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Mu and alpha rhythms (8–14 Hz) are recognized for their suppression during motor 
execution and imagery tasks. Recent research suggests that these oscillations might 
also serve as a marker of successful motor imagery (MI) performance. This study 
investigated whether mu and alpha oscillations reflect intra-individual success or 
inter-individual ability during an MI task, using an adapted methodology consistent 
with a prior study. EEG data were recorded while young healthy adults (n = 19) 
performed the Test of Ability of Movement Imagery (TAMI). Rhythmic activity was 
characterized using measures derived from the Better Oscillation Detection Method 
(BOSC). Contrary to expectations, results do not support the notion that mu/alpha 
oscillations correlate with imagery success or ability at either the intra- or inter-
individual level. However, significant reductions in mu/alpha-wave amplitude were 
observed during the initiation phase of imagery, underscoring the importance 
of early neural activity in the MI process, regardless of response success. These 
findings highlight the intra- and inter-individual variability in mu/alpha rhythms 
and contribute to the ongoing debate about their role in MI performance.
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1 Introduction

Motor Imagery (MI), defined as the mental simulation of movements without motor 
output (Decety, 1996; Sharma et al., 2006), exemplifies how cognitive processes, despite their 
covert nature, can translate into measurable effects in performance across domains and 
populations. Since Feltz and Landers’ (1983) seminal work, MI has proven effective in motor 
performance and skill acquisition, with continued validation over time (Cumming and 
Ramsey, 2009; Cumming and Williams, 2012; Toth et al., 2020). These benefits extend to 
neurological rehabilitation, helping stroke patients to relearn movements (Page, 2010; Tong 
et al., 2017). With the development of MI-based brain computer interfaces, its potential has 
also broadened in communication and control (Han Yuan and Bin He, 2014; Pfurtscheller 
et al., 2000; Wolpaw and Wolpaw, 2012).

The wide applicability of MI has been attributed to its shared neural underpinnings with 
overt motor performance. Brain imaging studies reveal similarities in activation patterns 
and cognitive planning mechanisms between imagined and executed movements (Lacourse 
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et al., 2005; Lotze et al., 1999; Miller et al., 2010; Sharma and Baron, 
2013), supporting the neural simulation of action theory (Jeannerod, 
1994, 2001). Electroencephalography (EEG) research has focused 
on mu rhythm activity. The mu rhythm exhibits a characteristic 
known as event-related desynchronization (ERD), where its 
amplitude decreases during the preparation, execution, or 
imagination of movements (Jasper and Andrews, 1938; McFarland, 
2000; Pfurtscheller and Aranibar, 1979). In MI, the mu ERD mirrors 
the ERD observed during actual movement (Jasper and Penfield, 
1949; Neuper  and Pfurtscheller, 2010; Pfurtscheller et  al., 1997; 
Pfurtscheller and Neuper, 2006), although it is less pronounced in 
MI than during motor execution (ME) (McFarland, 2000).

Due to their overlapping frequency range (8–14 Hz), one of the 
concerns surrounding mu suppression is whether it is distinct from 
changes in alpha activity (Aleksandrov and Tugin, 2012; Hobson and 
Bishop, 2016; Larionova et  al., 2022). Although often used 
interchangeably (Fox et  al., 2016; Pineda, 2005), they can 
be  distinguished based on factors such as topography and 
functionality. Examining central and occipital electrodes helps to 
make this distinction. However, interpreting changes in these regions 
is difficult due to potential contamination from volume conduction, 
which can result in bidirectional (mu and alpha) signal mixing 
(Garakh et al., 2020; Lepage et al., 2008; Tangwiriyasakul et al., 2013). 
Independent Component Analysis (ICA) offers a solution by 
separating mixed signals into distinct components, filtering artefacts, 
and hypothesizing cortical sources (Debener et al., 2010; Onton et al., 
2006). While ICA also has its limitations, including the risk that 
participants do not produce usable mu components (Bowers et al., 
2018; Jenson et  al., 2020; Nyström, 2008), ICA has successfully 
differentiated mu and alpha rhythms in mu suppression studies 
(Moore et al., 2012; Yin et al., 2016).

From a functional perspective, the activation of a specific neural 
network depends on the MI strategy used, typically categorized as 
visual or kinesthetic (Decety, 1996; Sharma et  al., 2006). Visual 
imagery involves the mental visualization of the movement and can 
be experienced from either a first-person (internal) or a third-person 
(external) perspective (Guillot et  al., 2008). Kinesthetic imagery, 
conversely, involves feeling the sensations associated with the 
movement (Callow and Hardy, 2004; Guillot and Collet, 2010; 
Jeannerod, 1995). Neural patterns reflect these strategies: kinesthetic 
imagery can induce mu power fluctuations linked to sensorimotor 
cortex activity (Hétu et al., 2013; Stinear et al., 2006), whereas visual 
imagery may induce alpha rhythm linked to visual processes and 
attentional engagement (Başar, 2012; Klimesch, 1999; 
Pfurtscheller, 1992).

Despite the general agreement on the neural overlap between MI 
and ME, because of MI’s internal nature, the assessment of MI ability 
remains challenging. Participants may employ different strategies, and 
individual differences in imagery ability—ranging from athletes 
(Cumming and Ramsey, 2009; Nakata et  al., 2010) to clinical 
populations (Filippi et  al., 2001; Sharma et  al., 2006) —can both 
influence performance and confound results (Kosslyn, 1980, 1994; 
Richardson, 2020; ter Horst et  al., 2013). Objective measures are 
therefore essential not only to rule out alternative strategies and assess 
ability, but also to identify individuals who are most likely to benefit 
from interventions. However, the variety of methods used in 
movement imagery studies complicates this goal (Chepurova 
et al., 2022).

The most common assessment methods are self-report 
questionnaires such as the Movement Imagery Questionnaire (MIQ-3; 
Williams et  al., 2012) and the Kinesthetic and Visual Imagery 
Questionnaire (KVIQ; Malouin et al., 2007). Here, participants are 
instructed to imagine a movement and to rate the vividness of the 
imagery. However, these subjective methods are inherently 
problematic due to psychological and cognitive biases, such as social 
desirability and participant’s confidence in their motor imagination 
skills. The Test of Ability in Movement Imagery (TAMI; Madan and 
Singhal, 2013) was developed to address these shortcomings. 
Participants are presented with a series of basic body movements and 
must select the correct final position from five images. This format 
introduces both correct and incorrect responses, making the TAMI an 
objective measure of MI ability.

Correct answers to TAMI questions were found to be associated 
with reduced mu activity (Chen et al., 2021) particularly during the 
early stages of the imagery process. This finding was interpreted as 
evidence that mu activity is involved in indexing MI performance, 
pointing to mu suppression as a promising objective measure. 
However, similar results were reported for alpha activity, which also 
highlights the importance of using methods such as ICA to better 
disentangle mu and alpha contributions to MI performance.

To date, the relationship between mu-suppression and MI 
performance is not well understood. In the study by Chen et al. (2021), 
while successful trials were associated with a more pronounced 
reduction in the mu band at the individual level, the degree of 
reduction in mu oscillations did not significantly correlate with overall 
imagery ability, as measured by the total TAMI score. In the broader 
field, there is also some heterogeneity regarding the role of mu 
oscillations in MI performance. Patterns of mu activity may vary 
depending on factors such as expertise and task complexity. Physical 
engagement in motor actions has been shown to improve MI, with 
greater reductions in mu activity reflecting activation of sensorimotor 
networks, better MI performance, and motor experience (McFarland, 
2000; Neuper and Pfurtscheller, 2010; Cannon et al., 2014). While 
some researchers argue that continuous practice may lead to greater 
decreases in mu activity (Wriessnegger et  al., 2018), the effect of 
expertise remains unclear across findings from different domains such 
as music, sport, and rehabilitation (Daeglau et al., 2020; Gibson et al., 
2014). These mixed results have been attributed to the inherent 
variability of neural rhythms in MI studies (Blankertz et al., 2010; 
Wriessnegger et al., 2020). Further complicating the interpretation is 
the neural efficiency hypothesis, which proposes that individuals with 
higher cognitive ability show reduced brain activation during 
cognitive tasks (Neubauer and Fink, 2009). If sensorimotor 
engagement is inversely correlated with mu performance, then skilled 
imagers may show milder reductions in mu activity (Yin et al., 2016).

In sum, MI is linked to a suppression of mu and alpha activity, 
though the exact nature of this relationship in terms of MI 
performance remains unclear, given the different assessment methods, 
variability in neural mechanisms, and MI ability. This study aims to 
further investigate whether mu and alpha oscillations reflect intra-
individual success and/or inter-individual ability in MI performance. 
To this end, we designed a study drawing on the work and findings of 
Chen et  al. (2021), but with an adapted methodology in which 
participants completed the TAMI repeatedly to increase the number 
of trials for mu and alpha analysis. Based on the findings by Chen et al. 
(2021) we  hypothesized the following at the individual level: (1) 
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successful trials would show a more pronounced decrease compared 
to unsuccessful trials in both motor and visual regions of interest. 
Each TAMI question consists of four steps, with the initial step 
corresponding to the onset of MI. During the initial step, (2) 
we  anticipated greater suppression between successful and 
unsuccessful trials (Aleksandrov and Tugin, 2012; Chen et al., 2021). 
At the between-subjects level, (3) we expected decreases in mu and 
alpha activity to reflect motor imagery ability. For the direction of the 
effect, two possibilities were considered. First, higher scorers in the 
TAMI might show greater decreases in mu/alpha rhythms for 
questions with correct answers, indicating higher sensorimotor 
engagement and ease in performing movements (Cannon et al., 2014; 
Daeglau et al., 2020). Alternatively, lower scorers on the TAMI may 
exhibit greater decreases in mu/alpha rhythms for questions with 
correct answers, indicating greater effort and less neural efficiency in 
achieving the desired outcome (Neubauer and Fink, 2009).

2 Materials and methods

2.1 Preregistration and data availability

This study was preregistered on July 10, 2023, before any data 
examination or analysis. The hypotheses, methods, and analysis plan 
are available on the Open Science Framework (OSF1). The associated 
project2 includes a link to the GitLab repository3 which contains raw 
EEG data in Brain Imaging Data Structure (BIDS; Pernet et al., 2019) 
format, behavioral data along with EEG analysis and experiment 
scripts described below.

2.2 Participants

The study had a total of 28 participants. Participants were allowed 
to choose their preferred language for the experiment, with 18 choosing 
German and 10 English. They were recruited from the student 
population of the University of Oldenburg through advertisements on 
the university’s website and word of mouth. Nine participants were 
excluded: one due to late disclosure of a psychiatric condition, and 
eight due to missing alpha or mu components. The latter was not part 
of the preregistered criteria. Participants were excluded if their ICs 
were not identified, as further analysis would be unfeasible without 
them. The final sample, therefore, consisted of 19 participants (10 
female, aged 21–35 years, M and SD: 27.05 years ± 3.41), all of whom 
reported normal or corrected-to-normal vision and no psychological 
or neurological conditions. As tested by a revised version of the 
Edinburgh Handedness Inventory (rEHI; Veale, 2014), 13 participants 
were right-handed, five were mixed-handed, and one was left-handed. 
Since the TAMI is not a lateralized task, we did not expect handedness 
to influence performance. Before the experiment, participants gave 
written informed consent. They were reimbursed with €10/h. The 
experimental procedure was approved by the Commission for Research 

1 https://osf.io/86e9b

2 https://osf.io/tqxub/

3 https://gitlab.com/mariapaulavillabona/mu-alpha-mi-performance

Impact Assessment and Ethics of the Carl von Ossietzky University of 
Oldenburg (Drs. EK_22_18).

Given their association with enhanced MI abilities, we also asked 
participants to report their engagement in sports, instrument playing 
and video gaming. In the final sample, 11 (6 female) participants 
reported regular sports engagement, 6 participants played an 
instrument (4 females) and 4 (2 female) reported playing video games. 
Five participants did not report on performing any of these activities.

The preregistered sampling plan employed a sequential Bayesian 
Factor approach as outlined by Schönbrodt and Wagenmakers (2018), 
with planned sample sizes ranging from a minimum of 15 to a 
maximum of 25 participants. An initial dataset of 15 participants was 
collected, of which 12 could be entered into the first data inspection. 
As moderate evidence was not observed for all confirmatory analyses, 
recruitment continued as specified in the preregistration. Resources 
allowed to collect data from three more participants than planned in 
the preregistration, so the sample was extended to 28 participants. Of 
the second batch of participants, 6 were excluded from data analysis 
(see above). The strength of evidence, using Bayes factor (BF) values, 
followed the criteria established by Lee and Wagenmakers (2014): 
BF10 ≥ 3 indicates moderate evidence for the alternative hypothesis 
(H1) relative to the null (H0). BF01 ≥ 3 (where BF01 = 1/BF10) indicates 
moderate evidence for H0 relative to H1.

2.3 Procedure

Upon arrival at the lab, participants were first given detailed 
information about the study and asked to provide informed consent. 
Participants then completed the Kinesthetic and Visual Imagery 
Questionnaire (KVIQ-10; Malouin et al., 2007), the Motor Imagery 
Questionnaire (MIQ-3; Williams et al., 2012), and the Block-Tapping 
Test (BTT; Schellig, 1997). We coded the KVIQ-10 and MIQ-3 into 
MATLAB scripts (The MathWorks Inc., 2023 version R2023a) to 
facilitate response coding while following the administration instructions 
provided in the manuals. Data from the BTT was not analyzed as part of 
this study. We used the original English versions and German translations 
(some of them developed for this study) of the questionnaires, depending 
on the participants’ language of choice. Afterward, participants were 
instructed to wash their hair to minimize interference from oils or 
residue, after which the EEG cap was administered.

The main focus of the experiment was the TAMI, the only 
behavioral measurement taken in conjunction with the EEG recording. 
The TAMI questionnaire was adapted into a MATLAB script using 
Psychtoolbox version 3 (Kleiner et al., 2007). While the original TAMI 
consists of 10 questions, and it is typically administered once — as in 
the study by Chen et al. (2021) — participants in this study completed 
TAMI three times, increasing the total number of trials to thirty.

The introduction to the TAMI format began with a practice 
question. Subsequently, participants carried out the TAMI 
questionnaire three times, each time in a separate block of the same 10 
questions. For the first 10 questions, the original order was followed, 
but the second and third block of questions were randomly shuffled to 
prevent recall of sequences from the first block. Each question consists 
of an initial position, four movement steps and a response page.

The TAMI is not a lateralized task; the questions involve randomly 
combined movement sequences (e.g., head, arm-hand, torso, leg-foot) 
from both the left and right sides of the body (Madan and Singhal, 
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2013). Specifically, besides head and torso movements, there are 10 
left-sided, 9 right-sided and 4 bilateral movements, totaling 40 
movements steps (4 per each question). The movement steps had a 
duration of 6 s, followed by a 5 s interval between questions (Figure 1). 
After answering each TAMI question, participants rated its ease or 
difficulty on a 7-point Likert scale (from very hard to very easy; see 
section 3 of the Supplementary material). A longer break of 90 s was 
provided at the end of each block.

For the EEG recording, participants sat in an armchair inside a 
cabin that was soundproofed, electrically shielded, and with dimmed 
lighting. At the beginning of the computer-based task, a resting state 
measurement was taken with 2 min eyes open and 2 min eyes closed. 
This was followed by the TAMI questionnaire blocks (see above) that 
lasted about 10 min each. The experiment ended with another resting 
state measurement that mirrored the first. In total, the main 
experiment lasted about 40 min. At the end of the experiment, 
participants were given an additional questionnaire asking about 
their experience and the perspective they took while performing the 
task. The entire procedure lasted 3 h. Figure 2 illustrates the EEG 
recording timeline.

2.4 Data acquisition

EEG data were recorded using a 64-channel, equidistant 
infracerebral Ag/AgCl electrode cap (Easycap, Herrsching, Germany) 
and a BrainAmp EEG amplifier system (BrainProducts, Gilching, 
Germany). Recording reference was an electrode on the tip of the nose, 
while a central fronto-polar site served as ground. In addition, two 
electrodes recorded eye blinks and movements. For the first 11 
subjects, data were recorded from a subset of 32 EEG channels. Due to 

technical issues, all channels were prepared and recorded from subject 
number 12 onwards, but only the 32-channel subset was used for 
analysis. The subset corresponds to channel positions where the values 
were standardized to a theta of 90° for the plane through Fpz, T7, T8 
and Oz (Supplementary Table S1). The impedance of the electrodes 
was kept below 50 kΩ. The sampling rate of EEG signals was 1,000 Hz.

2.5 Behavioral analysis

Behavioral measures were derived from the TAMI. A trial was 
considered successful if the participant gave a correct answer to a TAMI 
question, whereas a trial was considered unsuccessful if the participant 
gave an incorrect or “unclear” answer. As our participants belonged to 
a young and healthy population, we used the TAMI weighted scoring 
method (Madan and Singhal, 2014), which incorporates weights to 
ensure statistical sensitivity in identifying higher-scoring individuals. 
The maximum possible score for this scoring method is 24.

An additional measure of self-perceived motor imagery 
performance (Ease of Imagination scale) was included. After each 
TAMI question, participants were asked to rate the ease or difficulty 
they experienced in completing the task on a scale of 1 to 7, with 1 
representing ‘very difficult’ and 7 representing ‘very easy’. The 
maximum total score per TAMI administration was 70.

Each participant completed the TAMI three times (once per 
block), allowing us to calculate three separate scores for both the 
TAMI and Ease of Imagination scale. TAMI scores were calculated by 
summing the weighted scores of the correct answers within each 
block. Similarly, Ease of Imagination scale scores were summed within 
each block. For analyses, both measures were then averaged across the 
three blocks for each participant.

FIGURE 1

Overview of a single question of the TAMI as seen from the computer screen. Each question involved an initial position, four movement steps (each 
lasting 6 s), and a response phase, with a 5-s interval between questions.
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2.6 EEG and spectral analysis

All EEG data processing steps were scripted and executed in 
MATLAB (version R2023a, The MathWorks Inc., 2023) and the 
EEGLAB toolbox (version 2022.0, Delorme and Makeig, 2004). The 
preprocessing and spectral analysis pipeline is illustrated in Figure 3.

2.6.1 Preprocessing

2.6.1.1 Independent component analysis for artefact 
attenuation and spatial filtering

A copy of the EEG data was low-pass filtered (windowed sinc FIR 
filter, cutoff frequency 40 Hz, filter order 310), downsampled to 
250 Hz, and then high-pass filtered (windowed sinc FIR filter, cutoff 
frequency 1 Hz, filter order 776). The data were segmented into 
consecutive one-second epochs. Segments containing artefacts were 
excluded using an EEGLAB function (pop_jointprob.m, SD = 3). The 
remaining data were processed using the extended infomax algorithm 
to estimate the unmixing weights of 32 independent components. The 
ICA weights derived from this process were then applied to the 
original, unfiltered continuous dataset to facilitate paradigm-specific 
preprocessing (see below). Note that the one-second segmentation 
was solely used for ICA weight identification, and did not influence 
later segmentation steps (Stropahl et al., 2018).

Then, the EEGlab plugin ICLabel (Pion-Tonachini et al., 2019) 
was used to semi-automatically identify independent components 
(ICs) representing brain activity4. ICLabel is a robust and efficient tool 
having been trained on a large data set with over 200,000 ICs, 
encompassing a wide variety of experimental designs, recording 
environments and EEG systems. The classifier uses a combination of 
spatial, temporal and spectral features to assign probabilistic labels to 

4 The original pre-registered threshold of >90% was not met. In some 

participants, mu components were visually identified below the threshold of 

brain activity (never below 64.6%) and to maintain consistency across the 

majority of participants, selection was primarily based on expert visual 

inspection.

ICs across multiple categories. ICs classified with high probability as 
“Brain” were retained for further inspection.

One of the authors (MPVO) and an external expert (S. Debener) 
identified mu and alpha components. These components were 
identified based on a heuristic combining topography, spectral content 
and task modulation. The first two steps of the heuristic consisted of 
identifying a peak in the traditional power spectrum in the 8–14 Hz 
range and a distinct dipole-like topography in occipital sites for alpha 
and sensorimotor sites for mu. When alpha components were not 
distinct, the topographic distribution between the resting condition 
of eyes closed and eyes open was compared (Kuhlman, 1978).

The number of mu and alpha components varied according to the 
participant’s ICA decomposition. Similar to previous studies (Bowers 
et al., 2018; Jenson et al., 2020; Nyström, 2008), not all participants 
contributed usable components to the group analysis (n = 8), resulting 
in their subsequent exclusion from further analyses. For included 
participants, at least one alpha component and one mu component 
were identified. Selected independent components were retained from 
each continuous EEG dataset. These components were back-projected 
to the sensor space, creating data spatially filtered by ICA. For 
subsequent analyses (see below), when multiple components were 
found within the same region (e.g., two mu components), their values 
were averaged.

2.6.1.2 Temporal filtering and segmentation
The spatially filtered data were temporally filtered with a low pass 

filter (windowed sinc FIR filter, cutoff frequency 40 Hz, filter order 
310) and a high pass filter (windowed sinc FIR filter, cutoff frequency 
1 Hz, filter order 776). Before applying the high-pass filter, the data 
were downsampled to 250 Hz to reduce the computational load.

The data were re-referenced to common average and segmented 
into individual steps of each TAMI question. Each question comprised 
four sequential steps, each lasting 6 s, for a total duration of 24 s per 
question. This step-based segmentation approach resulted in 120 
epochs per participant (30 TAMI questions * 4 steps). Segmentation 
was guided by trigger information to identify the onset and offset of 
each step. We  did not include the time period during which 
participants selected their responses in this analysis, as the focus was 
on the process of MI rather than the end result (Chen et al., 2021). 
Remaining artefact-affected epochs not addressed by ICA were 

FIGURE 2

EEG recording timeline. Participants began with 2 min each of eyes-open and eyes-closed resting states. The TAMI questionnaire was presented in 
three blocks, each block indicated by a light gray background, consisting of 10 randomized questions. After each question, participants rated its 
difficulty on a 7-point scale. A 90 second break followed each block, and the task ended with a final rest period similar to the initial one.
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identified. Rather than removing these epochs and reducing steps per 
participant, we retained and flagged them. Only three participants 
exhibited artefacts, affecting 2–4 segments each.

2.6.2 Spectral analysis
For the preprocessed data, rhythmic activity was characterized 

using power and Pepisode measures derived from the Better 
Oscillation Detection Method (BOSC; Whitten et  al., 2011). The 
BOSC method is known for its ability to accurately detect rhythmic 
activity while minimizing the effects of transient voltage fluctuations 
(Chen and Caplan, 2017). The duration measure (Pepisode) provided 
by this approach indicates the presence of oscillations at the selected 
frequency during a given trial or time segment. For a more complete 
understanding of the signal, it is recommended to integrate the 
duration measure with the traditional power measure of the 
oscillations (Chen et al., 2021; for a comparison of methods, van Vugt 
et al., 2007). Although Chen’s original study in 2021 focused on the 
analysis of specific electrodes, the BOSC method has been validated 
for the detection of oscillations in ICs as used here (Whitten 
et al., 2011).

To apply the method, we used an openly available tool known as 
fBOSC5. The tool incorporates a modification of the 1/f fitting 
procedure using the ‘fitting oscillations and one over f ’ (FOOOF) 
spectral parameterization algorithm (Donoghue et al., 2020). Unlike 
previous approaches within the BOSC framework, the fBOSC 
demonstrates improved sensitivity, reduced false alarm rate, resilience 
to various noise sources, and offers a user-friendly implementation 
(Seymour et al., 2022).

Spectral analysis was performed on mu and alpha IC activations. 
Each segment of the IC activations was time-frequency decomposed 
using Morlet wavelets with a width of six cycles. We used frequency 
sampling at logarithmically spaced frequencies (log base 2) between 2 

5 https://github.com/neurofractal/fBOSC

and 41 Hz. Power measurements were then calculated by squaring the 
instantaneous amplitude of the complex convolution results, then 
log-transformed and normalized, dividing by the mean log power 
derived from the entire recording session for each frequency band and 
IC. After the wavelet transform, 0.5 s were removed from both the 
beginning and end of the initial time-frequency matrix to avoid 
potential artefacts arising from the convolution. Following the fBOSC 
approach, 0.5 s were also removed after episode detection and during 
background estimation. Notably, the pruned time points occurred at 
the very start and end of the instruction-reading period, intervals 
during which little motor imagery activity was expected, thereby 
making our analyses more specific.

The power threshold was set at the 99th percentile of the power 
values in a chi-squared distribution for each frequency. A duration 
threshold of three oscillation cycles was also applied. The parameters 
chosen were based on both the original study and the recent fBOSC 
implementation validated also in alpha oscillations (Seymour et  al., 
2022). After applying the BOSC method, when more than one alpha or 
mu IC was present, they were averaged. Specifically, from the output of 
the fBOSC implementation, which is 3-dimensional (component, trials, 
frequency bins), we first sorted the data according to conditions (i.e., 
successful and unsuccessful trials within a given participant). Then, for 
each condition, we averaged the values across trials for each component. 
Finally, if multiple components were present within a domain (mu or 
alpha), we averaged the results across components to obtain a single, 
representative measure per participant and condition. Each participant 
completed the TAMI three times, contributing between 2 and 23 
unsuccessful trials, with an average of 8 unsuccessful trials per participant.

2.7 Statistical analysis

For confirmatory hypotheses, Bayesian hypothesis testing was the 
primary inferential framework used to determine whether the 
observed data were more consistent with the alternative hypothesis 
(Bayes factor BF10 > 1) or the null hypothesis (BF01 > 1, where BF01 = 1/

FIGURE 3

Schematic illustration of the processing pipeline. EEG and spectral analysis.
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BF10). Confirmatory analyses were conducted in JASP statistical 
software with default prior settings (version 0.17.1.0; JASP Team, 
2023). Bayesian inference was chosen over frequentist analysis, 
contrary to Chen et al. (2021) study, due to practical and conceptual 
advantages. First, the expected sample size was constrained by a 
two-month data collection window, which represented about half of 
the original study (n = 57). The sequential Bayesian design allowed us 
to address potential power limitations while preserving interpretive 
flexibility and statistical validity. Even when the threshold for 
moderate evidence is not reached, the direction and strength of BFs 
remain interpretable (Schönbrodt and Wagenmakers, 2018). 
Importantly, Bayesian Hypothesis enables researchers to distinguish 
between absence of evidence and evidence of absence. Non-significant 
p-values may result from low statistical power rather than support for 
the null hypothesis. BFs, by contrast, provide a graded measure of 
evidence offering insights into whether the data meaningfully support 
the null, the alternative or remain inconclusive (Keysers et al., 2020).

Additionally, we  conducted an exploratory analysis using the 
rmcorr package in R (Bakdash and Marusich, 2017) and its web/
standalone Shiny application (Marusich and Bakdash, 2021). In these 
analyses, a p-value of 0.05 was used to test the significance of the null 
hypothesis. We  relied solely on p-values here because Bayesian 
methods are not currently available for this package.

Because of the sequential Bayesian Factor design, we monitored 
results as data accumulated. Thus, statistical tests were performed 
twice: after collecting data from the first batch of participants (which 
provided inconclusive evidence for either hypothesis) and later after 
the full sample was collected. The interim analysis of the first batch, 
affected the assumptions of frequentist methods applied in the 
exploratory analysis. However, the results, interpretations, and 
conclusions are based exclusively on Bayes factors. For transparency 
and comparison with previous work, frequentist analyses of the 
confirmatory analyses (conducted only on the full sample), are also 
provided in the Supplementary Tables S6–S8. Additional frequentist 
results are also provided in some exploratory analyses for comparison, 
but this did not guide our inference.

2.7.1 Motor imagery success
To investigate whether mu/alpha oscillations reflect intra-

individual success, we tested our first and second hypotheses using a 
three-way Bayesian repeated measures analysis of variance 
(rm-ANOVA). The dependent variable was the mu/alpha oscillation 
measure (power or Pepisode) and we conducted separate analyses for 
each of them. The independent variables were MI success (correct/
incorrect answers to a TAMI question), region (motor/visual ICs), and 
movement steps of the TAMI questions (1, 2, 3, 4). As mentioned 
earlier, for participants with multiple alpha or mu components, values 
were averaged for all further analyses. Hypothesis 1 tested the main 
effect of ‘Success’, while Hypothesis 2 tested the interaction between 
‘Success’ and ‘Step’, consistent with what Chen and colleagues found 
in their study (2021).

2.7.2 Motor imagery ability
To explore whether mu/alpha oscillations indexed inter-individual 

ability, we  tested our third hypothesis with a Bayesian Pearson 
correlation. Hypothesis 3 correlations were performed between the 
average TAMI weighted score across three blocks and the difference 
in mu/alpha oscillation suppression (successful – unsuccessful). This 

measure of difference was chosen following the analysis in Chen’s 
study, who argued that it could be used to infer the ability to suppress 
mu/alpha oscillations and MI ability. This correlation was performed 
once for power and once for Pepisode measures.

2.7.3 Pre-registered exploratory analyses
In relation to Hypothesis 3, as Chen et al. (2021) did not find a 

significant relationship between mu/alpha oscillatory activity and MI 
ability measured by the TAMI, we decided to examine this relationship 
with another measure, ease of imagination. Therefore, an additional 
Bayesian Pearson correlation was performed between the average Ease 
of Imagination scale score over three blocks and the difference in mu/
alpha oscillation suppression. Again, this correlation was performed 
once for power and once for Pepisode measures.

For the main correlation analyses, performance scores and 
oscillation data were averaged across the three repetitions of the 
TAMI. To explore whether this might obscure a possible correlation 
between measures, we performed a repeated measures correlation 
(Bakdash and Marusich, 2017). In brief, repeated measures correlation 
(rmcorr) identifies common within-individual associations across 
occasions while maintaining assumption of independence, thus 
avoiding bias from aggregated data. This method provides strong 
statistical power by estimating a common regression slope without the 
need for averaging. First, we performed a correlation between the 
weighted TAMI score and the average measures of mu/alpha 
oscillations (power and Pepisode) for each block. And second, 
we performed a correlation between the Ease of Imagination scale 
scores and the average mu/alpha oscillation measures (power and 
Pepisode), also for each block.

3 Results

3.1 Behavioral results

Participants’ performance on the TAMI was scored based on the 
weighted sum of the correct answers within each block, resulting in 
three total scores per participant, which were then averaged. The Ease 
of Imagination scale performance was also scored by summing their 
ratings within each block and then averaging across blocks. For the 
TAMI, the mean score was 15.93 (SD = 4.28) out of 24 points and for 
the Ease of Imagination scale it was 43.47 (SD = 6.82), out of a possible 
70 points. Figure 4 shows the distribution of TAMI and the Ease of 
Imagination scale scores. TAMI scores are normally distributed but 
slightly skewed to the right, which is consistent with previous studies 
(Madan and Singhal, 2014). In contrast, the Ease of Imagination scale 
scores were left-skewed (skewness of 1.076, p = 0.021). Full descriptive 
statistics can be found in the Supplementary Table S2.

To ensure that handedness was not a confounding variable in the 
performance of the TAMI, we  conducted additional correlations 
between EHI handedness and TAMI scores for each block. Results 
revealed weak, negative correlations for block 1 (r = −0.190, 
BF₁₀ = 0.377, p = 0.436) and block 2 (r = −0.105, BF₁₀ = 0.309, 
p = 0.670) and a very small positive correlation for block 3 (r = 0.029, 
BF₁₀ = 0.286, p = 0.906). All BFs resulting from Bayes correlations 
were below 1, indicating moderate evidence for the null hypothesis of 
no relationship between handedness and TAMI performance, which 
was in correspondence with the non-significant frequentist correlations.
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3.2 Electrophysiological data

3.2.1 Motor imagery success
We tested the effect of successful MI performance (Success*) on 

mu and alpha oscillations by comparing successful and unsuccessful 
responses on the TAMI. Figure 5 and Table 1 show the summary 
statistics for the oscillation measurements, including both Pepisode 
and power. The Bayesian rm-ANOVA provided moderate evidence 
against the effect of ‘Success’ for both the Pepisode (BFincl = 0.264) and 
power (BFincl = 0.193) measures. In addition, there was limited 
evidence for a main effect of region on either measure (refer to Table 2 
for a full analysis of effects).

For our second hypothesis, examining changes in oscillations 
over time, we expected an interaction between ‘Success’ and ‘Step’. 
However, the analysis showed moderate evidence against this effect 
for Pepisode (BFincl = 0.103) and power measures (BFincl = 0.174). For 
Pepisode measures, however, ‘Step’ was included as a predictor in the 
best performing model (Supplementary Table S3). There was a main 
effect of ‘Step’ (Table  2), indicating that the likelihood of data 
occurrence in models with ‘Step’ as a predictor was approximately 
5.255 times higher than those without. However, according to power 
measures, there was only anecdotal evidence against the effect of 
‘Step’ (BFincl = 0.850).

To understand which levels of ‘Step’ differ from each other, 
we  conducted a post hoc test on this predictor (Table  3). The 
adjusted posterior odds show (1) strong evidence (odds of about 24) 
that Pepisode measures differ between Step  1 and Step  2, (2) 
moderate evidence (odds of about 8) that Pepisode measures differ 
between Step 1 and Step 3, and (3) strong evidence that Pepisode 
measures differ between Step 1 and Step 4 (odds of about 29). On 
the other hand, we found (4) moderate evidence (odds of 0.150, 
0.146, 0.129) that Pepisode measures of Step 2 and Step 3, Step 2 
and Step 4, and Step 3 and Step 4 are the same. The magnitude of 

each ‘Step’ on the Pepisode measures are displayed through the 
model averaged posteriors in Figure 6A, highlighting how Step 1 
has lower Pepisode values than all other steps. The parameter 
estimates of the marginal posterior effects are shown in 
Supplementary Table S5.

3.2.2 Motor imagery ability
We investigated whether mu or alpha suppression could indicate 

individual MI ability, by performing Bayesian Pearson correlations. 
First, we  correlated the difference in mu oscillation suppression 
(successful  – unsuccessful) with weighted TAMI scores across 
participants, and then with scores on the Ease of Imagination scale. 
Scatter plots illustrating these relationships for the mu oscillations and 
power measures can be  found in Figures  6B,C. The complete 
correlation matrix is available in Table  4, and the full figures can 
be accessed in the Supplementary Figures S1, S2.

Using a two-sided alternative hypothesis, mu suppression 
differences were positively correlated with the TAMI score in both 
Pepisode (r = 0.298) and power (r = 0.288) measures. However, Bayes 
factors provided inconclusive evidence favoring the null hypothesis 
(Pepisode, BF10 = 0.581; power, BF10 = 0.552). In contrast, the 
difference in alpha suppression was negatively correlated, with 
moderate evidence supporting null hypothesis for Pepisode 
(r = −0.128, BF10 = 0.322), while the evidence for power measures was 
inconclusive toward the alternative (r = −0.498, BF10 = 2.533).

For the Ease of Imagination scale, the patterns were reversed. The 
mu difference measure had a negative relationship, with anecdotal 
evidence supporting the alternative (Pepisode: tau B = −0.319, 
BF10 = 1.614) or the null hypothesis (power: tau B = −0.177, 
BF10 = 0.496). Conversely, the alpha difference measure showed a weak 
positive correlation for Pepisode (tau B = 0.224, BF10 = 0.682) and a 
negative correlation for power (tau B = −0.024, BF10 = 0.295), with 
anecdotal evidence supporting the null hypothesis for both.

FIGURE 4

Distribution of participants’ scores on (A) the TAMI, and (B) the Ease of Imagination scale.
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3.3 Exploratory analyses

3.3.1 Success at first step
Since mu/alpha oscillation suppression was strongest in the first 

movement step, we also examined the relationship between mu/alpha 
oscillations from Step 1 and individual success. As shown in Figure 6D 
the patterns of individual success showed little difference between 
unsuccessful and successful trials, with some cases even showing 
fewer detected oscillations in unsuccessful trials. The strength of 

evidence ranged from anecdotal to moderate in favor of the null 
hypothesis. Additional figures including BF values for both regions 
and measures are available in the Supplementary Figure S3.

3.3.2 Motor imagery ability and ease of 
imagination

As the study included two different measures of MI performance, 
we examined their relationship with a Bayesian Pearson correlation 
(Figure 7). This analysis provided inconclusive evidence of a weak 

FIGURE 5

Oscillatory activity and MI success. Group-level comparison of neural oscillations during successful (green) and unsuccessful (red) trials. Pepisode 
measurements for mu (A) and alpha (B) bands are shown across movement steps 1–4, alongside their corresponding log-transformed power spectra 
(C,D). Error bars indicate standard error of the mean (SEM).

TABLE 1 Summary statistics for mu activity using Pepisode and log power [dB] measures.

Success Region Step Pepisode Log (Power) [dB]

Mean SD SE Mean SD SE

Successful Visual Step 1 0.091 0.084 0.019 1.074 0.049 0.011

Step 2 0.102 0.099 0.023 1.080 0.054 0.012

Step 3 0.101 0.114 0.026 1.080 0.067 0.015

Step 4 0.112 0.121 0.028 1.087 0.068 0.016

Motor Step 1 0.130 0.088 0.020 1.084 0.052 0.012

Step 2 0.166 0.110 0.025 1.102 0.058 0.013

Step 3 0.169 0.116 0.027 1.104 0.060 0.014

Step 4 0.163 0.109 0.025 1.099 0.059 0.014

Unsuccessful Visual Step 1 0.096 0.094 0.021 1.083 0.056 0.013

Step 2 0.102 0.107 0.025 1.080 0.055 0.013

Step 3 0.109 0.130 0.030 1.087 0.075 0.017

Step 4 0.107 0.101 0.023 1.080 0.057 0.013

Motor Step 1 0.128 0.084 0.019 1.083 0.050 0.011

Step 2 0.152 0.115 0.026 1.096 0.064 0.015

Step 3 0.159 0.103 0.024 1.098 0.059 0.014

Step 4 0.152 0.109 0.025 1.094 0.055 0.013
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positive correlation (r = 0.027, BF10 = 0.285; tau B = 0.290, 
BF10 = 1.204). For illustration, Figure  7 includes the sequential 
analysis plot showing how the Bayes factor changes with each added 
data point, with the BF10 fluctuating between anecdotal and moderate 
evidence in support of the alternative hypothesis.

3.3.3 Repeated measures correlations
To account for repeated testing of participants across three 

blocks, we  performed repeated measures correlations (where the 
block serves as the repeated measure) for each Bayesian Pearson 
correlation performed in the context of the third hypothesis. A 
summary is presented in Table  4. For correlations related to the 
TAMI score, results were consistent in both direction and significance 
with the Bayesian results. The mu difference measure and the TAMI 
scores showed positive, but weak and non-significant relationships 
[Pepisode, rrm (37) = 0.020, p = 0.920; power, rrm (37) = 0.010, 
p = 0.945]. In comparison, the alpha difference measure showed 
negative, weak correlations [Pepisode, rrm (37) = −0.280, p = 0.079; 
power, rrm (37) = −0.320, p = 0.046], with only the latter reaching 
statistical significance.

For the Ease of Imagination scale scores, most correlations align 
with Bayesian results; however, mu and alpha difference measures are 
negatively correlated, with weak and non-significant associations.

Finally, the association between TAMI scores and Ease of 
Imagination scale scores was similar to the Bayesian correlation: weak 
[rrm (37) = −0.369], but statistically significant (p = 0.021). A scatter 
plot showing this relationship is shown in Figure 8.

3.3.4 Replication Bayes factors
The need to assess and improve reproducibility in science has led 

to the development of statistical methods to evaluate the extent to 
which a replication study is successful. The replication Bayes factor is 
one such method, quantifying the evidence from a direct replication 
attempt given the data from the original study (Ly et al., 2019). Here, 
we made use of the replication Bayes factor to assess how the second 
batch of data influenced the findings from the first batch. To do this, 
we calculated the replication Bayes factors for our main hypotheses. 
These were obtained by dividing the Bayes factors from the full dataset 
(19 subjects) by those from the first batch dataset (13 subjects). 
Tables 5, 6 provide the results for our three hypotheses. Overall, the 
evidence from the second batch, informed by the first, did not change 
substantially in direction or magnitude.

3.3.5 Topographies
To support the interpretation of our results, we applied the fBOSC 

method not only to the selected ICs but also across all channels and 
participants, which allowed us to generate the average power and 
Pepisode maps shown in Figure 9A. For comparison, Figure 9B also 
displays the topographies of the average alpha, right mu and left mu 
ICs constructed using CORRMAP (Campos Viola et  al., 2009). 
CORRMAP identified ICs similar to user-defined templates based on 
alpha, mu and left ICs from subjects with the highest percentage of 
brain activity as determined by IClabel. Average maps are then 
generated from these clustered ICs, which may have excluded some 
participants from the 19 total.

Topographical maps of both Pepisode and power measures show 
their maximum activity in the sensorimotor area of the brain. 
However, the Pepisode map shows a more localized and pronounced 
concentration in this area compared to the power, which is more 
evenly distributed. The IC maps illustrate that the mu ICs likely 
captured most of the activity. Although no main effect of region was 
found, this corresponds to the observation that activity in the motor 
region (mu ICs) was higher compared to the visual region (alpha ICs), 
particularly for the Pepisode measure (cf. Figure 5).

TABLE 2 Analysis of effects Pepisode and log power [dB] measures.

Effects Pepisode Log (Power) [dB]

P(incl) P(incl|data) BFincl BFexcl P(incl) P(incl|data) BFincl BFexcl

Success 0.263 0.188 0.264 3.788 0.263 0.154 0.193 5.181

Region 0.263 0.348 0.702 1.425 0.263 0.395 0.786 1.272

Step 0.263 0.748 5.255 0.190 0.263 0.422 0.850 1.176

Success ✻ Region 0.263 0.081 1.026 0.975 0.263 0.039 0.476 2.101

Success ✻ Step 0.263 0.023 0.103 9.709 0.263 0.015 0.174 5.747

Region ✻ Step 0.263 0.091 0.253 3.953 0.263 0.069 0.319 3.135

Success ✻ Region ✻ Step 0.053 1.885 × 10−4 0.106 9.434 0.053 1.585 × 10−4 0.187 5.348

The BFincl can be interpreted as evidence in the data for including a predictor. For interpretation, BFexcl was given with BFexcl = 1/BFincl. The analysis of effects compares models that contain the 
effect to equivalent models stripped of the effect. Analysis suggested by Sebastiaan Mathôt (van den Bergh et al., 2020).

TABLE 3 Post hoc test for step factor from Pepisode measures.

Prior 
odds

Posterior 
odds

BF10, U Error %

Step 1 Step 2 0.414 24.096 58.173 2.804 × 10−8

Step 3 0.414 8.362 20.188 9.813 × 10−8

Step 4 0.414 28.968 69.934 2.240 × 10−8

Step 2 Step 3 0.414 0.062 0.150 0.097

Step 4 0.414 0.060 0.146 0.099

Step 3 Step 4 0.414 0.053 0.129 0.108

The first two columns show the steps being compared, while the third and fourth columns 
show the adjusted prior and posterior model odds. The posterior odds have been corrected 
for multiple testing by fixing to 0.5 the prior probability that the null hypothesis holds across 
all comparisons (Westfall et al., 1997). The fifth column shows the uncorrected Bayes factor 
supporting the alternative hypotheses of different magnitudes. The last column shows the 
numerical error in the calculation of the Bayes factor. Individual comparisons are based on 
the default t-test with a Cauchy (0, r = 1/sqrt(2)) prior.
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3.3.6 Effects of task repetition
To further examine effects of repeated exposure to TAMI items 

across the three blocks as well as possible impacts on neural dynamics, 
we conducted a series of rm-ANOVAs to assess the effect of block on 
all measures (TAMI score, Ease of Imagination score, oscillatory 

neural activity measures Pepisode and log power). This was done in 
motor and visual regions.

For behavioral measures (TAMI score and Ease of Imagination 
scale score) Bayesian analyses provided anecdotal evidence for the null 
hypothesis (BFincl values between ⅓ and 1) indicating inconclusive 

FIGURE 6

(A) Posterior distributions of the effect of each Step in Pepisode measures. Error bars above each density represent 95% credible intervals. (B) Motor 
Imagery Ability vs. TAMI Scores. Scatter plot showing participants’ size of motor imagery success (successful - unsuccessful trials) using Pepisode 
measures from the motor region, compared to their TAMI scores. Each dot represents one participant. (C) Motor imagery ability vs. Ease of Imagination 
scores. Scatter plot showing participants’ size of motor imagery success (successful - unsuccessful trials) using Pepisode measures from the motor 
region, compared to their Ease of Imagination scores. Each dot represents one participant. Both axes show ranked data for tau B correlation. 
(D) Raincloud plot of Success at Step 1 showing Pepisode values in the motor region. Each dot represents one participant, with overlaid box plots 
indicating the interquartile range and median. The density distribution illustrates data spread.

TABLE 4 Bayesian and repeated measures correlations for relationships between mu and alpha oscillatory activity and motor imagery ability.

Score Comparison Pearson Kendall rmcorr

r BF₁₀ Tau B BF₁₀ rrm(37) p

TAMI (weighted) Ease of Imagination scale 0.027 0.285 0.290 1.204 0.369 0.021*

Pepisode mu 0.298 0.581 0.117 0.369 0.020 0.920

Pepisode alpha −0.128 0.322 −0.070 0.318 −0.280 0.079

Power mu 0.288 0.552 0.152 0.433 0.010 0.945

Power alpha −0.498 2.553 −0.375 3.124 −0.320 0.046*

Ease of imagination 

scale

Pepisode mu −0.389 1.006 −0.319 1.614 −0.210 0.203

Pepisode alpha 0.189 0.376 0.224 0.682 −0.210 0.197

Power mu −0.307 0.609 −0.177 0.496 −0.180 0.276

Power alpha −0.075 0.296 −0.024 0.295 −0.240 0.148

TAMIw score and Ease of Imagination scale compared with the Pepisode and log power [dB] values. Pepisode and log power values indicate the difference between successful and unsuccessful 
trials on the TAMI and Ease of Imagination scale scores. For Bayesian analysis, scores are averaged over the three blocks per participant. For repeated measures, scores are considered 
separately for each block. *p-values ≤ 0.05.
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results. In line with this, no significant block effects were found for 
either the TAMI or the Ease of Imagination scale score using 
frequentist statistics (all p > 0.05). In contrast, anecdotal to strong 
evidence supported a block effect on the motor-region oscillatory 
activity: BFincl = 2.946 for Pepisode and BFincl = 25.103 for power. 
Frequentist rm-ANOVAs mirrored these findings revealing significant 
effects of block for both Pepisode [F (2,36) = 4.488, p = 0.018] and 

power [F(2,36) = 5.455, p = 0.009]. Post-hoc analyses comparisons 
indicated that these effects were driven by differences between Block 
1 and Block 3 for both Bayesian and frequentist tests. No evidence of 
an effect of block was observed for visual region oscillatory activity in 
either Bayesian (BFincl values between 1 and 3) or frequentist analyses 
(all p > 0.05). Complete results and visualizations are provided in the 
Supplementary Figures S4, S5 and Supplementary Table S9.

FIGURE 7

TAMI vs. Ease of Imagination scores. (A) Scatter plot showing participants’ TAMI weighted scores compared to their Ease of Imagination scores. Each 
dot represents one participant. Both axes show ranked data for tau B correlation. (B) Sequential development of the evidence as the data accumulates.

FIGURE 8

Rmcorr plot for the relationship between the TAMI (weighted) scores and the Ease of Imagination scale scores for each of the three blocks. Each color 
represents one participant.
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TABLE 5 Replication Bayes factor for Hypothesis 1 and 2.

Measure Hypothesis Case Complete BF₁₀
(dorig, drep)

Original
BF₁₀ (dorig)

Replication
BF₁₀

(drep)

Pepisode 1 Success 0.264 0.434 0.608

2 Success ✻ Step 0.103 0.159 0.648

Step 5.255 3.151 1.668

Log (Power) [dB] 1 Success 0.193 0.284 0.680

2 Success ✻ Step 0.174 0.118 1.475

Main effect of step was added in the analysis for Pepisode measures as we found moderate evidence. drep = (dorig, drep)/dorig.

TABLE 6 Replication Bayes factor for Hypothesis 3.

Hypothesis 3

Score Complete BF₁₀
(dorig, drep)

Original BF₁₀
(dorig)

Replication BF₁₀
(drep)

TAMI (weighted) - Ease of Imagination scale 1.204 0.868 1.387

- Pepisode mu 0.581 0.689 0.843

- Pepisode alpha 0.322 0.359 0.897

- Power mu 0.552 0.606 0.911

- Power alpha 2.553 0.795 3.211

Ease of imagination scale - Pepisode mu 1.614 0.574 2.812

- Pepisode alpha 0.682 2.851 0.239

- Power mu 0.496 0.380 1.305

- Power alpha 0.295 0.574 0.514

For correlations that included the Ease of Imagination scale, the tau B Bayes factor instead of Pearson’s was considered. drep = (dorig, drep)/dorig.

FIGURE 9

Topographies. (A) Maps showing group average power measures (left) and group average Pepisode measures (right) across all channels (B) Group 
average spatial patterns (maps) for alpha, as well as left and right mu components. Only maps in (B), made using CORRMAP, are RMS-normalized.
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3.3.7 Self-reported motor imagery ability
To explore the role of self-reported motor imagery ability (visual 

or kinesthetic) on neural oscillatory patterns, we  correlated the 
respective scores from the KVIQ (visual: M = 16.63, SD = 3.66; 
kinesthetic: M = 15.00, SD = 3.96) and MIQ questionnaires (internal 
visual: M = 5.33, SD = 0.85; external visual: M = 4.96, SD = 1.27; 
kinesthetic: M = 5.01, SD = 0.97) with the difference in mu and alpha 
oscillation suppression (successful – unsuccessful) during the TAMI, 
using both Pepisode and power measures. All correlations were weak 
to moderate in magnitude, with Bayesian analysis indicating anecdotal 
evidence, and p-values above the threshold of 0.05. The complete 
findings are detailed in Supplementary Table S11.

4 Discussion

In the present study, we investigated the relationship between 
mu and alpha oscillations and MI performance. Understanding how 
these oscillations and MI performance are related, both within and 
between individuals, may help to identify the neural correlates of 
performance variation, which is relevant to improving and 
extending the practical applicability of these rhythms. To ensure 
consistency, we followed Chen et al.’ (2021) work in using the TAMI 
to objectively measure MI performance, while implementing 
modifications to strengthen the methodology. First, at the intra-
individual level, we  hypothesized that there would be  a greater 
decrease in mu/alpha activity for successful trials (i.e., correct 
responses) compared to unsuccessful trials. Second, we expected 
this suppression to be particularly significant for the first stages of 
the MI process. At the inter-individual level, we hypothesized two 
different outcomes. On the one hand, skilled imagers (i.e., 
participants with better scores on the TAMI) might show less 
overall mu/alpha oscillatory activity than their less skilled 
counterparts. Or perhaps, skilled imagers would show less reduction 
in mu/alpha activity due to their more efficient neural representation 
and reduced sensorimotor engagement.

Contrary to our expectations and previous findings by Chen et al. 
(2021), we did not find at least moderate evidence for a difference 
between successful and unsuccessful trials. The absence of difference 
in oscillatory activity as a function of performance, observed at the 
individual level, is in line with our results at the group level. However, 
we did find moderate to strong evidence for a decrease in mu/alpha-
wave amplitude in the early stages, highlighting the importance of the 
initiation of imagery in neural activity, regardless of response success.

4.1 Intra- and inter-individual variability in 
mu and alpha rhythms

Both our within-subject and between-subject comparisons do not 
support the idea that mu/alpha oscillations serve as indicators of 
either inter-individual ability or intra-individual success in MI 
performance. Our results regarding MI ability are consistent with 
results by Chen et al. (2021), Gibson et al. (2014), and Di Nota et al. 
(2017). They also reported no significant differences in oscillatory 
activity based on participants’ familiarity or proficiency with the 
imagined actions. However, common patterns across participants do 
not always reflect the full neurophysiological reality (Wriessnegger 

et al., 2020). This is particularly true for mu and alpha rhythms, where 
variability is far from a hidden phenomenon.

Chen et al. (2021) attributed the lack of differences in oscillatory 
activity based on MI ability to the quantitative instability of the mu 
rhythms across groups (Blankertz et al., 2010; Tangwiriyasakul et al., 
2013). Similarly, in a re-evaluation of their previous studies 
Wriessnegger et al. (2020) also pointed to the inter-subject variability 
in the alpha band, which could bias results and reduce sensitivity to 
detect true effects on performance (Haegens et al., 2014). In the field 
of MI brain computer interfaces, between-subject variability due to 
differences in motor learning and behavior, brain function and 
topography is a recognized challenge (Saha and Baumert, 2020).

Does the individual level provide a better reflection of 
performance? Chen et  al. (2021) observed that reduced activity 
preceded correct responses in the TAMI, leading them to conclude 
that these oscillations could reflect individual success. However, our 
study found no evidence to support this observation. While Chen 
et al. (2021) presented each of the 10 TAMI questions only once, 
we repeated questions three times to increase the number of trials 
entering EEG analysis per participant, particularly for incorrect trials. 
This reduced the likelihood that differences (or lack thereof) were due 
to insufficient data points. Despite this, we did not find evidence for a 
difference between successful and unsuccessful trials.

As an exploratory analysis, we used repeated measures correlations 
to account for the fact that participants took the TAMI three times. 
This provided an additional estimate of the within-subject association 
by removing the between subject variability that could have masked a 
success effect. Even with this approach, the direction, and strength of 
the associations remained similar and not significant. This raises the 
possibility that, unlike what was suggested by Chen et al. (2021), mu 
and alpha oscillations may not index MI performance at the intra-
individual level either, at least not reliably.

At the within-subject level, the literature shows mixed results 
(Ahn and Jun, 2015). For example, although Wriessnegger et  al. 
(2020), found a high level of variability across groups, they also found 
that ERD/S values remained relatively consistent within individuals 
across conditions and time points. However, there is also literature 
reporting intra-individual variability. Performance inconsistency 
between sessions in the same subject has been observed in brain 
computer interface calibrations, as the classifier derived from the first 
session is rarely effective in subsequent sessions (Krauledat, 2008). 
Haegens et  al. (2014) used magnetoencephalography (MEG) to 
investigate how alpha peak frequency differed across cognitive 
conditions and regions of interest within and between subjects. They 
found that while inter-individual variability exceeded intra-individual 
variability, alpha peak frequency in posterior regions increased with 
greater cognitive demands and engagement. This suggests that, when 
comparing and interpreting power values between conditions and 
making links to performance, power differences may be confounded 
with frequency shifts. This underscores the need to consider the 
operational range of the alpha rhythm — and arguably the mu rhythm 
— at both the inter- and intra-subject levels. The interactions between 
within- and between-subject factors are also important, as temporal 
variability within-subjects in EEG patterns has been found to 
contribute significantly to overall between-subjects variability, as seen 
in electrophysiological correlation patterns in an EEG-fMRI study 
(Meyer et  al., 2013). In addition, long-term factors, such as age, 
gender, and environmental conditions, as well as short-term factors, 
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such as sleep, diet, motivation, and focus on the task — which can 
fluctuate from trial to trial — can also have implications on the overall 
result (Daeglau et al., 2021).

4.2 Starting strong: onset of imagery 
reflected in mu and alpha suppression

We observed more pronounced mu and alpha oscillatory 
suppression during the initial stages of the MI process, as defined by 
the movement steps in a TAMI question. This finding replicates the 
results of Chen et al. (2021), who also found a significant decrease 
during the first step for both mu and alpha oscillations. However, in 
this study, this occurred independent of response accuracy.

Previous research on mu and alpha suppression has described 
more pronounced patterns at early stages. For instance, Llanos et al. 
(2013) found that visual stimuli used for motor planning activate 
mu-rhythm, inducing a short-lasting phase-locked mu-response and 
a persistent decrease of non-phase locked mu-rhythms. These rhythms 
were more marked when used for motor planning compared to 
passive observation, similarly for both real and imagined movements. 
Other studies have reported early mu ERD effects when participants 
view graspable objects in familiar orientations, suggesting rapid motor 
preparation triggered by visual cues (Kumar et  al., 2013). When 
anticipating touch at specific body sites, greater mu desynchronization 
was linked to improved performance, cognitive speed and executive 
functioning (Weiss et al., 2020). Likewise, pre-stimulus reductions in 
alpha activity may reflect anticipation in response to a visual cue 
(Mathewson et al., 2009). After stimulus onset, alpha band power has 
been implicated in filtering incoming sensory information and 
maintaining relevant details in working memory (Woodman et al., 
2022; Zanto and Gazzaley, 2009).

In this study, mu and alpha oscillations showed similar activity 
across all analyses. Chen et al. (2021) found a main effect of location, 
with greater reductions in oscillatory activity found in the motor 
region as opposed to the visual region. Given that similar decreases 
in alpha and mu were associated with MI success, the findings in the 
occipital region were interpreted as internal visual imagery facilitating 
the process of MI on the TAMI, a test that relies on visual strategies 
(Madan and Singhal, 2013). In contrast, we found no clear distinction 
between the two (i.e., inconclusive evidence for a main effect of 
region), despite disentangling the rhythms by ICA. In an effort to 
further clarify the distinct roles of mu and alpha oscillations, 
we  leveraged our data set to examine whether imagery modality 
influenced neural activity. Specifically, we correlated participants’ 
self-reported MI scores (KVIQ and MIQ scales) with the mu and 
alpha oscillatory activity during the TAMI. However, all correlations 
provided only anecdotal evidence in support for the absence of a 
relationship between MI modality and oscillatory activity. The lack 
of distinct oscillatory patterns makes it difficult to determine the 
precise roles of visual and kinesthetic strategies in this task and 
consequently limits our interpretations of participants’ attentional 
and sensorimotor engagement.

It is important to note that we found evidence of more pronounced 
suppression only for the Pepisode measure, which, while 
characterizing the same brain oscillations, may have captured 
additional information not captured by power measures alone. 
Whereas wavelets do not distinguish between signal duration and 

amplitude, Pepisode excels at detecting variations in signal duration 
(van Vugt et al., 2007). Additionally, by using the BOSC method, 
we were able to control for aperiodic activity in neural oscillations, an 
approach advocated to enhance methodological precision in neural 
oscillation studies (Donoghue et al., 2022).

4.3 TAMI and ease of imagination as 
measures of MI ability

We used an objective measure of MI ability, the TAMI, together 
with our own exploratory subjective scale that assesses ease of 
imagination. Ease of imagination has previously been associated with 
MI ability, both behaviorally (MIQ-3; Williams et  al., 2012) and 
neurophysiologically (Guillot and Collet, 2010; ter Horst et al., 2013). 
Consequently, we expected the TAMI scores to correlate with our Ease 
of Imagination scale. The correlation turned out to be relatively weak 
and mainly supported by anecdotal evidence.

Interestingly, both measures followed a similar trajectory across 
blocks: participants increased performance and also reported increase 
of imagination in blocks 1 and 2, followed by a decrease in both 
measurements for block 3. This pattern may reflect task adjustment 
during the initial blocks and fatigue for the final block, rather than a 
relationship between the two measures. However, given these changes 
were not supported by at least moderate evidence, we remain cautious 
with our interpretations.

One possible explanation for the weak association could be the 
exploratory nature of the Ease of Imagination scale design. Factors such 
as central tendency bias – as the scale was mostly skewed to the left by 
participants scoring toward the middle descriptions–might come into 
play. Alternatively, we  might consider that TAMI and ease of 
imagination simply describe dimensions of MI performance that are not 
exactly the same. The TAMI provides a view of MI that was previously 
recognized by its authors and in the study by Chen et al. (2021) to 
be limited to visual modality imagery from an internal perspective and 
to response accuracy. Moreover, the TAMI is not a pure MI task, it 
includes reading instructions and memory retention. In contrast, ease 
of imagination may be more indicative of controllability (Guillot et al., 
2010), which could be influenced by various psychological processes, 
such as working memory. These considerations also highlight the 
complexity of MI and of the TAMI itself.

4.4 Limitations

It is worth noting that our evidence of absence does not 
definitively indicate the absence of the success effect. Several points 
should be taken into consideration. First, our sample size was limited 
at both the participant and trial levels. To ensure a sufficient 
probability of detecting an effect, we employed a sequential Bayesian 
sampling method (Schönbrodt and Wagenmakers, 2018). However, 
the need to exclude some participants due to difficulties in identifying 
their components, reduced our sample size more than expected. 
Replication Bayes Factor results indicated that we gained hardly any 
evidence from the second batch of data (6 additional participants). 
Similarly, the number of trials was constrained. We  increased the 
number of questions by repeating the TAMI 10 original questions 
three times.
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While repeating the TAMI questions aimed to address a limitation 
in Chen et  al. (2021), it may have introduced other unintended 
limitations. Although we  found no clear evidence of a behavioral 
improvement across blocks that would indicate learning, there was a 
trend toward decreased performance in the final block (with anecdotal 
support). In contrast, the neural data showed moderate evidence of an 
increase in mean mu activity from block 1 to 3, which we interpret as 
a sign of sensorimotor disengagement. This possibly contributes to the 
decline in performance and serves as a potential confounding factor 
in the results (Neuper et al., 2006).

Regarding the experimental procedure, both Chen et  al. 
(2021) and the present study, had participants inside a chamber, 
answering questions on a computer. In this study—and 
presumably also in the study by Chen et al. (2021) — participants 
remained seated while doing the TAMI, as opposed to standing 
as portrayed in the TAMI questions. This discrepancy may 
constrain participants’ ability to engage fully in the imagery task. 
This is important given that motor execution prior to MI has 
been found to influence neural activity, meaning that previous 
engagement in the position or movement could have facilitated 
the observation of brain activity (Allami et al., 2014; Pascual-
Leone et al., 1995). Moreover, although the TAMI was designed 
to assess MI, it relies solely on the visual modality, which further 
hinders participant’s sensorimotor engagement with the task 
(Madan and Singhal, 2013).

As for the use of ICA, the ICs acted as a lens through which 
we  defined and analyzed brain activity. However, this focused 
perspective may have caused us to miss part of the bigger picture. 
While descriptively (cf Figure 9), the mu components align well 
with the central-posterior regions displaying the largest Pepisode 
values, this correspondence is less evident for power. Neither 
Pepisode nor power show topographic peaks corresponding to the 
alpha component. While the areas with the highest power or 
Pepisode values cannot automatically be assumed to be the areas 
with the largest differences, we  cannot rule out that the ICA 
approach contributed to not capturing the latter. However, this 
limitation applies to an even larger degree to channel-based analysis 
approaches, where, in effect, a single channel selected for analysis 
acts as a narrow spatial filter or lens.

Additionally, following Haegen’s et al. (2014) conclusions, using 
fixed alpha frequency bands might have biased our results against 
certain subjects whose peaks fall outside the predefined range, or 
against questions of the TAMI that shifted this peak. As a result, the 
MI performance effect could have been underestimated or missed 
entirely. This issue is an increasing concern in neural oscillation 
research, as peak frequency variability has been observed not only 
between and within subjects (Haegens et al., 2014), but also across 
cortical locations (Mahjoory et al., 2020), and within participants 
during a task (Benwell et al., 2019; Wutz et al., 2018).

In this regard, additional sources of variability in our study, —
such as the inclusion of left-and mixed-handed participants, 
differences in prior engagement with motor-related activities like 
sports, music or video games (between subjects differences), and the 
possible sensorimotor disengagement observed in the third block 
(within participants differences within a task)—may have further 
contributed to inconsistencies in oscillatory responses. Moving 
forward, validating oscillation band definitions should be considered 
a necessary methodological step in future oscillation studies 
(Donoghue et al., 2022).

4.5 Future directions

The results of our analyses provide several directions for future 
research. A key limitation of the TAMI is the number of questions and 
narrow focus on visual MI. To provide more conclusive evidence 
regarding mu and alpha rhythms in MI performance, future MI 
performance measures could benefit from an expanded set of 
questions, incorporating a broader range of movements, outcomes, and 
modalities. Moreover, adaptive or staircased procedures borrowed 
from psychophysics could also enhance MI performance assessment. 
Adaptive methods focus on trials that provide the most information, 
improving efficiency and reducing the impact of ceiling and floor 
effects inherent in fixed-difficulty measures (Kingdom and Prins, 
2016), such as the TAMI. This approach could provide a more balanced 
distribution of correct and incorrect trials, increasing statistical power 
and sensitivity to detect performance-related differences.

Finally, while replication of Chen et al.’s (2021) findings would have 
further validated the TAMI as an objective measure at the 
neurophysiological level, the discrepancies found in our study—which 
cannot be attributed to a single factor—highlight important considerations 
for the field. On one hand, our results contribute to the ongoing dialogue 
about how a universal and widely accepted protocol for the assessment of 
MI has yet to be established (Chepurova et al., 2022). Furthermore, our 
findings raise awareness about the importance of carefully examining and 
refining the methodological principles guiding study design and analysis, 
for meaningful interpretation of neural oscillations in relation to cognitive 
performance (Donoghue et al., 2022).

5 Conclusion

To conclude, our study extends the literature on mu and alpha 
oscillations and their relationship to MI performance. Despite previous 
findings suggesting an association at the individual level, our data provide 
evidence for a lack of association at both the intra- and inter-individual 
levels. While this does not rule out an association, it does highlight the 
need for a comprehensive assessment of these rhythms within and 
between subjects, as well as the exploration of factors that may influence 
their variability. In addition, our study supports the idea that the mu and 
alpha rhythm reflects the generation of the initial motor representation. 
A deeper understanding of this relationship could enhance the utility of 
mu and alpha rhythms in the development of tailored interventions and 
training programs for different users and sessions.
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