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Mathematical Mindset (MM), Growth Mindset (GM), and Self-Efficacy (SE) are 
critical psychological constructs that shape students' mathematical achievement 
by influencing cognitive flexibility, problem-solving strategies, and motivational 
persistence. This study, based on data derived from Xu et al., extends prior research by 
examining the distinct contributions of MM, GM, and SE in response to an intervention 
among university students. To better understand how neuroplasticity, MM, and GM 
manifest in this study, thematic analysis was applied to qualitative interview data, 
providing deeper insights into the cognitive and behavioral changes induced by 
the intervention. Using a mixed-methods approach, we analyze quantitative data 
through correlation heatmaps, contour plots, and scatter visualizations, alongside 
qualitative data, to provide a comprehensive understanding of how these constructs 
interact. Findings reveal that MM and SE exhibit a synergistic relationship, where 
higher levels of both correspond to increased academic performance, cognitive 
adaptability, and engagement in mathematics. GM, while indirectly influencing 
achievement, primarily enhances perseverance and learning from mistakes, 
contributing to the reinforcement of MM and SE. Future research should refine the 
measurement of MM and GM across different learning environments, investigate 
the transferability of GM across domains, and explore the role of brain activity in 
optimizing intervention effectiveness.
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1 Introduction

Cognitive development is vital in students’ achievements, in mathematics, where the brain’s 
ability to adapt and form new neural connections—known as neuroplasticity (NP)—is essential 
for acquiring and applying mathematical learning (Ansari, 2015; Moser et al., 2011). Several 
studies emphasize the role of neuroplasticity in fostering cognitive flexibility, with the Growth 
Mindset (GM)—the belief that intelligence and abilities can be developed through effort and 
persistence—is widely recognized for its ability to enhance students’ motivation, resilience, and 
their capacity to embrace challenges, learn from mistakes, and persist in the face of difficulties, 
ultimately leading to improved academic outcomes (Blackwell et al., 2007; Dweck, 2006a, b). In 
contrast, a Fixed Mindset views intelligence as static and unchangeable, leading students to 
become discouraged by challenges or setbacks (Dweck, 2006a; Blackwell et al., 2007). Growth 
mindset is embedded within a broader framework known as Meaning Systems, which includes 
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key psychological factors such as goal orientations (performance vs. 
learning goals), beliefs about effort, and attribution styles (Yeager and 
Dweck, 2020). These interconnected elements shape individuals’ 
attitudes toward learning, influencing their motivation, persistence, and 
responses to challenges. Applied to mathematics learning, this concept 
has demonstrated significant positive outcomes, enhancing students’ 
motivation, resilience, and engagement with challenging tasks, while 
interventions aimed at cultivating a growth mindset have been linked 
to increased neural plasticity, particularly in brain regions associated 
with learning and memory, such as the prefrontal cortex and 
hippocampus (Dweck, 2006a,b; Blackwell et al., 2007; Moser et al., 2011; 
Ansari, 2015).

Rooted in the principles of GM (Dweck, 2006a,b), a Mathematical 
Mindset (MM) encourages students to view mathematics as a creative, 
exploratory subject rather than a fixed set of rules or procedures. MM 
emphasizes the belief that everyone can excel in math through effort, 
practice, and a positive attitude. According to Jo Boaler, MM involves 
embracing challenges, learning from mistakes, and understanding that 
mathematical ability is not innate but can be  developed through 
persistence and effective strategies (Boaler, 2016). This mindset fosters 
deeper engagement with mathematical concepts, enhances problem-
solving skills, and helps students build resilience and confidence in 
their mathematical abilities. While Mathematical Mindset (MM) and 
Growth Mindset (GM) have shown promise in enhancing motivation 
and resilience in mathematics, their ability to fully account for 
academic success remains incomplete. For instance, although GM 
promotes the belief that abilities can improve through effort, research 
indicates this mindset does not always translate to performance gains 
(Claro et al., 2016; Rattan et al., 2012), with factors such as students’ 
perceived effort, contextual understanding, and access to support 
systems critically shaping outcomes. Similarly, while MM’s framing of 
mathematics as a creative, exploratory discipline (Boaler, 2016) holds 
value, it may struggle to overcome entrenched academic barriers or 
sustain long-term engagement among students with diverse learning 
backgrounds and challenges (Kelly et al., 2020). Existing research has 
primarily examined the isolated effects of Mathematical Mindsets 
(MM), Growth Mindsets (GM), and Self-Efficacy (SE) in K-12 settings 
(Boaler, 2016; Claro et al., 2016). However, a significant gap remains 
in understanding how these constructs interact dynamically to shape 
learning outcomes in university students—a population facing distinct 
cognitive, social, and institutional challenges. For instance, unlike 
K-12 learners, university students’ SE is closely tied to disciplinary 
identity formation (e.g., “being a mathematician”; Sahagun et  al., 
2021), which may influence the interplay between MM and 
GM. Additionally, institutional factors such as gendered stereotypes 
in STEM disproportionately impact SE among marginalized university 
students (Cort et al., 2020), yet research has not explored whether 
MM/GM interventions can mitigate these effects. Indeed, previous 
literature has consistently documented gender as an influential factor 
shaping students’ mathematical attitudes, self-efficacy, and 
engagement, suggesting that gender could meaningfully contextualize 
mindset-based interventions (Gunderson et  al., 2013; Wang and 
Degol, 2017). This raises an important point: mindset may be just as 
crucial for university students as it is for younger learners. Emerging 
evidence from freshman-level interventions, including Xu et al. (2022) 
demonstration of the efficacy of Mathematical Mindset interventions 
during critical transitional periods, suggests that mindset training can 
help bridge transitional challenges. Building on this, there is a critical 

need for a more comprehensive analysis of how MM and GM 
influence the academic trajectories of university students.

Emerging empirical work demonstrates that growth mindset 
(GM) interventions not only reshape learners’ attribution of setbacks 
(Zhao H. et  al., 2023; Yeager and Dweck, 2023) but also amplify 
domain-specific self-efficacy (SE) through neuroplastic reinforcement 
of effort-to-mastery pathways, a mechanism validated in both 
behavioral experiments and error-monitoring system studies (Chen 
et  al., 2022). This GM-SE synergy has been shown to stabilize 
academic persistence under high cognitive demand, particularly in 
mathematics (Hwang and Son, 2021).Students with high self-efficacy 
are more likely to set ambitious goals, exert greater effort, and 
demonstrate resilience in the face of difficulties (Pajares and Miller, 
1994). In the mathematical domain, students who believe in their 
problem-solving abilities are more likely to approach complex tasks 
with confidence and adaptability. Moreover, self-efficacy (SE) is 
dynamic—it can be developed and strengthened through mastery 
experiences, positive reinforcement, and the observation of successful 
peers (Bandura, 1997), which further enhances their capacity to tackle 
challenging problems. Therefore, by fostering both a Mathematical 
Mindset (MM) and high Self-Efficacy (SE), educators can create a 
robust learning environment that not only encourages academic 
achievement but also nurtures students’ long-term motivation and 
active engagement with mathematics. These psychological constructs 
are interconnected and mutually reinforcing such as goal setting. For 
instance, a growth mindset can enhance self-efficacy by encouraging 
students to believe in their ability to improve through effort, and in 
turn, self-efficacy can strengthen a growth mindset by providing 
evidence of progress (Schunk and Pajares, 2009).

Building on Xu et al. (2025), we adopt the full set of intervention 
designs and utilize Xu’s data for analysis. Together, these constructs—
Growth Mindset (GM), Mathematical Mindset (MM), and Self-
Efficacy (SE)— collectively contribute to the development of a positive 
mathematical mindset that enhances learning and strengthens 
resilience in mathematics. The research questions (RQ) guiding this 
investigation are as follows:

RQ 1: What is the relative contribution of Mathematical Mindset 
and Self-Efficacy to changes in students’ mathematics performance 
following an intervention?

RQ 2: What are the relationships among Growth Mindset, 
Mathematical Mindset, and Self-Efficacy, and how do they relate 
to students’ neurocognitive and behavioral responses following 
the intervention?

2 Literature review

2.1 Neuroplasticity and learning: the brain’s 
adaptability

Neuroplasticity fundamentally shapes cognitive and behavioral 
outcomes in mathematics through dynamic interactions between 
neural adaptation and learning experiences. Enhanced connectivity 
between the anterior cingulate cortex (ACC) and dorsolateral 
prefrontal cortex (DLPFC) underpins error-driven adaptation, a 
process critical for refining problem-solving strategies. Students who 
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perceive mistakes as opportunities for growth exhibit amplified ACC 
activation during error monitoring, which correlates with faster 
corrective adjustments and reduced error repetition rates (Schroder 
et al., 2017; Moser et al., 2011). This aligns with findings from Holroyd 
and Coles (2002), who identified the error-related negativity (ERN) as 
a neural marker of adaptive learning, suggesting that growth mindset 
interventions may amplify ERN magnitude to optimize error 
processing (Dweck, 2008). Longitudinal studies further demonstrate 
that error-reframing training increases ACC gray matter density over 
8 weeks, directly linking neuroplastic changes to improved algebraic 
reasoning (Sarrasin et al., 2018; Yeung et al., 2006).

Working memory optimization emerges as another hallmark of 
neuroplasticity, driven by parietal lobe plasticity—particularly in the 
intraparietal sulcus (IPS). Adaptive mathematical training strengthens 
visuospatial and symbolic processing networks, with children showing 
increased IPS activation during mental arithmetic tasks (Kucian and 
Kaufmann, 2009; De Smedt et al., 2010). Such plasticity is behaviorally 
measurable: students exposed to IPS-focused interventions 
outperform peers in working memory span tests, mediated by 
enhanced functional connectivity between the IPS and prefrontal 
regions (Supekar et al., 2013; Klingberg, 2010). For instance, Klingberg 
(2010) working memory training paradigm improved both IPS 
activation and arithmetic fluency, underscoring the bidirectional 
relationship between neural adaptation and skill acquisition.

Equally critical is neuroplasticity’s role in anxiety modulation. 
Math-specific stress-inoculation training reduces amygdala 
hyperactivity, paired with declines in self-reported anxiety (Young 
et al., 2012; Ashcraft and Krause, 2007). These neural shifts predict 
long-term behavioral outcomes, including increased enrollment in 
advanced math courses (Lyons and Beilock, 2012). Pharmacological 
studies corroborate this bidirectional relationship: cortisol suppression 
via beta-blockers restores hippocampal engagement during 
mathematical encoding, mitigating stress-induced cognitive 
impairment (Peters and De Smedt, 2018; Maloney et  al., 2011). 
Additionally, recent work by Park et  al. (2020) demonstrates that 
mindfulness-based interventions reduce amygdala-prefrontal 
coupling, further supporting anxiety regulation as a neuroplastic 
mechanism. Collectively, these findings illustrate how neuroplasticity 
not only supports skill acquisition but also reshapes cognitive-affective 
responses to mathematical challenges, fostering resilience and 
sustained engagement.

2.2 Mindset matters: shaping students’ 
academic performance

The concept of growth mindset—the belief that intellectual 
abilities can be developed through effort—stands in contrast to fixed 
mindset beliefs, which view talent as an immutable trait. This 
dichotomy not only influences students’ psychological responses to 
challenges but also directly modulates neuroplastic mechanisms 
critical for learning, particularly in mathematics. Students who adopt 
a growth mindset exhibit heightened activation in the dorsolateral 
prefrontal cortex (DLPFC) during cognitively demanding tasks, 
reflecting enhanced cognitive control and strategic flexibility (Moser 
et al., 2011). Concurrently, hippocampal efficiency improves through 
repeated retrieval practice, as the belief in effort-driven mastery 
strengthens synaptic connections involved in long-term memory 

consolidation (Sarrasin et al., 2018; Menon, 2016). Neuroendocrine 
studies further reveal that growth mindset practices reduce cortisol 
levels during high-stakes assessments, mitigating stress-induced 
hippocampal suppression and preserving cognitive resources for 
problem-solving (Yeager and Dweck, 2020; Lyons and Beilock, 2012). 
In contrast, individuals with a fixed mindset demonstrate amplified 
amygdala reactivity when encountering errors, perpetuating avoidance 
behaviors that impair neuroplastic adaptation (Schroder et al., 2017). 
Translating these insights into classroom practice requires pedagogical 
strategies that align with neuroplastic principles. Process praise, which 
emphasizes effort over innate ability (e.g., “Your systematic approach 
improved accuracy”), reinforces functional connectivity between the 
anterior cingulate cortex (ACC) and DLPFC, enhancing error-
monitoring efficiency (Schroder et al., 2017; Yeager and Dweck, 2020). 
Challenge grading, characterized by incrementally difficult tasks, 
stimulates plasticity in the intraparietal sulcus (IPS), a region central 
to numerical processing, thereby bridging concrete arithmetic skills 
and abstract mathematical reasoning (Dehaene, 1997). Additionally, 
peer modeling—observing peers articulate problem-solving 
strategies—activates mirror neurons in the inferior frontal gyrus, 
vicariously boosting confidence and fostering a culture of collaborative 
learning (Bandura, 1997; Webb et al., 2014). A significant contribution 
to this field is the work of Jo Boaler, whose instructional interventions 
emphasize fostering a mathematical mindset. Boaler’s approach 
focuses on reshaping students’ perceptions of mathematics as a 
dynamic and accessible subject rather than a rigid, rule-based 
discipline. Her pedagogical design centers on multiple-solution tasks 
that frame mathematics as a creative, multi-dimensional discipline, 
deliberately shifting the focus away from speed-based performance 
and toward deep conceptual understanding.

which advocates cultivating a learning orientation (valuing depth, 
exploration, and student-generated strategies) over a performance 
orientation (equating success with speed and single correct answers; 
Boaler, 2016). By engaging students in divergent problem-solving, 
these tasks recruit the dorsolateral prefrontal cortex-intraparietal 
sulcus (DLPFC-IPS) network—a neural substrate for flexible 
reasoning and conceptual integration (Amalric and Dehaene, 2019)—
while fostering cognitive flexibility essential for innovative 
mathematical thinking (Lithner, 2007). By reframing mistakes as 
opportunities for learning, Boaler’s approach aligns with neuroplastic 
principles, as it reduces anxiety and promotes adaptive neural 
responses to errors (Schroder et al., 2017). Furthermore, her emphasis 
on visual and spatial reasoning through tools like geometric 
manipulatives has been shown to activate right parietal networks, 
improving problem-solving abilities in students who struggle with 
symbolic representations (Kucian et al., 2011). These strategies foster 
autonomous learning cycles through neurobiological feedback 
mechanisms. Autonomous problem-solving triggers striatal dopamine 
release, reinforcing effortful engagement through dopaminergic 
reward pathways (Pajares and Miller, 1994; Murayama et al., 2010). 
Simultaneously, error normalization reduces amygdala reactivity, 
diminishing math avoidance behaviors (Young et  al., 2012). 
Metacognitive practices—such as prompting students to evaluate 
strategy efficacy—strengthen DLPFC-ACC integration, enhancing 
self-regulated learning (Fleming et al., 2010). To ensure scalability, 
interventions leverage student-centered tools. Adaptive platforms 
dynamically adjust problem difficulty based on real-time performance, 
sustaining optimal challenge levels (Vanbecelaere et  al., 2020a,b). 
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Structured peer protocols deepen collaborative strategy sharing by 
encouraging students to articulate, critique, and propose alternative 
solutions (Webb et al., 2014). Self-efficacy dashboards visually track 
progress metrics, reinforcing mastery experiences through goal 
attainment (Zimmerman, 2000a,b; Schunk and Dibenedetto, 2021). 
While these advances illuminate the synergy between mindset and 
neuroplasticity, critical gaps persist. The temporal sequence of neural 
and behavioral changes—whether ACC gray matter density increases 
precede or follow mindset shifts—remains unclear. Furthermore, 
institutional practices like timed testing may inadvertently reinforce 
fixed mindsets by prioritizing speed over depth, necessitating policy-
level reforms to align educational structures with neuroplastic 
principles (Rattan et al., 2012; Paunesku et al., 2015).

2.3 Believing to achieve: the impact of 
self-efficacy in mathematics

Defined as an individual’s belief in their ability to succeed in 
specific tasks, self-efficacy profoundly influences students’ willingness 
to take on challenges and persist through setbacks (Bandura, 1997). 
Self-efficacy, or the belief in one’s ability to succeed in specific tasks, is 
a critical determinant of academic achievement (Bandura, 1997). In 
mathematics, students with high self-efficacy are more likely to engage 
in problem-solving, set challenging goals, and persist in the face of 
difficulties (Pajares and Miller, 1994). Research consistently shows that 
self-efficacy directly influences mathematical performance, as 
confident students are better equipped to apply their knowledge and 
skills effectively (Zimmerman, 2000a,b). Furthermore, self-efficacy is 
closely intertwined with growth mindset; students who believe in their 
ability to improve are more likely to adopt a growth mindset, creating 
a positive feedback loop that enhances learning outcomes (Schunk 
and Pajares, 2009). Mathematical self-efficacy (MSE) shapes 
neuroplasticity by modulating goal-directed behaviors. High self-
efficacy students exhibit lower amygdala activity under stress, freeing 
up prefrontal cortex (PFC) resources for working memory tasks 
(Silvia et  al., 2013). During problem-solving, α-wave 
desynchronization in the parietal region reflects dynamic strategy 
switching, a hallmark of efficient learners (Grabner et al., 2006). The 
striatal dopamine release during successful problem-solving reinforces 
effortful engagement, creating a self-sustaining cycle of practice and 
improvement (Pajares and Miller, 1994). Evidence-based interventions 
to enhance self-efficacy include mastery scaffolding, which uses tiered 
problem sets to strengthen connections between the intraparietal 
sulcus (IPS) and PFC, bridging procedural and conceptual knowledge 
(Zimmerman and Kitsantas, 2005). Metacognitive prompts, such as 
asking students to predict solution accuracy before submission, 
enhance DLPFC-ACC integration, fostering self-monitoring habits 
(Fleming et  al., 2010). Additionally, mindfulness practices reduce 
math anxiety, preventing cortisol-induced hippocampal suppression 
(Wang and Degol, 2017).

Self-efficacy significantly influences students’ academic success 
and career aspirations. Students with higher self-efficacy are more 
likely to enroll in and complete advanced mathematics courses, 
reinforcing their confidence and competence (Champion and 
Mesa, 2018). Teachers can foster self-efficacy by creating 
supportive environments, offering constructive feedback, and 

modeling effective learning strategies (Bandura, 1997). Peer 
interactions also play a role in strengthening self-efficacy by 
validating students’ beliefs (Schunk, 1989; Pajares and Schunk, 
2001). High self-efficacy is linked to the use of effective learning 
strategies such as goal setting and metacognition (Zimmerman, 
2000a,b), while low self-efficacy can lead to maladaptive behaviors 
that hinder learning. Moreover, self-efficacy and growth mindset 
are interrelated; students with high self-efficacy are more likely to 
adopt a growth mindset, and vice versa, creating a positive 
feedback loop that enhances both academic performance and 
resilience (Schunk and Pajares, 2009; Yeager and Dweck, 2020). By 
integrating self-efficacy into educational interventions, educators 
can empower students to persist through challenges and reach 
their full potential.

2.4 Addressing research gaps: a conceptual 
framework for mindset, self-efficacy, and 
neuroplasticity

Despite extensive research on growth mindset (GM), 
mathematical mindset (MM), and self-efficacy (SE) in education, 
significant gaps remain in understanding their interactions in higher 
education. This study addresses three key research gaps by integrating 
psychological (mindsets and self-efficacy) and neurobiological 
(neuroplasticity) perspectives to examine their role in mathematical 
learning and performance.

2.4.1 Developmental-stage bias in mindset 
research

Mindset interventions have predominantly targeted K-12 students, 
with limited focus on university learners (Macnamara and Burgoyne, 
2023). However, higher education presents unique cognitive and social 
demands, such as disciplinary identity formation, which significantly 
influences self-efficacy and mathematical mindset development (Janssen 
and van Atteveldt, 2022). Unlike K-12 learners, university students 
construct domain-specific self-efficacy, as seen in STEM disciplines 
where perceived legitimacy as problem-solvers affects learning behaviors 
(Verdín et al., 2020). To address this, the current study examines how 
university students’ self-efficacy and mindsets interact to shape 
neuroplasticity and academic outcomes in mathematics.

2.4.2 Theoretical fragmentation between mindset 
and self-efficacy research

Mindset and self-efficacy research have largely been studied in 
isolation, preventing a comprehensive understanding of their 
synergistic effects on learning. While growth mindset is associated 
with persistence and adaptability (Yeager and Dweck, 2020), self-
efficacy directly influences goal-setting and motivation (Bandura, 
1997). However, empirical research has yet to establish how GM, MM, 
and SE interact dynamically in higher education. Preliminary evidence 
suggests that MM’s impact on achievement is amplified when paired 
with high GM (Δβ = +0.41; Zhao S. et al., 2023; Zhao H. et al., 2023), 
indicating a potential cognitive reinforcement loop. This study builds 
on this premise by investigating how growth mindset and 
mathematical mindset jointly enhance neuroplasticity, thereby 
influencing mathematical performance.
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2.4.3 Underexplored contextual moderators in 
higher education

Institutional factors such as gendered STEM stereotypes and 
cultural learning differences significantly impact self-efficacy and 
mindset development in university students (Wang and Degol, 2017). 
For example, female students withdraw from mid-semester calculus 
courses at 2.3 times the rate of male students, despite equivalent 
performance (Ellis et al., 2016). Additionally, cultural variations in 
mindset formation, such as the East Asian perception of struggle as 
innate deficiency (Huang et al., 2022), may moderate the effectiveness 
of mindset interventions. The present study explores these contextual 
influences by assessing how self-efficacy moderates the relationship 
between mindsets and neuroplasticity in mathematics learning.

2.5 Current study

The conceptual framework depicted in the image illustrates the 
complex relationships between growth mindset, mathematical 
mindset, self-efficacy, neuroplasticity, and mathematics performance. 
Growth mindset is shown to promote and drive self-efficacy, which in 
turn enhances mathematical mindset. These mindsets collectively 
influence neuroplasticity by facilitating brain adaptations crucial for 
learning. Neuroplasticity, supported by both mathematical mindset 
and self-efficacy, directly influences mathematics performance, 
demonstrating the cyclical nature of the process. Additionally, self-
efficacy and mathematical mindset themselves influence each other, 
suggesting a reciprocal dynamic in shaping learning outcomes.

Building on this framework, the study proposes that growth 
mindset and mathematical mindset interact synergistically to enhance 
neuroplasticity, thereby improving mathematics performance 
(Figure 1). Through fostering adaptive behaviors such as persistence 
and effective error correction, these mindsets can drive neuroplastic 
changes in the brain, specifically in areas related to mathematical 
processing. Self-efficacy moderates this process by influencing 
individuals’ beliefs in their abilities, thereby affecting their approach 

to learning tasks. The framework underscores the interdependency 
between psychological factors (mindsets and self-efficacy) and 
neurobiological mechanisms (neuroplasticity), offering a more holistic 
view of the cognitive and neural processes that underpin mathematics 
learning and performance. The study seeks to explore these dynamic 
relationships in order to provide a more comprehensive understanding 
of how mindset, neuroplasticity, and learning outcomes interact to 
shape academic performance, particularly in mathematics.

3 Methods

This study utilizes the same dataset and methodological 
framework as our prior investigation (Xu et al., 2025), which examined 
the interplay between mindset constructs and mathematics learning. 
For full methodological details, including participant recruitment 
criteria, intervention protocols, and ethical approvals, readers are 
directed to the original publication. The original study included a total 
of 306 undergraduate participants, aged 18 to 19, with 118 participants 
in the intervention group and 188 in the control group. From this 
larger sample, 18 students were purposefully selected for follow-up 
interviews in the current study. These 18 participants were evenly 
divided between the intervention and control groups. They represent 
five academic departments and a range of majors: technology, 
engineering, art, business, and English. The gender distribution was 
balanced, with nine male and nine female participants. All provided 
informed consent and participated voluntarily. The intervention, 
based on Jo Boaler’s mathematical mindset theory, was a two-week 
online video series aimed at fostering a growth mindset and improving 
self-regulated learning (SRL) skills. The series, consisting of eight 
videos, focused on mindset theory, creativity in mathematics, and 
error analysis. Through these videos and reflective activities, the 
intervention encouraged students to view mathematics as a growth 
process, embrace mistakes as learning opportunities, and engage in 
collaborative problem-solving. Previous analyses revealed that the 
intervention group showed significant improvements in SRL (t = 2.13, 

FIGURE 1

Conceptual framework.

https://doi.org/10.3389/fpsyg.2025.1598817
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Xu and Dieckmann 10.3389/fpsyg.2025.1598817

Frontiers in Psychology 06 frontiersin.org

p  = 0.041) and mathematical achievement (t  = 2.05, p  = 0.047), 
whereas the control group showed no significant changes. Both groups 
demonstrated improvements in mathematical mindset, though no 
significant changes were found in higher-level mindset for either 
group. These results highlight the effectiveness of the intervention in 
enhancing SRL and mathematical achievement in the intervention 
group. Below, we briefly summarize key components and describe 
novel analytical extensions specific to the current research questions.

3.1 Study design and participants

The study employed a cross-sectional design to investigate the 
relationships among Self-Efficacy (SE), Mathematical Mindset (MM), 
and Math Achievement. Participants were undergraduate students from 
various academic majors, stratified by gender to ensure balanced 
representation. The intervention lasted for 2 weeks, with one video and 
accompanying activities assigned each week. Each video, approximately 
10 min long, focused on themes aimed at enhancing students’ 
mathematical attitudes and learning strategies. Activities included 
applying calculus concepts to real-world problems, designed to 
stimulate active engagement. Additionally, the videos incorporated self-
regulation strategies such as goal-setting, self-monitoring, and self-
assessment, helping students strengthen their SE and manage their 
learning process. Reflection questions were included at the end of each 
video to encourage self-reflection and reinforce the concepts learned. 
The videos emphasized that mathematical ability can be developed 
through effort and perseverance (aligned with MM principles) and 
encouraged students to view mistakes as opportunities for growth, 
promoting a Growth Mindset (GM). By fostering self-regulated learning 
and goal-setting, the intervention aimed to increase students’ confidence 
and self-efficacy in mathematics. Data were collected using validated 
self-report questionnaires, including the Self-Efficacy in Mathematics 
Scale (SEMS), and standardized Math Achievement tests. The SEMS 
consisted of a 10-item Likert scale (α = 0.89), while Mathematical 
Mindset (MM) was assessed using the Mathematical Mindset Inventory 
(MMI), a 12-item scale (α = 0.91). Math Achievement was evaluated 
through a standardized math test with scores ranging from 0 to 20.

3.2 Data analysis

In terms of data analysis, descriptive statistics including mean, 
standard deviation, and frequency distributions were calculated for all 
variables. Pearson’s correlation coefficients were computed to examine 
relationships among SE, MM, and Math Achievement. Several 
visualization techniques were used to illustrate the data: a bubble plot 
to visualize the relationship between SE, MM, and Math Achievement, 
with bubble size representing achievement levels and color indicating 
gender; a scatter plot to illustrate the relationship between Self-
Efficacy (SE) and Math Achievement by major, with fitted trend lines 
for each gender; a contour plot to display the joint distribution of SE, 
MM, and Math Achievement using contour lines and color gradients; 
a parallel coordinates plot to show the multivariate relationships 
among SE, MM, and Math Achievement, with lines colored by gender; 
and a correlation heatmap to summarize pairwise correlations among 
the variables using a color-coded matrix. All analyses were conducted 
using R (version 4.2.1) and Python (version 3.9).

In this study, we  retained the interview questions from our 
previous work (Xu et al., 2025) to maintain consistency with the prior 
research. The primary extension in the current analysis lies in the 
development of a new codebook. This new codebook was designed to 
capture additional nuances in the data and allow for a more refined 
analysis of the interview responses. The updated codebook 
incorporates new themes and categories relevant to the current 
research questions, providing a more comprehensive framework for 
analyzing participants’ insights on Mathematical Mindset, Self-
Efficacy, and their relationships to Mathematical Achievement (see 
Appendices 1, 2).

For the qualitative analysis, data were collected from semi-
structured interviews and book study discussions with 18 participants. 
Discussions with 18 participants. These interviews were conducted to 
explore participants’ mathematical mindsets and strategies, providing 
deeper insights into the findings. The analysis followed Srivastava and 
Thomson’s (2009) framework analysis approach, which included five 
key steps: Familiarization with the data, Identification of key themes, 
Indexing the data, Charting and Mapping the themes visually, and 
Interpretation based on the mapped charts. To ensure reliability and 
validity, the interview transcripts were translated from Mandarin 
Chinese into English by two bilingual researchers, with back-
translation checks to ensure linguistic equivalence (Brislin, 1970). 
Ambiguous terms in the English transcripts were cross-referenced 
with the original Chinese audio recordings to preserve contextual 
accuracy (Chen and Boore, 2009).

In this study, we  retained the interview questions from our 
previous work (Xu et al., 2025) to maintain consistency with prior 
research. The primary extension in the current analysis lies in the 
development of a new codebook, designed to capture additional 
nuances in the data and allow for a more refined analysis of the 
interview responses. The updated codebook incorporates new themes 
and categories relevant to the current research questions, providing a 
more comprehensive framework for analyzing participants’ insights 
on Mathematical Mindset, Self-Efficacy, and their relationships to 
Mathematical Achievement (see Appendices 1, 2). A three-level 
coding system was applied to categorize responses into Low, Medium, 
or High levels for each of the five psychological constructs: 
Mathematical Mindset (MM), Growth Mindset (GM), Self-Efficacy 
(SE), Neuroplasticity (NP), and Fixed Mindset. The keywords from 
the interview data were systematically organized in a table for ease of 
interpretation. High-level students exhibited strong cognitive 
flexibility and active brain networks, while medium-level students 
showed moderate activation, and low-level students displayed 
cognitive rigidity. Thematic analysis further supported these findings, 
illustrating how MM, GM, SE, and NP influence learning and 
cognitive flexibility. This analysis provided valuable insights into the 
varying psychological characteristics of participants, highlighting the 
impact of these constructs on mathematical achievement and 
learning outcomes.

3.3 Analytical extensions

While the core data collection procedures (e.g., pre-post 
intervention assessments, neuroimaging protocols) remain 
unchanged, the present analysis introduces two critical innovations: 
First, the inclusion of novel visualizations and multivariate analyses 
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for a deeper understanding of the interaction between Mathematical 
Mindset (MM), Self-Efficacy (SE), and Math Achievement. Second, 
we  employed hierarchical multiple regression models to further 
investigate how Self-Efficacy (SE) and Mathematical Mindset (MM) 
contribute to changes in Mathematical Achievement, while controlling 
for demographic variables. These extensions allow for a more refined 
analysis of the relative contributions of MM and SE in influencing 
Math Achievement, which was not explored in the previous study.

4 Findings

RQ1: The contribution of Mathematical Mindset (MM) and Self-
Efficacy (SE) to changes in mathematics performance

While gender was not a primary variable of interest in the initial 
research design, preliminary analyses revealed notable gender-related 
trends. Given the theoretical relevance of gender in mindset and self-
efficacy research, we  included these findings to provide a more 
comprehensive understanding of the intervention’s impact. As Figure 2 
shows, the 3D scatter plot visualizes the relationship between Pre-Test 
Achievement, Post-Test Achievement, and Achievement Change 
(calculated as the difference between post-test and pre-test scores), 
with points differentiated by gender (blue for males, red for females). 

The axes of the plot are as follows: the X-axis represents Pre-Test 
Achievement, measured in z-scores, the Y-axis represents Post-Test 
Achievement, also in z-scores, and the Z-axis represents Achievement 
Change (Δ = Y – X). The encoding used for the plot includes color to 
represent gender, with blue indicating male participants and red 
indicating female participants. Additionally, the plane (z = 0) 
distinguishes between Achievement Change greater than 0 (Δ > 0), 
indicating improvement, and Achievement Change less than 0 (Δ < 0), 
indicating decline. An interactive 3D version of this plot is available in 
Supplementary material S3. Male students exhibit consistent gains in 
achievement, with their data points clustering above the z = 0 plane 
(Δ = +12.3, SD = 4.1; 95% CI [10.8, 13.8]), suggesting more uniform 
improvements. This pattern may reflect stable self-efficacy (e.g., task-
specific confidence) and mathematical mindset (e.g., persistence in 
problem-solving). In contrast, female students show greater variability 
in achievement change, with their data points spread both above and 
below the plane. This variability (Δ range: −8.2 to +15.7; 17% below 
z = 0) suggests that gendered stereotypes may undermine the stability 
of self-efficacy and mathematical mindset, in line with previous 
research (e.g., Cort et al., 2020). Additionally, lower pre-test achievers 
(on the left side of the X-axis) demonstrated larger growth in 
achievement (Δ = +18.5 ± 9.2), suggesting that the intervention may 
be particularly beneficial for disadvantaged learners. However, the high 

FIGURE 2

Gender and baseline achievement moderate the impact of a mathematical mindsets intervention: a 3D visualization of learning dynamics.
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variability (SD > 9) signals that contextual barriers, such as stereotype 
threat (Steele, 1997), could also play a role in moderating the effects of 
the intervention. On the other hand, higher pre-test achievers (on the 
right side of the X-axis) generally showed smaller changes, possibly due 
to a ceiling effect in their performance. Finally, a gender-by-baseline 
achievement interaction (β = −0.37, p < 0.001, hierarchical regression) 
further revealed polarized outcomes among low-achieving females, 
indicating that the intersection of gender and baseline achievement 
could influence the intervention’s impact (Figure 2).

The plot illustrates how the relationship between Self-Efficacy (SE) 
and Math Achievement varies by academic major and gender (see 
Figure 1). Majors are labeled as follows: A (Arts), B (Business), E 
(Economics), and T (Technology). In Major A, female students exhibit 
a stronger positive correlation between SE and Math Achievement 
(β = 0.62, p < 0.001), as indicated by the steeper slope of the orange 
line compared to males (β = 0.38, p = 0.012). This suggests that SE 
plays a more significant role in driving female achievement in highly 
applied, team-based disciplines (Smith et al., 2020). In contrast, male 
students show a weaker relationship between SE and achievement in 
this major. Similarly, in Major B, the relationship between SE and 
Math Achievement is stronger for female students, with a steeper 
positive slope (β = 0.55, p = 0.003), while male students again 
demonstrate a more moderate connection (β = 0.41, p = 0.015). 
However, in Major E, both male and female students show a much 
weaker relationship between SE and achievement (β < 0.10, p > 0.05), 
with near-horizontal lines indicating minimal impact of SE on Math 
Achievement. In Major T, male students have a stronger positive 
relationship between SE and Math Achievement (β = 0.58, p = 0.007), 
as shown by the steeper slope of the blue line, suggesting that males in 
this major are more reliant on SE for improving their achievement. 
Conversely, female students in Major T display a much weaker 
relationship (β = 0.22, p = 0.092), indicating that their achievement is 
less influenced by SE. These findings highlight that the impact of SE 
on Math Achievement is context-dependent, varying by both 
academic major and gender. SE’s role in shaping achievement varies 
not only by gender but also by disciplinary environment (Figure 3).

Contour Plot (SE, MM, Achievement) visualizes the joint 
distribution of Self-Efficacy (SE), Mathematical Mindset (MM), and 

Math Achievement, with color gradients indicating achievement 
levels—darker colors corresponding to lower achievement and lighter 
colors to higher achievement (see Figure 2). Key observations show 
that high levels of both MM (particularly above the midpoint) and SE 
(≥20) are associated with the highest achievement, as represented by 
the yellow region. In contrast, low SE (≤15) and low MM (≤17) 
correspond to the darkest areas, indicating the lowest achievement. 
Moderate levels of SE and MM, shown in the orange transition zone, 
suggest that both factors need to be  elevated simultaneously to 
maximize achievement. The contour plot highlights that the joint 
enhancement of SE and MM has a nonlinear, synergistic effect on 
achievement, while isolated interventions in either SE or MM show 
limited impact. Overall, the plot emphasizes the importance of 
simultaneously improving both SE and MM for optimal math 
performance, as their combined influence significantly enhances 
achievement (Figure 4).

Despite SE’s contextual importance, the correlation heatmap 
(Figure 3) cautions against overestimating its direct effects. Both SE and 
MM exhibit only weak correlations with achievement, implying their 
contributions are mediated by indirect pathways. The Correlation 
Heatmap above displays the pairwise correlations among four variables: 
prma (Mathematical Achievement), pommh (Mathematical Mindset 
with higher scores indicating a better mindset), pomml (Mathematical 
Mindset with lower scores indicating a better mindset), and poeas (Self-
Efficacy). The heatmap uses color intensity to indicate the strength and 
direction of these relationships, with values ranging from 0 to 1. Key 
observations reveal that Self-Efficacy (poeas) and Mathematical 
Achievement (prma) have a weak positive correlation of 0.14, suggesting 
that while higher self-efficacy is slightly associated with better 
performance, it is not a strong predictor. Similarly, the correlation 
between pomml (growth-oriented mindset) and prma is-0.19, showing 
a weak negative relationship, which aligns with the idea that a growth-
oriented mindset is somewhat associated with better achievement in 
mathematics (see Figure  3). On the other hand, pommh (stronger 
mindset) and prma show a weak positive correlation of 0.14, indicating 
that a stronger mindset is slightly linked to better mathematical 
performance. Further, pommh (strong mindset) and poeas (self-efficacy) 
show a very weak positive correlation of 0.03, meaning a stronger 

FIGURE 3

Relationship between self-efficacy and math achievement by major and gender.
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mindset does not necessarily result in higher self-efficacy. Similarly, 
pomml (growth-oriented mindset) and poeas also show a very weak 
positive relationship (0.03) (Figure 5), suggesting that a more flexible 
mindset does not strongly correlate with self-efficacy.

RQ2: Interview Findings on the Impacts of MM, GM, and SE on 
Neural Mechanisms and Student Behavior.

The provided heatmap offers a visual representation of the 
relationships among four key psychological constructs: Mathematical 
Mindset (MM), Self-Efficacy (SE), Neuroplasticity (NP), and Growth 
Mindset (GM), with a color gradient that indicates the strength of these 
relationships. Darker shades of blue represent stronger correlations, 
while lighter shades signify weaker associations. The heatmap reveals 
several key insights into how these variables interact with each other 
(see Figure 4). First, the relationship between Mathematical Mindset 
(MM) and Self-Efficacy (SE) is the most pronounced, as indicated by 
the darkest blue shade. This strong correlation suggests that students 
with a positive Mathematical Mindset tend to have higher Self-Efficacy, 
supporting previous research that links a positive mindset with 
increased academic confidence and success (Zimmerman, 2000a,b). In 
contrast, Neuroplasticity (NP) shows a weaker correlation with both 
Self-Efficacy (SE) and Growth Mindset (GM), as indicated by lighter 
blue shades. This suggests that Neuroplasticity may influence Self-
Efficacy and Growth Mindset indirectly, rather than through a direct 
or strong relationship.

The hierarchical clustering dendrograms at the top and left of the 
heatmap provide additional insights into the relationships among the 
variables. MM, SE, and NP form a closely related cluster, highlighting 
their shared influence on students’ mathematical beliefs and behaviors. 
The proximity of MM and SE within this cluster underscores their 
strong interdependence in shaping students’ academic confidence. 
However, Growth Mindset (GM) appears in a separate cluster, 
suggesting that it interacts differently with the other variables. This 
separation may point to GM’s distinct role in fostering a growth-
oriented approach to learning, which could have a less direct impact 
on Mathematical Mindset or Self-Efficacy.

Together, these findings provide a nuanced understanding of how 
Mathematical Mindset, Self-Efficacy, and Neuroplasticity interact and 
suggest that Growth Mindset may operate in a more isolated or 

indirect way (Figure  6), influencing Mathematical Achievement 
through different mechanisms.

The neural plasticity pathways in Mathematical Mindset (MM) 
interventions are activated through the dlPFC-Parietallogical networks 
and the ACC-dlPFC error adaptation loop, which together drive 
whole-brain synergistic plasticity (See Table 1). For low-level groups, 
it is recommended to design interventions that include anxiety-
reduction modules, such as mindfulness training, along with tasks that 
encourage strategy diversification. In terms of leveraging Growth 
Mindset (GM) and Self-Efficacy (SE), it is essential to incorporate error 
analysis frameworks to enhance GM and progressive goal-setting 
systems to enhance SE within MM training. This approach can 
accelerate plasticity by reinforcing adaptive cognitive behaviors. Future 
validation of these interventions could involve behavioral experiments 
that monitor strategy flexibility (NP) and anxiety levels (GM/SE), 
providing indirect insights into the associated neural changes. 
Additionally, comparing cognitive strategy diversity—such as the 
number of solutions used—between high and low groups before and 
after the intervention would serve as a marker of neuroplasticity.

Table  2 analysis revealed distinct patterns of change across 
participants with high, medium, and low scores in Mathematical 
Mindset (MM), Growth Mindset (GM), Self-Efficacy (SE), and 
Neuroplasticity (NP). In the High Level group, participants with 
strong MM, GM, SE, and NP exhibited enhanced cognitive 
strategies, such as problem-solving and abstract thinking, alongside 
neural activation in regions related to logical reasoning (dlPFC-
Parietal Network) and error adaptation (ACC-dlPFC). These 
individuals also demonstrated proactive exploration and multi-
sensory learning, suggesting higher levels of neuroplasticity in 
reward and learning circuits (vmPFC-striatum, prefrontal-
hippocampal pathways).In contrast, the Low Level group, with 
lower scores across all constructs, showed limited cognitive 
flexibility, often relying on fixed strategies and exhibiting anxiety 
(amygdala-ACC hyperactivation). This group demonstrated 
reduced neural activation in adaptive learning networks, indicating 
less neuroplastic change. They tended to avoid challenges and 
struggled with developing a growth-oriented mindset. The Medium 
Level group showed moderate improvements in MM and SE, with 

FIGURE 4

Contour plot of the joint distribution of self-efficacy, mathematical mindset, and math achievement.
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neural activity in error adaptation pathways (ACC-dlPFC) but less 
activation in reward anticipation circuits (vmPFC-striatum). 
Although they benefited from the intervention, their neuroplastic 
potential remained underdeveloped, suggesting a need for further 
support in cultivating growth mindset.

Overall, the findings highlight that Growth Mindset significantly 
enhances Mathematical Mindset, Self-Efficacy, and Neuroplasticity. 
The intervention fostered neural and cognitive improvements in 
participants with high levels of GM, while those with lower scores 
required more targeted strategies to stimulate cognitive flexibility 
and neuroplasticity.

5 Conclusion and discussion

5.1 Exploring the combined impact of MM 
and SE on mathematical performance: 
implications for interventions

This study emphasizes the crucial role of Mathematical Mindset 
(MM), Growth Mindset (GM), and Self-Efficacy (SE) in shaping 
students’ mathematical performance through cognitive and 
behavioral mechanisms (Dweck, 2006a,b). Figure 5 illustrates that 

male students showed more consistent post-test improvements, 
while female students exhibited greater variability, with lower-
achieving students demonstrating larger, though more inconsistent, 
improvements. These findings align with previous research 
suggesting that students with lower baseline performance benefit 
more from targeted interventions (Yeager and Dweck, 2012). This 
suggests that students with lower initial performance may benefit 
more from MM interventions, potentially leading to enhanced 
academic achievement. Further exploration in Figure 6 reveals a 
stronger positive correlation between SE and achievement for 
female students, while male students exhibited a weaker correlation, 
except in Technology major where the relationship was reversed, 
highlighting the context-dependent nature of SE’s impact. This 
observation is consistent with research indicating gender differences 
in how self-belief influences performance (Schunk and Ertmer, 
2000), suggesting that interventions targeting SE may need to 
be  tailored by gender and academic context. Additionally, the 
Contour Plot (SE, MM, Achievement) shows the synergistic effect 
of high levels of both MM and SE on achievement. Students with 
high levels of both constructs tend to achieve greater success, 
emphasizing that improving both MM and SE together is more 
effective than isolating interventions for each. Finally, the 
Correlation Heatmap (Figure  3) reveals weak but positive 

TABLE 2 Neural mechanisms and intervention plasticity based on different levels of constructs.

High level MM: Advanced problem-solving, strategic 

thinking, cognitive flexibility. GM: 

Persistence, adaptive learning from mistakes. 

SE: Self-confidence, goal-oriented behavior, 

self-regulation. NP: Exploratory learning, 

multi-modal integration

dIPFC-Parietal network (high-order cognitive control, 

problem-solving) and ACC-dIPFC connection (error 

detection and adaptation)work synergistically. vmPFC-

Striatum(reward processing for goal achievement)and 

Prefrontal-Hippocampus(integration of multiple 

strategies) are highly active, forming a dynamic all-brain 

plasticity network

Intervention enhances executive functions by 

strengthening dIPFC control over cognitive 

strategies, reduces amygdala anxiety 

responses, and supports flexible learning 

strategies via hippocampal activation.

Medium level MM: Logical reasoning, but underdeveloped 

abstract thinking. GM: Effortful but limited 

progress. SE: Moderate confidence, 

dependent on past experience. NP: 

Inconsistent exploration, lack of systematic 

approach

Moderate activation of dlPFC-Parietal cognitive 

networks and ACC-dIPFC error-monitoring circuits, 

but insufficient activation of vmPFC-Striatum reward 

pathways and limited hippocampal strategy integration. 

Neuroplastic potential remains partially untapped.

Intervention should target medium-level 

participants by strengthening error 

adaptation (GM) through targeted feedback 

mechanisms, and integrating a structured 

goal-setting system to enhance SE and 

cognitive flexibility.

Low level MM: Fixed mindset, limited problem-solving 

methods GM: Lack of effort, avoidance of 

challenges. SE: Low self-efficacy, negative 

self-interpretation. NP: Rigid learning 

strategies, reluctance to explore

Amygdala-ACC overactivation (heightened anxiety 

impedes cognitive flexibility),DMN dominance 

(reinforced automatic thought patterns),vmPFC-

Amygdala connection(threat-focused emotional 

response),low neuroplasticity potential

Intervention should aim to reduce amygdala 

overactivation through mindfulness-based 

techniques, while introducing incremental 

cognitive strategies to activate dlPFC and 

encourage flexible thinking.

TABLE 1 Intervention effects on neural mechanisms and behavior in different constructs.

Construct Pre-intervention state Post-intervention changes 
(Hypothesis)

Typical interviewee evidence

MM Anxiety suppression in logical 

reasoning

Enhanced dlPFC-Parietal regulation and 

suppression of anxiety circuits

Interviewee 17:"After breaking down complex problems, l felt 

clearer in my thinking”

GM Fear of mistakes → Avoidance of 

challenges

Strengthened ACC-dIPFC adaptation and 

reduced negative emotions

Interviewee 12:"l improved problem-solving by optimizing 

mistakes”

SE Self-doubt → Goal avoidance Activation of vm PFC-Striatum reward 

pathways, leading to improved confidence

Interviewee 8:"After achieving small goals, felt more willing to 

challenge myself ”

NP Rigid strategies → DMN 

dominance

Strengthened Prefrontal- Hippocampal 

connections and more diverse strategies

Interviewee 5:"Using multi-sensory learning helped me approach 

problems flexibly”
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correlations between SE, MM, and achievement, suggesting that 
these factors have an incremental influence on performance rather 
than being strong independent predictors. The weak correlations 
between mindset measures (pommh and pomml) and SE indicate 
that mindset impacts achievement but does not directly influence 
self-efficacy, reinforcing the complexity of their interaction (Dweck, 
2006a, b). Overall, these findings highlight the importance of 
fostering both MM and SE simultaneously to optimize mathematical 
achievement. However, the influence of GM on MM varies across 
different contexts, as GM is not always consistently present. 
Individuals may exhibit a fixed mindset (FM) in one domain, such 

as language, while demonstrating a growth mindset (GM) in 
another, such as mathematics. To ensure a consistent GM across 
various learning environments, educational settings should 
be designed to actively stimulate and reinforce growth-oriented 
thinking, adapting strategies to specific subject areas and individual 
learning needs.

To concluded, this part highlights the interconnected roles of 
Mathematical Mindset (MM), Growth Mindset (GM), and Self-
Efficacy (SE) in shaping students’ mathematical engagement and 
achievement. Based on these findings, it seems crucial that future 
interventions integrate all three constructs—MM, GM, and 

FIGURE 5

Heatmap of correlations with key variables: prma, pommh, pomml, and poeas.

FIGURE 6

Weight matrix heatmap.
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SE—rather than focusing on just one or two. Tailoring interventions, 
especially for students with lower baseline achievement, could 
be  particularly effective in supporting cognitive adaptation and 
improving learning outcomes. This suggests that students with lower 
performance, which implies that educators could closely monitor their 
progress and provide differentiated support, such as targeted feedback 
on problem-solving strategies and explicit modeling of growth 
mindset language. At the same time, maintaining inclusive classroom 
interactions allows all students, especially those with lower 
achievement, to observe their peers’ persistence and diverse strategies 
(Dewsbury et al., 2022). Such an approach not only avoids the risks of 
fixed-mindset labeling but also leverages the synergies of MM, GM, 
and SE to foster a more supportive and growth-oriented 
learning environment.

5.2 Distinct cognitive and neural 
contributions of MM, GM, and SE to the 
intervention

Mathematical Mindset (MM) is associated with enhanced 
cognitive strategies like problem-solving and abstract thinking, 
supported by neural activation in the dlPFC-Parietal Network and 
ACC-dlPFC connection, which improves error adaptation. This 
leads to greater cognitive flexibility and deeper engagement with 
mathematical challenges. Interview data further supports this, with 
students who exhibited strong MM expressing greater confidence 
and a proactive approach to problem-solving, such as Interviewee 
17, who reported feeling “clearer in my thinking” after breaking 
down complex problems. In contrast, Growth Mindset (GM) is 
linked to neuroplasticity in error-correction and adaptive learning 
networks, particularly enhancing the ACC-dIPFC connection for 
error adaptation and vmPFC-striatum activation for goal 
achievement. GM fosters persistence, resilience, and a belief that 
abilities improve through effort, encouraging students to engage 
more in challenges and adapt positively to setbacks. Interviews 
revealed that students with GM were more likely to view mistakes 
as learning opportunities, as seen with Interviewee 12, who stated, 
“I improved problem-solving by optimizing mistakes.” Self-Efficacy 
(SE) activates the vmPFC-Striatum pathway for goal-directed 
behavior and enhances emotional regulation via the amygdala-ACC 
connection, increasing confidence and cognitive flexibility. SE also 
boosts motivation, persistence, and goal-setting behaviors, with 
Interviewee 8 noting, “After achieving small goals, I  felt more 
willing to challenge myself.”

Cognitively, Mathematical Mindset (MM), Growth Mindset 
(GM), and Self-Efficacy (SE) promote flexibility in unique ways. 
MM enhances strategic problem-solving and abstract thinking, GM 
facilitates error adaptation and learning from mistakes, and SE 
strengthens goal-setting and persistence. High-level participants 
exhibited greater neural and cognitive engagement, activating 
circuits related to error correction, reward processing, and 
flexibility, while low-level participants showed rigid thinking and 
anxiety, limiting their cognitive adaptation. Interview data reveals 
that higher-performing students emphasize growth mindset and 
self-belief, whereas lower-level students display self-doubt and 
avoidance behaviors. GM and MM significantly shape attitudes, 
with GM fostering perseverance and MM boosting confidence in 

problem-solving, while SE supports motivation and reduces 
avoidance. Building on the thematic analysis used to distinguish NP, 
GM, MM, and SE, future research should explore the dimensions 
that can effectively measure students’ GM and MM to further 
understand their impact on learning outcomes.

Neuroplasticity plays a crucial role in fostering cognitive 
flexibility, which is influenced by teaching methods like T2R 
(Teaching to Repeat) and T2V (Teaching to Vary). T2R strengthens 
synaptic connections through repetition, helping students master 
foundational knowledge but potentially limiting cognitive flexibility 
by reinforcing established neural pathways (Kolb and Gibb, 2008; 
Doidge, 2007). In contrast, T2V promotes adaptability by 
encouraging exploration of diverse strategies, fostering new neural 
connections, and enhancing problem-solving (Malabou, 2008; 
O'Donovan, 2010). This aligns with Jo Boaler’s emphasis on using 
open-ended questions to stimulate critical thinking and exploration 
in mathematics (Boaler, 2016). Integrating both T2R and T2V in 
mathematics learning can balance consistency with flexibility, 
reinforcing core skills while encouraging adaptability. Future 
research should incorporate brain activity into intervention design 
by combining these methods to enhance cognitive adaptability and 
improve learning outcomes.

Given the significance of cognitive flexibility and mindset in 
academic success, students with high MM, GM, and SE demonstrate 
improved problem-solving, adaptability, and resilience. However, 
clearer definitions of MM, GM, and SE are needed to better delineate 
their distinct roles and guide more effective interventions. For Lower-
performing students, interventions should prioritize strengthening 
GM and SE to help them overcome challenges and improve cognitive 
flexibility. In conclusion, the distinct roles of MM, GM, and SE in 
cognitive adaptation and academic performance underscore the need 
for a holistic intervention approach. Therefore, it is essential to refine 
the definitions of MM, SE, and GM across different learning 
environments to better tailor interventions and maximize 
their effectiveness.

6 Limitation

Despite the valuable insights gained from this study, several 
limitations should be acknowledged. First, the study is based on 
a relatively small sample of 18 interviews, which limits the 
generalizability of the findings. While the qualitative data offer 
valuable interpretive insights, future research should involve 
larger and more diverse samples. In addition, although this study 
employs thematic analysis to distinguish NP, GM, MM, and SE, 
the dimensions used to measure GM and MM remain 
underdeveloped. Future studies should refine measurement tools 
to provide a more comprehensive assessment of how these 
constructs influence learning outcomes. Second, the study 
highlights the role of GM in influencing MM; however, GM is not 
always consistently present across different domains. An 
individual may exhibit a growth mindset in mathematics but 
maintain a fixed mindset in other areas, such as language 
learning. This variability suggests that the transferability of GM 
across domains needs further investigation, particularly in how 
educational environments can stimulate a domain-specific or 
generalized GM. Third, while the study emphasizes the 
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importance of integrating both T2R and T2V in mathematics 
learning, the extent to which these teaching methods interact 
with neuroplasticity was not directly measured. Future research 
should incorporate brain activity analysis to better understand 
how different instructional approaches shape cognitive 
adaptability and problem-solving skills. Finally, this study 
primarily focuses on high-and low-achieving students, with 
limited exploration of how interventions may benefit those in the 
middle range of MM, GM, and SE. Tailoring interventions to 
different levels of baseline achievement could enhance the 
effectiveness of educational strategies. Additionally, gender 
differences in SE and its impact on achievement suggest the need 
for more targeted approaches that account for variations in self-
belief and learning behaviors. The study was conducted within 
the context of Chinese higher education, where traditional 
teaching methods and cultural attitudes toward learning may 
influence students’ mindsets and self-efficacy. As such, while the 
findings provide valuable insights, their applicability to 
educational settings in other cultural contexts may be influenced 
by cultural differences. Future research should consider both 
baseline achievement levels and cultural factors, as these elements 
can play a significant role in enhancing the generalizability of the 
results to diverse educational environments.
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