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The Ancova model for comparing
two groups: a tutorial
emphasizing statistical
distribution theory

Wolf Schwarz*

Department of Psychology, University of Potsdam, Potsdam, Germany

The analysis of covariance (Ancova) is a widely used statistical technique for

the comparison of groups with respect to a quantitative dependent variable in

such a way that the comparison takes into account concomitant di�erences in

a quantitative covariate. Despite its widespread use, some of the main features

of this technique have remained elusive, contentious, or misconceived in applied

settings. For example, some authors claim that the validity of an Ancova depends

on the assumption that the expected value of the covariate is the same for all

participants, or that the adjusted mean di�erence evaluated in an Ancova has

a useful interpretation as the di�erence between the mean change scores of

each group, whereas these claims are disputed by other authors. I suggest that

these issues are best addressed and settled in the context of the underlying exact

sampling distribution theory since significance statements, e�ect size estimates,

and statistical power all derive directly from the statistical sampling distribution

theory implied by the Ancova model. The distributional approach also clarifies

the central distinction between conditional and marginal means, and the way

in which various study designs (controlled, randomized, observational) a�ect

and modify conclusions derived from an Ancova. The tutorial provides an

explicit distributional account of the standard Ancova model to compare two

independent groups; it clarifies the assumptions underlying the Ancova model,

the nature and limitations of the conclusions it provides, and corrects some

common misconceptions associated with its applications.

KEYWORDS

analysis of covariance, conditional vs. marginal means, gain scores, noncentral

F-distribution, randomized design, observational study

1 Introduction

Empirical studies often aim to compare two or more treatments applied to separate

groups. A standard technique for this purpose is the analysis of variance (Anova), which in

the case of two independent groups is equivalent to an independent samples t−test. In these

techniques the mean variability within each group defines and delimits the resolution with

which differences between the groups can be identified. It is therefore natural to consider

ways to refine this resolution so that the comparison becomes more sensitive, and fewer

units are required to detect a given difference. Effective techniques to achieve this aim are,

for example, blocking, or the use of repeated measures from the same unit (for general

background, see, e.g., Maxwell et al., 2018, ch. 9; Kutner et al., 2004, ch.s 26–29).
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In the case of two groups, blocking typically uses a covariate

to form pairs (blocks) of units that are as similar as possible with

respect to the covariate. Treatments are then randomly assigned to

one or the other member of any given pair; this procedure serves

to make the two groups more similar on average. Blocking leads

to more sensitive comparisons of the treatments, as potentially

relevant differences in the covariate between the units are balanced

more systematically than under unconstrained randomization.

However, the technique of blocking requires that the covariate is

available before the units are assigned to treatment groups, and

with quantitative covariates it ignores the residual variability of

the covariate within blocks (for a discussion of further limitations

of blocking, see Maxwell et al., 2018, ch. 9; Schwarz and Reike,

2018; Schwarz, 2008). A widely used technique that makes use of

all the quantitative information in the covariate is the analysis of

covariance (Ancova; Huitema, 2011; Kutner et al., 2004, ch. 22;

Schneider et al., 2015; Senn, 2006; Vickers and Altman, 2001). I

illustrate typical Ancova applications by two examples, Study A

and B.

1.1 Study A

To compare how much time it takes consumers to empty

a straight (cylindrical) vs. curved (truncated cone) glass of beer

(volume in both cases 12 fl oz), naive subjects were randomly

assigned to two treatment groups defined by glass shape (for a

detailed study, see Attwood et al., 2012). As a potentially relevant

covariate, a questionnaire score was obtained at the end of the study

from all participants which assessed the urge to consume alcoholic

beverages so as to control the comparison related to glass shape for

potential base differences of drinking habits. Here, the treatment

variable defining the groups is the shape of the glass, the dependent

variable is the drinking time, and the covariate is the questionnaire

score.

1.2 Study B

The high jump performance of randomly selected male and

female high-school graduates were compared. As a covariate, the

body height of each graduate was recorded, so as to control the

comparison related to gender for potential differences on this

variable. Here, the variable defining the groups is gender, the

dependent variable is the performance (maximum height jumped

over) of the graduate, and the covariate is his/her body height.

Note that in neither Study A nor B did the researcher exert

any direct control over the covariate. Rather, the covariate values

arise with the specific participants who are randomly sampled,

and these values would clearly change in any replication of either

study. Study A uses a randomized design; consequently, in many

hypothetical replications of that study the long-run average of

the covariate would not be expected to differ between the two

groups, although of course in each individual sample, the means

would typically be different. In contrast, even though the male

and female graduates were randomly selected in Study B, the

assignment of a particular participant to the two gender groups is

not under the control of the researcher. Therefore, any covariate

that differs between these two groups could be at least partially

responsible for the differences in the dependent variable. When

using body height as a covariate, the investigator asks whether there

would be a systematic difference in the high jump performance

of male vs. female graduates if these graduates were the same

height. The question is clearly counterfactual, because it is well-

established that male and female graduates differ systematically

in height. Addressing this counterfactual aspect clearly requires

some form of model-related assumptions in order to arrive at

valid interpretations of an Ancova in observational designs (e.g.,

Huitema, 2011, ch. 8; Lord, 1967).

Expositions of the Ancova typically represent its central

assumptions indirectly, for example in graphical form with Venn

or flow diagrams, by focusing on detailed numerical calculations

within a single specific sample, or by analogy to regression

modeling. It is plausible that this indirect way of presenting

the Ancova model has contributed to various ambiguities and

controversies regarding, for example, the assertion that for an

Ancova to be valid all participants must have the same expected

value of the covariate (e.g., Schneider et al., 2015), or that (if

the dependent variable and the covariate are commensurate) the

adjusted mean difference evaluated in an Ancova represents the

difference between the mean change scores of each group (e.g.,

Vickers andAltman, 2001). Surprisingly few accounts in the applied

Ancova literature are based on the actual sampling distributions

associated with the Ancova (for some exceptions at a technically

advanced level, see Schneider et al., 2015; Shieh, 2017, 2021).

This is unfortunate, because the central topics associated with an

Ancova are best understood directly in terms of the underlying

exact sampling distribution theory, which greatly helps to clarify

the assumptions underlying the Ancova model, to understand the

nature and limitations of its conclusions, and to correct various

misconceptions related to its applications. More specifically,

significance statements, effect size estimates, and statistical power

are all ultimately derived from the statistical distribution theory

underlying the Ancova model. In addition, the statistical sampling

theory also helps to understand the influence on statistical power of

the correlation between the dependent variable and the covariate,

and the profound effect of various sampling designs (controlled,

randomized, observational) on the conclusions that can be derived

from an Ancova.

The aim of the present tutorial is therefore to provide an

accessible and succinct account of the sampling theory that

underlies the standard statistical Ancova model for comparing

two independent groups. Specifically, I explain the application of

these sampling distribution results to power computations, to the

relation to gain score analyses, and to the effect of the study design.

The general discussion will also explain how the contentious issues

referred to above are clarified within the more general framework

of exact sampling distribution theory.

2 The standard Ancova model for
comparing two groups

Denote as yij the sample values of the dependent variable, and

as xij the corresponding values of the covariate; the index i = 1, 2

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1600764
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Schwarz 10.3389/fpsyg.2025.1600764

FIGURE 1

Standard Ancova model for random covariates with standardized

parameters 1µy = 1, 1µx = 1, and ̺ = 0.6. Abscissa: covariate x,

ordinate: dependent variable y. Part of the net mean group

di�erence 1µy = 1 in the dependent variable y can be explained in

terms of the mean group di�erence in the covariate x, namely,

β 1µx = 0.6, so that there remains an adjusted mean di�erence

equal to 1µy − β 1µx = 0.4. The H0 is that in the population the

mean di�erence in y is as predicted, via the regression coe�cient β,

by the di�erence in the covariate means, that is, 1µy = β 1µx. The

Ancova group test evaluates whether the sample 1y di�ers from

b1x by more than chance.

denotes the group, and j = 1, . . . , n the unit within each group. As

in the case of a simple t−test, a principal aim then is to test for a

difference in the population means of the dependent variable. The

specific feature of an Ancova is that it takes the covariate values xij
into account in order to carry out that test.

To this end, a number of assumptions are required, as follows.

In the standard Ancova model (Figure 1) the dependent variable

y and the covariate x follow, separately in each group, a bivariate

normal distribution. The variance–covariance matrix of these

distributions is arbitrary but it must be identical in both groups.

Let the population variances of the covariate x and the dependent

variable y be denoted as σ 2
x , σ

2
y , and their within-group correlation

as ̺. These assumptions imply that in both populations the slope of

the regression of y on x is equal to β = ̺
σy
σx
. The population means

of x, y in group 1 are µx1 ,µy1 , respectively, and they are µx2 ,µy2

in group 2. It is convenient to denote as 1µy = µy1 − µy2 , and

correspondingly 1µx = µx1 − µx2 . In the following this set of

standard assumptions is referred to as the bivariate normal Ancova

model (cf., Schneider et al., 2015; Winer et al., 1991, p. 770ff).

In an alternative Ancova model variant the covariates xij are

considered to be fixed (e.g., Cohen, 2009, ch. 9; Maxwell et al., 2018,

ch. 9). Significance statements and parameter estimation then refer

to hypothetical replications always using the same, given values xij

of the covariate. This fixed-covariate model may be interpreted as

a special case of the model in Figure 1, such that it corresponds to

the bivariate normal model but conditional on the realization of

a specific set of values xij. While the fixed and random covariate

frameworks test the same hypotheses, the difference between them

is crucial for power analysis and sample-size planning (cf., Shieh,

2017, 2021). The fixed-covariate model is plausible, for example,

when the covariate is limited to a small set of fixed values which are

under the control of the investigator (e.g., when the participants of

a study comparing two drugs are paid 100, 125, 150, 175, or 200

USD for their participation), and the intended inference is limited

to these specific values. In more typical Ancova applications such

as studies A and B, though, the investigator has no direct control

over the covariate values, and then the appropriate assumption

clearly is that hypothetical replications will generate a different

set of covariate values, as assumed under the bivariate normal

model. In many Ancova applications, the dependent variable and

the covariate actually measure the same variable before and after a

treatment; it is then inconsistent to treat the first measurement of

that variable as fixed but the second as random.

The basic conceptual logic underlying an Ancova group

comparison is simple, even if this simplicity tends to be clouded

by technical details. Suppose the dependent variable is related to

the covariate in the manner shown qualitatively in Figure 1, and

that the treatment exerts no genuine effect of its own. Then we

would expect that the group means of y differ by an amount that

is proportional to the group difference in the covariate, as indicated

by the within-group regression slope. To the degree that the actually

observed difference in the group means of y differs from that

prediction, there is evidence that the treatment adds a separate

effect that can not simply be ascribed to differences in the covariate.

A central consideration of the Ancova is that even when the

treatments are allocated at random to the units (so that µx1 = µx2 ,

as would be expected in Study A) in any particular sample the

means of the covariate will practically never be exactly the same

in the two groups, just as even a perfectly symmetric coin will in

100 tosses rarely land on head and tail exactly 50 times. There will

then nearly always be some imbalance in the sample with respect to

the covariate, and if differences in the covariate are associated with

differences in the dependent variable, the comparison is biased.

This point applies with even more force when there are systematic

differences with respect to the covariate between the two groups

(i.e., when µx1 6= µx2 ), as would be expected in non-randomized

studies using intact (pre-existing) groups, such as Study B above.

An Ancova seeks to compare the means of the dependent variable

based on a statistical adjustment of these potential imbalances.

In the notation above, the population regressions (i.e., the

conditional expectation of the dependent variable y, given a specific

covariate value of x) for the groups are

ŷ1 = (µy1 − βµx1 )+ βx (1.a)

ŷ2 = (µy2 − βµx2 )+ βx (1.b)

The assumption of a common variance-covariance matrix implies

that the regression lines in the two groups are parallel, as shown in

Figure 1. Thus, for any specific value x of the covariate the expected

difference in the dependent variable, that is, the vertical separation
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of the regression lines ŷ1 and ŷ2 in Figure 1, is independent of x,

and equals

ŷ1 − ŷ2 = (µy1 − βµx1 ) − (µy2 − βµx2 )

= (µy1 − µy2 ) − β(µx1 − µx2 ) = 1µy − β1µx (2)

If the treatment has no effect in the population then we expect

no difference in the dependent variable for any given value x of

the covariate. In view of Equation 2, the H0 of the Ancova group

comparison thus states that in the population

1µy = β1µx (3)

The Ancova between-group test evaluates if the corresponding

sample estimates 1y and b1x differ by more than chance.

Note especially that the H0 tested by an Ancova is not that the

marginalmeans of the dependent variable are equal,µy1 = µy2 (i.e.,

1µy = 0), as would be the case in a standard t−test ignoring the

covariate x. Rather, the H0 in an Ancova group comparison is that

the means of the dependent variable are equal after they have been

adjusted for imbalances of the covariate. Specifically, in Study B the

H0 tested by an Ancova asserts that male and female graduates of

the same height would on average show the same performance.

Two special cases illustrate the nature of the logic of adjustment

underlying an Ancova particularly well. In a randomized design we

must have 1µx = 0, as each unit is equally likely to receive the one

or other treatment. Thus, differences in the covariate between the

two groups are unsystematic, and will arise only on a random basis,

as in Study A. Even if random, in any specific sample there will

still arise a nonzero difference 1x of the covariate sample means,

and the Ancova then adjusts the comparison of the means of the

dependent variable for this random component.

Another special case arises when the covariate is unrelated to

the dependent variable, ̺ = 0, which implies that the population

regression slope β = 0. There may then well be (random or

systematic) differences between the two groups regarding the

covariate but these differences would not systematically influence

the comparison of themeans of the dependent variable. Again, even

if x and y are unrelated in the population, in any specific sample

the slope estimate b would typically not be equal to zero, and an

adjustment would be applied to compare the means. As explained

below, if ̺ = 0 this adjustment adds a noise component that

reduces the sensitivity of the comparison, relative to an analysis

igoring the covariate altogether.

3 Sample statistics and main
distributional results

Let the sample means of the covariate and the dependent

variable in group i = 1, 2 be denoted as xi and yi, respectively. Their

differences in the sample are

1x = x1 − x2 (4.a)

1y = y1 − y2 (4.b)

In the usual summation notation the sample sums of squares and

products are

sxx =

2∑

i=1

n∑

j=1

(xij − xi)
2 (5.a)

syy =

2∑

i=1

n∑

j=1

(yij − yi)
2 (5.b)

sxy =

2∑

i=1

n∑

j=1

(xij − xi)(yij − yi) (5.c)

Note that all sums are taken relative to the means of their respective

group, i. The sample estimate of the (common) slope β , and the

sample estimate of the (common) squared correlation ̺2 are then

b =
sxy

sxx
and r2 =

s2xy

sxx · syy
(6)

The mean squared error of the bivariate normal Ancova model

is estimated in the sample as

MSE = (1− r2) ·
syy

2n− 3
(7)

which is nearly always, and often considerably, smaller than the

MSE of
syy

2n−2 in an Anova of the dependent variable.

The sample estimate of the mean squared treatment effect,

adjusted for the covariate is

MST =

(
1y− b1x

)2

2
n

[
1+ n

2
(1x)2

sxx

] = n(n− 1) ·

(
1y− b1x

)2

2(n− 1)+ f
(8)

Note that if the covariate means do not differ in the two samples

(1x = 0) then MST reduces to the standard expression n
2 · (1y)2

used in the analysis of variance. The conceptually important

quantity f in Equation 8 is defined as

f = n(n− 1) ·
(1x)2

sxx
=

n

2
·

(
1x

sx

)2

(9)

where s2x = sxx/[2(n − 1)] is the usual unbiased sample estimate

of the variance σ 2
x ; note that 1x

sx
is Cohen’s standardized mean

difference dp (Goulet-Pelletier and Cousineau, 2018). According

to Equation 9, the sample statistic f is equal to the value of the

standard statistic t2
2(n−1)

= F1,2(n−1) used to compare the covariate

means x1 and x2 in the two groups
1. It thus measures the imbalance

of the sample covariate means between the two groups; according

to Equation 8, large values of f will generally reduce the value of

MST. As a rough rule of thumb, for n > 5 a value of about f > 5

suggests that the covariate means differ by more than chance.

The F−statistic for the comparison of the adjusted groupmeans

is, as usual, computed in the sample as the ratio of the treatment and

error mean squares

F1,2n−3 =
MST

MSE
(10)

1 The notation tm denotes a t−distributed variate with m degrees

of freedom. Similarly, Fm,n denotes an F−distributed variate with m

numerator and n denominator degrees of freedom.
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If the H0 described in Equation 3 is true, that is, if 1µy = β1µx,

then the sample statistic defined in Equation 10 has a central

F1,2n−3−distribution. This result ensures that we can compare the

sample statistic F1,2n−3 to the critical F−value at the desired level of

significance. As explained below, this remains true even when the

covariates xij are considered as fixed values.

Alternatively, the t−statistic for the adjusted mean difference

takes the standard form

t2n−3 =
1y − b1x

s.e. (1y − b1x)
(11)

and the standard error of the adjusted mean difference is estimated

in the sample as

s.e. (1y − b1x) =

√
MSE ·

2

n
·

[
1+

n

2
·
(1x)2

sxx

]
(12)

(for related results, see Groß and Möller, 2024). Again, if

1µy = β1µx, then the sample statistic defined in Equation 11

has a central t2n−3−distribution. From Equations 7, 8, the statistic

F1,2n−3 in Equation 10 for the Ancova group comparison is equal

to the square of the statistic t2n−3 in Equation 11, and in this sense

the two approaches based on t or F are equivalent.

From Equation 11, the point estimate of the adjusted mean

difference is1y − b1x, and its two-sided 1−α confidence interval

is computed as

C.I.1−α = (1y − b1x) ± t2n−3(α/2) · s.e. (1y − b1x) (13)

The H0 :1µy = β 1µx is rejected by the t− or the F−test at

the significance level α if and only if the confidence interval C.I.1−α

does not contain the value of zero. From Equation 12, the standard

error of the adjusted mean difference increases with the sample

imbalance 1x of the covariate between the two groups, and when

1x = 0 it reduces to the standard form for the difference of two

means.

We next turn to the expectation and distribution of these

sample statistics under the bivariate normal model in the general

case, that is, without assuming the H0 to hold; as always,

distributional results for the non-null case are needed in order to

compute statistical power.

The sample estimate MSE of the mean squared error in

Equation 7 is unbiased; its expectation thus equals that part, σ 2
e say,

of the variance in the dependent variable not accounted for by the

covariate

E[MSE] = (1− ̺2) σ 2
y = σ 2

e (14)

The sample estimate MST of the adjusted treatment mean square

in Equation 8 depends on the individual covariate values xij only

through the mean difference 1x and the sample statistic f as

defined in Equation 9. Given f , the conditional expectation of MST

is (cf., Sprott, 1970, Equation 5; Schneider et al., 2015, Equation

B11)

E[MST|f ] = (1µy − β1µx)
2 ·

n(n− 1)

2(n− 1)+ f
+ σ 2

e (15)

As expected, if the H0 :1µy = β1µx tested by the Ancova holds,

then E[MST|f ] reduces to σ 2
e , the expectedMSE. Note that if f = 0,

then E[MST|f ] will exceed σ 2
e by the amount n

2 (1µy − β1µx)
2.

Recall that the statistic f evaluates the sample imbalance of the

covariate between the two groups. To the degree that f is greater

than zero it will reduce the amount by which E[MST|f ] exceeds σ 2
e ,

that is, it will reduce power.

In the bivariate normal Ancova model the covariate values

xij have a normal marginal distribution within each group, with

possibly different means but equal variance. Therefore, the sample

statistic f defined in Equation 9 is distributed as a noncentral

F−variate

f ∼ F1,2(n−1),λ (16)

where the noncentrality parameter λ has the standard form

λ =
n

2
·

(
1µx

σx

)2

(17)

If the expected values of the covariate do not differ between the

groups—for example, because a randomized design, as in Study

A above, is used—then 1µx = 0, and in this case f has a central

F−distribution, that is, λ = 0.

Integrating Equation 15 across the density of f , the

unconditional expected mean square of the treatment is (cf.,

Schneider et al., 2015, Equation B13)

E[MST] = (1µy − β1µx)
2 ·

∫ ∞

0

n(n− 1)

2(n− 1)+ f
· q1,2(n−1),λ(f ) df + σ 2

e (18)

where q1,2(n−1),λ is the density of f , that is, of a noncentral

F1,2(n−1),λ, with noncentrality parameter λ. Note that f depends

only on the covariates xij, and so the integral in Equation 18

depends only on the marginal distribution of the covariates xij, and

is independent of the parameters µyi , σ
2
y , and ̺ of the basic model

in Figure 1. In essence, it is a multiplier of (1µy−β1µx)
2, defined

by the features, as summarized by λ, of the (normal) marginal

distribution of the covariate. It may be shown that if1µx = 0, as in

randomized designs, then E[MST] reduces to σ 2
e +

n(n−1)
2n−1 · (1µy)

2.

The conditional distribution function of the Ancova sample

F−value, given the statistic f , may be written as

P
(
F =

MST

MSE
≤ t

∣∣∣∣ f
)

= P(F1,2n−3,k ≤ t|f ) (19)

where F1,2n−3,k follows a noncentral F−distribution with df equal

to 1 and 2n− 3, and noncentrality parameter k, defined by

k = k(f ) = n(n− 1)

(
1µy−β1µx

σe

)2

2(n− 1)+ f
(20)

If the sample means of the covariate are equal (1x = 0) then f = 0,

and the noncentrality parameter k reduces to the standard form

n
2 ·

(
1µy−β1µx

σe

)2
, whereas greater values of f will reduce the value

of k.

The result Equation 19 is conditional on the xij, as summarized

by f . As the noncentrality parameter k = k(f ) in Equation 19
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depends on the statistic f , we get the unconditional distribution

of the sample F statistic by integrating the conditional distribution

function across the density q1,2(n−1),λ of f , which leads to a mixture

of the family F1,2n−3,k across its noncentrality parameter k. The

unconditional distribution function of the sample F statistic may

thus be represented as

P(F =
MST

MSE
≤ t) =

∫ ∞

0
P(F1,2n−3,k(f ) ≤ t|f ) · q1,2(n−1),λ(f ) df (21)

where q1,2(n−1),λ is as above. In essence, the sample F−value

follows a mixture of noncentral F−distributions, with a mixing

distribution that is itself a noncentral F−distribution, namely,

q1,2(n−1),λ.

Equation 21 is a central result that may be used to compute

statistical power in the general case under the bivariate normal

model (cf., Shieh, 2017, 2021). An important general implication

of Equation 21 is that in an Ancova with random covariates

the sample F statistic does not follow a standard noncentral

F−distribution but has the more complex mixture structure

indicated in Equation 21. If, in contrast, the covariates xij are

considered as fixed (e.g., Cohen, 2009, ch. 8.3.5), then one would

use the conditional distribution P
(
F1,2n−3,k ≤ t

∣∣ f
)
of Equation 19,

where the noncentrality parameter k = k(f ) defined by Equation 20

is determined by the value of f as given by the fixed xij in the way

prescribed by Equation 9.

Note, however, that the noncentrality parameter k = k(f ) given

in Equation 20 is generally zero if the null hypothesis1µy = β1µx

holds, independent of the sample statistic f , which depends only

on the covariates xij. In this case, in Equation 21 the first factor

of the integrand (which then becomes a central F−distribution

function, k = 0, with df of 1 and 2n − 3) may be taken before

the integral sign, and the remaining integral across the density

q1,2(n−1),λ necessarily evaluates to 1. Accordingly, in the null case

of H0 :1µy = β1µx the empirical Ancova F will always follow

the central F1,2n−3−distribution, both with fixed and with random

covariates. However, in the non-null case 1µy 6= β1µx the

computation of statistical power or required sample sizes must be

based on Equation 21 when the covariates vary randomly, or on

Equation 19 when the covariates are considered as fixed (cf., Shieh,

2017, 2021).

4 A numerical example

These results can be illustrated using the fictitious data set

shown in Table 1, Figure 2.

Two groups comprising n = 5 participants each weremeasured

on the dependent variable y and on the covariate x. The sample

covariate means are x1 = 31 and x2 = 32, a difference

of 1x = −1. The sample means of the dependent variable are

y1 = 46 and y2 = 35, so that 1y = 11. The sample sums of squares

and products are sxx = 2366, syy = 744, and sxy = 1143. From

these values by Equation 6 we have b = 0.483 and r2 = 0.742.

Thus, there is a positive relation between x and y, and a slight

covariate imbalance favoring group 2. The estimate of the adjusted

TABLE 1 Two groups comprising n = 5 participants each were measured

on the dependent variable, y, and on the covariate, x.

Participant Group 1 Group 2

within
group

covariate
x

dep.
variable y

covariate
x

dep.
variable y

1 43 44 52 45

2 33 50 11 27

3 19 37 22 26

4 7 38 40 45

5 53 61 35 32

means 31 46 32 35

The data set is shown in Figure 2.

FIGURE 2

Two groups (group 1: squares, group 2: dots) comprising n = 5

participants each were measured on the dependent variable y

(ordinate) and on the covariate x (abscissa). The adjusted mean

di�erence, equal to 11.48, is shown as the vertical separation of the

parallel regression lines.

mean difference, shown as a vertical line in Figure 2, equals

1y− b · 1x = 11.48, and by Equations 12, 13 the corresponding

95%−confidence interval is [3.66, 19.30]. Using Equations 7, 8, 10

the Ancova group comparison sample value F1,7 = 12.02, giving

p = .011. By comparison, for the same data set an Anova of the

change scores produces F1,8 = 3.49, p = .099, and an Anova of

the dependent variable alone, disregarding the covariate altogether,

gives F1,8 = 3.25, p = .109.

5 General discussion

What exactly can be concluded under the bivariate normal

Ancova model shown in Figure 1 from a significant F−value

computed from the sample data in the way indicated by

Equations 4–10? Regardless of the design used, a significant sample

F indicates, at the chosen level of significance, that the mean

group difference in the dependent variable, adjusted for (i.e.,

conditional on) the covariate, is greater than would be expected

by chance. A corresponding confidence interval for the adjusted

mean difference can be computed as indicated in Equation 13,
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which will, in a proportion of 1 − α of all samples, cover the true

adjusted mean difference for any set of parameters of the model

in Figure 1, including, specifically, the case in which 1µx 6= 0

(cf., Senn, 2006). This most basic form of an Ancova-related

conclusion addresses the purely statistical question of whether the

observed adjusted mean difference is greater than the error margin,

and not the question of how to interpret any such difference. It

essentially states that the adjustedmeans differ systematically, but—

up to ruling out the effect of the covariate—it leaves open why

they differ.

As in other research contexts, more specific causal

interpretations of significant results depend critically on the

design of the study (e.g., Huitema, 2011, ch. 8). Specifically, under

a nonrandomized design, even a significant mean difference,

adjusted for the chosen covariate, can still be related to other,

uncontrolled covariates rather than to the factor defining the two

groups. In the case of Study B, even if male and female graduates

of the same height differ in the maximum height jumped over,

this adjusted effect might still be unrelated to gender per se, but

may reflect, for example, that better training opportunities were

provided for male graduates. In a nonrandomized design, an

Ancova clearly provides no firm basis to attribute a significant

adjusted mean difference in high jump performance, specifically,

to the group variable gender, even though it does provide a valid

evaluation of the statistical significance of the adjusted mean

group difference (for a recent account of how to interpret effects

in observational designs in terms of acyclic directed graphs,

see Cinelli et al., 2024). On the other hand, in the context of

a randomized study a significant difference in the adjusted

means can be attributed specifically to the factor that defines

group membership. For example, in the randomized Study A,

a significant mean difference in drinking time, adjusted for the

urge to consume alcoholic beverages, leads to the more specific

interpretation that the glass shape was the cause of the adjusted

differences observed.

These main forms of potential conclusions that can be drawn

from an Ancova are complemented by various aspects related to

the application and interpretation of an Ancova, which I discuss

next in turn.

6 The standardized Ancova model

It is readily seen from the basic distributional features, such

as Equations 9, 17, 20, that as far as significance and power are

concerned the bivariate normal Ancovamodel may be standardized

with no change of probability statements. Specifically, we may

set µx2 = µy2 = 0 and σx = σy = 1 in which case only

three effective parameters of the standardized population model

remain. These three parameters are the standardized distance

1µy of the marginal group means in the dependent variable

y, the standardized distance 1µx of the marginal group means

in the covariate x, and the correlation ̺ of x and y which in

the standardized model is equal to the within-group regression

slope β . Therefore, any parameter combination within the general

bivariate normal population model may be reduced to the more

manageable standardized Ancova model without affecting power

and significance.

7 Statistical power as a function of the
correlation between the covariate and
the dependent variable

Equation 21 may be used to address the practically relevant

question: Which correlation ̺ should the covariate and the

dependent variable ideally have in order to maximize power?

To address this point succinctly, I will use the standardized

formulation of the bivariate normal Ancova model. As we will see,

the answer depends on whether the study is randomized (so that

1µx = 0, as in Study A) or not (1µx 6= 0, as in Study B).

In principle, increasing the correlation ̺ has two quite separate

effects. First, by Equations 7, 14 an increase in ̺ reduces the error

variance σ 2
e = σ 2

y (1 − ̺2), which by Equation 10 in turn increases

the empirical F1,2n−3−values for the adjusted group comparison,

and thus power. Second, all other aspects equal, an increase of ̺

also increases the regression slope β = ̺
σy
σx
, and thus typically

reduces the size1µy−β ·1µx of the adjusted mean difference (cf.,

Figure 1). Put simple, more of the total increase1µy in mean ymay

then be explained on the basis of the increase 1µx in mean x. The

first of these counteracting effects will tend to be dominant if1µx is

small or zero, but if 1µx is medium or large then increasing ̺ may

entail a considerable loss of power. I discuss these two scenarios

separately.

If 1µx = 0 then for any ̺ (and thus any β) Equation 3 for

the Ancova group comparison reduces to testing H0 :1µy = 0.

Figure 3 indicates that for 1µx = 0 statistical power then generally

increases as ̺2 increases. For ̺ = 0 power is slightly lower than that

of an independent t−test that ignores the covariate altogether. The

reason is that for ̺ = 0 the regression-based Ancova adjustment

of the sample means leads to a loss of one degree of freedom,

and adds a noise component that reduces the sensitivity of the

comparison. This effect is typically small unless n is very small, and

it is soon compensated and then superseded as ̺2 increases. Thus,

in a randomized study a covariate that correlates strongly with the

dependent variable within each group will be useful in increasing

power.

These simple relations become considerably more complex

if 1µx 6= 0, as illustrated in Figure 4 for the case of

1µx = 1. By Equation 3, the Ancova group comparison tests if

1µy − β1µx = 0, and in the standardized model version we have

β = ̺. Therefore, the H0 holds if ̺ =
1µy

1µx
, at which point the

power function reaches its minimum, the level α.

For example, in the left panel of Figure 4 (1µy = 0.5) the

adjusted mean difference 1µy − β1µx falls to the H0 value of

zero at ̺ = β = 0.5, at which point the power curve reaches

the minimum value of α = .05. In the middle panel (1µy = 1.0)

that minimum is just reached at the maximum correlation, ̺ = 1.0,

when 1µy − β1µx = 0, so that in this scenario power generally

decreases as the correlation ̺ increases. In the right panel of

Figure 4 (1µy = 1.5) the adjusted mean difference 1µy − β1µx

remains positive even for the strongest correlation but it declines

as ̺ = β increases. However, beyond ̺ = 0.67 this decline is

more than compensated by the simultaneous reduction of the error

variance σ 2
e , so that power increases again beyond that point. In

summary, to maximize power in a nonrandomized study design

(1µx 6= 0) it is critical to select a covariate whose correlation with
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FIGURE 3

Power (ordinate) of the Ancova group comparison (a) and of a gain score analysis (b) as a function of ̺ (abscissa). In all plots 1µx = 0, σx = σy = 1,

n = 10, and α = 0.05. Left, middle, right panel: 1µy = 0.5, 1.0, 1.5. The horizontal lines (c) show the power of the corresponding t−test of the means

of the dependent variable, ignoring the covariate altogether. For 1µx = 0 all three analyses test the same H0 :1µy = 0.

FIGURE 4

Power (ordinate) of the Ancova group comparison (a) as a function of ̺ (abscissa). In all plots 1µx = 1, σx = σy = 1, n = 10, and α = 0.05. Left, middle,

right panel: 1µy = 0.5, 1.0, 1.5. The horizontal lines (b) show the power of the corresponding t−test of the means of the dependent variable, ignoring

the covariate altogether.

the dependent variable is not close to ̺ =
1µy

1µx
in the neighborhood

of which the power curve drops to a minimum of α.

8 Ancova and gain score analysis

In some study designs to which an Ancova is applied, the

covariate and the dependent variable are commensurate—typically

measuring the same variable before and after a treatment. In such

cases, a popular alternative to an Ancova is the comparison between

groups of the mean difference, or gain, scores yi − xi, and the

hypothesis being tested is that in the population the mean gain

scores are the same in both groups. In the present notation, an

equivalent formulation of this hypothesis is H0 :1µy = 1µx. A

gain score analysis tests this H0 by a t−test or an Anova comparing

the mean gain scores between the two groups. In the latter case, the

sample F−value has 1 and 2(n − 1) degrees of freedom, and the

associated noncentrality parameter is readily shown to be

θ =
n

2
·

(
1µy − 1µx

σy−x

)2

(22)

where σ 2
y−x = σ 2

x + σ 2
y − 2̺σxσy. Note that as ̺ decreases the

noncentrality parameter θ – and thus the statistical power of a gain

score analysis – generally decreases.

It is essential to appreciate the relationship between an Ancova

and a gain score analysis (e.g., van Breukelen, 2006; Samuels, 1986;

Senn, 2006). The formulation of the H0 :1µy = 1µx underlines

the central point, first emphasized by Lord (1967), that in general

a gain score analysis and an Ancova test different hypotheses,

each of which may or may not be rejected for any given data set.

Specifically, an Ancova focuses on (the differences in) conditional

means—namely, of y, given x—whereas a gain score analysis

focuses on (the differences in)marginalmeans.

Comparing the H0 :1µy = 1µx of a gain score analysis

to the corresponding Ancova formulation H0 :1µy = β1µx in

Equation 3, we see that under the general bivariate normal model in

Figure 1 the two hypotheses tested will coincide if either 1µx = 0

(i.e., under a randomized design) or β = 1. Note that although

the hypothesis tested under those two scenarios is the same, the test

statistic computed from the sample in a gain score analysis and in an

Ancova is not, as can be seen from the fact that the sample F−values

have (1, 2n − 2) degrees of freedom for a gain score analysis, and

(1, 2n − 3) for an Ancova. Also note that under the model in

Figure 1, the gain scores in both groups are in any case—not just

for β = 1 or 1µx = 0 – normally distributed with equal variance,

and thus satisfy the formal requirements of a valid t− or F−test.

Figure 3 illustrates that when the variances of the covariate and the

dependent variable are equal (σ 2
x = σ 2

y ) then for all correlation

levels and for all effect sizes, an Ancova is more powerful than a
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gain score analysis under a randomized design (i.e., 1µx = 0).

When the variances are unequal (σ 2
x 6= σ 2

y ), which is necessarily

the case when β = ̺
σy
σx

= 1, then an Ancova is not uniformly more

powerful than a gain score analysis.

9 Power as a function of the study
design

Equations 20, 21 also explain why the statistical power of

an Ancova depends critically on the study design. Specifically,

the study design determines the noncentrality parameters k in

Equation 20 and λ in Equation 17, and according to Equation 21

power will increase with k and decrease with λ.

In a controlled design, the researcher choses deliberately

all values xij of the covariate, typically such that x1 = x2.

Therefore, in Equation 9 the quantity f = 0 in each sample.

As indicated by Equation 19 for f = 0, the Ancova sample

statistic F1,2n−3 as defined in Equation 10 then follows a standard

noncentral F−distribution, with a noncentrality parameter

k that takes, by Equation 20, the simplified standard form

k = n
2 ·

(
1µy

σe

)2
.

In a randomized design, the units are assigned at random to

their treatment group (cf., Study A). In this case 1µx = 0; the

sample means x1 and x2 will then be equal, not in each individual

sample, but in expectation, which implies λ = 0. In a randomized

design the Ancova sample statistic F1,2n−3 follows no longer a

standard noncentral F−distribution (as it does under a controlled

design), but rather a mixture of noncentral F−distributions, and

the noncentrality parameter k in Equation 20 then takes the form

k = n(n−1)
2(n−1)+f

·

(
1µy

σe

)2
which is smaller than in a controlled design,

indicating some loss of power.

In an observational design, the researcher has no control over

the covariates, and compares pre-existing (“intact”) groups, in

which typically 1µx 6= 0, which implies λ > 0. In this case,

the full form given in Equation 20 applies, and the noncentrality

parameter kwill in typical applications be smaller than in controlled

or randomized designs. This is because the sample statistic f

measuring the covariate imbalance tends to be larger in an

observational design, which by Equation 20 reduces k. Thus, other

things equal the power of the Ancova group comparison is largest

in controlled designs with x1 = x2 (and so f = 0), it is

intermediate for randomized designs (µx1 = µx2 ), and it is lowest

with observational designs (µx1 6= µx2 ).

10 Conditional vs. marginal means

As indicated by Equations 1, 2, the Ancova model compares

conditional group means, namely, the conditional means of the

dependent variable y given some specific value x of the covariate.

In contrast, standard Anova or t−tests and gain score analyses

comparemarginalmeans. This important conceptual distinction is

sometimesmisunderstood. For example, in their otherwise eminent

treatment Schneider et al. (2015, p. 2) state that “it is not so

widely-known that the validity of an Ancova also depends on [the]

assumption ... that the expected value of the covariate is the same

for all of the participants in the experiment”. Accordingly, they

conclude (p. 3) that “the statistical [Ancova] test for the between-

subject main effect is not valid unless µd = 0” [i.e., 1µx = 0,

in the present notation]. The distributional results summarized by

Equations 19–Equation 21 clearly indicate that this conclusion is

incorrect. Even if 1µx 6= 0, the statistical Ancova model as shown

in Figure 1 correctly tests the H0 of equal conditional means at

the specified level of significance, and Equation 13 provides a valid

confidence interval for the difference in the conditional means.

The argument of Schneider et al. (for a similar view, see, for

example, Miller and Chapman, 2001) is based on the erroneous

notion that an Ancova compares the marginal means of the

dependent variable, and not the conditionalmeans, given a specific

value of the covariate. It is, of course, true that an Ancova does not

usually provide a valid statistical test for the equality of themarginal

means of the dependent variable, that is, of the H0 :1µy = 0.

However, as indicated by Equation 3, this hypothesis is in fact

only tested by an Ancova if 1µx = 0 (i.e., under a randomized

design), or if β = 0, that is, if the dependent variable and the

covariate are uncorrelated. In the general case, the equality of the

marginal means of y is simply not the statistical question that an

Ancova addresses, and it is misleading to fault Ancova techniques

for providing its consistent and valid answers (given the model

assumptions are met) aimed at comparing conditional means. For

example, in Study B an Ancova tests if the mean difference in high

jump performance between male and female graduates is larger

than expected on the basis of the height differences alone. Even

if an Ancova indicates, for example, that male graduates jump on

average higher by just the amount predicted from the between-

group difference in the covariate height, that would not represent a

claim that the marginal mean performance in both groups is equal.

The confusion between marginal and conditional means in

Ancova techniques is widespread, even in renowned accounts. For

example, Vickers and Altman (2001, p. 1123) state that, when the

variables are commensurate, the difference in the sample regression

intercepts in the two groups (i.e., the adjusted mean difference)

“has a useful interpretation: it is the difference between the mean

change scores of each group”, which is incorrect. In the present

notation, “the difference between the mean change scores of each

group” in the sample is equal to 1y − 1x. In contrast, the

difference of the sample regression intercepts is given by 1y −

b · 1x, which obviously differs from the marginal differences

referred to in the statement of Vickers and Altman—even in their

own Table 1, where these quantities are equal to 12.7 and 10.8,

respectively.

A main limitation of the present tutorial is its restriction to two

groups and a single covariate. This deliberate choice is motivated by

two considerations: i.) to present the basic distributional features as

clearly as possible, and ii.) by the fact that in many areas, Ancova

applications typically refer to this most prominent case. The

general case involving more groups, unequal group sizes, or more

covariates, follows similar distributional principles as outlined

above but requires a more elaborate technical apparatus that

tends to cloud the intrinsic simplicity of basic Ancova principles.

Excellent recent contributions, such as Huitema (2011, ch. 6),

Kutner et al. (2004, ch. 22), Maxwell et al. (2018, ch. 9), Schneider

et al. (2015), or Shieh (2017, 2021) offer a broader coverage of

Ancova techniques.

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1600764
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Schwarz 10.3389/fpsyg.2025.1600764

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

WS: Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by a research grant (Schw 611/5-1) from the Deutsche

Forschungsgemeinschaft (DFG).

Acknowledgments

I would also like to thank Prof. Jeff Miller, University of Otago,

New Zealand, and two reviewers for their helpful comments on a

previous version.

Conflict of interest

The author declares that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Attwood, A. S., Scott-Samuel, N. E., Stothart, G., and Munafò, M. R. (2012).
Glass shape influences consumption rate for alcoholic beverages. PLoS ONE. 7:e43007.
doi: 10.1371/journal.pone.0043007

Cinelli, C., Forney, A., and Pearl, J. (2024). A crash course in good and bad models.
Sociol. Methods Res. 53, 1071–1104. doi: 10.1177/00491241221099552

Cohen, J. (2009). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). New
York: Psychology Press.

Goulet-Pelletier, J.-C., and Cousineau, D. (2018). A review of effect sizes and their
confidence intervals, part I: the Cohen’s d family.Quant. Methods Psychol. 14, 242–265.
doi: 10.20982/tqmp.14.4.p242

Groß, J., and Möller, A. (2024). Some additional remarks on statistical
properties of Cohen’s d in the presence of covariates. Statist. Papers 65, 3971–3979.
doi: 10.1007/s00362-023-01527-9

Huitema, B. E. (2011). The Analysis of Covariance and Alternatives (2nd ed.). New
York: Wiley.

Kutner, M. H., Nachtsheim, C. J., Neter, J., and Li, W. (2004). Applied Linear
Statistical Models (5th ed.). Chicago: McGraw-Hill.

Lord, F. M. (1967). A paradox in the interpretation of group comparisons. Psychol.
Bullet. 68, 304–305. doi: 10.1037/h0025105

Maxwell, S. E., Delaney, H. D., and Kelley, K. (2018). Designing Experiments
and Analyzing Data: A Model Comparison Perspective (3rd ed.). New York, London:
Routledge.

Miller, G. A., and Chapman, J. P. (2001). Misunderstanding analysis of covariance.
J. Abnormal Psychol. 110, 40–48. doi: 10.1037/0021-843X.110.1.40

Samuels, M. L. (1986). Use of analysis of covariance in clinical trials: a clarification.
Control. Clini. Trials 7, 325–329. doi: 10.1016/0197-2456(86)90039-5

Schneider, B. A., Avivi-Reich, M., and Mozuraitis, M. (2015). A cautionary note
on the use of the analysis of covariance (Ancova) in classification designs with
and without within-subject factors. Front. Psychol. 8:474. doi: 10.3389/fpsyg.2015.
00474

Schwarz, W. (2008). 40 Puzzles and Problems in Probability and Mathematical
Statistics. New York: Springer-Verlag.

Schwarz, W., and Reike, D. (2018). Regression away from the mean: theory and
examples. Br. J. Mathem. Statist. Psychol. 71, 186–203. doi: 10.1111/bmsp.12106

Senn, S. (2006). Change from baseline and analysis of covariance revisited. Statist.
Med. 25, 4334–4344. doi: 10.1002/sim.2682

Shieh, G. (2017). Power and sample size calculations for contrast analysis
in Ancova. Multivariate Behav. Res. 52, 1–11. doi: 10.1080/00273171.2016.12
19841

Shieh, G. (2021). Appraising minimum effect of standardized contrasts in
Ancova: statistical power, sample size, and covariate imbalance considerations.
Statist. Biopharmaceut. Res. 13, 468–475. doi: 10.1080/19466315.2020.
1788982

Sprott, D. A. (1970). Note on Evans and Anastasio on the analysis of covariance.
Psychol. Bullet. 73, 303–306. doi: 10.1037/h0028923

van Breukelen, G. J. P. (2006). Ancova vs. change from baseline: more power in
randomized studies, more bias in nonrandomized studies. J. Clin. Epidemiol. (2006)
59:1334. doi: 10.1016/j.jclinepi.2006.10.002

Vickers, A. J., and Altman, D. G. (2001). Analysing controlled trials
with baseline and follow up measurements. Br. Med. J. 323, 1123–1124.
doi: 10.1136/bmj.323.7321.1123

Winer, B. J., Brown, D. R., and Michels, K. M. (1991). Statistical Principles in
Experimental Design (3rd ed.). New York: McGraw-Hill.

Frontiers in Psychology 10 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1600764
https://doi.org/10.1371/journal.pone.0043007
https://doi.org/10.1177/00491241221099552
https://doi.org/10.20982/tqmp.14.4.p242
https://doi.org/10.1007/s00362-023-01527-9
https://doi.org/10.1037/h0025105
https://doi.org/10.1037/0021-843X.110.1.40
https://doi.org/10.1016/0197-2456(86)90039-5
https://doi.org/10.3389/fpsyg.2015.00474
https://doi.org/10.1111/bmsp.12106
https://doi.org/10.1002/sim.2682
https://doi.org/10.1080/00273171.2016.1219841
https://doi.org/10.1080/19466315.2020.1788982
https://doi.org/10.1037/h0028923
https://doi.org/10.1016/j.jclinepi.2006.10.002
https://doi.org/10.1136/bmj.323.7321.1123
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	The Ancova model for comparing two groups: a tutorial emphasizing statistical distribution theory
	1 Introduction
	1.1 Study A
	1.2 Study B

	2 The standard Ancova model for comparing two groups
	3 Sample statistics and main distributional results
	4 A numerical example
	5 General discussion
	6 The standardized Ancova model
	7 Statistical power as a function of the correlation between the covariate and the dependent variable
	8 Ancova and gain score analysis
	9 Power as a function of the study design
	10 Conditional vs. marginal means
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


