 = Problem-orientated, e2 = Project-

orientated, e3 = Inquiry-orientated

https://doi.org/10.3389/fpsyg.2025.1579474
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cao et al.� 10.3389/fpsyg.2025.1579474

Frontiers in Psychology 05 frontiersin.org

standard error (y-axis) as a measure of precision, illustrating the 
distribution characteristics of 66 studies. Ideally, the precision of effect 
size estimates improves with increasing sample size. Studies with small 
sample sizes, which have larger standard errors, are distributed at the 
bottom of the plot, while studies with large sample sizes are 
concentrated at the top, forming a symmetrical funnel shape (Petitti, 
2001). If publication bias exists, the funnel plot will exhibit asymmetry. 
As shown in Figure 2, all effect points are distributed within the 95% 
confidence interval and are symmetrically distributed around the 
pooled effect value (0.5). The ratio of points on the left side (effect 
size < 0.5) to those on the right side (effect size > 0.5) is approximately 
1:1, no obvious clustering or absence of points on either side is 
observed. The range of effect sizes in the small-sample studies at the 
bottom (−0.3 to 1.2) does not exceed the expected random error 
interval, and no clustering of points on the right side due to ‘positive 
result bias’ is observed. The results of Begg’s test show that 
T = −0.02 < 1.96, p = 0.80 > 0.05, which further indicates that there is 
no bias.

In this study, publication bias was also calculated using the Classic 
fail-safe N proposed by Rosenthal (1979), which assesses how many 
published studies are necessary for the total effect size of published 
studies to reach the level of non-significance. The measure is 5n + 10 
(n refers to the number of papers included in the meta-analysis), and 
if the fail-safe N is much larger than 5 n + 10, it indicates that the effect 
size of the results of the unpublished studies does not have a significant 
impact on the overall effect size of the published studies. As shown in 
Table  2, the Classic fail-safe N result shows that the number of 
unpublished study results needed to reduce the overall effect size is 
976, which is much greater than 340 (66 × 5 + 10).

In addition, this study used the JBI Critical Appraisal Checklist to 
assess the risk of bias in the 66 included studies. This tool comprises 
eight core criteria: studies with low bias met ≥6 criteria, studies with 

moderate bias met 4–5 criteria, and studies with high bias met ≤3 
criteria. Quality assessment was conducted independently by two 
researchers, with consistency tested using Cohen’s Kappa coefficient 
(Kappa = 0.86, p < 0.001). Disagreements were resolved through 
discussion to reach consensus. The assessment results are shown in 
Table 3.

Subgroup analysis by quality grade showed no statistically 
significant differences in effect sizes between studies with different 
risk of bias, Chi2 = 2.15, p = 0.34. The effect size for low-bias studies 
was 0.47, with I2 = 91.8%; for moderate-bias studies, the effect size 
was 0.45, with I2 = 93.2%; and for high-bias studies, the effect size 
was 0.41, with I2 = 89.5%. Sensitivity analysis showed that after 
excluding six high-risk studies, the overall effect size was 0.44, 
which was only slightly different from the original result (0.46), 
indicating that high-risk studies had limited impact on the 
overall conclusion.

3.2 Heterogeneity test

In order to investigate whether STEM education has a significant 
effect on students’ learning outcomes, this study used the heterogeneity 
test. The purpose of the heterogeneity test is to test whether all effect 
sizes come from the same whole (Petitti, 2001). A random effects 
model was used if there was heterogeneity between studies, and a fixed 
effects model was used if there was no heterogeneity (Rücker et al., 
2008). Table 4 shows the results of the heterogeneity test and the 
overall distribution of effect sizes for the meta-analysis, with 
Q = 867.46, p < 0.0001 and I2 = 92.50%, indicating the presence of 
heterogeneity across samples. Where the statistic I2 reflects the 
proportion of the heterogeneity component in the overall effect value 
variation. The larger the I2 the greater the heterogeneity between the 

FIGURE 2

Funnel scatter graphic.
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samples. From the results in the Table  4, it can be  seen that I2 is 
92.50%, which indicates that there is a large heterogeneity among the 
studies, so the random effects model should be chosen to eliminate 
the heterogeneity and the effect sizes should be combined.

Since the concept of learning outcomes defined in this study has 
a relatively broad scope, it has led to high overall heterogeneity in the 
learning outcomes. Therefore, subgroup analysis was further 
conducted to categorize the learning outcomes based on the three 
aforementioned theories: cognitive ability (knowledge/academic 
performance), non-cognitive ability (attitude/self-efficacy), and skill 
performance (problem-solving/creativity). Each of these outcome 
types was assessed using its respective research framework—Bloom’s 
Taxonomy for measuring cognitive outcomes and Bandura’s Social 
Cognitive Theory for measuring self-efficacy. As shown in Table 5 
subgroup analysis revealed that STEM education had a significant 
positive effect on all three constructs (p < 0.001), but the effect sizes 
differed (between-group Chi2 = 7.23, p = 0.027). The effect sizes for 
cognitive ability, non-cognitive ability, and skill performance were all 
moderate. Heterogeneity remains high, possibly due to statistical 
errors caused by the use of different measurement methods in the 
combined data.

Given the persistently high heterogeneity in learning outcomes, a 
more detailed exploration of heterogeneity was conducted by 
stratifying the studies according to outcome type (cognitive/
non-cognitive/skill performance) and key contextual moderator 
variables (academic level). Since the heterogeneity associated with 
other moderator variables combined with outcome types did not 
decrease, this study did not further explore these combinations. As 
shown in Table 6, this study added a nested analysis table, which was 
stratified by outcome type (cognitive/non-cognitive/skills) and 
academic level (primary school/secondary school/university). The 
original overall heterogeneity I2 = 92.50%, while the I2 for cognitive 
outcomes at the high school level was 62.10%, significantly lower than 

the overall cognitive outcome of 91.20%, indicating that the effects of 
STEM education in the cognitive domain are more stable at the high 
school level. Among these, the highest combined effect size was 
observed for cognitive ability in high school (d = 0.58, I2 = 62.1, 95% 
CI = 0.47–0.69). Using the same stratification method, the combined 
effect size for non-cognitive ability in university students (d = 0.31, 
I2 = 89.1, 95% CI = 0.10–0.52) was the lowest.

In order to analyse the characteristics of the 66 studies in more 
depth, the effect values for each study were calculated in this study. 
Figure 3 presents the effect size, standard error, variance, lower limit, 
upper limit, Z-value, and p-value for each study. According to Cohen’s 
(1988) criteria for the classification of effect size 19 out of 66 studies 
had effect values of 0.8 and above, and the effect values reached 
statistical significance (p < 0.05); there were 32 studies with effect 
values of 0.2–0.8, of which 17 had statistically significant effect values, 
and there were 15 studies with effect values of less than 0.2, of which 
only 5 studies had statistically significant effect values. Thus, 41 studies 
showed that STEM education have a significant impact on the 
enhancement of learning outcomes (Cohen, 1988).

3.3 Sensitivity test

Sensitivity analyses are primarily used to examine outliers that 
may affect the overall effect size (Copas and Shi, 2000). In this study, 
One-Study Removal Analysis was used to examine the effect of 
extreme positive and negative effect sizes on the overall effect size. In 
this study, the range of 95% confidence intervals for the effect sizes 
after removing any of the studies was still 0.14–0.17 (Fixed Effects 
Model) and 0.38–0.54 (Random Effects Model), thus removing any of 
the studies did not affect the overall effect size. This is also a good 
indication that the meta-analyses produced in this study are 
very stable.

3.4 Effect size analysis

The results of the impact of STEM education on learning 
outcomes were obtained through CMA software analysis as shown 
in Table 4. From the random effects model, the combined effect size 
of the results of 66 studies was 0.46, with a 95% confidence interval 
of 0.38–0.54, and the combined effect size test Z = 11.91 (p < 0.0001) 
reached a statistically significant level. According to the theory of 
effect size analysis proposed by Cohen (1992a), when the effect size 
is around 0.2, the effect can be considered small; when the effect 
size is around 0.5, it is considered to have a moderate effect; and 
when the effect size is around 0.8, it is considered to have a 

TABLE 2  Results of classic fail-safe N.

Variable Value

Z-value for observed studies 25.35

p-value for observed studies 0.00

Alpha 0.05

Tails 2.00

Z for alpha 1.95

Number of observed studies 66

Number of missing studies that would 

bring p-value to > alpha
976

TABLE 3  Results of classic fail-safe N.

Research type N Low bias medium bias high bias High bias reasons

Randomised experiment 28 18 8 2
Unreported allocation hidden (1 item), loss to 

follow-up rate > 20% (1 item)

Quasi-experiment 38 20 14 4

Baseline inconsistency (2 items), results 

measurement tools did not report reliability 

and validity (2 items)

Total 66 38 22 6
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significant effect. The overall effect size of 0.46  in this study 
indicates that STEM education has a moderate positive impact on 
students’ learning outcomes, a finding that proves that STEM 
education is conducive to improving students’ learning outcomes 
(Cohen, 1992a). This composite estimate integrates different 
constructs (cognitive, non-cognitive, skill performance) and should 
be interpreted with caution, as it masks significant differences in 
subgroup analyses.

3.5 Moderator variables analysis

3.5.1 Sample size
In order to test the applicability of STEM education in different 

class sizes, the study divided the sample into small (1–50 students), 

medium (50–100 students), and large (more than 100 students) sizes 
based on class size. The specific analyses are shown in Table 7.

As can be seen in Table 7, the between-group effect Chi2 = 16.44, 
p < 0.001, a statistically significant difference between the groups, 
suggesting that STEM education produced inconsistent levels of impact 
on students of different class sizes. The results of the data for small (effect 
value = 0.83, Z = 8.39, p < 0.001), medium (effect value = 0.37, Z = 4.47, 
p < 0.001), and large (effect value = 0.41, Z = 8.76, p < 0.001) sizes 
illustrate that the impact of STEM education has a positive contribution 
to the impact on small, medium, and large scale students, with the small 
scale students had the greatest influence and a significant influence, large-
scale students had the second highest influence in terms of moderate 
impact, medium-scale students had the relatively least influence in terms 
of moderate impact, and small-scale, medium-scale, and large-scale 
students all reached the level of significant difference.

TABLE 4  Heterogeneity test results.

Effect 
model

Combined 
effect size

95% CI Two-tailed 
test

Heterogeneity test

Lower limit Upper limit p Q I2 df p

Fixed effects 

model (FEM)
0.16 0.14 0.17

< 0.0001 867.46 92.50% 65 < 0.0001
Random effects 

model (REM)
0.46 0.38 0.54

TABLE 5  Subgroup analyses by outcome type.

Subgroup N Effect 
size

95% CI Heterogeneity 
test I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

Cognitive abilitiy 42 0.52 0.43 0.61 91.20 10.83 <0.001

Chi2 = 16.44, 

p < 0.001

Non-cognitive 

ability
16 0.38 0.25 0.51 87.60 5.72 <0.001

Skill performance 8 0.41 0.22 0.60 89.30 4.26 <0.001

TABLE 6  Nested heterogeneity analysis.

Outcome 
type

Academic 
level

N Effect 
size

95% CI Heterogeneity 
test I2 (%)

Q df p

Lower 
limit

Upper 
limit

Cognitive ability Primary schools 10 0.39 0.25 0.53 89.60 86.42 9 <0.001

Cognitive ability High schools 24 0.58 0.47 0.69 62.10 156.83 23 <0.001

Cognitive ability Universities 8 0.45 0.29 0.61 88.10 58.73 7 <0.001

Non-cognitive 

ability
Primary schools 6 0.32 0.15 0.49 88.30 42.65 5 <0.001

Non-cognitive 

ability
High schools 7 0.42 0.26 0.58 87.70 48.92 6 <0.001

Non-cognitive 

ability
Universities 3 0.31 0.10 0.52 89.10 18.37 2 <0.001

Skill performance Primary schools 3 0.35 0.12 0.58 88.20 16.89 2 <0.001

Skill performance High schools 4 0.48 0.27 0.69 86.70 22.56 3 <0.001

Skill performance Universities 1 0.39 0.11 0.67 - - - <0.001
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3.5.2 Academic level
In order to test the applicability of STEM education at different 

academic levels, this study divided the sample into primary Schools, 
High Schools and Universities based on academic level, which was 
analysed as shown in Table 8.

As can be seen in Table 8, the between-group effect Chi2 = 6.38, 
p = 0.04, a statistically significant difference between the groups, 
suggesting that STEM education does not have a consistent degree of 
impact on students at different academic levels. Primary schools 
(effect value = 0.33, Z = 4.68, p < 0.001), high schools (effect 

FIGURE 3

Forest map of the original studies.
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value = 0.54, Z = 10.61, p < 0.001), and universities (effect 
value = 0.42, Z = 4.05, p < 0.001) data results indicate that STEM 
education positively contributes to students’ learning outcomes 
impact are all positively contributing. Students in high schools had 
the greatest impact, followed by students in universities, and students 
in primary schools had the least impact, with all three academic levels 
achieving significant differences in student learning outcomes and 
had moderate impact.

3.5.3 Subjects
In order to test the applicability of STEM education on different 

subjects, this study divided the sample into technology, engineering, 
science and mathematics based on the subjects, which were analysed 
as shown in Table 9.

From Table  9, the effect Chi2 = 5.57, p = 0.13, the difference 
between groups is not statistically significant, so it can be concluded 
that the effect of STEM education on the different subjects is relatively 
stable and does not produce significant differences. The effects of 
technology (effect value = 0.52, Z = 5.54, p < 0.001), engineering 
(effect value = 0.73, Z = 5.22, p < 0.001), science (effect value = 0.46 
Z = 6.76, p < 0.001), and mathematics (effect value = 0.35, Z = 4.15, 
p < 0.001) the data results illustrate that the impact of STEM education 

on the learning outcomes of students in the four subjects has a positive 
facilitating effect. Students in engineering courses had the greatest 
impact on learning outcomes, followed by students in technology 
courses, then students in science courses, students in mathematics 
courses had the relatively least impact on learning outcomes, and 
students in all four subjects reached the level of significant difference 
in the enhancement of their learning outcomes and had moderate 
impact. Although the between-group differences across different 
subjects were not statistically significant, they accounted for 92.50% 
of the heterogeneity. There were no statistically significant differences 
between subjects.

3.5.4 Experimental period
In accordance with the coding scheme, this study compared and 

analysed the impact of different experimental intervention cycles on 
the enhancement of student learning outcomes in STEM education, 
as shown in Table 10.

As can be seen from Table 10, the effect values of STEM education 
on the four different experimental period are 0.63, 0.53, 0.37 and 0.42, 
respectively, and the combined effect size is 0.48, with a two-tailed test 
(p < 0.001), which indicates that STEM education has a positive 
facilitating effect under these four experimental period, and in terms 

TABLE 8  Statistical analysis of mediator variable with different academic level.

Academic 
level

N Effect 
size

95% CI Heterogeneity 
test I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

Primary schools 22 0.33 0.19 0.46 88.75 4.68 <0.001

Chi2 = 6.38,

p = 0.04

High Schools 36 0.54 0.44 0.64 93.40 10.61 <0.001

Universities 8 0.42 0.21 0.62 87.52 4.05 <0.001

Total 66 0.44 0.28 0.59 92.50 5.44 <0.001

TABLE 7  Statistical analysis of mediator variable with different sample size.

Sample size N Effect 
size

95% CI Heterogeneity test 
I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

1–50 18 0.83 0.63 1.02 88.20 8.39 <0.001

Chi2 = 16.44, 

p < 0.001

50–100 16 0.37 0.20 0.53 64.93 4.47 <0.001

>100 32 0.41 0.31 0.50 94.74 8.76 <0.001

Total 66 0.52 0.27 0.77 92.50 4.15 <0.001

TABLE 9  Statistical analysis of mediator variable with different subject.

Subject N Effect 
size

95% CI Heterogeneity test 
I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

Technology 14 0.52 0.33 0.70 85.81 5.54 <0.001

Chi2 = 5.57,

p = 0.13

Engineering 7 0.73 0.45 1.00 90.83 5.22 <0.001

Science 30 0.46 0.32 0.59 91.05 6.76 <0.001

Mathematics 15 0.35 0.18 0.52 94.11 4.15 <0.001

Total 66 0.49 0.34 0.63 92.50 6.70 <0.001

https://doi.org/10.3389/fpsyg.2025.1579474
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cao et al.� 10.3389/fpsyg.2025.1579474

Frontiers in Psychology 10 frontiersin.org

of the between-groups effect, Chi2 = 4.22, p = 0.23, which does not 
reach a significant level, so it can be concluded that the effect of STEM 
education on different experimental period is relatively stable and 
does not produce significant differences. Among them, the effect of 
<1 week is the most obvious, and the effect is 1–5 weeks, >10 weeks, 
5–10 weeks in descending order, and all the experimental period have 
reached the level of significant difference and had moderate impact. 
There were no statistically significant differences between 
experimental periods.

3.5.5 Teaching method
From the data in Table 11, the combined effect value of the three 

teaching methods was 0.46, Z = 9.24, p < 0.001, which shows that 
overall STEM has a moderately positive facilitating effect on the 
different teaching methods. However, in terms of between-group 
effects, Chi2 = 2.45, p = 0.29, the between-group effects were not 
significantly different. Therefore, there is no significant difference in 
the effect of different teaching methods on students’ learning. The 
effect value of problem-orientated = 0.54, Z = 7.70, project-
orientated = 0.45, Z = 8.46, inquiry-orientated = 0.38 Z = 5.06, it can 
be seen that inquiry-orientated has the weakest degree of effect on 
students’ learning outcomes, problem-orientated has the best effect, 
followed by project-orientated, and all the three teaching methods are 
significantly different and had moderate impact. There were no 
statistically significant differences between teaching methods.

4 Discussion

The increasing number of related studies in recent years indicates 
the growing academic interest in influencing student learning 
outcomes based on STEM education. This study adopts meta-analysis 
to systematically sort out and analyse the empirical studies on the 
impact of STEM education on students’ learning outcomes between 
2000 and 2024, and verifies the differences in the effects of sample size, 

academic level, subjects, experimental period and teaching method 
on five moderating variables. The study found that:

	1)	 First, STEM education has the most significant impact on 
cognitive ability in high school, with a combined effect size 
of 0.58. Second, STEM education has a moderate positive 
effect on students’ learning outcomes (cognitive ability, 
con-cognitive ability, skill performance). The results of 
this study are consistent with previous studies by other 
scholars (Lynch et al., 2019; D’Angelo et al., 2014; Mustafa 
et  al., 2016). The mechanism of the impact of STEM 
education and students’ learning outcomes may be  that 
STEM education integrates knowledge of disciplines that 
are separated and fragmented from each other, enabling 
students to understand the world according to a connected, 
dynamic, and systemic approach and develop innovative 
thinking in an iterative cycle of divergent and convergent 
thinking (Sgro et al., 2020). Meanwhile, STEM education 
guides students through a complete scientific evidence-
seeking process through complex problems oriented to real 
situations, from which they gain intuitive experience of 
innovative practices, scientific rationality and self-
management strategies (Pellas et  al., 2017). All of these 
help to strengthen students’ construction and retention of 
knowledge, which in turn improves learning outcomes 
(Oprean and Balakrishnan, 2020). The overall effect size 
of learning outcomes (0.46) is a comprehensive indicator. 
However, the moderate overall effect size masks 
meaningful differences. For example, STEM education has 
a greater impact on cognitive outcomes (0.52), which is 
consistent with constructivism and may be related to its 
emphasis on knowledge integration, while its impact on 
non-cognitive outcomes is smaller (0.38), which may 
require longer-term intervention measures to develop. The 
overall effect size is not the final standard for measuring 

TABLE 10  Statistical analysis of mediator variable with different experimental period.

Experimental 
period

N Effect 
size

95% CI Heterogeneity 
test I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

<1 weeks 9 0.63 0.41 0.86 78.88 5.61 <0.001

Chi2 = 4.22,

p = 0.23

1–5 weeks 12 0.53 0.36 0.70 81.74 6.18 <0.001

5–10 weeks 10 0.37 0.16 0.58 91.96 0.58 <0.001

>10 weeks 35 0.42 0.32 0.52 93.35 8.54 <0.001

Total 66 0.48 0.69 1.30 92.50 7.88 <0.001

TABLE 11  Differences in the impact of different teaching method.

Teaching 
method

N Effect 
size

95% CI Heterogeneity 
test I2 (%)

Z p Between-
group effect 

sizeLower 
limit

Upper 
limit

Problem-orientated 16 0.54 0.40 0.68 90.15 7.70 <0.001

Chi2 = 2.45, p = 0.29
Project-orientated 34 0.45 0.35 0.56 86.21 8.46 <0.001

Inquiry-orientated 16 0.38 0.23 0.53 94.01 5.06 <0.001

Total 66 0.46 0.36 0.56 92.50 9.24 <0.001
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the impact of STEM education, but only a preliminary 
summary. Its explanatory value is limited by the integration 
of different measurement attributes (such as standardised 
tests in the cognitive domain and self-report scales in the 
self-efficacy domain) and differences in developmental 
trajectories. With the help of meta-analysis, the findings 
are inferential rather than causal, and the results of the 
data show that the effect of STEM education on students’ 
learning outcomes varies across the five moderating 
variables: sample size, academic level, subjects, 
experimental period, and teaching method. Therefore, the 
teaching effect of STEM is not absolute, and its promotion 
and popularisation need to be  integrated with more 
research on the effectiveness of STEM teaching and 
in-depth analyses of the factors affecting the learning 
effect of STEM education on students.

	2)	 Although subgroup analyses based on outcome type and 
academic level reduced heterogeneity (I2 values), the 
reduction in heterogeneity was most significant in 
cognitive ability in high school (I2 = 62.1%), residual 
heterogeneity remained at a high level, indicating the 
presence of unmeasured factors such as teachers’ STEM 
training, resource availability, or cultural attitudes toward 
STEM. These variables are likely to account for differences 
in effect sizes across different contexts, thereby limiting 
the generalisability of the pooled results. Qualitative 
comparisons of studies with extreme effect sizes revealed 
that studies with effect sizes greater than 0.8 (e.g., Khalil 
et al., 2023) typically employed problem-based approaches 
in high school engineering courses, while studies with 
effect sizes less than 0.2 (e.g., Townes, 2016) focused on 
non-cognitive outcomes in large university courses.3) The 
impact of STEM education on different learning outcomes 
exhibits a gradient difference, which is related to the 
measurement characteristics of the three learning outcome 
concepts and the core mechanisms of STEM education. 
Among these, the effect size for cognitive abilities is the 
highest, potentially due to STEM’s interdisciplinary 
integration characteristics, which directly strengthen the 
construction of knowledge networks by linking knowledge 
across disciplines such as mathematics and science (Maass 
et al., 2019). The sensitivity of standardised tests to such 
structured knowledge may also amplify effect sizes, as seen 
in mathematics achievement test. Effect sizes for skill 
performance rank second, as skills such as problem-
solving and collaboration require assessment through 
complex tasks (Kurt and Benzer, 2020). However, some 
studies lack standardised task design, such as, whose 
assessment tools did not specify reliability and validity, 
may lead to fluctuations in effect sizes. Effect sizes for 
non-cognitive abilities are relatively the lowest, as 
improvements in constructs such as self-efficacy depend 
on long-term practice accumulation. However, 61% of the 
non-cognitive ability studies in this review had a duration 
of less than 10 weeks, and even in Yildirim and Sidekli 
(2018), whose test lasted more than 10 weeks, the effect 
size remained low, possibly because a stable impact had 
not yet been established. Additionally, the subjectivity of 

scale measurements (e.g., self-report bias in learning 
interest) may weaken effect size estimates.

	3)	 In terms of sample size, all of the impacts of STEM education 
on student learning outcomes are moderately positively 
contributing. In particular, STEM education had the 
greatest impact on small-sized classes (1–50), followed by 
large-sized classes (> 100), and relatively the least impact 
on medium-sized classes (50–100). This finding is 
inconsistent with the results of, which may be due to the 
special nature of STEM education. STEM education 
emphasises interdisciplinary problem solving and practical 
innovation, and small class sizes provide conditions for 
frequent interaction (such as group brainstorming and 
engineering prototype iteration). Small-scale classes are 
suitable for writing-based learning and peer learning, 
based on the principle of peer effect on academic 
achievement, where peers are able to share information 
related to learning among themselves, and collaborative 
learning environments are effective in improving students’ 
learning outcomes (Ruengtam, 2018). This is consistent 
with the findings of small-sample studies by Aldilla et al. 
(2023) and Kurt and Benzer (2020), which demonstrate the 
reinforcing effect of collaborative learning environments 
on STEM outcomes. In contrast, in large-scale classroom 
versus medium-scale classroom environments, teaching 
and learning resources are diluted and teachers have fewer 
opportunities to encourage students to think, express and 
communicate (Abalde, 2014). At the same time, it may also 
be  related to the characteristics of the STEM courses 
included in the study. For example, Micari and Pazos 
(2021) relied on problem-oriented teaching and online 
collaboration platforms to reduce the management costs of 
large-class teaching through standardised project 
processes, enabling students to still gain STEM practical 
experience within a structured framework. This model 
may be the key to the effectiveness of large-scale STEM 
education, which differs from the conclusion that the 
effectiveness of traditional large-class teaching inevitably 
declines. Therefore, it is important to consider the impact 
of class size on students in STEM education and focus on 
creating a collaborative and open learning environment for 
students. In summary, the class size effect in STEM 
education does not negate traditional educational research, 
but rather requires consideration of the special 
mechanisms formed by characteristics such as practice 
orientation and tool dependence. Future research needs to 
further distinguish the boundaries of the role of class size 
in different types of education (such as STEM vs. 
traditional subjects).

	4)	 In terms of academic level, the impact of STEM education 
on students’ learning outcomes are all moderately 
positively contributing. In particular, STEM education has 
the most significant enhancement of learning outcomes for 
high school students, the second most significant impact 
on learning outcomes for university students, and the 
relatively smallest impact on learning outcomes for 
primary school students. Consistent with the results of, 
this may be due to the fact that students at the high school 
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level have basically completed their subject matter 
knowledge base, and the intellectual skills required for 
problem solving and the cognitive strategies required for 
learning management are also available (Kong, 2014). At 
the same time, consistent with the self-determination 
theory proposed by Ryan and Deci (2000), high school 
students have stronger autonomy needs, and STEM 
education can better stimulate their intrinsic motivation 
by providing project-oriented support. High school is a 
critical period for self-identity formation and development, 
and the need for high school students to practice applying 
STEM knowledge across disciplines stimulates identity 
maintenance (Robinson, 2020). High school students are 
at an optimal stage of knowledge and mindfulness where 
learning ability occurs, thus enabling better performance 
in STEM education (Bowman et al., 2020). Comparatively, 
university students are less likely to produce more 
significant learning outcomes as their study habits are 
already developed and they have a clear purpose for 
learning and greater self-study skills (Du, 2020). According 
to Piaget’s theory of cognitive development (Huitt and 
Hummel, 2003), because the relative simplicity of what 
primary school students learn and their insufficient subject 
knowledge base, STEM education is not sufficient to 
attract their interest in learning (Scheerens, 2016), and 
more concrete experimental designs (such as < 1 week 
short-term interventions) are needed to reinforce 
learning outcomes.

	 5)	 In terms of subjects, the effects of STEM education on student 
learning outcomes are all moderately positively contributing. 
Among them, STEM education has the most significant 
contribution to the learning outcomes of students in the 
engineering programme. STEM education showed a positive 
impact across all disciplines, but the differences were not 
significant (Chi2 = 5.57, p = 0.13). This may be due to the small 
sample size in the engineering discipline (n = 7), resulting in 
insufficient statistical power. These results should be regarded 
as preliminary conclusions rather than evidence of no effect. 
Although there is no significant difference in learning 
outcomes among different subjects, this result can be used to 
encourage the promotion of interdisciplinary STEM education, 
and the flexibility of the cycle provides elasticity for teaching 
arrangements (Noor et  al., 2022; Younas et  al., 2022; Zhou 
et al., 2022).

	6)	 In terms of experimental period, the effects of STEM 
education on student learning outcomes were all 
moderately positive. Among them, STEM education has 
the best effect in <1 weeks experimental period, followed 
by 1–5 weeks experimental period, then >10 weeks 
experimental period, and the smallest effect is 5–10 weeks 
experimental period. Effect sizes varied across periods but 
were non-significant (Chi2 = 4.22, p = 0.23). With 
inconsistent patterns (e.g., 5–10 weeks showing lower 
effects), these results are inconclusive and require 
replication with larger samples.

	 7)	 In terms of teaching method, STEM education has a moderately 
positive effect on students’ learning outcomes. Firstly, problem-
orientated teaching method enhances students’ learning effect 

the best, followed by project-orientated teaching method’s 
effect on students’ learning effect, and lastly, inquiry-orientated 
teaching method’s effect on students’ learning effect, all 
teaching method achieved a significant effect. Effect sizes 
varied across teaching method but were non-significant 
(Chi2 = 2.45, p = 0.29). Non-significant moderator effects are 
reported for completeness but should not be  interpreted as 
evidence of no effect. Their discussion is limited to 
methodological observations, as practical implications cannot 
be justified.

5 Conclusion

The main contribution of this study lies in revealing the 
differentiated effects of STEM education across different learning 
outcomes and contexts, rather than generalised effects. Key findings 
from the subgroup analysis include: STEM education has the most 
significant impact on cognitive outcomes, with high school students 
experiencing the greatest improvement, consistent with 
constructivist knowledge integration theory. Skill performance and 
non-cognitive learning outcomes are also positively influenced, but 
to a lesser extent, reflecting their unique measurement 
characteristics (e.g., non-cognitive learning outcomes are assessed 
using self-report scales) and developmental trajectories. Academic 
level serves as a key moderating variable: high school students 
benefit more from STEM interventions, consistent with social 
cognitive theory and Cognitive Load Theory, which emphasise the 
importance of autonomy and competence needs at this 
developmental stage. The overall effect size (d = 0.46) can serve as 
a broad contextual reference but is constrained by the aggregation 
of multiple constructs. From a practical perspective, these findings 
support tailoring STEM curricula to target outcomes (e.g., 
prioritising problem-based approaches to cultivate cognitive skills 
in high school students) and optimising assessment tools to capture 
domain-specific effects. From a theoretical perspective, they 
underscore the importance of decomposing learning outcomes to 
avoid obscuring meaningful differences in STEM impacts. Future 
research should explore residual heterogeneity in subgroup analyses 
(e.g., teacher training, cultural factors) and validate intervention 
models targeting specific outcomes to advance evidence-based 
STEM education development. Revised conclusion: This exploratory 
meta-analysis advances understanding of STEM education’s effects 
by identifying key patterns in heterogeneous literature. Its value lies 
not in providing definitive effect sizes but in highlighting critical 
moderators (outcome type and academic level) and residual gaps 
(unmeasured contextual factors) that demand further  
investigation.

There are also some limitations in this study. Only journal papers 
from three databases were selected for this study. In the future, the 
study should not only include journal papers, but also conference 
papers and dissertations. More literature in other languages should 
be absorbed to make comprehensive comparisons. The differences in 
the effects of different outcome variables should be investigated (self-
efficacy, motivation for learning, creativity level, etc.), and the learning 
effects of STEM education-assisted students should be explored in a 
multifaceted perspective. The significant heterogeneity among the 
studies suggests that the effect size may be highly context-dependent, 
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and future research should employ meta-regression and other methods 
to further explore this heterogeneity. The theoretical framework of this 
study also lacks sufficient explanation of the interactive mechanisms 
between the emotional and cognitive domains (e.g., how self-efficacy 
mediates the effects of STEM interventions). The high heterogeneity of 
the original studies raised concerns about the conceptual consistency 
of the meta-analysis. Although subgroup analysis reduced this 
heterogeneity, unmeasured variables remained, simplifying the 
complex and context-dependent effects of the statistical meta-analysis. 
Therefore, narrative synthesis is essential for interpreting these 
findings. The impact of STEM education is context-specific, and future 
research should focus on context-specific mechanisms rather than the 
magnitude of universal effects. Additionally, there is a lack of theoretical 
explanation for the high effectiveness of short-term interventions, 
which may require the introduction of immersive learning theory 
(Chen et al., 2016) to further elucidate the impact of high-intensity 
short-term interventions on neuroplasticity. In addition, some missing 
data when combing through the literature prevented this study from 
exploring some specific moderating variables (gender, creativity, ability 
classification, etc.). In the future, when conditions are sufficient, the 
impact of STEM education on student learning outcomes can 
be comprehensively analysed. In addition, a key limitation lies in the 
aggregation of different outcome constructs. Cognitive, non-cognitive, 
and skill performance differ in terms of measurement precision (e.g., 
objective tests versus self-reports) and sensitivity to STEM 
interventions, which may lead to biases in the overall effect size. Future 
research should prioritise separate analyses for each outcome type to 
avoid confounding their unique mechanisms. A key limitation is the 
residual heterogeneity in subgroup analyses, which affects the 
interpretability of findings. Even after stratifying by outcome type and 
academic level, heterogeneity remains substantial. This indicates 
unmeasured variables—such as teacher expertise in STEM integration, 
school resource availability, or cultural norms around hands-on 
learning—that may influence effect sizes. These unobserved factors 
limit our ability to draw clear conclusions about the varying 
effectiveness of STEM education in different contexts, as the remaining 
variation cannot be fully explained by measured moderators. Given 
these challenges, the study is best characterized as exploratory rather 
than confirmatory. It identifies meaningful patterns (e.g., stronger 
effects on high school cognitive ability) but does not confirm causal 
mechanisms, as residual heterogeneity suggests complex, context-
dependent relationships that require more controlled designs to 
disentangle. Additionally, the aggregation of diverse constructs 
(cognitive, non-cognitive, skill performance) in the overall effect size 
introduces interpretive ambiguity, as these outcomes have distinct 
measurement properties and theoretical foundations. While subgroup 
analyses mitigate this issue, they do not eliminate it, reinforcing the 
need for future studies to focus on single outcome types to 
enhance precision.
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