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Introduction: The surge in the capabilities of large language models (LLMs) has

propelled the development of Artificial General Intelligence (AGI), highlighting

generative agents as pivotal components for emulating complex AI behaviors.

Given the high costs associated with individually training LLMs for each AI agent,

there is a critical need for advanced memory retrieval mechanisms to maintain

the unique characteristics and memories of individual AI agents.

Methods: In this research, we developed a text-based simulation of a generative

agent world, constructing a community with multiple agents and locations in

which certain levels of interaction were enabled. Within this framework, we

introduced a novel memory retrieval system using an Auxiliary Cross Attention

Network (ACAN). This system calculates and ranks attention weights between an

agent’s current state and storedmemories, selecting themost relevantmemories

for any given situation. In a novel approach, we incorporated LLM assistance,

comparing memories retrieved by our model with those extracted using a base

method during training, and constructing a novel loss function based on these

comparisons to optimize the training process e�ectively. To our knowledge, this

is the first study to utilize LLMs to train a dedicated agent memory retrieval

network.

Results: Our empirical evaluations demonstrate that this approach substantially

enhances the quality of memory retrieval, thereby increasing the adaptability and

behavioral consistency of agents in fluctuating environments.

Discussion: Our findings not only introduce new perspectives and

methodologies for memory retrieval in generative agents but also extend

the utility of LLMs in memory management across varied AI agent applications.

KEYWORDS

artificial intelligence (AI), large language models (LLMs), generative agents, memory

retrieval, attention mechanism

1 Introduction

The release of GPT-4 by OpenAI has demonstrated the impressive capabilities of large

language models (LLMs) and their potential for Artificial General Intelligence (AGI).

Consequently, various Artificial Intelligence (AI) applications based on LLMs have made

significant advancements across different fields. Among these, personalized AI agents that

simulate human behavior have garnered increasing attention and are considered a crucial

pathway toward AGI (Xi et al., 2023).
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The concept of an agent refers to entities possessing desires,

beliefs, intentions, and the ability to take actions (Zalta et al., 1995).

Currently, the goal of LLM based generative agents is to simulate

believable human behavior, creating more personalized AI. This

requires AI not only to simulate human behavior at a single point

in time but to ensure long-term coherence. Such AI would be better

suited by architectures that manage ever-growing memories as new

interactions, conflicts, and events arise and fade over time while

handling cascading social dynamics that unfold between multiple

agents (Park et al., 2023).

Therefore, personalized AI requires not only the general

intelligence provided by LLMs but also long-term personalized

memories that are private, extensible, and explainable to the user.

Additionally, it requires an efficient method to retrieve these

relevant memories based on the current context faced by the agent.

To achieve this goal, the ideal approach would be to train

a dedicated LLM for each agent. However, considering the

complexity of LLM training (Yang et al., 2024) and the practical

demands of a large variety and number of agents, this approach is

impractical. Therefore, the common practice is to store the agent’s

memories externally and provide the necessary memories to the

LLM in the form of linguistic feedback during decision-making

(Shinn et al., 2023).

In this approach to implementing agents, the method of

memory retrieval becomes critically important. The ability to

extract memories relevant to the current context faced by the

agent will directly determine how well the agent’s behavior

can simulate real human actions. Common memory retrieval

methods include temporal decay ranking, evaluation of memory

importance, vector similarity matching, and combinations of these

techniques (Park et al., 2023). However, these existing methods still

have significant limitations in matching the complex correlations

between the agent’s current context and the memories stored in the

memory bank.

Faced with this challenge, we developed a text-based generative

agent simulation environment featuring multiple characters and

locations, as depicted in Figure 1. This simulation framework

enabled the modeling of agents with diverse characteristics,

including varying ages, genders, identities, professions, and

personalities, all portrayed by LLMs. These agents operated

within a virtual village, residing in their respective homes and

interacting in public spaces. Through extended simulations

and systematic observation of the agents’ behaviors and

feedback, we sought to evaluate the impact of different memory

retrieval methods on the agents’ ability to simulate human

behavior effectively.

Building on this foundation, we propose an innovative

memory retrieval method designed for generative agents that

simulate human-like interactions. This method uses an Auxiliary

Cross Attention Network (ACAN) to optimize memory retrieval.

Inspired by the self-attention mechanism described in Vaswani

et al. (2017), ACAN transforms the agent’s current state and

observed context into a query vector. This query is compared

with stored memories in the memory bank, which are represented

as key-value pairs. The attention mechanism calculates scores

by aligning the query with the memory keys, and the attention

weights are ranked. Based on these ranked attention scores,

the most relevant memories are selected as the retrieved

memory set.

The retrieved memories are combined with the agent’s current

state and input into the LLM to guide the agent’s behavior. To train

this network and enhance its ability to simulate the humanmemory

retrieval process, we innovatively introduced the use of LLMs to

assist in network training. By comparing the memories retrieved by

this network with traditional memory retrieval methods, allowing

the LLM to evaluate and score the quality of the retrieved

memories based on the agent’s current state. These scores are then

incorporated into the custom loss function to guide the training of

the ACAN. This method ensures that the network is updated in a

way that better reflects human-like memory retrieval patterns. To

the best of our knowledge, this is the first approach that integrates

LLMs into the training process of a memory retrieval network

for agents.

Compared to existing static memory retrieval algorithms,

the ACAN approach introduces dynamic improvements by

incorporating the agent’s historical memory formation process

with a cross-attention mechanism that is optimized through LLM

feedback. Our experiments demonstrate that ACAN substantially

outperforms traditional methods in memory retrieval, resulting in

enhanced adaptability of agents and more effective interactions

with their environment and other agents. We evaluated the quality

of the retrieved memories using LLMs in a comprehensive test

simulation set and conducted a quantitative analysis of agent

behavior consistency across various memory retrieval modes.

This novel memory retrieval method allows agents to better

simulate human-like responses based on their current state,

thereby significantly improving their ability to engage in complex

interpersonal interactions.

In summary, our paper makes the following contributions:

• We constructed a novel, text-based generative agent

simulation environment, featuring multiple characters and

locations, which simulates real-life interactions at a low

computational cost, demonstrating a novel application of

LLMs in simulating human-like agent behavior.

• We introduced an innovative Auxiliary Cross Attention

Network for memory retrieval in AI agents simulating human

behavior. By calculating attention weights between the agent’s

current state and all memories in the memory bank, ACAN

ranks and retrieves the most relevant memories, leading to

Enhanced Memory Retrieval compared to base methods.

• We introduced a novel methodology for training neural

networks with LLM assistance, where LLMs evaluate memory

retrieval outputs and help in shaping the loss function. This

innovative use of LLMs in training AI agents offers a fresh

perspective on their application in the AI agent field.

• We provide a detailed comparison between our method and

commonly used memory retrieval techniques, demonstrating

our approach’s superior ability to dynamically adapt to

the agent’s evolving memory and environment. This novel

memory retrieval method enables agents to more accurately

simulate human-like responses based on their current state,

significantly enhancing their capacity to engage in complex

interpersonal interactions.
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FIGURE 1

Illustration of the simulated world and memory retrieval process.

2 Related work

2.1 Large language models and generative
agent

Generative artificial intelligence refers to AI systems that

generate text, images, videos, or other data types based on prompts.

These systems are exemplified by LLMs such as ChatGPT and GPT-

4, which have achieved tremendous success across various tasks in

the field of Natural Language Processing (NLP) (OpenAI, 2022).

The primary feature of LLMs is their use of large-scale datasets

to train large-scale models, such as GPT-3 (Brown et al., 2020), a

precursor to ChatGPT, which was trained using massive data and

the Transformer architecture (Vaswani et al., 2017).

The success of OpenAI’s ChatGPT has sparked considerable

interest among researchers as a potential spark for Artificial

General Intelligence (AGI) (Xi et al., 2023). Numerous studies have

validated the exceptional performance of LLMs when appropriately

prompted in downstream tasks, showcasing their versatility and

intelligence (Bang et al., 2023; Wei et al., 2022). These models

have been effectively employed in a variety of applications, such as

translation (Jiao et al., 2023), text generation across diverse genres

(Cao et al., 2023), and narrative content adaptation (Musacchio

et al., 2024).

A particularly notable application is the development of AI

agents capable of mimicking human behaviors using ChatGPT,

which illustrates the models’ capability to generate believably

human-like interactions (Xi et al., 2023).

In the broadest sense, an “agent" is defined as an entity

capable of action (Zalta et al., 1995). Within the field of artificial

intelligence, there has been a longstanding commitment to using

agents as believable proxies for human behavior, a goal that holds

significant importance across AI and its applications (Bates et al.,

1994; Laird and VanLent, 2001; Yannakakis, 2012). Typically,

AI-based agents are designed to perceive their environments

through sensors, make decisions, and perform actions using

effectors (Wooldridge and Jennings, 1995; Russell and Norvig,

2016). These agents combine sensory data with pre-programmed

behaviors to interact with their surroundings effectively, but

creating agents that truly mimic the nuanced behaviors of humans

remains a complex endeavor.

Despite this, the development of AI agents that can accurately

and credibly simulate complex human behaviors has proven to be

challenging (Schweitzer et al., 2020; Abdalla and Mishra, 2021).

Currently, the widespread success of LLMs, exemplified by GPT-

4, across various AI domains (Achiam et al., 2023), has enabled

these models to leverage extensive training data on human behavior

(Brown et al., 2020), providing agents with enhanced creativity and

adaptability. This capability enables agents to process information

more effectively and respond in ways that closely mimic human

reactions. Consequently, an increasing number of researchers are

exploring the use of LLMs to develop Generative Agents with

robust content generation capabilities (Park et al., 2023; Liu et al.,

2023; Wang et al., 2024). These agents are finding applications

in diverse fields, demonstrating the versatility and potential of

LLM-driven agent applications.

LLM-based agents primarily utilize prompt chains (WuT. et al.,

2022) to generate concise natural language descriptions and actions

for characters within prototype systems, thereby creating populated

prototypes for social computing systems (Park J. S. et al., 2022).

Additionally, LLMs are employed to craft interactive experiences in

user-engaging games, facilitating dynamic actions (Freiknecht and

Effelsberg, 2020) and text-based adventure games (Callison-Burch

et al., 2022). Further extending their application, LLM-driven

Generative Agents are used to construct virtual communities.

Within these simulated environments, researchers have observed

social phenomena emerging from the cooperation among multiple

agents (Park et al., 2023). For instance, in a virtual community,
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an agent planning a Valentine’s Day party autonomously spreads

invitations throughout the community and coordinates the timing

of the event over the following two days.

To enable Generative Agents, assisted by LLMs, to perform

such complex functions, researchers have explored methods

beyond first-order prompting. They have enhanced language

models with static knowledge bases and information retrieval

schemes (Khattab et al., 2022), and extended these concepts

to develop agent architectures that dynamically update past

experiences at each step, integrating these with the agents’

current contexts and plans. For instance, applications in various

domains utilize such memory-enhanced agents to process layered

information and improve decision-making (Yu et al., 2024).

This integration can either reinforce or contradict the ongoing

interactions, providing a more adaptive and responsive agent

behavior (Park et al., 2023).

However, the complex behavior of agents inevitably leads to

challenges similar to human decision-making, particularly the need

for an appropriate memory system. This system must enable

agents to retrieve the most relevant memories when needed,

thereby facilitating recollection and thought processes akin to

human cognition. Without such a system, agents may exhibit

inconsistent behaviors over time, undermining the believability and

effectiveness of their interactions.

2.2 Agent memory retrieval

In constructing memory systems for Generative Agents, agents’

memories—comprised of sequences of past observations, thoughts,

and actions (Nuxoll and Laird, 2007)—play a crucial role in strategy

formulation and decision-making processes. Just as the human

brain utilizes prior experiences for adaptive behavior (Squire,

1986; Schwabe et al., 2014), agents require specialized memory

mechanisms to effectively manage sequential tasks. Research by

Schuurmans (2023) demonstrated that transformer-based large

language models (LLMs), when augmented with external memory,

achieve computational universality. This augmentation allows

agents to revisit and reapply past strategies without altering

the model’s weights, which is critical for reliable adaptation in

complex environments.

Before the advent of LLM-based agents, extensive research

had already been conducted on enhancing model performance

through memory mechanisms. For instance, Memory Transformer

and Recurrent Memory Transformer (Burtsev et al., 2020; Bulatov

et al., 2022) introduced memory tokens and recurrent mechanisms

to improve transformers’ understanding of long-sequence tasks,

especially for global context processing. Memorizing Transformers

(Wu Y. et al., 2022) leveraged non-differentiable memory lookup

systems to retrieve past inputs during inference, enabling real-

time memory retrieval. Additionally, hardware-related research

has explored optimizing memory utilization to improve model

efficiency (Sridharan et al., 2023). However, these memory

mechanisms primarily targeted deep learning models, optimizing

performance through memory augmentation or architectural

adjustments within a fixed model framework.

In contrast, LLM-derived agents, functioning as independent

entities, face a more complex and dynamic memory landscape.

These agents do not rely solely on internally generated

representations from training, but also draw heavily from

their interaction history and external memory repositories. For

example, Memory Sandbox (Huang et al., 2023) introduced a

system where users can manage conversational memories of

LLM-powered agents, treating them as data objects that can be

viewed, manipulated, and controlled, thus enhancing interaction

transparency and coherence. Similarly, AgentSims (Lin et al.,

2023) provided a sandbox infrastructure for task-based evaluations

of LLM agents in simulated environments, giving researchers a

platform to test memory and planning mechanisms in LLMs.

A recent survey (Zhang et al., 2024) further highlights the

significance of memory modules in enabling LLM-based agents to

achieve self-evolving capabilities and interact effectively in real-

world contexts. Furthermore, the Retrieval-Augmented Planning

(RAP) framework (Kagaya et al., 2024) leverages contextual

memory to enhance decision-making in both text-based and

multimodal environments.

Enhancing memory retrieval in generative agents not only

improves LLM performance but also enhances the extraction of

external memories, thereby boosting the agents’ behavior and

adaptability. This is particularly critical in multi-agent systems,

where each agent may have distinct external memory structures,

making efficient retrieval essential. The primary method for

memory utilization in LLM-based agents involves using relevant

memories as prompts. However, as agents accumulate more

historical data through interactions, two major challenges arise.

First, the length of these records may exceed the processing

limits of the LLM’s Transformer architecture, causing content

truncation. Second, the growing volume of observations and

actions complicates the retrieval of relevant memories, leading

to potential misalignment between the agent’s responses and

the current context. Addressing these challenges requires the

development of efficient memory retrieval systems capable of

managing and utilizing extensive historical data in a way that

maintains coherence and relevance in the agent’s interactions.

To address these challenges, current improvements in agent

memory management include techniques such as text truncation

(Park H. H. et al., 2022), input segmentation (Mohtashami and

Jaggi, 2023), and other approaches aimed at reducing complexity,

such as increasing the sequence length limits of Transformer-

based LLMs (Guo et al., 2021), or incorporating self-controlled

memory systems to manage long-term and short-term memory

efficiently (Liang et al., 2023). Furthermore, methods for integrating

and summarizing memories to create condensed representations

have been developed (Zhao et al., 2024; Liang et al., 2023),

enhancing the efficiency of memory retrieval in dynamic and

complex interaction scenarios. Retrieval models such as Alonso

et al. (2024) integrate chained-of-table search, vector-database

retrieval, and prompting mechanisms to handle time-sensitive and

context-dependent queries. Similarly, Hou et al. (2024) propose a

human-like memory architecture for LLM-based dialogue agents,

leveraging cue-based recall and a mathematical model for dynamic

memory consolidation, enabling temporal and context-sensitive

retrieval. Additionally, data structures and embedding techniques

have been explored to compress memories, facilitating faster
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response times in interactions (Modarressi et al., 2023; Qian et al.,

2023), while SQL-integrated systems enable efficient management

of large-scale historical data through SQL commands (Hu et al.,

2023; Zhou et al., 2023).

In multi-agent systems, when agents interact with their

environment and other agents, the ability to retrieve the most

relevant information from their memory is essential. Particularly

in environments that require collaboration among multiple agents,

the quality of memory retrieval significantly influences the agents’

decision-making, actions, and adaptability. This crucial aspect of

memory optimization is aligned with the objectives of multi-

agent reinforcement learning (MARL), where enhancing agent

capabilities is a primary focus (Gronauer and Diepold, 2022).

For example, the introduction of memory-driven communication

mechanisms via memory devices has enabled agents to share and

update information about their environment during task execution,

significantly improving coordination and performance in complex

multi-agent systems (Pesce and Montana, 2020).

However, unlike traditional MARL approaches that primarily

utilize memory for storing learned policies or state-action histories,

LLM-based multi-agent systems rely on pre-trained models, and

their intelligence is not updated through real-time training as in

MARL. In MARL, agents continuously improve by interacting

with their environment, refining their strategies via reinforcement

learning. In contrast, LLM agents depend on external, evolving

memory banks to access accumulated historical interactions. The

focus thus shifts from real-time learning to optimizing memory

retrieval, as these external memories are queried in real-time.

ACAN enhances LLM agents by improving how relevant memories

are retrieved, allowing for more effective decision-making and

adaptability in complex environments. MemoryBank (Zhong et al.,

2024) exemplifies this, using past interaction data and the forgetting

curve theory to optimize memory retrieval. Similarly, advanced

methods use metrics like Recency, Relevance, and Importance to

dynamically rank and retrieve the most suitable memories (Park

et al., 2023), underscoring the importance of adaptive memory

systems in evolving agent environments.

In summary, the literature review underscores the critical role

of memory in enhancing the capability and adaptability of agents

within multi-agent systems. The efficacy of generative agents in

practical applications is directly determined by the capability of

memory retrieval systems to extract the most relevant memories

from the memory bank, akin to human-like recollection based on

the current context faced by the agent. However, current methods

of memory retrieval still struggle to perfectly extract the most

relevantmemories from thememory bank as a humanwould, based

on the agent’s current scenario.

3 Methods

To validate the effectiveness of our proposed Auxiliary Cross

Attention Network for agent memory retrieval, we have structured

the experimental section into distinct parts. The first part details

the operational architecture of our text-based generative agent

community, which is powered by ChatGPT. The second part

describes the structure and training methodology of the Auxiliary

Cross Attention Network. Together, these sections provide a

comprehensive overview of the experimental framework.

3.1 Generative agent architecture

To construct a virtual agent community for testing memory

retrieval mechanisms, we simplified the structure described in

Park et al. (2023) and proposed a purely text-based community

architecture without visual imagery. This setup allows for the

instantiation of maps and unique agent entities, where the locations

on the map and the number and characteristics of each agent,

including their professions and personalities, can be freely defined.

We adopted the same GPT-3.5-turbo version of ChatGPT used

in Park et al. (2023) to generate agent behaviors. This approach

ensures that the comparison of memory retrieval performance

is not influenced by variations in the capabilities of the large

language models.

In our community architecture, we designated eight agents,

each assigned a representative occupation: Farmer, Grocer, Doctor,

Mayor, Chef, Hunter, Blacksmith, and Carpenter. Each agent was

also given a personality description relevant to their profession.

This configuration enriches the complexity of the agent community

while balancing the time required for simulation.

Furthermore, in terms of the map design, we allocated a specific

home and workplace for each agent, along with a corresponding

functional description to ensure alignment with the agent’s

profession. For instance, the agent with the occupation “Farmer"

has “Fields" as their workplace, while the “Doctor" is associated

with the “Clinic" as their workplace. Beyond the individual homes

and workplaces of each agent, the map includes several communal

locations such as the “Village Square" and “Playground" to enhance

interactions among the agents.

As illustrated in Figure 2, to streamline the simulation

process, we structured the map and temporal dimensions using a

discretized, turn-based format. Temporally, we divided each day

within the simulated community into 16 active hours, from 6:00

AM to 9:00 PM, with the remaining hours allocated for sleep.

During each hour, agents sequentially act based on their current

states and observations. They plan their actions, decide whether

to interact with other agents at the same location, and upon

completing their actions, they determine their next destination

based on the outcomes and their current states. This setup ensures a

controlled environment where the impact of agent interactions and

decision-making processes can be methodically analyzed.

During the simulation process, memory preservation and

retrieval are integral to every action undertaken by an agent. Each

time an agent’s plan or action is determined through a prompt

processed by the LLM, it requires extracting relevant memories

from the agent’s memory bank using a memory retrieval algorithm.

This retrieval is based on the current state query to decide the

agent’s subsequent actions. Additionally, after each action, agents

store their experiences, actions, and observations back into the

memory bank, enhancing the resources available for futurememory

retrieval. Thus, under these simulation conditions, the critical

role of the memory retrieval algorithm is further emphasized,
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FIGURE 2

Discrete time cycle of agent activities in the simulated community. The diagram illustrates the daily schedule from 6:00 AM to 9:00 PM, delineating

the key activities: planning, action, and movement, underpinned by continuous perception.

highlighting its importance in the functionality and effectiveness of

the generative agents.

3.2 Auxiliary cross attention network for
memory retrieval

In this section, we outline our methodological approach step

by step, including the algorithmic details necessary to train the

Auxiliary Cross Attention Network for Memory Retrieval. To

commence training, we must first generate the requisite training

data through simulation. Both the simulation and the subsequent

training phases require a foundational memory retrieval system to

facilitate the agent’s memory recall processes effectively.

Existing memory retrieval methods for agents primarily focus

on relevance and temporal validity. For instance, Hou et al. (2024)

propose a human-like memory architecture with cue-based recall

and dynamic memory consolidation. Retrieval models such as

Alonso et al. (2024) employ vector-database mechanisms to handle

time-sensitive and context-dependent queries. Similarly, Park et al.

(2023) introduce a generative memory scoring framework that

balances multiple retrieval criteria. To address these aspects

comprehensively, we have implemented a unified memory scoring

method, Weighted Memory Retrieval (WMR), as our baseline

memory retrieval approach, which calculates memory retrieval

scores based on the following criteria:

WMR(m) = wr · Recency(m)+ wi · Importance(m)

+ws · Relevance(m, q), (1)

In this formulation, Recency represents the memory decay

score, which decreases hourly by a decay factor of 0.995. The

Importance score is generated by LLM, determining the agent’s

perceived significance of the memory. Relevance measures the

cosine similarity between the embedding vectors of each memory

in the memory bank and the current state’s query embedding. This

is mathematically expressed as:

Relevance(m, q) =
m · q
|m||q|

(2)

where m is the memory embedding vector and q is the query

embedding vector.

After applying this scoring system, the memories with the

highest scores are selected, and the top k memories are retrieved

as the base memory setm′
r .

During the training of our Auxiliary Cross Attention Network,

as detailed in Algorithm 1, we systematically employ a dataset

consisting of the states q faced by each agent during decision-

making and the associated memory bank M collected during the

simulation. The decision-making contexts and the corresponding

memory banks of each agent are converted into high-quality text

embeddings using the text-embedding-ada-002 model provided

by OpenAI (Neelakantan et al., 2022). This model ensures the

embeddings preserve the semantic richness essential for effective

training. The algorithm iteratively adjusts the network weights to

optimize the retrieval of relevant memories based on the agents’

current contextual needs. This optimization is facilitated by a cross

attention mechanism that aligns the agent’s query with the most

relevant information from the memory bank.

Furthermore, drawing upon research in explainable deep

learning (Serrano and Smith, 2019), we innovatively decided to

determine the output of the model, specifically the retrieved

memories, not by the weighted memories vector mweighted,

but rather through the model’s cross attention mechanism.

The computation of attention probabilities is defined by the

following equation:

P = Softmax

(

qquery ·mT
key

α

)

(3)

This change emphasizes the importance of interpretability in

memory retrieval, allowing for a clearer understanding of how

and why certain memories are retrieved based on the agents’

current queries.
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Input: Training dataset consisting of query set q,

associated memory bank Mq, and WMR

retrieved memories m′r

Output: Retrieved memories mr based on attention

mechanism

1 Initialize:

• Generate text embeddings for queries q ∈ Q and

memories m ∈ Mq using the text-embedding-ada-002

model from OpenAI.

• Set scale factor α =
√
embed_size.

for each training iteration do

for each query q in Q do

qquery = QueryNetwork(q) ; // Query embedding

2 mkey = KeyNetwork(Mq) ; // Memory keys

3 mvalue = ValueNetwork(Mq) ; // Memory values

4 A =
qquery ·mT

key

α
; // Attention scores

5 P = Softmax(A) ; // Attention probabilities

6 mweighted = P ·mvalue ; // Weighted memories

7 mr = Top-K(P,k) ; // Retrieved memories

8 Calculate the ScoreLLM by using the LLM to

compare (mr,m
′
r), considering the query q

and the current agent state.

9 Compute the Loss using ScoreLLM as input to

the loss function.

10 Backpropagate(Loss)

11 Update model parameters

end

if validation performance improves then

// Save the current model state

12 SaveCheckpoint()

end

end

return Trained model

Algorithm 1. Training of the cross attention network for memory

retrieval.

To further refine our model’s memory retrieval capabilities, the

cross attention weights across different memories in the memory

bank are ranked, and the top-kmemories are selected as the output

mr for the model’s retrieved memory.

To ensure that retrieved memories effectively guide an agent’s

behavior during training, it is essential to assess their quality.

While human evaluation is often considered the gold standard,

it can be impractical due to its time-consuming nature, higher

costs, and potential variability among evaluators. Recent studies

have demonstrated that large language models (LLMs) can serve

as reliable evaluators for natural language generation (NLG) tasks,

exhibiting strong correlation with human judgments. For instance,

Wang et al. (2023) found that ChatGPT achieved state-of-the-art

or competitive correlation with human evaluations across various

NLG tasks. Similarly, Chiang and Lee (2023) showed that LLM-

based evaluations were consistent with expert human assessments

in tasks such as open-ended story generation and adversarial

attacks. Given the dynamic nature of agent interactions, LLMs offer

a consistent and scalable method for evaluating memory relevance,

effectively considering context and quality.

Therefore, we employ an LLM to compare and score the

memories retrieved by our model, denoted as mr , against those

retrieved using a baseline method, denoted asm′
r . This comparison

is based on the current state of the agent and the memory query

state, denoted by q. The LLM evaluates the relevance of mr and

m′
r to the agent’s current state and query q, assigning scores

based on their contextual appropriateness and alignment with the

agent’s goals on a scale from 1 to 10, producing scores ScoreLLM
and Score′LLM, respectively. The following loss function is then

computed to train the model effectively:

output_score =
ScoreLLM − Score′LLM

10
(4)

loss = max(− log(output_score+ 1), 0) (5)

The cross attention mechanism within our model dynamically

ranks and retrieves memories based on their relevance to the given

query q, leveraging the current agent state for context. This process

not only enhances the responsiveness of the model to the evolving

scenario within the agent environment but also aligns the retrieved

memories more closely with the needs of the agent.

The loss function of our model is meticulously designed

to optimize memory retrieval capabilities. It is defined as the

logarithm of the normalized difference between scores assigned to

the model-generated and baseline memories, effectively penalizing

deviations from expected outcomes. This approach ensures the

model not only learns to accurately retrieve relevant memories but

also continually refines its retrieval process based on ground truth

data, enhancing its adaptability in real-world scenarios.

To support this advanced training approach, the model

parameters are finely tuned using the Adam optimizer. This

optimizer is chosen for its ability to efficiently manage sparse

gradients and adaptively adjust learning rates, which are vital for

quickly converging to the most effective solutions.

The integration of a cross attention network, optimized

through the use of large language models, further enhances the

model’s memory retrieval capabilities. This setup improves the

efficiency and relevance of how memories are accessed within

generative agents, leveraging the computational power of LLMs to

refine the training process effectively. The use of LLMs to guide the

training process allows our model to operate effectively with the

support of advanced AI technologies, thereby making a significant

contribution to the field of AI-driven memory management.

4 Results

4.1 Result analysis of auxiliary cross
attention network

For the generation of our training dataset, we simulated the

behavior of a pre-defined community of eight agents over three

consecutive days, each consisting of 16 h of interactions. During

these simulations, agents engaged in various tasks, similar to the

agent-based interactions described in Generative Agents (Park
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et al., 2023). Each agent’s behavior was guided by ChatGPT

(GPT-3.5-turbo), which generated context-specific interactions and

stored the outcomes as memories. At every decision-making

step, the agents’ current state, past memories, and retrieved

memories [ranked by the Weighted Memory Retrieval (WMR)

method] were saved in the memory bank and vectorized using

the text-embedding-ada-002 model, producing an embedding size

of 1,536. Each training data entry included the agent’s current

state q, the corresponding memory bank Mq, and the WMR

retrieved memories m′
r ranked based on Recency, Importance,

and Relevance.

The structure of a single training entry consisted of the agent’s

query (current state), the action taken, the type of action (e.g.,

interaction, decision), the prompt guiding the action, and the

retrieved memories at that point in time. This complete data

structure captures how an agent’s decision is informed by both

past experiences and context-specific information, ensuring a

comprehensive training process. In total, 1,280 unique training

entries were generated, each encapsulating the dynamic interaction

between the agents and their environments, enhancing data

diversity and robustness.

Once the training dataset was prepared, we configured the

training parameters for the memory retrieval model. We used

the Adam optimizer with a learning rate of 0.001 and a batch

size of 16, while the text embeddings for memory were fixed at

a size of 1,536. During retrieval, the model output the top five

memories ranked by attention weights. The entire training process

was executed on an NVIDIA RTX 4060 GPU, which significantly

accelerated the model’s convergence. Each agent’s interaction data,

including the current state, query, and retrieved memories, were

incorporated into the model to optimize the memory retrieval

process for generative agents in multi-agent settings.

The effectiveness of the model’s training under the assistance

of a LLM is demonstrated in Figure 3. This figure illustrates the

significant decrease in training loss across epochs.

As illustrated in Figure 3, the model demonstrates significant

improvement under the guidance of LLMs. The training loss

declines sharply from an initial value of 1.5 to 0.12. This reduction

is driven by the loss function, which incorporates scores provided

by the LLM based on the agent’s current context, to assess the

memories retrieved by both the proposed and baseline methods.

This downward trend indicates the model’s increasing effectiveness

in adapting to the data, optimizing parameter adjustments to better

capture and utilize representative memories. Consequently, this

enhancement enables the model to consistently outperform the

baseline method in memory scoring, contributing to the significant

reduction in loss.

To rigorously evaluate the performance of our proposedmodel,

we conducted test simulations spanning a complete day, covering

16 h, using both the WMR memory retrieval method and the

ACAN memory retrieval method based on the fully trained

Auxiliary Cross Attention Network. The test involved eight agents,

each representing different professions and personalities, consistent

with the setup used during the training phase. These simulations

generated a total of 435 data entries for comparative analysis.

Given the nascent stage of research in this area, particularly

regarding LLM-based generative agents, the baseline memory

retrieval method we used Park et al. (2023) represents one

of the most state-of-the-art approaches currently available for

comparison in agent memory retrieval. This ensures a fair and

meaningful benchmark against which the performance of our

ACANmodel could be evaluated.

The assessment of the test data was conducted in the same

manner as during training, where a large language model was

employed in conjunction with the agent’s contextual state to score

the memories generated during the simulation on a scale from 1

to 10. We compared the memory retrieval scores from the ACAN

model with those retrieved using the WMR memory retrieval

method across all test data.

As illustrated in Figure 4, the results of memory retrieval

using the ACAN model in comparison with the WMR

method show that the ACAN method consistently achieves

higher memory scores than the baseline. Specifically, the

ACAN group scored an average of 5.94 with a standard

deviation of 1.66, whereas the baseline group scored an

average of 5.05 with a standard deviation of 1.88. Statistical

tests further validate the significance of these differences,

with a T-statistic of 7.44 and a corresponding P-value of

2.42 × 10−13, significantly below the common significance

level of 0.05. This strongly indicates that the ACAN model

substantially outperforms the baseline method in terms of memory

retrieval effectiveness.

The superior performance of the ACAN model can be

attributed to its dynamic cross-attention mechanism, which

optimizes memory retrieval by continuously adapting to the agent’s

evolving state and context. This mechanism allows the ACAN

model to rank memories based not only on basic relevance metrics

such as recency but also on a more nuanced evaluation of the

importance of past experiences, as influenced by real-time feedback

from the LLM. In contrast, the WMR method relies on static

retrieval strategies that do not account for these contextual factors,

leading to less accurate and less relevant memory retrieval.

Furthermore, the reduced standard deviation in the ACAN

results indicates that the model consistently performs well

across different scenarios, demonstrating its robustness in diverse

environments. The WMR method, with a higher standard

deviation, shows more variability in its effectiveness, suggesting

that its performance is more dependent on specific scenarios or

task conditions.

These findings also have broader implications for agent

behavior and decision-making. By retrieving more relevant and

contextually appropriate memories, the ACAN model enhances

the agent’s ability to make informed decisions that closely mimic

human-like responses. This, in turn, improves the quality of the

agent’s interactions with both the environment and other agents.

The results provide empirical support for the hypothesis that the

ACANmodel’s memory retrieval mechanism leads to more natural

and effective decision-making processes in multi-agent settings.

In addition, a deeper analysis of the memory scores reveals

that the ACAN model particularly excels in scenarios that require

the integration of complex, long-term memories. This suggests

that the model’s cross-attention mechanism not only improves

short-term relevance but also facilitates the retrieval of critical

long-term memories that might otherwise be overlooked in

traditional retrieval methods. This highlights the potential for the

ACAN model to enhance not only immediate decision-making

but also more complex tasks involving strategic planning and

social interactions.
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FIGURE 3

Training loss curve over epochs.

FIGURE 4

Score distribution of memory retrieved by ACAN and weighted memory retrieval (WMR).

4.2 Quantitative analysis of memory
retrieval

While the training of our model and the assessments on

the generated test set were conducted with the support of

LLMs, we aimed to analyze the effectiveness of our proposed

memory retrieval method without direct LLM intervention. For

this purpose, a quantitative analysis experiment was designed,

where agents received specific invitations under different

memory retrieval modes, and their attendance probabilities

were compared. This experimental setup allows us to evaluate

how different memory retrieval strategies impact the agents’

perception of external stimuli and their cognitive ability to mimic

human behavior.

For the experimental design, each day, random agents were

invited at a specified hour to attend events at designated locations,

occurring for 10 h excluding sleep times. Following the agents’

agreement to attend, their actual appearance at the event at the

appointed time was recorded. This simulation was conducted

over a span of ten days, involving eight agents under two
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TABLE 1 Detailed attendance rates across five trials for ACAN and

weighted memory retrieval (WMR).

Metric ACAN WMR

Trial 1 35% 27%

Trial 2 36% 29%

Trial 3 29% 19%

Trial 4 32% 23%

Trial 5 31% 25%

Mean attendance rate 32.6% 24.6%

Standard deviation 2.881% 3.847%

different memory modes, generating a total of 100 invitation and

attendance records.

As shown in Table 1, we compared the memory retrieval

effectiveness of the ACAN model and the WMR method across

five trials. In these experiments, agents using the ACAN model

adhered to invitations 32.6% of the time on average, whereas agents

using the WMR method adhered 24.6% of the time. This indicates

that agents employing the ACANmodel have a significantly higher

likelihood of attending the events, with an average attendance

rate that is eight percentage points higher than that of the WMR

method. Additionally, observing the memory retrieval process of

the agents revealed that those who successfully attended the events

could accurately recall the relevant invitation information, further

validating the ACAN model’s effectiveness in enhancing memory

retrieval accuracy.

To further quantify the statistical significance of this difference,

a paired samples t-test was conducted. The t-test results yielded

a T-statistic of 11.31 and a P-value of 0.00035, indicating that the

observed difference in attendance rates between the two methods is

highly significant (well below the common significance threshold

of 0.05). This provides strong evidence that the ACAN model

substantially improves the agents’ responsiveness to invitations

and their likelihood of attending events compared to the baseline

WMRmethod.

Additionally, the standard deviations across the five trials show

some variability in the results (2.881% for the ACAN method

and 3.847% for the baseline method), but the ACAN model

consistently outperformed the baseline, demonstrating both its

stability and reliability. These findings emphasize the robustness of

the ACAN-based memory retrieval approach in enhancing agents’

event attendance behavior and improving their ability to respond to

interactions within dynamic and complex simulated environments.

These findings demonstrate the robustness of the ACAN-based

memory retrieval approach in enhancing agents’ event attendance

behavior and their responsiveness to interactions within dynamic

and complex simulated environments. The integration of cross-

attention mechanisms in ACAN likely facilitates better contextual

understanding and memory utilization, which in turn leads to

more effective decision-making and engagement in scheduled

events. Consequently, the higher attendance rates associated with

the ACAN model not only reinforce its effectiveness but also

highlight its potential to simulate complex human-like social

behaviors. This makes ACAN a valuable tool for applications that

require nuanced, contextually-aware decision-making, enhancing

the capability of agents to navigate and adapt within multifaceted

interactive settings.

5 Discussion

This study successfully developed and implemented a text-

based generative agent simulation world, creating a community

with multiple locations and agents that engage in various

interactions. Based on this foundation, we designed an innovative

memory retrieval system using the Auxiliary Cross Attention

Network. This system simulates human behavior by ranking the

attention weights between the agent’s current state and memories

in the memory bank, retrieving the memories most relevant to the

current state. To train this model, we introduced an innovative

approach by leveraging the assistance of LLMs. During training,

the LLM scores the memories retrieved by our model against those

retrieved by the baseline method, using these scores along with a

novel loss function to train the model effectively.

Our evaluations leveraged a test data set generated from

simulations of LLM-based agent interactions, representing a typical

day in the life of these agents. This simulated environment,

along with our specially designed agent invitation and attendance

experiments, provided a robust framework for validating the

advantages of our memory retrieval method over traditional

approaches. The results from these evaluations confirm that

our system significantly enhances the memory retrieval process,

thereby supporting more effective decision-making in generative

agents. By optimizing how memories are retrieved and utilized,

our method allows agents to respond in ways that are more

closely aligned with human behavior based on their current state,

thereby enriching their ability to engage in and navigate complex

interpersonal interactions.

Despite the achievements of our study, there are notable

limitations to consider. The model’s effectiveness relies heavily

on continuous evaluations by Large Language Models (LLMs),

increasing computational demands and operational costs due

to LLM API token usage. Additionally, LLM feedback slows

training, potentially limiting rapid development and scalability.

Our evaluation method, dependent on LLMs, may not generalize

across different configurations or domains, and using LLMs

instead of human assessment for training and testing could affect

result rigor and objectivity, raising concerns about robustness

and generalizability. However, recent work such as Edge et al.

(2024) demonstrates that LLMs can reliably evaluate relevance and

faithfulness in RAG systems, supporting their use as cost-effective

alternatives to human assessments. To further enhance robustness,

especially in nuanced scenarios, incorporating human validation

may serve as a valuable complement.

The broader impacts of our Auxiliary Cross Attention Network

(ACAN) model extend significantly across the AI discipline,

introducing a novel adaptive framework for memory retrieval that

not only enriches theoretical models of AI agent interactions but

also demonstrates substantial practical applications. Leveraging

LLM assessments to shape the loss function during training is

an innovative approach that significantly refines the precision

of memory retrieval. This advancement holds great promise
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for revolutionizing human-agent interactions by enabling more

natural and complex interpersonal simulations. Future research

should focus on further enhancing the model’s capabilities through

more sophisticated neural network architectures which could

advance the state of memory retrieval in AI agents. Additionally,

developing autonomous feedback mechanisms will be crucial for

advancing AI agents that can adapt independently to dynamic

environments, thus pushing the boundaries of what is possible in

Artificial General Intelligence. This focus on improving memory

retrieval systems directly supports the evolution of more intelligent

and responsive AI agents, paving the way for broader and more

effective implementations in various AI-based domains.

6 Conclusions

This study has introduced the Auxiliary Cross Attention

Network (ACAN), a pioneering memory retrieval system for

generative agents, showcasing a significant advancement in

AI agent driven by large language models (LLMs). ACAN

effectively enhances agent adaptability and behavioral consistency

by dynamically ranking and retrieving memories based on

the agent’s current state, thus addressing the critical need for

sophisticated memory management mechanisms in Artificial

General Intelligence. While the reliance on LLMs for training

and evaluating the system poses challenges for scalability and

efficiency, it simultaneously highlights the need for innovations

that could decrease such dependencies and enhance the autonomy

of the system. This research not only demonstrates the potential

of ACAN in improving memory retrieval within varied agent

interactions but also highlights the broader applicability of LLMs

in advancing AI technologies. Moving forward, the focus will be

on refining these methodologies to further enhance the capabilities

and independence of AI agents in complex environments.
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