
Frontiers in Psychology 01 frontiersin.org

The impact of distribution 
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Objective: People often have their decisions influenced by rare outcomes, such 
as buying a lottery and believing they will win, or not buying a product because 
of a few negative reviews. Previous research has pointed out that this tendency 
is due to cognitive issues such as flaws in probability weighting. In this study we 
examine an alternative hypothesis: that people’s search behavior is biased by 
rare outcomes, and they can adjust the estimation of option value to be closer 
to the true mean, reflecting cognitive processes to adjust for sampling bias.
Methods: We recruited 180 participants through Prolific to take part in an 
online shopping task. On each trial, participants saw a histogram with five bins, 
representing the percentage of one- to five-star ratings of previous customers 
on a product. They could click on each bin of the histogram to examine an 
individual review that gave that product the corresponding star; the review was 
represented using a number from 0–100 called the positivity score. The goal 
of the participants was to sample the bins so that they could get the closest 
estimate of the average positivity score as possible, and they were incentivized 
based on accuracy of estimation. We varied the shape of the histograms within 
subject and the number of samples they had between subjects to examine 
how rare outcomes in skewed distributions influenced sampling behavior and 
whether having more samples would help people adjust their estimation to be 
closer to the true mean.
Results: Binomial tests confirmed sampling biases toward rare outcomes. 
Compared with 1% expected under unbiased sampling, participants allocated 
11% and 12% of samples to the rarest outcome bin in the negatively and 
positively skewed conditions, respectively (ps < 0.001). A Bayesian linear mixed-
effects analysis examined the effect of skewness and samples on estimation 
adjustment, defined as the difference between experienced /observed means 
and participants’ estimates. In the negatively skewed distribution, estimates were 
on average 7% closer to the true mean compared with the observed means 
(10-sample ∆ = −0.07, 95% CI [−0.08, −0.06]; 20-sample ∆ = −0.07, 95% CI 
[−0.08, −0.06]). In the positively skewed condition, estimates also moved closer 
to the true mean (10-sample ∆ = 0.02, 95% CI [0.01, 0.04]; 20-sample ∆ = 0.03, 
95% CI [0.02, 0.04]). Still, participants’ estimates deviated from the true mean by 
about 9.3% on average, underscoring the persistent influence of sampling bias.
Conclusion: These findings demonstrate how search biases systematically 
affect distributional judgments and how cognitive processes interact with biased 
sampling. The results have implications for human–algorithm interactions in 
areas such as e-commerce, social media, and politically sensitive decision-
making contexts.
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Introduction

When making decisions, people often possess prior knowledge of 
an option’s quality or possible outcomes from past experiences. For 
instance, e-commerce platforms commonly display distributions of 
past customer ratings as an indicator of a product’s quality. Likewise, 
in many countries, lottery providers are legally required to disclose the 
probability of winning for a given prize tier. These disclosures are 
expected to support more informed and rational decisions. However, 
despite widespread awareness that winning a lottery jackpot is 
statistically improbable, global spending on lottery tickets amounts to 
approximately $250  billion annually (Kim and Oswald, 2021). 
Similarly, marketing research suggests that rare but highly negative 
reviews can disproportionately damage a product’s reputation, even 
when positive feedback is abundant (Wu, 2013). These examples 
suggest that rare outcomes may be  subjectively overweighted in 
these contexts.

The influence of distribution features, such as the rareness of 
outcomes, on perception and judgments has garnered substantial 
research attention. Prospect Theory, a prominent explanatory 
framework for decision making under risk, posits that individuals 
disproportionately overweight low probabilities, a tendency attributed 
to the curvature of the probability weighting function (Kahneman and 
Tversky, 1977). However, Prospect Theory’s explanation is largely 
derived from studies on choice behavior in binary gambles, with 
limited exploration of how individuals gather and process 
information—processes that may be  shaped by distinct biases 
(Azzopardi, 2021; Schulz-Hardt et  al., 2000). Recent research has 
increasingly focused on how the characteristics of a distribution 
influence its perception (Ludvig and Spetch, 2011; Ludvig et al., 2014; 
Mason et  al., 2024; Stewart, 2009). However, further research is 
required to examine how these characteristics influence sampling 
behavior, a process that precedes perception (Hills et  al., 2010). 
Without examining sampling behavior, the biases observed in lottery-
like gambles—commonly attributed to cognitive factors—may instead 
reflect residual effects of biased sampling patterns. For example, Niese 
and Hütter (2022) demonstrated that the negative framing effect, 
traditionally explained by Prospect Theory through motivational 
biases such as loss aversion, can also be  explained by sampling 
processes—where negative framing prompts individuals to retrieve 
more negative information about an option, leading to framing-
dependent biases. This underscores the important role of sampling 
behavior in reexamining previously established psychological 
phenomena. In other words, sampling biases could shape cognitive 
processes such as perception (Johnson and Tversky, 1984; Olschewski 
et al., 2024; Walters et al., 2023), and preferences (Dohmen et al., 2018; 
Mallpress et  al., 2015; Weber, 2010) which then in turn influence 
decision outcomes. This suggests a potential causal pathway in which 
sampling behavior influences perception, ultimately leading to 
decision biases such as overweighting of rare events. By concurrently 
analyzing both sampling behavior and information perception, this 
study seeks to disentangle these components with a special focus on 
overweighting of rare events.

Evidence from multiple studies indicates that search behavior is 
sensitive to both external and internal influences. For instance, Biella 
and Hütter (2024) demonstrated that sampling strategies vary with 
motivational context: when individuals are driven by interest, they tend 
to truncate sampling after encountering early counter evidence, whereas 

in disinterested contexts, they sample more extensively and 
systematically. External factors, such as rare events, also attract 
disproportionate attention during information search—even when the 
shape of the distribution is known. For example, research on lottery 
buyers suggests that their decision to purchase risky lotteries is driven 
by a preference for skewness rather than risk, leading them to overweight 
the observations of a few jackpot winners while neglecting the vast 
majority of losers in a highly positively skewed environment (Åstebro 
et al., 2015; Garrett and Sobel, 1999). In contrast, in negatively skewed 
environments like online reviews, consumers may react negatively to 
skewness, giving disproportionate attention to a few negative reviews 
while downplaying many positive ones (Jung et al., 2020; Wu, 2013). 
Despite the seemingly contradiction, both examples hint at an 
overweighting of rare outcomes in the decision-making process. While 
these studies did not experimentally test the influence of these 
distributional properties on sampling behavior, and the cause of the 
overweighting of rare values remains unclear, they suggest that sampling 
behavior inevitably distorts perception by amplifying rare outcomes.

Sometimes, humans also ignore the probability of an event regardless 
of its consequence, a phenomenon termed ‘probability neglect’ by 
Sunstein (2003). This can lead individuals to downplay dangerous risks, 
such as a lightning strike in a storm, while overestimating another risk 
with a similar probability, such as a terrorist attack. The key difference 
lies in how people gather and process information about these risks.

In the case of terrorism, sensational media coverage or 
recommendation systems driven by attention economy often increases 
people’s exposure to such news, making the risk feel disproportionately 
large. In contrast, while lightning strikes are also rare, they receive much 
less media coverage than terrorism due to the lack of sensationalism. 
Consequently, although humans are often biased toward rare events, 
they may also downplay similar extreme risks when their experience to 
that risk is limited (Sunstein, 2003). This distinction underscores the 
importance of understanding the context and sampling behaviors 
driving different types of biases in risk perception and decision-making.

Here, we aim to investigate how the skewness of a distribution 
influences individuals’ sampling behaviors and their perception of 
options. By hypothesizing that individuals pay more attention to rare 
events, as evidenced by the greater frequency of their sampling, 
we  seek to understand seemingly irrational behaviors, such as 
excessive lottery spending or exaggerated reactions to rare negative 
reviews. Prior to presenting our study design, we will review relevant 
literature on how biased sampling and knowledge of distributional 
properties influence decision-making.

Biased sampling behavior toward rare 
events

Research on human sampling behavior spans multiple domains, 
though findings often diverge across paradigms (Von Helversen et al., 
2018). For instance, in foraging studies, where search incurs energy 
and opportunity costs, individuals tend to explore locally before 
moving on to the next food patch (Charnov, 1976; Hills, 2006; Hills 
et al., 2015). The distinctive feature of this paradigm is the high cost of 
switching (e.g., energy expenditure to travel between food patches), 
which compels the agent to weigh the trade-offs between continuing 
with the current depleting option and exploring alternatives with a 
great cost (Von Helversen et al., 2018). A different paradigm is needed 
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to capture the nature of online information search, where information 
is abundant, and switching costs between options are minimal. The 
decision-from-experience (DfE) paradigm offers a more suitable 
framework, focusing more on how people collect, perceive, and 
evaluate information from multiple options (Hertwig et al., 2004). In 
typical DfE experiments, participants sample between two options, 
each drawing a random outcome from a distribution or pre-generated 
number sequence, to assess which option is preferable or their 
willingness to pay (Johnson and Tversky, 1984; Olschewski et al., 2024; 
Walters et  al., 2023). Using the DfE paradigm, Hills et  al. (2013) 
demonstrated that as the number of available options increases, 
individuals sample a broader range of options but gather fewer samples 
from each. This sampling pattern appears across various contexts, 
including consumer psychology (Levav et al., 2012), goal-directed 
search (Hills et al., 2010; Vul et al., 2014), and social perception (Biella 
and Hütter, 2024). Studies using eye-tracking in search behavior have 
shown that individuals spread their attention across numerous 
alternatives, focusing more closely on options with prominent or 
favorable features (Bella-Fernández et al., 2022; Rajsic et al., 2015).

One important drawback of the sampling paradigm is that in 
both, foraging and information search studies, the shape of the 
distribution is typically unknown. This lack of information 
complicates efforts to isolate the influence of distributional shapes 
such as skewness on sampling behavior. By contrast, in contexts such 
as online reviews or lotteries, individuals often have a general 
overview of the distribution’s shape while searching for additional 
information (e.g., a histogram of star ratings). To mimic this scenario, 
we designed an environment where participants are shown the shape 
of different histograms with five bins and the probability of each bin, 
but the range of values remained hidden. This setup necessitates 
information search to learn the objective mean (i.e., the true mean) of 
the distribution. In such situations, where individuals have access to 
the distribution’s shape but not its range and aim to estimate an 
option’s true value, they might ideally employ stratified sampling—an 
efficient and unbiased strategy that allocates samples based on the 
probability of each outcome (a more formal description of the context 
and supporting proof can be found in the Appendix). By contrast, an 
excessive allocation of samples to rare events, particularly in skewed 
distributions, may lead to distorted perceptions of the true mean.

To further examine how people prioritize information search, we 
consider the hypothesis that individuals focus more on rare and 
extreme outcomes, rather than just rarity alone. In an environment 
where all outcomes are equally probable, a search strategy driven 
purely by rarity would result in an even distribution of sampled 
outcomes. However, if individuals disproportionately sample values at 
the distribution’s upper  and lower bounds, despite their equal 
likelihood, this would suggest that information search is guided by the 
extremity of outcomes rather than rarity alone.

Overall, we hypothesize that individuals exhibit biased sampling 
behavior toward rare outcomes, even when they are aware of the 
distribution’s shape. This study aims to examine how individuals 
allocate their search efforts across different outcome categories when 
provided with explicit knowledge of the distribution.

H1: When facing skewed distributions, participants will over-
sample the rarest outcome relative to its actual probability, 
whereas for uniform distributions, their sampling will resemble 
the true distribution.

Perception of biased experienced means

Another important aspect is how people perceive the 
information they sample. Past research employed estimation tasks 
to assess how people perceive a sequence of outcomes. Unlike 
valuation and choice tasks, estimation tasks are incentivized based 
on accuracy, thus not influenced by risk preferences (Olschewski 
et  al., 2021, 2024). Studies have found that people often 
underestimate the mean of a presented number sequence, possibly 
due to a “compressed mental number line”—a cognitive bias that 
leads to estimates lower than the actual mean of the distribution 
(Oberholzer et al., 2021). However, it is important to note that in 
these tasks, the number sequences were presented to participants as 
a continuous stream on the screen rather than requiring an active 
sampling process, thereby removing the influence of any sampling 
biases. Consequently, it remains unclear how sampling biases affect 
the perception of a distribution’s true mean.

When individuals draw information from a distribution, the 
limited number of observations they encounter and how they allocate 
their search may lead to two distinct concepts of the mean. The first is 
the true mean, representing the central tendency of the underlying 
distribution. The second is the experienced mean, derived by averaging 
the subset of observations they have encountered. In skewed 
distributions, biased sampling behavior is expected to produce a 
biased experienced mean. For instance, oversampling rare outcomes 
in a negatively skewed distribution may result in an experienced mean 
lower than the true mean, whereas oversampling rare outcomes in a 
positively skewed distribution may lead to an experienced mean 
higher than the true mean. To the extends that individuals infer the 
true mean based on their experienced mean, any bias in the 
experienced mean will systematically lead to over- or underestimation 
of the true mean. Therefore, we hypothesize that:

H2a: For negatively skewed distributions, the experienced mean 
will be smaller than the true mean (negative bias).

H2b: For positively skewed distributions, the experienced mean 
will be larger than the true mean (positive bias).

H2c: For uniform distributions, there will be  no systematic 
difference between the experienced mean and the true mean 
(no bias).

While the experienced mean depends on sampling behavior, how 
people perceive and adjust for it is influenced by cognitive factors. 
Individuals adapt their valuations not only based on external factors 
such as social norms (Fleischhut et al., 2022) but also on internal 
factors, including confidence (Olschewski and Scheibehenne, 2024; 
Soll et  al., 2019; Yeung and Summerfield, 2012). These types of 
adjustments require a basic level of causal reasoning about the 
environment or metacognitive awareness of the decision-maker’s own 
limitations (Olschewski and Scheibehenne, 2024). For example, 
consider a real-world scenario in which someone asks a friend to 
estimate the price of an item they purchased during a Black Friday 
sale. If the friend underestimates the typical price of the item, their 
reasoning may involve internal adjustments—such as accounting for 
the likelihood of discounts during sales events. Crucially, this type of 
adjustment relies on prior knowledge or familiarity with Black Friday, 
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suggesting that better prior information facilitates more 
accurate adjustments.

By extension, we hypothesize that people will recognize and adjust 
for sampling biases when sampling from skewed conditions, shifting 
their estimates closer to the true mean, particularly as the sample size 
increases. This hypothesis is grounded in research on metacognition 
adjustment (Olschewski and Scheibehenne, 2024; Yeung and 
Summerfield, 2012), and rational learning (Le Mens and Denrell, 
2011; Olschewski et al., 2024) which suggests that individuals adjust 
their judgment based on internal factors such as their confidence, and 
the awareness of their cognitive and behavioral limitations. While 
participants may over-sample from rare outcomes, we expect that 
mental adjustments away from the experienced mean will improve 
estimation accuracy when people have more experience with the 
skewed distributions due to observing more samples. We  do not 
expect an increase in estimation accuracy with sample size in the 
uniform condition because here we do not expect the experienced 
mean to deviate from the true mean in the first place.

H3: Increasing the number of samples from skewed distributions 
will reduce the difference between participants’ estimates and the 
true mean. However, this effect will not be  observed in the 
uniform condition.

Method

Study design

Participants took part in an online shopping simulation designed 
to examine how they sample information to estimate the average score 
of customer reviews. The task consisted of multiple trials. In each trial, 
participants were presented with a histogram of customer ratings 
ranging from 1 to 5 stars, where 5 represented the highest rating. They 
were informed that each star rating was associated with a text “review” 
that was converted into a numerical positivity score ranging from 0 
(very negative) to 100 (very positive). The cover story was designed to 
make the instructions more intuitive compared to an abstract task 
involving statistical distributions and histograms. We also explicitly 

informed participants that both the ratings and positivity scores were 
entirely computer-generated for the experiment and not derived from 
real customer reviews to eliminate potential inference bias.

There were three within-subject conditions, each consisting of 
different histogram shapes: negatively skewed, positively skewed, and 
uniform (four trials per condition). The uniform condition served as a 
non-skewed baseline to determine whether participants focused just on 
rare events or a combination of rare and extreme events (Mason et al., 
2024). The skewed conditions aimed to assess how distribution shape 
influenced sampling behavior and experienced means (H1 and H2).

During each trial, participants could click on individual bins of 
the histogram to sample a positivity score corresponding to that star 
rating (e.g., clicking on the “1-star” bin would reveal the positivity 
score of a simulated customer who rated the product with 1 star). 
However, they had a limited number of samples they could collect 
during each trial.

To assess the impact of number of samples, participants were 
randomly assigned to one of two between-subject conditions: one 
group could collect 10 samples, while the other group could collect 20 
samples from the distribution. This manipulation was designed to 
investigate whether participants adjusted their sampling strategies and 
estimations when given more samples (H3).

Participants’ primary task was to estimate the product’s average 
positivity score based on their samples. To incentivize accuracy, 
participants were offered a potential reward of up to £8, depending on 
how closely their final estimate matched the true average 
positivity score.

Stimuli creation

The experimental design and hypothesis were preregistered on 
AsPredicted.1 To create the stimuli, we  used three distinct beta 
distributions, each representing a specific shape condition: negatively 
skewed β(3, 1), positively skewed β(1, 3), and uniform β(1, 1). These 

1  https://aspredicted.org/pjdh-74sc.pdf

FIGURE 1

Screenshot of different distributional shape conditions. From left to right: positively skewed condition, uniform condition, and negatively skewed 
condition. Clicking on each button below draws a sample from the respective interval of the underlying distribution.
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distributions were then scaled by a random multiplier between 50 and 
100 for each trial to mask the true range of positivity scores and to 
prevent participants from inferring the underlying distribution’s exact 
range based on previous trials.

Histograms presented to participants were created by binning the 
beta distributions into five intervals, with each bin displaying the 
probability of receiving a sample from that interval if drawn randomly 
(see Figure 1). When participants sampled from a bin, a score was 
drawn from the corresponding interval in the continuous beta 
distribution and shown below the histogram.

Procedure and incentives

Following the pre-registered sample size, we  recruited 180 
participants through Prolific (2024) to take part in our online experiment. 
The task was implemented using Otree (Chen et al., 2016). Participants 
were randomly assigned to either the 10- or 20-sample condition. At the 
experiment’s start, participants were briefed on sampling rules and 
positivity scores and informed of a potential £8 bonus based on the 
accuracy of their estimates in one randomly selected trial.

Participants began with a practice trial featuring a randomly 
selected distribution shape to familiarize themselves with the task. 
After sampling from the histogram, they provided an estimate for the 
average positivity score and proceeded to the next round. Following 
the practice trial, participants completed comprehension checks to 
ensure they understood the task before beginning the main task. In 
the main task, they completed three within-subject conditions 
presented in randomized block order, with four trials per condition. 
Upon completing all trials, participants provided demographic 
information. Following the preregistered exclusion criteria, 
we  excluded trials in which only one bin was sampled. We  also 
excluded participants who provided the same estimation in all trials, 
as well as any participants with two excluded rounds. This resulted in 
a final sample of 145 participants (Meanage = 39, SD = 12; 47% male, 
53% female, 50% in the 10-samples condition).

Results

Sampling bias

Binomial tests were conducted to evaluate the hypotheses 
regarding participants’ sampling biases toward rare outcomes in 
skewed distributions. In particular, we  compared the observed 
sampling behavior with a simple heuristic of stratified sampling, 
which is a simple, efficient and unbiased sampling rule in this task 
(proof in Appendix). In the negatively skewed condition, participants 
spent 11% of their total sample on bin 1, substantially more than the 
expected 1% (p < 0.001, 95% CI [0.10, 0.11]). Similarly, in the 
positively skewed condition, participants sampled from bin 5 (12%) 
more than suggested 1% by the stratified-sampling heuristic 
(p < 0.001, 95% CI [0.11, 0.13]). These results provide evidence of a 
sampling bias toward rare events in skewed distributions. Across both 
the 10- and 20-sample conditions, participants allocated approximately 
10% of their samples to rare events, suggesting a strong and consistent 
tendency to focus more on these outcomes as compared to 
stratified sampling.

In the uniform distribution condition, we  observed a slight 
undersampling in bin 1 (Pbin1 = 0.17, 95% CI [0.16, 0.18], p < 0.001), 
and no statistically significant difference in bin 5 (95% CI [0.20, 0.22], 
p = 0.063), providing evidence against a strong sampling bias toward 
a combination of rare and extreme events in this condition. However, 
we observed a small positive bias in bin 3 of the uniform condition 
(Pbin3 = 0.23, 95% CI [0.23, 0.24], p < 0.001). Although this was not 
predicted in our hypothesis, the oversampling of bin 3 suggests that 
participants may have employed a simple rule of thumb: sampling 
from the middle bin to approximate the mean when the distribution 
shape was uniform. This demonstrate that participants understand the 
task quite well and adapt their sampling strategies to solve the task 
(Figure 2).

Experienced mean and estimation bias

An important aspect of decision-making lies in how individuals 
perceive and internalize the information obtained through their 
sampling behavior, particularly in relation to systematic biases across 
different distributional shapes and levels of search resources. In this 
section, we focus on our two key hypotheses: the deviation between 
the experienced mean and the true mean (H2), and the deviations 
between participants’ estimation and the experienced and true means 
(H3). To investigate these hypotheses, we  constructed a series of 
Bayesian linear mixed-effects models with a common structure—
using the same set of predictors but varying in dependent variables. 
Models were implemented in R (R Core Team, 2021), using the brms 
package (Bürkner, 2021). Each model included random intercepts for 
participants and fixed slopes for the main effects, and was estimated 
using the default priors for the Gaussian family in brms.

For H2, a Bayesian linear mixed-effects model was used with 
sampling bias, defined as the deviation of the experienced mean 
from the true mean of the distribution, as the dependent variable. 
The predictors included skewness conditions (negatively skewed, 
positively skewed, and uniform), sample sizes (10 and 20), and their 
interaction effect. We  first report the experienced mean for the 
10-sample condition. In the negatively skewed condition, the 
sampled mean was below the true mean, yielding a negative 
sampling bias (M = −0.14, 95% CI: [−0.15, −0.12]). Conversely, in 
the positively skewed condition, the sampling bias was positive 
(M = 0.149, 95% CI: [0.148, 0.150]). The model indicated a small 
effect of sample size, with larger samples (20 vs. 10) reducing 
sampling bias in both the negatively and positively skewed 
conditions. The upper panel in Figure 3 shows that the experienced 
means in both the 10- and 20-sample conditions aligned with our 
predictions in H2a and H2b: the experienced mean was greater than 
the true mean in the positively skewed condition (slope above the 
0 line) and smaller than the true mean in the negatively skewed 
condition (slope below the 0 line).

The substantial sample bias in the two skewed conditions 
suggests that participants would incur a potential incentive loss of 
13.5% (£1.08) if they base their estimation solely on the experienced 
mean. In the uniform condition, positive biases in experienced 
means were observed in both the 10-sample (M = 0.02, 95% CI: 
[0.019, 0.021]) and 20-sample conditions (M =  0.026, 95% CI: 
[0.024, 0.027]). This bias in the experienced mean in the uniform 
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condition highlights the importance of sampling behavior, 
suggesting that even subtle biases in search behavior could lead to 
a biased experienced mean.

In the previous analyses, we  examined how biased sampling 
behavior led to deviations between the experienced mean and the true 

mean. To test H3, we now compare participants’ estimates with both 
the experienced mean and the true mean. The first analysis focuses on 
the deviation of estimates from the true mean across different skew 
conditions (negatively skewed, positively skewed, uniform), sample 
sizes (10 and 20), and their interaction effect. In the negatively skewed 

FIGURE 2

Comparison of the observed histogram (light purple) with participants’ actual sampling behavior (light red) in the 10- and 20-sample conditions. The 
red dotted line represents the proportion of samples allocated if each option were sampled exactly once.
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condition, the deviance of participants’ estimates to the true mean was 
smaller in the 20-sample condition (M = −0.036) than in the 
10-sample condition (M = −0.067, 95% CI for difference: [−0.058, 
−0.004]). Likewise, the positively skewed 10-sample condition 
(M =  0.126) showed a larger bias than the 20-sample condition 
(M = 0.083, 95% CI for difference: [0.014, 0.082]). However, in the 
uniform condition, differences between the 10-sample (M = 0.049) 
and 20-sample (M = 0.055) conditions were not different (95% CI for 
difference: [−0.021, 0.007]). These findings support our hypothesis 
that estimation accuracy improved more in the skewed conditions 
than in the uniform condition when participants had more samples, 
although the effect size was modest—an additional 10 samples led to 
only a 3.6% improvement in accuracy. A linear projection suggests 
that participants would require approximately 30 samples in the 
negatively skewed condition and 40 samples in total to achieve an 
estimate within 5% of the true mean.

Analyzing the difference between experienced means and 
participants’ estimations—referred to as estimation 

adjustment—revealed that, on average, participants’ estimates were 
7% closer to the true mean compared to their experienced means in 
the negatively skewed distribution. (10-sample: ∆ = −0.07, 95% CI 
[−0.08, −0.06]; 20-sample: ∆ = −0.07, 95% CI [−0.08, −0.06]). In the 
positively skewed condition, estimates were also closer to the true 
mean, though to a lesser extent (10-sample: ∆ = 0.02, 95% CI [0.01, 
0.04]; 20-sample: ∆  =  0.03, 95% CI [0.02, 0.04]). Although 
we  observed sampling bias in all three distribution conditions, 
estimation adaptation only occurred in the skewed conditions but not 
the uniform condition. A potential explanation is that participants 
were aware of substantial sampling biases in the two skewed 
conditions but not the relatively small bias in the uniform condition. 
These results dovetail with our hypothesis regarding how people 
adjust their estimates based on the experienced mean. In the skewed 
conditions, these adjustments led to an average increase of 4.8% in 
accuracy compared to relying solely on the experienced mean. 
However, they did not fully eliminate the impact of sampling bias. 
Despite attempts to adjust, participants’ estimates still deviated from 

FIGURE 3

Upper: The effect of distribution shapes and sample sizes on the difference between the experienced mean and the true mean. Lower: The effect of 
distribution shapes and sample sizes on the difference between participants’ estimates and the true mean. The y-axis in both plots is standardized to 
the same scale, ranging from −1 to 1. Error bars represent 95% credible intervals.
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the true mean by an average of 9.3% in the skewed conditions, 
highlighting the negative consequence of sampling bias in 
this context.

A potential explanation for bias sampling 
behavior

Research on search behavior in online and consumer contexts 
suggests that exploration increases with lower search costs (Hills and 
Hertwig, 2010; Hills et  al., 2013; Levav et  al., 2012). However, 
participants in previous experiments often searched under uncertainty 
with little a-priori information about the outcome distribution. In our 
experiment, we observed that participants prioritized sampling all five 
available outcomes, even though they knew that information in the 
smallest bin of a skewed distribution contributed little to estimating 
the true mean. While this sampling pattern introduced a bias in the 
experienced mean, participants partly adjusted for it when estimating 
the mean, suggesting that they were aware of their sampling bias. This 
implies that participants’ behavior was not merely an artifact of 
irrational sampling but rather a strategic approach to information 
gathering. Previous research have proposed multiple accounts of 
motivated search, such as attention-induced search (Zilker and 
Pachur, 2022; Pachur et al., 2018) and confirmation bias in search 
(Jonas et al., 2001; Suzuki and Yamamoto, 2021). For example, people 
may focus their search on the most visually salient item, such as one 
with the brightest color, simply because it captures attention. However, 
these accounts do not fully explain our findings, as it is unclear for 
why participants devoted more attention, or exhibited confirmation 
bias, toward sampling the bin with the lowest probability while 
comparatively neglecting the bin with the highest probability.

A potential explanation for why participants oversampled the 
rarest bin is that they prioritized knowing the full range of the 
distribution to estimate the mean. According to a framework called 
cognitive fencing (Liu and Scheibehenne, 2025), individuals are more 
certain that all values within an experienced range are possible, while 
they remained uncertain about the probability of values outside the 
experienced range. To reduce this uncertainty, they preferred to 
allocate samples to discovering the full range rather than focusing 
solely on accuracy and ignoring the smallest bin, leading to a sampling 
bias in skewed distributions. An analysis of unique buttons sampled 
at the participant level showed that out of 145 participants, only three 
did not sample all five buttons in any of their trials across the three 
environmental conditions, suggesting that this may have been part of 
their information search strategy. We utilized the cognitive fencing 
framework, which accounts for both the shape of the objective 
distribution that participants observed and the cognitive preference 
for sampling the entire values range, to model the sampling process of 
participants. The model attributed participants’ sampling behavior, 
represented as a histogram ( )f x , as a function of ( )g x , the presented 
star rating histogram, and ( )u x , a uniform shaped histogram that 
captures the inherent tendency to sample the full range:

	 ( ) ( ) ( ) ( )= − ∗ + ∗1f x w g x w u x

The parameter w determines the relative weight of the two 
histograms, quantifying how much the uniform distribution 

contributes to the final sampling behavior. We set w with a prior of 
µ σ( ,w wN ) allowing each participant to have their own parameter. 

We fitted the model in R using the rstan package (Stan Development 
Team, 2025) with the No-U-Turn Sampler (NUTS) to estimate 𝑤. 
Sampling was performed with four chains, each running for 2000 
iterations, including 1,000 warm-up iterations. The estimated weight 
parameter w had a posterior mean of µw  = 0.51 (95% CI [0.21, 0.74]), 
indicating that the observed sampling behavior was driven by a fair 
contribution between ( )u x  and ( )g x . This combination means that 
even though participants were aware of the shape of the distribution, 
their actual sampling distribution was influenced by both the uniform 
and the objective histogram equally. Individual differences in this 
strategy were captured by an estimated σw  = 0.22 (95% CI [0.21, 
0.22]), suggesting substantial variability in how participants weighted 
the uniform distribution relative to the objective histogram.

Using the parameter w, we can determine whether the observed 
estimation adjustments stemmed from a response to different 
distributional shapes (such as an unfavorable/favorable preference for 
skewness) or from participants’ own strategic adjustments. If 
participants were aware of their strategy and incorporated it into their 
estimations, then differences observed across the three distribution 
conditions would primarily reflect the underlying strategy w. In this 
case, including w in the model should eliminate the effect of the 
skewed conditions on estimation adjustment. Conversely, if the 
distributional shapes independently influenced estimation, its effect 
should persist even after accounting for w.

To test this, we fitted a Bayesian hierarchical model using absolute 
sampling adjustment as the outcome variable, with w, distributional 
shapes, and their interaction as predictors, and participant as a 
random effect. We specified random intercepts at participants’ level 
and fixed slopes structure for the main effects, and used the default 
Gaussian family priors in the brms package. We found only a main 
effect of w (b = 0.15, SE = 0.02, 95% CI [0.10, 0.19]), with no effects of 
the shapes of distribution (95% CI [−0.02, 0.02]) or their interaction 
effect (95% CI [−0.05, 0.02]). This supports the idea that while the 
shape of the distribution influences sampling behavior, its effect on 
estimation adjustment disappeared when w was taken in account. The 
extent of adjustment varied according to the magnitude of w, reflecting 
the premium of sampling the entire range of values, or that participants 
prioritize sampling all the outcomes, even when it is suboptimal. 
These results support the hypothesis that participants apply a strategy 
incorporating sampling all outcomes to have more certainty about the 
range of values. The estimated influence of w suggests a consistent bias 
towards an even allocation of samples across bins, particularly when 
the true distribution is highly skewed.

Conclusion and discussion

This study examined how distribution shape and sample size 
impact sampling bias and estimation. We  observed significant 
sampling biases in skewed distributions, with participants 
disproportionately sampling rare outcomes—bin 1 in the negatively 
skewed condition and bin 5 in the positively skewed condition. This 
behavior was consistent across both the 10-sample and 20-sample 
conditions, leading to biased experienced means due to extra samples 
of rare outcomes. In addition, we also found a small deviation from 
the expected sampling behavior in the uniform distribution condition, 
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which contributed to slight deviations in experienced means in this 
condition as well. Together, these results highlight the importance of 
sampling behavior in unveiling the number sequence that 
participants observed.

In our experiment, increasing the number of samples that could 
be drawn reduced both sampling- and estimation errors in skewed 
distributions, with participants adjusting their estimates closer to the 
true mean. This indicates that a larger sample size provides a more 
accurate representation of the underlying distribution by mitigating 
the effects of sampling biases. By examining the true mean, 
experienced mean, and participants’ estimates simultaneously, our 
study reveals two critical insights regarding the underestimation and 
overestimation of means in skewed distributions. First, when 
comparing the true mean with participants’ estimates, we  found 
evidence for overweighting rare outcomes, where people overestimate 
the mean of positively skewed distributions and underestimate the 
mean of negatively skewed ones. This pattern aligns with prior 
research on the perception of skewed distributions (Åstebro et al., 
2015; Garrett and Sobel, 1999; Olschewski et  al., 2024). The 
overweighting of rare outcomes in our experiment could be directly 
linked to participants’ sampling bias, which overrepresents such 
outcomes—a finding consistent with previous research on decisions 
from experience (Hills et al., 2013).

When focusing solely on the experienced sequence of numbers 
sampled by participants and comparing these with their estimates, our 
results could be interpreted as if they underweighted rare outcomes. 
Specifically, participants underestimated the experienced mean in 
positively skewed conditions and overestimated it in negatively 
skewed conditions because they adjusted their mean estimates. A 
possible explanation for this pattern of results is that participants’ were 
aware of their own sampling biases (Olschewski and Scheibehenne, 
2024; Soll et al., 2019). This hypothesis is further supported by the fact 
that in the uniform distribution condition, where sampling bias was 
minimal, participants’ estimates and their experienced mean was 
more closely aligned.

Overall, our findings contribute to a better understanding of the 
overweighting and underweighting of rare events by highlighting how 
conclusions depend on different points of comparison. Furthermore, 
our results add to the expanding literature on the joint role of 
behavioral and cognitive factors in shaping human judgment and 
decision-making. We observed that sampling behavior is sensitive to 
features of the choice environment—particularly the presence of rare 
events—which in turn shapes perception. This aligns with earlier work 
suggesting that how people sample information can bias what they 
ultimately perceive and decide (Hertwig and Pleskac, 2010). 
Importantly, our results challenge the assumption that people simply 
rely on what they observe. Instead, we  find evidence of cognitive 
adjustment: individuals appear to recognize the limitations in their 
own sampling behavior and attempt to correct for them, even if their 
adjustments are only partially successful.

Our findings resonate with studies that examine the interplay 
between cognition and sampling behavior in judgment and decision-
making. While we did not directly explore the role of higher cognitive 
function such as motivation, other research has shown that 
motivational factors can influence how people sample information. 
For example, Biella and Hütter (2024) found that interest-driven and 
disinterest-driven search strategies lead to asymmetric sampling: 
individuals tend to search longer when disinterested and terminate 

search early when they encounter counterevidence, resulting in more 
objective information gathering. In our study, sampling bias had a 
stronger net influence on judgment than cognitive adjustment. 
However, Le Mens and Denrell (2011) went even further by 
demonstrating that even rational sampling processes can yield 
systematic judgment errors, particularly when individuals prioritize 
alternatives with more interesting or preferable outcomes. This 
underscores the critical role of cognitive filters, especially in contexts 
where individuals have personal stakes or strong prior expectations.

It is important to note that our findings do not imply that people’s 
search behavior is irrational or inherently biased. In many naturalistic 
contexts, research has shown that simple heuristics—though 
sometimes labeled as irrational—can in fact be  highly adaptive 
(Hertwig et al., 2019), often yielding near-optimal solutions (Vul et al., 
2014; Lieder and Griffiths, 2019) when search costs and long-term 
success are considered. In our task, participants performed well under 
uniform conditions, and we  expect similar outcomes in other 
symmetrical distributions. In the absence of skewness, covering the 
full range of the distribution, as suggested by the cognitive fencing 
framework, is a sound strategy for estimating the mean and far easier 
for humans to implement than random sampling. Moreover, fully 
exploring the distribution at least once may help rule out alternative 
hypotheses (e.g., that some surprising outcome is hidden in the data-
generating process), thereby reducing effort if the task is encountered 
again later.

While our results demonstrate a clear bias in sampling behavior 
under skewed distributions, it is important to emphasize that 
symmetrical distributions (e.g., Gaussian) are common in nature 
(Frank, 2009) and may have shaped the heuristics participants 
employed in our task. From this perspective, the strategy we observed 
may still enable people to perform well with relatively little effort in 
many real-world environments. However, this advantage may 
diminish as skewed distributions become increasingly prevalent and 
consequential, such as in the distribution of wealth, the occurrence of 
natural disasters, or information environments shaped by 
recommendation algorithms and biased organization. This raises 
important concerns about the potential impact of sampling bias and 
highlights the need for future research on whether, and how, people 
adapt their search strategies to such changing environments.

Future research and implications

Our findings highlight the crucial role of sampling biases in 
estimation processes, particularly in skewed distributions, and call for 
further research into how individuals adapt to such biases, especially 
when they are less overt. Prior research has examined cognitive factors 
in decision-making (Olschewski et al., 2024), such as memory (Haines 
et al., 2023; Sahakian et al., 2023), attention (Pleskac et al., 2023), and 
the integration of numerical information (Oberholzer et al., 2021; 
Prat-Carrabin and Woodford, 2022). However, our findings 
underscore the importance of behavioral factors and their critical role 
in shaping decision outcomes (Bella-Fernández et al., 2022; Mehlhorn 
et al., 2015; Von Helversen et al., 2018). Behavioral influences, such as 
sampling biases, have a direct and significant impact on subsequent 
estimation processes. This provides another perspective on current 
decision-making theories, which often focus on how information is 
processed in the brain but treats the informational input as given. The 
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work at hand indicates that cognitive biases can arise at an earlier 
information sampling stage already. Based on the cognitive fencing 
framework (Liu and Scheibehenne, 2025), the tendency to oversample 
the rarest bin in a skewed distribution may have served as a strategy 
to reduce uncertainty by exploring the full range of values. The model’s 
parameter helps to explain the observed differences in estimation 
adjustments across various distribution shapes, emphasizing the 
interplay between cognitive processes and information search 
behavior in this task. Additionally, sampling bias alone could not 
account for the stronger estimation adjustment observed in the 
negatively skewed condition compared to the positively skewed 
condition. This result suggests that further investigation into how 
people perceive and integrate information such as numerical 
perception (Oberholzer et  al., 2021; Olschewski et  al., 2024), and 
information integration strategies (Leuker et al., 2019; Pleskac et al., 
2023; Yeung and Summerfield, 2012; Zilker, 2022) may provide 
valuable insights.

Our findings also have practical implications. For example, in 
e-commerce, sampling biases, combined with review aggregation 
algorithms, can distort product perceptions. Consumers often give 
disproportionate weight to a few negative reviews, which may not 
accurately represent the broader population, leading to skewed 
purchasing decisions and potential dissatisfaction (Qahri-Saremi and 
Montazemi, 2023; Wu, 2013). Similarly, in political voting contexts, 
the oversampling of rare and extreme opinions can reinforce 
pre-existing biases, distort perceptions of political candidates, and 
even sway election outcomes. On social media, where rare events are 
more likely to go viral, these events can disproportionately shape 
users’ perceptions of reality, magnify the consequences of fake news 
or contribute to the spread of false or biased narratives. Although 
individuals can adjust their opinions and estimations when aware of 
sampling bias, it remains unclear whether people are aware and can 
adjust to the bias feedback loop in adaptive systems, recommendation 
engines, and social media platforms. Without such awareness or 
intervention, users may remain unaware of the biases shaping their 
perceptions, resulting in continued misjudgments.

In the context of online information, large language model (LLM) 
chatbots and AI technologies may be used for reducing biases, but 
they also hold potential to amplifying bias and misperception. On one 
hand, LLMs can promote more balanced and objective information 
search by presenting answers in a comprehensive and impartial 
manner—even when the user’s initial query or search behavior is 
biased. In this sense, they can serve as a valuable partner or guide, 
encouraging users to adopt less biased sampling strategies. LLMs 
benefit from the law of large numbers: by learning from vast and 
diverse datasets, their knowledge base far exceeds that of any 
individual, which can contribute to more balanced responses. Yet, they 
still inherit and reflect biases present in the training data, sometimes 
resulting in harmful or morally and practically misleading suggestions 
(Hanna et al., 2025; Salatino et al., 2025).

While designers often turn to automation to enhance system 
efficiency and safety, it is important to note that human judgment 
often becomes even more critical as automation grows in power and 
ubiquity (Lee and Seppelt, 2023). Therefore, designers of adaptive 
systems—such as recommendation algorithms and LLMs—should 
account for users’ existing sampling biases in order to support more 
informed decision-making and help mitigate the influence of biased 
information. Small interventions, such as providing prompts about 

the prevalence of certain public opinions online or the 
representativeness of the information collected so far, or using LLMs 
to detect LLMs-generated contents could potentially help reduce 
sampling bias of users or bias caused by the system. For example, 
these prompts could highlight that extreme opinions are not 
representative of the general public, or the contents being sampled 
are generated by other LLMs. Additionally, increasing the level of 
estimation adjustment during the decision-making process may 
further mitigate these biases.

Limitations

One limitation is the potential influence of participants’ prior 
experiences, particularly with positively skewed e-commerce ratings, 
which may have shaped their sampling and estimation behaviors. For 
example, frequent exposure to negatively skewed product ratings in 
e-commerce environments could lead participants to internalize 
specific real-life problems, such as rating inflations (Aziz et al., 2023; 
Skreta and Veldkamp, 2009), thereby influencing their judgment in 
our experimental settings. We selected the context of online shopping 
because it is familiar to most participants, substantially enhancing task 
comprehension and reducing rejection rates due to failed 
comprehension checks.

Additionally, the study focused on two specific sample sizes (10 
and 20), which constrains the generalizability of the findings. 
Increasing the sample size or encouraging more search could 
potentially reduce sampling biases, but this assumes participants can 
maintain the same level of attention over a much longer task—an 
assumption that may not always hold. Because we asked participants 
to use all available samples before advancing to the next trial, 
unwanted behaviors such as repeatedly sampling one option to quickly 
move on to the next trial or randomly clicking might occur. This likely 
introduced unwanted noise and bias into the data and diminished the 
reliability of the findings.

Future research could investigate how prior knowledge, such as 
familiarity with specific rating distributions (e.g., positively skewed 
ratings common in e-commerce), affects sampling biases and 
estimation accuracy. Moreover, exploring how learning and experience 
shape these biases over time could offer valuable insights into the 
dynamics of human judgment and decision-making. For example, 
examining how participants adjust their sampling behaviors after 
receiving feedback on their biases or experiencing varied contexts 
could help identify effective strategies for mitigating bias across 
diverse domains, from social media and e-commerce to political 
decision-making and beyond.
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