AUTHOR=Cao Thai Quoc , Scheibehenne Benjamin TITLE=The impact of distribution properties on sampling behavior JOURNAL=Frontiers in Psychology VOLUME=Volume 16 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2025.1597227 DOI=10.3389/fpsyg.2025.1597227 ISSN=1664-1078 ABSTRACT=ObjectivePeople often have their decisions influenced by rare outcomes, such as buying a lottery and believing they will win, or not buying a product because of a few negative reviews. Previous research has pointed out that this tendency is due to cognitive issues such as flaws in probability weighting. In this study we examine an alternative hypothesis: that people’s search behavior is biased by rare outcomes, and they can adjust the estimation of option value to be closer to the true mean, reflecting cognitive processes to adjust for sampling bias.MethodsWe recruited 180 participants through Prolific to take part in an online shopping task. On each trial, participants saw a histogram with five bins, representing the percentage of one- to five-star ratings of previous customers on a product. They could click on each bin of the histogram to examine an individual review that gave that product the corresponding star; the review was represented using a number from 0–100 called the positivity score. The goal of the participants was to sample the bins so that they could get the closest estimate of the average positivity score as possible, and they were incentivized based on accuracy of estimation. We varied the shape of the histograms within subject and the number of samples they had between subjects to examine how rare outcomes in skewed distributions influenced sampling behavior and whether having more samples would help people adjust their estimation to be closer to the true mean.ResultsBinomial tests confirmed sampling biases toward rare outcomes. Compared with 1% expected under unbiased sampling, participants allocated 11% and 12% of samples to the rarest outcome bin in the negatively and positively skewed conditions, respectively (ps < 0.001). A Bayesian linear mixed-effects analysis examined the effect of skewness and samples on estimation adjustment, defined as the difference between experienced /observed means and participants’ estimates. In the negatively skewed distribution, estimates were on average 7% closer to the true mean compared with the observed means (10-sample ∆ = −0.07, 95% CI [−0.08, −0.06]; 20-sample ∆ = −0.07, 95% CI [−0.08, −0.06]). In the positively skewed condition, estimates also moved closer to the true mean (10-sample ∆ = 0.02, 95% CI [0.01, 0.04]; 20-sample ∆ = 0.03, 95% CI [0.02, 0.04]). Still, participants’ estimates deviated from the true mean by about 9.3% on average, underscoring the persistent influence of sampling bias.ConclusionThese findings demonstrate how search biases systematically affect distributional judgments and how cognitive processes interact with biased sampling. The results have implications for human–algorithm interactions in areas such as e-commerce, social media, and politically sensitive decision-making contexts.