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Introduction: A subset of the true optical flow can be extracted by constructing 
a vector field that represents image gradients and then tracking vectors in this 
vector field. This pseudo-flow (p-flow) subset effectively visualizes nonrigid 
motion and leads to the perception of nonrigid structure from motion. In this 
study, we investigate whether the human sensory system can extract information 
about the physical properties of inanimate fluid, especially viscosity, from the 
p-flow.

Methods: Computer-generated movies of flowing liquid were constructed 
using the p-flow algorithm and the Lucas–Kanade method. The movies 
featured liquids of different viscosities in the form of point-light displays. The 
viscosity of the fluid in various subsets of these movies was then estimated by 
312 participants.

Results: The error, i.e., difference between expected and actual ratings showed 
smaller variability across repeated trials and the mean response time was 
significantly shorter when using the p-flow than with the conventional Lucas–
Kanade method.

Discussion: Our results suggest that the p-flow enables a more reliable viscosity 
rating, which could be related to the local constraint used in the algorithm.
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1 Introduction

Visual motion provides a variety of information types that are collectively referred to as 
interpretation, such as depth in space, segmentation and shape of objects, and self-locomotion 
(Nishida et al., 2018). The human sensory system can extract global information pertaining 
to visual motion by integrating multiple local movements in spatially restricted portions of the 
visual field (Hedges et al., 2011), e.g., in the form of a point light display. This is because the 
global motion of an object or scene with a three-dimensional (3D) physical constraint imposes 
spatiotemporally structured motion on individual points, and the sensory system can 
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reconstruct the global motion constraint from the point light display 
(Ullman, 1984; Grzywacz and Hildreth, 1987; Jackson and Blake, 
2010; Thurman and Lu, 2013).

Psychophysical and neurophysiological experiments have shown 
that the human sensory system can extract various information from 
point light displays, including biological motion (Johansson, 1973, 
1976; Cutting and Kozlowski, 1977), the structure of objects (Treue 
et al., 1991), the rotation direction of objects (Pollick et al., 1994; 
Grunewald et  al., 2002), and depth in space (Treue et  al., 1995). 
Biological motion not only provides information about the state of the 
agent, i.e., walking, running, and direction of motion, but also enables 
identification of the gender (Cutting et al., 1978; Mather and Murdoch, 
1994; Pollick et al., 2005), age, and emotion of the agent (Dittrich et al., 
1996). Perception of biological motion requires knowledge of the body 
skeleton and kinematics (Jackson and Blake, 2010; Thurman and 
Lu, 2013).

By contrast, Kawabe et al. (2015) showed that the viscosity of a 
liquid can be accurately estimated from motion using evenly spaced 
Gaussian noise that dynamically changes following the motion vector 
field. In their study, the motion vector field was calculated using the 
Lukas–Kanade (LK) method (Lucas and Kanade, 1981). The LK 
method is a gradient-based approach for optical flow extraction that 
solves partial differential equations under the constant brightness 
assumption (Tu et al., 2019). This constraint is introduced because the 
algorithm of motion detection depends on the measurement of 
motion energy or spatiotemporal gradients.

In general, gradient-based approaches such as the LK method are 
not suitable for visualizing the motion extracted by tracking certain 
features. If motion detection depends on the tracking of image 
features, it is classified as a feature-based approach, rather than a 
gradient-based approach. Point light displays of a solid animate or 
inanimate object can be created by placing point lights at positions 
that can be tracked, such as the head, arms, and legs in the case of 
biological motion. However, it is generally difficult to reproduce the 
motion of fluids using point light displays because there are no such 
apparent landmarks, unless a point cloud with a physical simulation 
is created using computer graphics.

We have previously developed a motion extraction algorithm with 
a feature-based approach that is also consistent with gradient-based 
techniques (Suzuki et al., 2017, 2019, 2020). The motion information 
extracted using this algorithm is referred to as the pseudo-flow 
(p-flow) because it is a subset of, and therefore not identical to, the 
exact ground-truth optical flow. The p-flow algorithm does not track 
points by matching static features, but instead constructs a vector field 
of the image gradient, i.e., the spatiotemporal derivative of an image, 
and then matches (tracks) vectors in this vector field. Because the 
p-flow algorithm is consistent with the two approaches, it produces 
the point light displays of fluid motion using the advantage of the 
feature-based approach while it is expected that the viscosity of the 
fluid is successfully estimated because of the characteristics of the 
gradient-based approach as is indicated by Kawabe et al. (2015).

Gradient-based motion processing is related to the first-order 
visual motion system (Lu and Sperling, 2001) in that both take 
image gradients as their input and both are based on opponent 
directional selectivity, and the feature-based motion processing to 
the third-order visual motion system in that both track salient 
features. Because motion detection by gradient-based processing 
depends on opponency, i.e., antagonism between a pair of detectors 
with opposing directional selectivity (van Santen and Sperling, 

1985), it is inherently insensitive to the motion signal along the 
orthogonal orientation. This is called the aperture problem and is 
generally assumed to be resolved by integrating local motion signal 
from the same source but along different orientation axes at a later 
stage (Adelson and Movshon, 1982), when suitable groupings are 
made based on some perceptual organization. In contrast, motion 
detection by feature-based processing depends on the choice of the 
features to be tracked. Thus, it does not suffer from the aperture 
problem when the features are unique and therefore their 
movements can be measured unambiguously. In a sense, gradient-
based processing suffers from the aperture problem and therefore it 
solves the problem by subsequent motion integration, whereas 
feature-based processing does not suffer from the problem because 
it resolves the problem by prior selection of unambiguous features.

The insight of the p-flow algorithm is that the spatiotemporal 
gradient vector itself constrains the range of possible motion 
interpretation if it is matched and tracked between several time points. 
Whereas p-flow integrates gradient-based and feature-based 
approaches, we do not propose our version of one-system theory as 
an alternative to the three systems theory. The present study does not 
concern what types of or how such motion signals are detected, but 
rather concerns perceptual organization of such motion signals, 
namely, integration of temporal and spatial changes. For such 
integration, vectors of spatiotemporal image gradients are matched 
and tracked as features in the p-flow algorithm.

The matched vectors may be visualized by representing them with 
moving dots in a point light display. Psychophysical studies showed 
that the p-flow algorithm successfully extracts the vection-inducing 
component of animated films (Suzuki et  al., 2019), as well as the 
motion of nonbiological fluids in informal observations (Suzuki et al., 
2020), which suggest effective extraction of perceptually organized 
motion signal components by the p-flow. In this study, we investigate 
how accurately and reliably viscosity can be perceived, as a benchmark 
for processing nonrigid structure from motion, in movies of a flowing 
liquid through movements in point-light displays reconstructed by the 
p-flow, and compare the results with those given by the LK method.

2 Methods

2.1 Ethics statement

The data collection and analysis were conducted in accordance with 
the Declaration of Helsinki. The protocol of the human experiment 
conducted as part of this study was approved prior to initiation by the 
Wako 3rd Ethics Committee of RIKEN (Wako3 2021-13).

2.2 Participants

Participants were recruited through a market research agent 
(Cross Marketing Inc., Tokyo, Japan) such that they had a uniform 
distribution of sex and age. All participants reported that they had a 
visual acuity of 0.3 or greater for each eye monocularly and 0.7 or 
greater binocularly, with correction if needed, and that they used one 
of several specified types of iPhone (Apple Inc. Cupertino, CA, USA), 
as described below.

Informed consent was obtained from each participant via the first 
page of the website used to conduct the experiment. The experimental 
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tests appeared on subsequent pages. If more than 60 min elapsed after 
a participant had established a connection, the participant was 
considered to have withdrawn. The participants were only paid if they 
completed the experiment, as explained prior to participation and in 
accordance with the approval by the ethics committee.

Crowdsourcing was not used in this study because of concerns 
about participant demographics (Ware et al., 2019) and maintaining 
motivation (Sasaki and Yamada, 2019). Instead, recruitment was 
outsourced to a marketing research agent. This enabled the exclusive 
use of a specific type of device, i.e., an iPhone, as described below, for 
the experiment, thus effectively mitigating problems associated with 
variations in the display, such as the stimulus size (Pechey et al., 2015).

2.3 Stimulus and apparatus

Three sets of movies were created: a training set, a practice set, and 
a measurement set, all of which were adapted from the supplemental 
information of van Assen et al. (2018). The training set comprised 
movies simulating liquids with minimum and maximum viscosities of 
0.0035938 and 7.7426 Pa·s, respectively, taken from Set 2 of their 
Experiment 2, in which there were eight scene variations (see their 
Figure 1A). The practice set comprised all movies in Set 2 of their 
Experiment 2 with seven levels of viscosity. The measurement set 
comprised 10 of the 32 movies in Set 1 of their Experiment 1 (see their 
Figure 2A). These 10 movies were selected by taking one of every three 
movies, evenly spaced in rank and with simulated viscosities ranging 
from 0.0020771 to 40.103 Pa·s. Thus, there were 16 training, 56 practice, 
and 10 measurement movies. For each participant, two movies were 
randomly sampled from the 16 training movies and three movies were 
randomly sampled from the 56 practice movies. All 10 measurement 
movies were used for all participants, but each participant was shown 
only one of two versions: the original movie and the p-flow movie.

The original movies (see Supplementary material Videos 1 through 5) 
were generated from those of van Assen et al. (2018) by decolorization 
and blurring using a box filter of 3 × 3 pixels. The p-flow movies 
(Supplementary material Videos 6 through 10) were composed of 
moving dots that showed the visual motion of the flowing liquid in the 
original movies, as extracted using the p-flow algorithm. The LK optical 
flow movies (Supplementary Material Videos 11 through 15) were 
similarly composed of moving dots that showed the visual motion, as 
extracted using the LK method implemented as a function in the Open 
Source Computer Vision Library (OpenCV). Each stimulus movie 
lasted 10 s (as described in the Method details/stimuli section of van 
Assen et al., 2018) and was played in this study as a YouTube (Google 
LLC, San Bruno, CA, USA) video embedded in a web page. The 
participants viewed the web page on their mobile device via their 
preferred browser, which was required to be either Safari (Apple Inc. 
Cupertino, CA, USA), Chrome (Google LLC, San Bruno, CA, USA), or 
Firefox (Mozilla, San Francisco, CA, USA). The device was required to 
be an iPhone 6, iPhone 6 plus, iPhone 6s, iPhone 6s plus, iPhone 7, 
iPhone 7 plus, iPhone 8, iPhone 8 plus, iPhone XR, iPhone 11, or the 
new model of iPhone SE sold in Japan after April 2020. These iPhone 
models were selected to limit the specifications of the display device: the 
screen size ranged from 4.7 to 6.1 in. (~12–15.5 cm), the resolution was 
either 326 or 401 pixels per inch, the contrast was 300 or 400, and the 
brightness was 500 or 625 cd/m2. Each participant was randomly 
assigned and asked to rate only one of the two versions in the 

measurement set. In contrast, the same set of movies was assigned to all 
participants for training and practice, regardless of the participant’s 
assigned measurement set.

In the instructions regarding viewing conditions, the participants 
were requested to be in isolation at home, to be stably connected to 
the internet, to turn off room lights, and to hold the device in 
landscape orientation to view the stimulus. In a typical situation, a 
4-cm-wide (or high) stimulus on the screen should subtend 
approximately 9° at an observation distance of 25 cm, thus occupying 
the fovea and parafovea.

2.4 Procedure

The experiment was conducted online using a web page developed 
with a custom JavaScript code on a cloud server at https://pavlovia.
org/ (Open Science Tools Ltd., Nottingham, UK) using jsPsych 6.0 (de 
Leeuw, 2015). The experiment could be conducted at any time of day, 
according to the participant’s preference. Each participant received 
video-based general instructions about the viewing conditions 
(described above) at the beginning of the experiment, after providing 
their informed consent.

Each participant performed a minimum of two and a maximum 
of six training trials, three practice trials, and 50 measurement trials. 
Written instructions for the task were presented before the first trials 
in the training and measurement phases. The first trial in each of these 
phases started when the participant tapped a button at the bottom of 
the instructions. The trial web page contained, from top to bottom, a 
stimulus movie, a response slider, and a response button. The stimulus 
movie was first automatically played silently in each trial. Following 
the movie, the participant was required to adjust the slider below the 
movie to indicate their viscosity rating, after which the participant was 
required to tap the button below the slider to proceed to the next trial. 
The button remained inactive, i.e., unresponsive, and was indicated as 
such by reduced contrast, during the first 10 s of the trial and was 
activated when the 10-s stimulus presentation had finished and the 
participant had moved the slider from its initial position of 50. The 
rating was made on a flexible 101-point scale from 0 to 100, as 
described below, with higher numbers corresponding to an impression 
of higher viscosity. The participant could play the stimulus movie 
several times at will by using a standard YouTube operation.

2.4.1 Training trials
The two types of baseline movies were shown during the training 

phase to provide anchors for the rating. They were presented 
successively in separate trials, and the participant was required to 
associate the perceived viscosity with the normalized rating scale by 
following the instructions to adjust the slider to ratings of 10 and 80 
for the low- and high-viscosity training movies, respectively. If the 
participant did not successfully adjust the slider to a value between 6 
and 14 for 10 and between 76 and 84 for 80, the training trial on the 
same baseline stimulus was repeated up to two more times. After three 
repetitions for each baseline stimulus, the experiment proceeded to 
the next step, irrespective of the participant’s response.

2.4.2 Practice trials
Three trials were conducted during the practice phase. The three 

stimulus movies were independently and randomly selected, with 
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FIGURE 1

Change of median RMS error over trials for each algorithm. The 
rating performance changes greatly between the 1st and the 20th 
trials, but becomes more stable afterwards.

varying simulated viscosity and scene. Movies from different scenes 
were used to discourage the participant from relying on cues that were 
valid only in particular scenes and unrelated to viscosity. The 
participant was required to rate the perceived viscosity and to report 
the rated value by adjusting the slider for each stimulus on the scale 
defined by the two baseline anchor movies shown in the training 
phase. The expected rating, which was linearly proportional to the 
simulated viscosity on a logarithmic scale, was displayed as feedback 
after each response in the practice phase. The participant was required 
to tap a button to acknowledge the feedback and proceed to the next 
trial in the practice phase, or to proceed to the measurement phase at 
the end of the third trial.

2.4.3 Measurement trials
There were 50 trials in the measurement phase. These began after 

the rating instructions had been repeated. The trials in the 
measurement phase were divided into five blocks, each containing 
10 trials. Each of the 10 stimuli with 10 viscosity levels was presented 
once in pseudorandom order during the 10 trials per block. Different 
random sequences were used for different participants and in 
different blocks. As in the practice phase, the participant was 
required to rate the perceived viscosity and to report the rated value 
by adjusting the slider for each stimulus on the scale defined by the 
two baseline anchor movies in the training phase. No feedback was 
provided in the measurement phase. The recorded data were the 
rating indicated by the slider and the response time (RT), defined as 
the duration between the start of the movie and when the button was 
tapped to proceed to the next movie.

When an extreme value of 0 or 100 was recorded as the rating, the 
slider was expanded by 10  in the direction of the extremity in 
subsequent trials to avoid saturation of the rating scale. For example, if 
the participant gave a rating of 0, i.e., the minimum value, then the 
scale was expanded from [0, x] to [−10, x] in subsequent trials until the 
end of the experiment. Similarly, if the participant gave a rating of 100, 
i.e., the maximum value, then the scale was expanded from [x, 100] to 
[x, 110]. If the participant subsequently gave a rating of −10 on the 
expanded scale of [−10, x], then the scale was further expanded to 

[−20, x]. This process was repeated without any limit. The expansion 
of the scale was introduced because we were concerned about the 
participants’ not reporting exact ratings as they perceived but 
unnaturally rounding the ratings to fit to the scale that was bound at 
both ends. Because the scale expansion was only intended to mitigate 
such participants’ over-adaptation, data from participants with a value 
on an extended scale were not included in the actual analysis.

The trial was aborted if the RT reached 60 s. The experiment was 
discontinued if three trials were aborted or if 40 min or more had 
elapsed since the beginning of the experiment. These time limits were 
explained to the participants in advance.

2.5 Analysis

The mean and standard deviation of the rating error and mean RT 
were the three main dependent variables for individual participants. 
The rating error was calculated as the difference between the actual 
rating and the expected rating for each trial. The expected rating was 
proportional to the logarithm of the simulated viscosity. The mean 
and standard deviation of the rating error were subsequently 
calculated for each stimulus by averaging across repeated presentations 
for each participant. The mean RT was calculated similarly for each 
stimulus by averaging across repeated trials for each participant.

To evaluate the time-course in which the rating performance 
improved, the time series was first defined using a moving window of 
10 trials. Because all 50 trials were included in the analysis, there were 
41 moving windows. Each of the 41 moving windows was designed to 
comprise 10 trials in which each of the 10 stimuli was presented once. 
The initial window was composed of the first 10 trials, which covered all 
10 stimuli. The subsequent windows covered all 10 stimuli as well, after 
the data were sorted for each of the 10 trial blocks to have the same 
order as the first 10 trials. Because initial inspection of the data revealed 
that the performance stabilized after 2 blocks, as Figure 1 shows through 
the average RMS error for each algorithm, the data from the first 2 
blocks were excluded and those from the final 3 blocks were analyzed.

Finally, the following three check variables were evaluated: the 
number of aborted trials (i.e., those with an RT of longer than 60 s), 
the number of baseline trials that were necessary to respond as 
requested, and the RMS error for the practice trials. The reason for this 
evaluation was to check whether extraneous factors—such as 
participants’ seriousness, motivation, comprehension, or compliance 
with the experimental instructions—contributed to differences 
between algorithms.

2.6 Design and statistics

There were two independent variables: the type of algorithm used 
to generate the stimulus for the participant (original, p-flow or LK) and 
the expected response that corresponds to the log simulated viscosity 
for each stimulus. There were three dependent variables: the mean and 
standard deviation of the rating error, and the mean RT. Two-way 
analysis of variance (ANOVA) was performed for each of the three 
dependent variables and three check variables. The algorithm and the 
stimulus were the factors of two and 10 levels, respectively. Post hoc 
tests of multiple comparisons were performed by the Tukey method. 
Because six ANOVAs were performed (on the mean error and its 
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standard deviation, mean RT, and three check variables), alpha was set 
to 0.00833 (= 0.05/6) by applying the Bonferroni correction for 
multiple comparisons. The data were analyzed using a custom-made 
code in MATLAB R2021a or later (MathWorks, Natick, MA, USA). 
ANOVA was performed using either MATLAB or Anova-kun 4.8.5 
(Iseki, 2023) in R version 4.0.3 (R Core Team, 2023).

3 Results

Invitations were sent to 622 candidates, who participated in the 
experiment partially or fully. Of these, 312 volunteers (50.22%) 
completed the experiment (150 males and 162 females; 68, 95, 79, and 
70 participants in the 20–29, 30–39, 40–49, and 50–59 age groups, 

FIGURE 2

(A) Trial-wise scatter plot of the expected and actual ratings for each algorithm: the original movies, p-flow movies, and the optical flow movies made 
with the Lucas–Kanade (LK) method. Only data between the 21th and the 50th trials are shown (see Figure 1). The broken line represents the veridical 
response in which the expected and actual ratings are the same. (B) Participant-wise regression of the actual ratings for each of the movies. The slopes 
and the intercepts are mostly veridical, i.e., close to 1.0 and 0.0, respectively, but are less accurate in the p-flow than the original, and in the LK method 
than the p-flow for some participants. The broken line represents the veridical response in which the expected and actual ratings are the same.

https://doi.org/10.3389/fpsyg.2025.1586648
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Takeichi et al.� 10.3389/fpsyg.2025.1586648

Frontiers in Psychology 06 frontiersin.org

respectively). The final responses to the first and second anchoring 
baseline stimuli were required to be in the ranges of [6, 14] and [76, 
84], respectively; 213 (68.2%) participants fulfilled this requirement. 
Thus, 34.2% of the candidates successfully completed the experiment, 
making it moderately efficient. Data were collected for the other 99 
participants who completed the experiment, but these were not 
included in the analyses. The rating scale had to be expanded for 50 
(16%) and 30 (14%) of the 312 and 213 participants with and without 
successful completion of the practice trials, respectively. The following 
analyses are based on the data from the 183 participants without an 
expanded rating scale.

Two-way ANOVAs, with the algorithm and group (age × sex) as 
factors, were first applied to the three check variables: (1) the number 
of trials required in the training phase, (2) the number of trials that 
lasted longer than 60 s, and (3) the RMS error during the practice 
phase. None of the check variables showed any significant effect of the 
algorithm (1: F(2,189) = 0.08, p = 0.9255, η2 = 0.0007; 2: 
F(2,189) = 1.54, p = 0.2168, η2 = 0.0142; 3: F(2,189) = 3.23, p = 0.0419, 
η2 = 0.0285), the group, or the interaction between the algorithm and 
group. The results were the same if the analysis was applied to data 
from all 312 participants, who may not have completed the training 
phase as intended, instead of the 213 who successfully finished the 
training (1: F(2,288) = 1.01, p = 0.3654, η2 = 0.0066; 2: F(2,288) = 2.90, 
p = 0.0565, η2 = 0.01803; 3: F(2,288) = 1.17, p = 0.3133, η2 = 0.0073).

To examine whether the sensory system can evaluate information 
about viscosity from the local motion of light points, independent of 
static optical visual features, the actual ratings for the point-light 
movies (p-flow movies) given by each participant were fitted by linear 
regression to the expected ratings. Figure 2A shows the trial-wise 
ratings in the original, p-flow and LK movies. Figure 2B shows the 
participant-wise regression lines for the three movies. The slopes are 
mostly close to 1.0, indicating that the participants were able to extract 
information about the viscosity from the motion of point light displays.

Figure  3A shows the mean rating error across repeated 
presentations for individual stimulus viscosities. The overall rating 
error was significantly less than, and therefore different from zero 
(t(539) = 5.597, t(689) = 3.950, and t(599) = 4.542, for the original, 
p-flow and LK, respectively; p < 0.0001 for all three cases) irrespective 
of the algorithm. The underestimation relative to the expected rating 
was larger with the least viscous-appearing stimuli (−12.46% and 
−15.40% for the least and the second least, respectively) but smaller 
with the other cases (between −5.38% and −1.37%). Nevertheless, 
ANOVA of the mean rating error did not show effects of the algorithm 
(F(2,180) = 0.2683, p = 0.7650, η2 = 0.001047), the stimulus viscosity 
(F(9,1620) = 1.087, p = 0.3690, η2 = 0.003835) or the interaction of 
algorithm and stimulus viscosity (F(18,1620) = 1.18, p = 0.2692, 
η2 = 0.008325). Thus, accuracy was not different between 
the algorithms.

Figure 3B, on the other hand, shows the standard deviation of the 
rating error across repeated presentation. ANOVA showed a 
significant effect of the algorithm (F(2,180) = 28.56, p < 0.0001, 
η2 = 0.1125), but the stimulus viscosity and the interaction of 
algorithm and stimulus viscosity were not significant 
(F(9,1620) = 0.8238, p = 0.5942, η2 = 0.002401; F(18,1620) = 1.007, 
p = 0.4488, η2 = 0.005868). Post hoc comparisons between the 
algorithms showed that all three differ from each other: the variability 
with repeated measurements was the smallest with the original, 

followed by the p-flow, and subsequently by the LK optical flow. Thus, 
precision or reliability was significantly better with the p-flow than 
with the LK optical flow.

Figure 3C shows the mean RT during the measurement phase. 
ANOVA showed a significant effect of the algorithm (F(2,180) = 5.630, 
p = 0.0042, η2 = 0.03801) but not the stimulus viscosity 
(F(9,1620) = 0.5731, p = 0.8201, η2 = 0.001109), or their interaction 
(F(18,1620) = 1.310, p = 0.1715, η2 = 0.005066). The RT was 
significantly longer for the LK optical flow movie than for the other 
two movies, suggesting difficulty in perceptual judgment when 
viewing the LK optical flow.

4 Discussion

The experimental results indicate that human observers can 
estimate viscosity from point light movies reconstructed by the p-flow 
algorithm as well as by the LK method with the same accuracy as from 
the original movie. This confirms that visual motion was an effective 
cue in viscosity perception (Kawabe et  al., 2015), and that both 
algorithms provided such information. Whereas the source of the 
persistent error between the expected and the actual rating in all 
stimuli remains elusive, it may stem from an effect of the 
pre-processing applied to the original and the point-light display 
movies, namely, removed color and blurring by filtering on specific 
patterns of motion. Because it may warrant some reservation about 
the accuracy of the measurement, the issue must be  addressed 
empirically in future studies. However, it is also evident that better 
precision, or more reliable perception was obtained with the p-flow 
than the optical flow extracted by the LK method, although the 
performance was the best with the original movie. In addition, 
whereas the estimation with the LK method was more difficult taking 
more time than the original movies with the optical features, the 
estimation with p-flow was not different from the original movie.

Note that the performance of the LK method may be better or 
worse depending on parameter tuning as well as the content of the 
movie, whereas the parameters were set in this study such that the 
number of moving dots, namely, motion energy as an approximation, 
was comparable between the algorithms. Whereas the LK method 
may lead to better results as more energy is contained in the movies, 
it is clearly indicated that the p-flow provides more efficient point-
light display with a higher signal to noise ratio than the LK method.

Thus, the results show that the p-flow algorithm extracted and 
displayed visual motion of deforming fluid more effectively, in a 
framework that is compatible with both types of motion processing: 
feature tracking and gradient-based algorithms. The gap between the 
two types of motion becomes apparent in different contexts and can 
be  described as follows: to extract motion, it is natural to use an 
algorithm that calculates the optical flow. For example, scene flow can 
be calculated theoretically under ideal conditions, and it has recently 
become possible to calculate optical flow accurately in the real world 
using deep learning tools such as RAFT (Teed and Deng, 2020). 
Biological motion stimuli are made by attaching light spots to human 
or animal joints and photographing them. Recently, various human 
movements have been accurately calculated with skeletal models using 
deep learning (Cao et al., 2021). Thus, in scene flow and biological 
motion, it is possible to calculate the motion of individual pixels and 
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FIGURE 3

(A) Mean rating error defined as the difference between the actual and expected ratings is plotted against the expected viscosity rating ranks for each 
algorithm: the original, p-flow and LK movies with circles connected by broken lines, triangles by solid lines, and inverted triangles by broken lines, 
respectively. Note that there are shifts along the horizontal axis that were introduced between the algorithms merely for presentation purposes.  

(Continued)
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feature points, whereupon it is not difficult to create a point-light 
display. However, it is generally challenging to compute the motion of 
objects that do not have obvious landmarks, such as fluids. Whereas 
it might be possible to add beads, for example, to various fluids and to 
photograph them, this does not seem to be reproducible. Ideally, there 
would be some way to create computer graphics of a fluid with strictly 
defined parameters, from which psychologically plausible movements 
could be extracted.

Several methods of extracting optical flow have been proposed, 
including gradient- and feature-based approaches (Tu et  al., 2019; 
differential techniques versus region-based matching as referred to by 
Barron et al., 1994; continuous optimization with prior versus discrete 
optimization, as corresponding to the categorization by Baker et al., 
2011). While the gradient-based approach solves partial differential 
equations under the constant brightness assumption (Horn and 
Schunck, 1981; Lucas and Kanade, 1981), the feature-based approach 
links discriminative features in successive images over time (Wills and 
Belongie, 2004; Mac Aodha et al., 2013). The gradient-based approach 
is an ill-posed problem that cannot be  solved unless a constraint 
encoding a priori information is incorporated in addition to the 
brightness constraint. The LK method, which is a gradient-based 
approach, calculates the optical flow by imposing the constraint that 
spatially neighboring regions move in the same manner. The spatial 
constraint that may be used in the gradient-based approach inherently 
introduces an a priori assumption about the spatial distribution, i.e., 
the shape of the object in motion, and therefore has limitations when 
applied to formless objects such as fluids. When no constraints on the 
spatial distribution are imposed, the motion at individual points or 
pixels should be spatially independent.

The p-flow algorithm is based on advection in fluid mechanics: 
the vector of the spatiotemporal derivative of an image translates 
between positions in successive frames consistently with the vector 
itself (Suzuki et  al., 2017, 2020). Thus, one should find the same 
vector at the position implied by the vector itself in the following 
frame, if it comes from optical flow, not noise. The advantage of this 
formulation is that it can be applied at a point but not a finite-sized 
region of uniform velocity, and therefore, provides a description of 
the velocity distribution within a region that corresponds to the 
projection of a moving object. When a coherence or smoothness 
assumption successfully identifies the perimeter of the projection of 
a moving object in the scene, in contrast, the velocity distribution 
within the circumscribed region is lost because it is exactly what the 
assumption requires, although the velocity distribution is exactly 
what is needed to estimate how, or whether, the object in motion 
deforms at the same time. This is how conventional coherence (Lucas 
and Kanade, 1981) or smoothness constraints (Horn and Schunck, 
1981; see Baker et al., 2011 for more prior and penalty terms for 
constraints), or co-segmentation approaches (e.g., Farneback, 2001) 
remain unsatisfactory.

The first to study non-rigid structure from motion was Ullman 
(1984). An incremental scheme was proposed in the study, where the 

initial data are used to generate an internal model and the model is 
gradually updated with subsequent data. Nonrigidity is introduced 
when the rigidity assumption fails. This study had a considerable 
influence on the field with others publishing on this subject (e.g., 
Terzopoulos et al., 1988; Torresani et al., 2008; Akhter et al., 2010; 
Pentland and Horowitz, 1991; Taylor et  al., 2010). However, this 
scheme could not be maintained in its original form, not only because 
human perception of nonrigid structure was achieved without 
accumulation of view updates as the theory required (Braunstein et al., 
1990), but also because accumulation of velocity information alone 
proved to be insufficient for a stable solution (Grzywacz and Hildreth, 
1987). Whereas the last article may seem particularly relevant for the 
discussion here because it compares position- and velocity-based 
algorithms, the p-flow algorithm integrates position and velocity 
rather than choosing between the two. It needs to be examined in 
future studies what are critical differences between the incremental 
rigidity scheme, in which nonrigidity in image motion is primarily 
interpreted as the projection of rigid motion in the 3D space, and the 
p-flow algorithm, in which local and temporal rather than spatial 
rigidity is assumed.

There are a number of limitations in this study. This study only 
touched on the perception of viscosity and even then, p-flow was not 
perfect. P-flow should be tested on other tasks, like 3D structure from 
motion and compared to other algorithms in its actual performance 
as well as rigorous derivation in formulae in future studies. Although 
the participants were instructed to perform the experimental task in 
a dark room with the device held horizontally (landscape), there is no 
way of having rigorous control over the viewing conditions. 
Differences in screen brightness, ambient light, and visual acuity may 
have caused between-participant inconsistencies in stimulus 
perception. However, not only does this not directly explain 
differences between stimulus sets, but also there was a preliminary 
observation that suggests insensitivity, or tolerance of the perception, 
to these factors: when the same stimulus with visual noise is presented, 
the participants make the same response, although they report a more 
vivid impression with the stimulus without visual noise.

5 Conclusion

The p-flow over a large visual field is known to induce self-motion 
perception (Suzuki et al., 2019). In this study, the p-flow was presented 
on the small screen of a mobile device for viscosity perception. The 
experiment demonstrated that the p-flow provides cues for viscosity 
perception by human observers more effectively or efficiently than the 
conventional Lucas-Kanade method. Whereas the p-flow algorithm 
indicates how visual motion signals are integrated in time and space 
locally, further studies must be conducted using other types of stimuli 
and on other properties such as elasticity. While it is evident that some 
types of information that is efficiently extracted by the p-flow is 
effective in human visual perception of nonrigid motion of deforming 

(B) The standard deviation of the rating error across repeated presentations is plotted against the expected viscosity rating ranks for each algorithm: 
the original, p-flow and LK movies with circles connected by broken lines, triangles by solid lines, and inverted triangles by broken lines, respectively. 
(C) The mean response time across repeated presentations is plotted against the expected viscosity rating ranks for each algorithm: the original, p-flow 
and LK movies with circles connected by broken lines, triangles by solid lines, and inverted triangles by broken lines, respectively.

FIGURE 3 (Continued)
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fluid, and a mathematical definition of such information is provided, 
it needs to be empirically studied how general the finding is, and how 
such a specific type of information is detected and processed by the 
human visual system.
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