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Introduction: Interactive installation art offers immersive and participatory 
environments that elicit complex and multidimensional emotional experiences—
encompassing sensorimotor engagement, affective resonance, and cognitive 
reflection. However, these emotional responses’ inherently dynamic, subjective, 
and often pre-reflective nature poses significant challenges to their systematic 
prediction and computational modeling.

Methods: To address these challenges, the present study introduces an interpretable 
machine learning framework grounded in the Random Forest (RF) algorithm, 
which provides a balanced trade-off between predictive performance and 
model transparency, thereby aligning with the needs of theory-driven emotion 
research. Based on 390 valid questionnaire responses, emotional responses were 
operationalized along five distinct dimensions: bodily changes, sensory engagement, 
emotional connection, cognitive reflection, and active personalization. Predictor 
variables encompassed sensory stimuli, multimodal interactional features, and 
immersive environmental cues. Model evaluation was conducted using cross-
validation and held-out test sets, applying classification and regression metrics to 
assess performance.

Results: The RF model demonstrated the highest predictive accuracy in the domains 
of cognitive reflection (F1 = 0.746, accuracy = 0.769) and active personalization (F1 
= 0.673, accuracy = 0.705), suggesting that these cognitively mediated responses 
exhibit greater consistency and learnability across participants. In contrast, bodily 
responses proved substantially less predictable (F1 = 0.379, accuracy = 0.397), likely 
due to their idiosyncratic, embodied, and non-verbal nature, which may not be 
adequately captured by self-report measures alone.

Discussion: These differential results underscore the relative tractability of modeling 
reflective and agentic emotional states in contrast to those rooted in sensorimotor 
or affective processes. Moreover, the model’s consistent performance across all 
evaluation phases affirms its suitability as an exploratory tool for investigating emotion 
in interactive art contexts. This study contributes to the evolving convergence of 
affective computing, human-computer interaction (HCI), and empirical aesthetics. 
The proposed framework yields actionable insights for the design of emotionally 
adaptive systems. Future research should consider the integration of multimodal 
and temporally granular data, and the ethical dimensions associated with affective 
adaptivity in artistic and public-facing environments.
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1 Introduction

Interactive installation art has increasingly emerged as a 
compelling medium for emotional engagement, offering immersive 
environments that dynamically respond to users’ presence, behavior, 
and decision-making. Enabled by rapid advancements in artificial 
intelligence (AI), sensor technologies, and real-time processing, 
although early installation works—such as Kaprow’s The Yard 
(1961)—already emphasized physical interaction and audience 
participation, contemporary interactive installations have evolved 
significantly, with a growing emphasis on the integration of real-time 
sensing technologies and AI-driven feedback mechanisms in order to 
enhance co-creative processes and deepen affective engagement 
(Obeidat, 2013; Patel et al., 2020; Cao et al., 2021; Raptis et al., 2021). 
Through the integration of computer vision and motion tracking, they 
generate responsive audiovisual feedback, inviting users into 
participatory experiences that are emotionally rich and sensorial 
layered (Raptis et al., 2021). However, despite growing scholarly and 
artistic interest, the mechanisms through which these environments 
evoke emotional responses remain underexplored. Much of the 
existing literature relies on qualitative interviews or retrospective self-
reporting (Pelowski et al., 2018), offering limited insight into how 
specific interaction features influence emotional experience—or how 
these responses might be predicted in advance.

From a psychological standpoint, emotion in interactive art 
contexts is best understood as a dynamic and contextually contingent 
process rather than a discrete or static event. This study adopts 
Russell’s circumplex model of affect (Russell, 1980), which 
conceptualizes emotion along two continuous dimensions: valence 
(pleasantness) and arousal (activation level). This dimensional 
framework is particularly suited to capturing affective states’ subtle 
and evolving nature during immersive engagement. Compared with 
discrete emotion models—such as Ekman’s basic emotions 
framework—which categorize emotional states into fixed labels (e.g., 
joy, anger, fear), the circumplex model offers a more flexible structure 
that better accommodates the fluidity and transitional quality of 
emotions typically elicited in immersive, interactive settings.

Importantly, emotional experience in interactive installations is 
not merely received but enacted. Theories of enactive and 
participatory aesthetics (Varela et al., 1991; Gallagher, 2005; Savaş 
et al., 2021) posit that emotion is co-constructed through embodied 
interaction, interpretative exploration, and decision-based 
engagement. Users do not passively consume emotion—they actively 
generate and shape it. This perspective aligns with affective loop 
theory (Höök, 2008), which conceptualizes emotional expression as 
a recursive cycle between user actions and system feedback. In 
parallel, affective computing (Picard, 1997) has demonstrated the 
feasibility of real-time emotion detection and modeling by 
integrating physiological signals (e.g., EEG, EDA, PPG) and 
behavioral data. For instance, Becker et al. (2004) successfully applied 
multimodal sensing techniques in conversational agents—methods 
that offer valuable methodological parallels for emotionally modeling 
interactive art experiences. However, predictive modeling remains in 
its infancy within the interactive installation art domain. While 
descriptive and correlational studies abound, few attempts have been 
made to develop generalizable, theory-informed prediction 
frameworks. In response to this gap, recent literature has advocated 
for applying machine learning algorithms capable of capturing 
complex, nonlinear relationships in affective data (Chen and 

Ibrahim, 2023). Random Forests (RF) stand out for their robustness 
to noise, ability to model high-dimensional interactions, and 
interpretability through feature importance rankings (Meinshausen 
and Ridgeway, 2006; Breiman, 2001).

Accordingly, this study proposes a machine-learning framework 
based on Random Forests to model and predict emotional responses 
to interactive installation art. Drawing on 390 valid participant 
responses, we examine how interaction features—such as sensory 
stimulation, immersive context, and user agency—contribute to five 
key dimensions of emotional engagement: bodily changes, sensory 
involvement, emotional connection, cognitive reflection, and active 
personalization. To guide this investigation, we address the following 
research questions:

 1 Which interaction features most significantly shape emotional 
responses in interactive installation art?

 2 To what extent can Random Forest models accurately predict 
different dimensions of emotional response?

 3 What theoretical and design insights can be derived from the 
resulting predictive patterns?

By integrating psychological theory with machine learning 
techniques, this research contributes to a more systematic 
understanding of emotion formation in interactive contexts. 
Furthermore, it offers practical implications for developing 
emotionally adaptive environments in fields such as exhibition design, 
art therapy, affective computing, and educational media.

2 Literature review

As critically examined by scholars such as Bishop (2005) and Reiss 
(2001), installation art has long moved beyond the static display 
paradigm, emphasizing spatial immersion and the co-agency of the 
viewer. From Kabakov’s total environments to contemporary 
interactive systems, the genre is characterized by its resistance to fixed 
formal boundaries, foregrounding embodiment, presence, and 
experiential engagement as central aesthetic strategies (Kabakov, 
1995). Such an orientation toward lived experience has prompted 
further theoretical elaboration. For instance, Caldarola (2020) 
conceptualizes the immediacy of installation art as a phenomenological 
encounter, while Rebentisch and Hendrickson (2012, pp. 13–25, 
39–57) offers a systematic philosophical analysis of its temporal and 
spatial dynamics. These accounts contribute to a broader discourse 
that transcends purely formalist or historically anchored 
interpretations. Interactive installation art has increasingly gained 
scholarly attention due to its capacity to evoke complex and 
multilayered emotional experiences through multisensory and 
participatory engagement. By combining visual, auditory, tactile, and 
conceptual stimuli, these artworks create conditions for embodied 
interaction and co-construction of meaning, positioning the viewer as 
an active participant rather than a passive observer (Savaş et al., 2021). 
Iconic works such as Pulse Room by Rafael Lozano-Hemmer and Rain 
Room by Random International exemplify this potential, utilizing real-
time environmental feedback, spatial responsiveness, and bodily 
presence to induce affective states such as awe, curiosity, and 
introspection (Lozano-Hemmer, 2006; Random International, 2013).

This emotional depth has prompted increasing efforts to assess 
quantitatively, and model user affect in interactive art. While earlier 
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studies primarily relied on qualitative self-report methods and 
post-hoc interviews (Pelowski et al., 2018), recent advances in affective 
computing have introduced machine learning as a powerful tool to 
predict emotional responses. Among these approaches, Random 
Forest (RF) algorithms have emerged as particularly well-suited for 
modeling affective phenomena, owing to their ability to handle 
nonlinear, high-dimensional, and noisy datasets with robustness and 
efficiency (Breiman, 2001). Given this expressive potential, researchers 
have increasingly sought to model the emotional impact of interactive 
art more systematically. In response to these modeling challenges and 
the need for interpretable prediction, supervised machine learning 
approaches have gained increasing traction in affective computing. 
Among them, Random Forests (RF) have attracted particular attention 
for their algorithmic transparency, adaptability, and robustness across 
heterogeneous datasets. RF models have demonstrated strong 
performance across diverse affective computing tasks, including 
emotion recognition from facial expressions (Gharsalli, 2015, 2016), 
speech prosody (Chen, 2020; Annal, 2022), and physiological signals 
such as EEG (Vasquez et  al., 2023). Moreover, adaptive and 
personalized RF configurations—capable of dynamically adjusting to 
individual differences—have shown promise in enhancing cross-user 
generalizability, a critical feature for the heterogeneity of emotional 
reactions in art experiences (Gonzalez and Prevost, 2021).

Beyond the domain of affective computing, Random Forests have 
been widely adopted in fields such as landscape visualization (Zhou 
et  al., 2018), clinical diagnostics (Maurya et  al., 2023), and rural 
development analytics (Liang, 2022). These applications highlight the 
algorithm’s strength in managing moderate-scale datasets and 
providing interpretable decision structures. For emotionally adaptive 
art systems, such interpretability is essential—not only to support 
design interventions but also to trace the specific interactional 
variables (e.g., spatial customization, ambient lighting, narrative 
depth) that most significantly impact emotional outcomes. Although 
alternative models such as Support Vector Machines (SVMs) and deep 
learning architectures (e.g., CNNs, RNNs) have demonstrated 
impressive performance in emotion recognition tasks (Domingues 
et  al., 2014; Hossain and Muhammad, 2019), their limitations—
particularly in interpretability, data demand, and computational 
complexity—reduce their suitability for real-time or user-centered 
design applications. By contrast, RF models offer a balanced trade-off 
between accuracy, efficiency, and transparency, making them 
particularly suitable for interactive art contexts where datasets may 
be limited and design accountability is essential.

Nevertheless, the application of RF in modeling self-reported 
emotional states in interactive art remains limited. Existing studies 
predominantly emphasize biometric or audiovisual inputs, with 
insufficient attention to how discrete design features—such as 
multisensory feedback, spatial agency, or symbolic content—
contribute to emotional variability. Bridging this gap is essential for 
advancing predictive modeling and theoretical understanding of 
emotional engagement in art. Addressing this design-feature gap is 
crucial for bridging computational modeling with practice-oriented 
art theory.

The present study applies Random Forest modeling to a dataset of 
390 self-reported emotional responses collected from viewers of 
interactive installation artworks. This work contributes to the literature 
by demonstrating the effectiveness of Random Forests in modeling 
multiple dimensions of emotional engagement within immersive art 
contexts. Specifically, the model identifies key interaction 

features—sensory stimulation, immersive environment, and user 
control—that significantly shape users’ affective experiences. 
Furthermore, by integrating machine learning with psychological 
theory and aesthetic design principles, the study provides a framework 
for developing emotionally adaptive and user-sensitive systems. This 
is particularly valuable in applied contexts like real-time art 
installations or therapeutic environments, where interpretable and 
design-relevant insights must accompany predictive precision.

3 Methodology

3.1 Theoretical framework

This study is anchored in an integrative theoretical framework 
that draws from affective science, interactive aesthetics, and 
computational modeling to investigate and predict emotional 
responses elicited by interactive installation art. Specifically, three 
interrelated perspectives form the conceptual foundation: (1) 
dimensional emotion theory, (2) enactive and participatory aesthetics, 
and (3) affective computing within the domain of human-computer 
interaction. This comprehensive integration ensures theoretical 
coherence across levels of emotion representation, interaction 
mechanics, and computational modeling.

To conceptualize emotion, we adopt Russell’s circumplex model 
of affect (1980), which characterizes emotional states along two 
continuous dimensions—valence (pleasant–unpleasant) and arousal 
(activation–deactivation). Compared with discrete emotion models, 
this dimensional approach provides a flexible structure for capturing 
the nuanced and fluctuating emotional states commonly observed in 
immersive and interactive environments. Second, the framework is 
informed by enactive aesthetics (Varela et al., 1991; Gallagher, 2005) 
and participatory aesthetics (Savaş et  al., 2021), which posit that 
affective experiences in art are not passively received but actively 
co-constructed through sensorimotor engagement, symbolic 
interpretation, and bodily participation. Users are thus conceptualized 
as agentive co-creators whose decisions, movements, and meaning-
making strategies contribute directly to the emotional content of the 
artwork. To further articulate the complexity of embodied cognition 
within aesthetic contexts, this study draws on recent interdisciplinary 
scholarship that conceptualizes aesthetic experience as a dynamic, 
situated, and sensorimotor process. Enactivist and ecological 
frameworks, in particular, underscore the constitutive role of bodily 
engagement and environmental coupling in shaping affective 
responses (Tewes, 2022). Building on this foundation, Krueger (2021) 
elucidates mechanisms of empathy and entrainment, through which 
viewers become emotionally and physically attuned to artworks via 
sensorimotor synchronization. Complementing these theoretical 
accounts, Pelowski et  al. (2023) offer empirical validation for the 
integration of cognitive and embodied states in aesthetic encounters, 
supported by findings from neuroimaging and psychological research, 
which reveal converging activation patterns in brain regions associated 
with sensorimotor integration and aesthetic appraisal. These 
theoretical and empirical contributions reinforce the embodied 
foundations of our study and recognize the relevance of 
complementary models such as reflective appraisal and predictive 
coding. Third, this study draws on principles from affective computing 
(Picard, 1997), which treats emotion as a quantifiable phenomenon 
that can be detected and modeled through behavioral, contextual, or 
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physiological indicators. In particular, the affective loop model (Höök, 
2008) underlines emotion as a dynamic feedback cycle between user 
input and system responsiveness—a process especially relevant in 
interactive art contexts. This theoretical refinement directly addresses 
concerns about embodied cognition’s conceptual and empirical 
robustness in our original framework.

These theoretical foundations collectively inform the selection 
of independent variables—such as sensory stimulation, immersive 
environment, and interactive personalization—and justify using 
Random Forests (RF) as a modeling tool capable of capturing 
complex, nonlinear associations between interaction features and 
emotional outcomes. A theoretical mapping of constructs to 
variables is illustrated in Figure 1. This diagram visually connects 
each category of interaction features (SS, MI, IE) to the theoretical 
domains from which they are derived, offering a conceptual rationale 
for their role in predicting emotional responses (ER1–ER5). Figure 1 
offers conceptual transparency and empirical grounding for the 
model’s structure by visually aligning variables with 
theoretical constructs.

These theoretical perspectives converge to form a multi-level 
model of affective engagement. At the foundational level, Russell’s 
circumplex model offers a structural framework for representing 
emotional outcomes (ER1–ER5) along valence and arousal. Building 
on this foundation, enactive and participatory aesthetics elucidate the 
mechanisms through which interaction unfolds, emphasizing bodily 
engagement, symbolic interpretation, and active personalization in the 
co-construction of affective meaning within interactive environments. 
In turn, affective computing—particularly the affective loop model—
complements these perspectives by integrating emotional dynamics 
by modeling continuous feedback between user input and system 
response. Accordingly, the integrated framework aligns each 
theoretical perspective with a distinct functional layer: affective 
structure (SS), enactive aesthetics (MI), and interactional evaluation 
(IE) informed by affective computing. This layered architecture not 
only guides the selection of relevant predictor variables but also 
substantiates the application of Random Forest algorithms, which are 
well-suited for capturing nonlinear, high-dimensional relationships 
while providing interpretable insights into the relative contribution of 
each interaction feature to users’ emotional responses.

3.2 Survey design and data collection

Guided by the above conceptual foundations, we operationalized 
these constructs through a structured survey instrument to capture 
interaction features and emotional outcomes. To operationalize the 
theoretical model, we designed a structured online questionnaire to 
measure users’ emotional experiences after interacting with 
installation artworks. The instrument comprised three sections:

 • Demographic Information: including age, gender, educational 
background, and previous exposure to art-related experiences.

 • Interaction Features (Independent Variables): assessed using 31 
items rated on a 5-point Likert scale, distributed across three 
dimensions—Sensory Stimulation (SS), Multidimensional 
Immersion (MI), and Immersive Environment (IE).

 • Emotional Responses (Dependent Variables): assessed with five 
items, each corresponding to a specific affective outcome:

 o Emotional Response 1: Bodily Changes (e.g., increased heart 
rate, altered posture)

 o Emotional Response 2: Sensory Engagement
 o Emotional Response 3: Emotional Connection
 o Emotional Response 4: Cognitive Responses (e.g., reflection, 

interpretation)
 o Emotional Response 5: Active Participation and Personalization

This study employed a retrospective, experience-based survey 
approach targeting students from the School of Art and Design who 
had consistent exposure to interactive installation art through 
coursework, gallery visits, and institutional exhibitions. Rather than 
focusing on a single artwork, the questionnaire was designed to 
capture participants’ generalized emotional responses across various 
interactive installation experiences. This methodological choice was 
intended to enhance ecological validity by reflecting the diversity and 
complexity of affective impressions formed through real-world 
encounters with AI-driven installations. Data collection was 
conducted via Microsoft Forms. Of the 623 submitted questionnaires, 
233 were excluded according to predefined criteria, including 
duplication and implausibly short completion times (i.e., less than 

FIGURE 1

Theoretical mapping diagram. Variables are categorized according to their alignment with affective structure, enactive aesthetics, and affective 
computing. SS: sensory stimulus; MI: multidimensional immersion; IE: interactive engagement; ER: emotional response.
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3 min). The final dataset consisted of 390 valid responses, yielding an 
effective response rate of 63%. Questionnaire items were either 
adapted from previously validated scales or developed by established 
conceptual frameworks to ensure theoretical alignment and construct 
validity. As shown in Table 1, each latent construct—Sensory Stimuli 
(SS), Multidirectional Interaction (MI), Immersive Environment 
(IE), and Emotional Response (ER)—was operationalized using 
specific measurement items, along with their corresponding sources.

3.3 Reliability and construct validity 
assessment

Both internal consistency testing and exploratory factor analysis 
(EFA) were conducted to evaluate the psychometric robustness of the 
survey instrument.

First, reliability was assessed using Cronbach’s alpha. The pilot 
dataset, analyzed using SPSS version 25, produced an overall 
Cronbach’s alpha of 0.984, well above the commonly accepted 
threshold of 0.70 (Nunnally and Bernstein, 1994). As shown in 
Table  2, all four latent constructs—Sensory Stimuli (SS), 
Multidirectional Interaction (MI), Immersive Environment (IE), and 
Emotional Response (ER)—exhibited excellent internal consistency, 
with alpha coefficients ranging from 0.945 to 0.977. Second, an 
Exploratory Factor Analysis was conducted on 26 questionnaire items 
to examine construct validity. The Kaiser–Meyer–Olkin (KMO) 
measure of sampling adequacy was 0.929, indicating a substantial 
degree of shared variance among items. Bartlett’s test of sphericity was 
statistically significant (χ2 = 3,633.356, df = 630, p < 0.001), confirming 
the suitability of the dataset for factor analysis. As shown in Table 3, 
the factor structure revealed a clear and coherent clustering of items, 
aligning with the proposed dimensional framework of the instrument.

Taken together, these findings provide compelling evidence for 
the questionnaire’s reliability and construct validity. The consistently 
high Cronbach’s alpha values across all constructs further support the 
internal coherence of the scale, reinforcing its suitability for 
application in the main study.

3.4 Comparative model evaluation and 
rationale for selection

In response to reviewer concerns regarding baseline comparisons, 
a standard linear regression model was incorporated as an additional 
benchmark. As presented in Table  4, the linear regression model 
consistently yielded higher mean squared error (MSE) values across 
all five emotional response dimensions than those observed in 
nonlinear models, including Random Forests, Support Vector 
Machines (SVM), and XGBoost. This performance gap highlights the 
importance of capturing nonlinear feature interactions when 
predicting affective responses within immersive and interactive 
environments. Moreover, to enhance transparency and reproducibility, 
we have clarified in Section 5.6 that five-fold cross-validation (k = 5) 
was systematically applied to evaluate model generalizability.

While all nonlinear models outperformed linear regression, Random 
Forest (RF) demonstrated the most consistent predictive performance 
across emotional dimensions, particularly excelling in modeling cognitive 
responses (ER4) and active participation (ER5). SVM showed competitive 
performance, especially in predicting bodily changes (ER1) and emotional 

connection (ER3), suggesting a complementary strength between the 
models. Although XGBoost performed reasonably well, its marginal 
improvements were offset by longer training times and less interpretability. 
As such, it was not prioritized for further analysis—details regarding this 
decision are available in Appendix A.

Given the study’s dual emphasis on model interpretability and 
alignment with theory-driven design, Random Forest was ultimately 
selected as the preferred model. Its ability to capture complex, 
nonlinear interactions while offering clear feature importance 
rankings makes it well-suited for both predictive accuracy and the 
derivation of actionable insights in affective art research.

4 Data

4.1 Participant characteristics and data 
overview

Microsoft Forms administered an online survey to empirically 
examine emotional responses to interactive installation art. A total of 
623 responses were initially collected. After excluding 157 responses 
completed in under 3 min and 76 duplicate entries based on 
predefined quality criteria, the final analytic sample comprised 390 
valid responses (63% effective rate). The questionnaire was structured 
into two main sections: (1) demographic information, including age, 
gender, education level, and prior exposure to art-related experiences; 
(2) 36 five-point Likert-scale items designed to measure participants’ 
emotional and interactive experiences across multiple dimensions.

As shown in Figure 2, the distribution of emotional response 
variables was positively skewed, with most responses clustering 
between 3.5 and 4.0 on the 5-point scale. This suggests that the 
installations generally elicited moderately strong positive emotional 
reactions from participants.

A total of 390 participants were included in the final analysis. The 
sample was composed primarily of young adults, with a mean age of 
19.84 years (SD = 2.27). Regarding gender, 284 participants (72.82%) 
identified as female and 106 (27.18%) as male. Regarding educational 
background, the vast majority held a Bachelor’s degree (n = 381, 97.69%), 
while a small proportion reported having obtained a Master’s degree (n = 2, 
0.51%) or a Doctoral degree (n = 7, 1.79%). Regarding prior experience in 
art or a related field, 351 participants (90.00%) indicated relevant exposure, 
whereas the remaining 39 (10.00%) reported no such experience.

4.2 Preprocessing data

Following data collection, a series of preprocessing procedures were 
implemented to ensure the quality and completeness of the dataset. Prior 
to analysis, a multi-step data preprocessing procedure was employed. 
Records with more than 50% missing values were excluded. A small 
number of missing values were identified in the Likert-scale items and 
were addressed through mean imputation, whereby the mean of the 
available responses for each item was calculated and substituted 
accordingly. This approach included decimal values (e.g., 3.674, 3.78) 
within the dataset. The total number of imputed values was relatively 
limited (n  = 33), and all preprocessing procedures were conducted 
using SPSS.

For entries with partially missing records, mean imputation was 
applied based on the empirical distribution of each variable. The 
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TABLE 1 Latent variables and their corresponding measurement items.

Scale Items Source of scale

Sensory stimuli

Artificial intelligence-driven visual elements like adaptive lighting and dynamic color patterns appeal to me.

Jain and Ramakrishnan (2020)

AI-driven auditory features, such as responsive soundscapes or music, create a deeply resonant and personalized 

experience for me.

Interacting with responsive haptic components in the unit, such as the touchscreen, dramatically increases my 

enjoyment.

The olfactory element with artificial intelligence responds to my actions by releasing smells, making my experience 

special and unforgettable.

Changing the tastes depending on my interactions will help me to have a rich sensory experience in the customized 

AI installation.

Including touch, sound, and sight in the exhibit helps me to connect with the work.

Developed by the author

My emotional reaction is heightened by the installation’s numerous sensory experiences, which include sight and 

sound.

The whole approach of the artwork enriched my experience more than any regular art show.

Because of the numerous sensory inputs supplied by the AI-driven installation art, I developed a greater emotional 

connection to it.

The various sensory stimuli deepened my overall emotional connection to the art installation.

Multidirectional 

interactive

Integrating visual, auditory, and tactile elements into the artwork immerses me more in the art. Raptis et al. (2021)

Multisensory interactions in the installation significantly increased my presence and immersion. Velasco and Obrist (2021)

My physical movements and behaviors, which influence AI functions like lighting, create a personalized experience. Edmonds (2011)

The layout and spatial design of the installation affect my level of interaction and emotional engagement. Liu (2021)

The diversified interface design within the artwork provides a richer, more compelling interactive experience. De Bérigny et al. (2014)

Story narratives embedded within the installation art enhance my emotional connection to the piece.
Anadol (2022)

The use of metaphors and symbolism in the artwork deepens my understanding and emotional response.

The AI techniques used in the installation, from interactive colors to dynamic texture effects, greatly influenced my 

emotional response.

Developed by the author
The real-time responsiveness and diversity of the artefacts allowed me to interact with the installation frequently, 

affecting my emotional response.

With AI, I can share digital experiences or co-engage with others, making my emotional experience even more 

prosperous.

Immersive 

environment

My active participation in the installation, through movement or touch, deepens my sense of being within the art 

environment.
Schreuder et al. (2016)

The degree to which I feel emotionally connected to the installation correlates with my sense of immersion. Xu and Wang (2021)

The more I engage with interactive features (like motion sensors or displays), the more immersed I feel in the 

artwork’s environment.
Developed by the author

Personalization features of the installation, such as AI responses tailored to my actions, enhance my sense of 

immersion in the artwork.
Raptis et al. (2021)

My immersion in the art installation is closely related to my emotional involvement and intensity of feelings. Raptis et al. (2021)

Features that enhance my sense of presence within the installation (such as interactive displays and motion sensors) 

directly influence my emotional responses.
Pavic et al. (2023)

The technology increases my involvement by delivering rapid visual or aural feedback.

Developed by the author

I could play longer and have more pleasure because it had game-like aspects, such as assignments or challenges.

How emotionally immersed I was in the event determined how long I interacted with the installation.

I felt ‘lost’ in the installation, as if detached from reality, which was a profound emotional experience.

The installation provided various ways of interaction that enriched my emotional journey through art.

Emotional 

responds

There is a significant difference in the emotional experiences between one-dimensional and multidimensional 

interactions in AI-integrated art.
Konečni (2015)

AI-integrated installation art that adapts and responds to my behavior helps produce a more profound emotional 

experience.
Akten et al. (2019)

The responsive elements of the artwork broaden the variety of emotions I experience during interaction. Brooks et al. (2021)

The combination of sensory stimulation, multidimensional interaction, and immersive environment enriches my 

overall emotional experience with the AI-integrated art installation.
Lee and Jung (2014)

Artworks that skillfully blend artificial intelligence with creative expression deeply resonate with and captivate me. Akten et al. (2019)
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independent variables were organized into three conceptual feature 
sets derived from the theoretical framework:

 • SS (Sensory Stimuli): Visual, auditory, and tactile inputs 
(SS1–SS10)

 • MI (Multidimensional Immersion): Spatial control, thematic 
layering, and narrative structuring (MI1–MI10)

 • IE (Immersive Environment): Customization, decision-making, 
and feedback responsiveness (IE1–IE11)

Table 5 provides descriptive statistics for interaction features and 
emotional response variables. All three interaction domains exhibited 
relatively high mean values (ranging from 3.59 to 3.71) and moderate 
standard deviations (around 0.95–0.99). These findings reflect a 
generally positive user experience with some inter-individual variability.

These descriptive patterns suggest that participants perceived the 
interactive installations as highly immersive, sensory-rich, and 
conducive to meaningful engagement. These perceptions support the 
hypothesis that interactive art environments can elicit measurable 
emotional responses suitable for computational modeling.

5 Results

This section presents the results of applying the Random Forest 
algorithm to predict five distinct dimensions of emotional response 

elicited by interactive installation art. These dimensions—bodily 
changes, sensory engagement, emotional connection, cognitive 
reaction, and active personalization—were operationalized in earlier 
sections. We report model performance across multiple evaluation 
criteria, including mean squared error (MSE), feature importance, 
ROC curves, categorical classification metrics, confusion matrices, 
and cross-validation analysis.

5.1 Mean square error (MSE)

The predictive accuracy of the Random Forest model was first 
assessed using Mean Squared Error (MSE) for each emotional response 
dimension. As shown in Table  6, the lowest MSE was observed for 
Emotional Response 4 (Cognitive Responses, MSE = 0.291), followed by 
Emotional Response 5 (Active Participation and Personalization, 
MSE = 0.308). These results suggest that cognitive and participatory 
reactions exhibit more consistent patterns across individuals, allowing the 
model to generalize effectively. In contrast, Emotional Response 1 (Bodily 
Changes) yielded the highest error (MSE = 0.548), highlighting the 
model’s limitations in capturing the subtle and individualized nature of 
physiological responses.

5.2 Importance of features

Feature importance was assessed using the Mean Decrease in 
Impurity (MDI) method, also called Gini importance, which is the 
default feature ranking technique in the Random Forest 
implementation of sci-kit-learn (v1.2.2). This method quantifies the 
total reduction in Gini impurity—aggregated across all trees in the 
ensemble—attributable to each feature when used as a decision node. 
A higher Gini importance score reflects greater relevance of the 
feature in predicting the target variable. To evaluate the unique 
contribution of predictors across emotional domains, separate 
Random Forest regression models were trained for each emotional 
response dimension. Feature importance scores were then 
systematically extracted from each corresponding model.

Feature importance analysis revealed distinct predictors across 
the five emotional response dimensions (Figure 3). Bodily changes 
were most influenced by dynamic visual and auditory stimuli—
specifically SS2 (Dynamic Color) and MI2 (Sound Feedback)—
suggesting that high-intensity sensory inputs are key triggers of 
physiological reactions such as heart rate fluctuations or posture 
adjustments. The sensory engagement was primarily shaped by SS5 
(Visual–Auditory Coupling) and IE9 (Interaction Freedom), 
highlighting the role of multimodal coherence and user autonomy 

TABLE 2 Reliability statistics (Cronbach’s alpha values).

Variable set Cronbach’s alpha Number of 
items

Multisensory stimuli 0.934 6

Multidirectional 

interaction

0.959 10

Immersive environment 0.964 11

Emotional responses 0.931 5

total 0.978 32

TABLE 3 Construct validity indicators: KMO and Bartlett’s test.

Kaiser-Meyer-Olkin measure of 
sample adequacy.

0.929

Bartlett’s test of sphericity Approx. chi-square 3633.356

df 630

Sig. 0.000

TABLE 4 Model comparison of MSE.

LinearRegression RandomForest RandomForest(k) SVM XGBoost

0.741 0.5643 0.6128 0.53 0.5548

0.5961 0.4797 0.4883 0.5066 0.5031

0.4967 0.4074 0.4332 0.3601 0.4845

0.3691 0.3393 0.3957 0.3403 0.4066

0.4795 0.445 0.4451 0.4292 0.4251
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in maintaining perceptual attention. Emotional connection was 
best predicted by MI8 (Emotional Tone of Media), IE3 (Narrative 
Integration), and SS1 (Subtle Light Variation), emphasizing the 
importance of affective content and storytelling elements in 
fostering intimate viewer-artwork relationships. Cognitive 
responses were driven by SS10 (Conceptual Symbolism), MI1 
(Textual Prompting), and IE7 (Decision-Based Interactions), 

indicating that interpretive depth and user-driven meaning-
making are central to analytical engagement. Meanwhile, active 
participation and personalization were closely linked to IE11 
(Customization Options), SS3 (Responsive Surfaces), and MI4 
(Real-Time Feedback), underscoring the significance of 
adaptability and user agency in crafting individualized experiences.

Table  7 further illustrates the recurring influence of several 
interaction elements—such as SS2, MI8, and IE7/IE11—across 
multiple emotional domains. This convergence suggests that 
emotionally rich interaction is not unidimensional but emerges from 
sensory richness, narrative coherence, and customization flexibility. 
Designers aiming to optimize emotional engagement in interactive 
installations may benefit from balancing these core elements to 
achieve expressive depth and model interpretability.

5.3 The Receiver Operating Characteristic 
(ROC) curve

The Receiver Operating Characteristic (ROC) curve was used to 
evaluate the model’s ability to distinguish between categories of emotional 
responses. The ROC curve illustrates the trade-off between sensitivity and 
specificity across different decision thresholds by plotting the actual 
positive rate (TPR) against the false positive rate (FPR). The Area Under 
the Curve (AUC) serves as a summary metric of classification 
performance, with higher values reflecting better discriminative capability.

As shown in Figure  4, the model best predicted Emotional 
Response 4 (Cognitive Responses), with an AUC of 0.88, suggesting 

FIGURE 2

Distribution plots of the five emotional response variables.

TABLE 5 Summary statistics for interaction feature variables and 
emotional responses.

Variable 
set

Variable 
range

Count Mean Std 
Dev

SS variables SS1 - SS10 388 3.66 0.99

MI variables MI1 - MI10 387 3.59 0.97

IE variables IE1 - IE11 386 3.71 0.95

ER ER1-ER5 389 3.60 0.93

TABLE 6 Results of the mean squared error (MSE).

Emotional response Mean squared error 
(MSE)

Emotional response 1 0.548

Emotional response 2 0.479

Emotional response 3 0.350

Emotional response 4 0.291

Emotional response 5 0.308
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strong sensitivity to interpretation, decision-making, and meaning 
construction features. Emotional Response 5 (Active Participation and 
Personalization) also showed favorable results (AUC ≈ 0.83), likely 
reflecting the model’s ability to capture feature patterns related to 
customization and user agency. In contrast, lower AUC values were 
observed for Emotional Response 1 (Bodily Changes) and Emotional 
Response 3 (Emotional Connection), ranging from 0.59 to 0.66. These 
reduced scores may stem from the higher individual variability and 
subjectivity in reporting physical sensations and emotional affinity. 
Furthermore, the static and self-reported nature of the dataset may 
limit the model’s ability to capture the dynamic and context-dependent 
characteristics of these responses.

These results underscore that the model more readily captures 
structured and cognitively grounded responses, while embodied or 

affective states require more nuanced input. As highlighted in the 
feature importance analysis (Section 5.2), decision-based features 
(e.g., IE7) and semantic elements (e.g., SS10, MI8) appear to 
be most effective in improving the model’s discriminative power. 
Future iterations may enhance classification performance—
particularly for embodied dimensions—by incorporating temporal, 
sensor-based, or behavioral interaction data to supplement static 
questionnaire input.

5.4 Categorical evaluation metrics

These variations imply that designing installations to evoke 
cognitive responses may yield more reliable predictive outcomes. In 

FIGURE 3

Importance of characteristics for emotional responses.

TABLE 7 Top features by importance for each emotional response variable.

Feature description PC SE EC CR AP

Adaptive lighting, dynamic colors, appealing 0.052

Interface design, personal connection, emotional impact 0.047

AI techniques, interactive colors, emotional response 0.045

Real-time responsiveness, diversity, emotional response 0.042

Layout design, exploration, interaction 0.041

Complexity, deeper connection, emotional depth 0.047 0.051

Digital experiences, co-engagement, richer experience 0.042

Variety of interactions, deepened connection 0.048 0.042

Adaptive response, amplified impact 0.041 0.049 0.044

Physical interactions, significant impact 0.04 0.041 0.047

Behavioral adaptation, personalized experience 0.049 0.042 0.042

Visual/auditory feedback, enhanced engagement 0.046 0.065

Game-like elements, enjoyable experience 0.056 0.056

Engagement duration, emotional connection 0.043 0.04

Responsive interaction, increased engagement 0.047 0.043 0.043

Sense of loss, profound experience 0.058 0.054

Emotional intensity, measured engagement 0.067 0.05

Physical reactions, real-time change, emotional level 0.048 0.056 0.04

PC = physical changes, SE = sensory engagement, EC = emotional connection, CR = cognitive response, AP = active participation.
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contrast, bodily and emotional responses may require the integration 
of sensor-based feedback to improve precision. We evaluated standard 
classification metrics for each emotional response category to assess 
model performance, including accuracy, precision, recall, and 
F1-score. Precision quantifies the proportion of true positives among 
all predicted positives, while recall reflects the proportion of correctly 
identified positive cases. The F1-score represents the harmonic mean 
of precision and recall, providing a balanced measure of 
predictive performance.

As shown in Table  8, the model performs best in predicting 
Emotional Response 4 (Cognitive Responses), achieving a precision 
of 0.70, recall of 0.692, and an F1-score of 0.675. These results are 
consistent with the ROC analysis and suggest that the model can 
effectively capture reflective and analytical engagement patterns. In 
contrast, Emotional Response 1 (Bodily Changes) exhibits the lowest 
performance across all metrics, with an F1-score of only 0.411. This 
indicates a challenge in accurately detecting subtle physical responses, 
which may be less consistently reported or inadequately captured by 
the available features. Emotional Responses 2, 3, and 5 show 
intermediate performance, with F1-scores ranging from 0.524 to 
0.629, suggesting varying levels of model reliability across 
affective dimensions.

These variations highlight the differential predictability of 
emotional responses, suggesting that cognitive states may be more 
stable and feature-dependent. In contrast, bodily and affective 
reactions require richer contextual or physiological input for accurate 
modeling. Cognitive responses appear more stable and feature-
dependent, whereas bodily and affective responses may require more 
sensor-based or dynamic input data to enhance prediction accuracy. 
From an application standpoint, these findings suggest that interactive 
installations that elicit cognitive engagement—such as contemplation, 
meaning-making, or problem-solving—can be effectively optimized 
using machine learning-based prediction. However, installations 

targeting embodied or emotional resonance may benefit from 
integrating real-time physiological or behavioral data to improve 
responsiveness and personalization.

5.5 Confusion matrix

We examined confusion matrices for each emotional response 
category to further assess model performance at the class level, as 
shown in Figure 5. Each matrix presents the distribution of predicted 
labels versus actual labels, highlighting patterns of correct classification 
and systematic misclassification.

The model demonstrates the strongest classification performance for 
Emotional Response 4 (Cognitive Responses), with 62 out of 82 instances 
correctly predicted as Class 4. This aligns with previous ROC and 
F1-score analysis findings, confirming the model’s ability to capture 
cognitive engagement features accurately. Similarly, Emotional Response 

FIGURE 4

Receiver operating characteristic (ROC) curve.

TABLE 8 Categorical evaluation indicators.

Emotional 
response

Accuracy Precision Recall F1-score

Emotional 

response 1

0.436 0.404 0.436 0.411

Emotional 

response 2

0.564 0.502 0.564 0.524

Emotional 

response 3

0.603 0.617 0.603 0.554

Emotional 

response 4

0.692 0.7 0.692 0.675

Emotional 

response 5

0.667 0.645 0.667 0.629
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5 (Active Participation and Personalization) shows robust performance, 
with 64 true positives, suggesting that user-driven customization is 
effectively modeled. In contrast, classification performance for Emotional 
Response 1 (Bodily Changes) is notably weaker. The model frequently 
confuses this class with Class 3 and Class 4, indicating difficulty 
distinguishing bodily reactions from emotional or cognitive responses. 
A similar confusion is observed for Emotional Response 3 (Emotional 
Connection), where predictions often spill over into adjacent categories, 
especially Class 4.

These misclassifications suggest overlapping or insufficiently distinct 
feature representations among certain emotional states—particularly 
those involving subtle, internalized experiences such as physical 
sensation and emotional bonding. From a modeling standpoint, these 
results indicate that while the current feature set adequately distinguishes 
cognitive and active involvement responses, it may lack sensitivity for 
more embodied or affective dimensions. Future iterations could benefit 
from integrating real-time biometric data (e.g., heart rate, galvanic skin 
response) or temporal interaction metrics to isolate these nuanced states 
better. From a design perspective, the observed confusion between 
emotional and bodily responses highlights the need for more 
differentiated stimuli and feedback strategies. For instance, installations 
that evoke physical responses might emphasize kinesthetic interaction 
or sensory overload, whereas those aiming for emotional connection 
could benefit from narrative coherence or affective content. Such insights 
guide model enhancement and inform the design of emotionally 
differentiated interactive installations.

5.6 Cross-validation

To assess the generalizability and robustness of the Random Forest 
model, 5-fold cross-validation (k = 5) was employed. This technique 

is widely recognized for its effectiveness in mitigating overfitting and 
balancing the trade-off between bias and variance when estimating 
model performance on mid-sized datasets. The cross-validation 
procedure thus enables a comprehensive evaluation of model 
performance across the training set, validation folds, and an 
independent test set. Specifically, the dataset was partitioned into five 
equally sized subsets. Each subset was used once as a validation fold, 
while the remaining four subsets were used to train the model. This 
process was repeated five times, and the results were averaged across 
all folds to produce a more robust and generalizable performance 
estimate. Table 9 presents the evaluation metrics—accuracy, precision, 
recall, and F1 score—computed for each emotional response category 
at each evaluation stage, including training, cross-validation, 
and testing.

Consistent with earlier findings, Emotional Response 4 
(Cognitive Responses) achieves the highest accuracy and stability 
across all stages, with a cross-validation accuracy of 0.667 (±0.034) 
and a test set accuracy of 0.769. Similarly, Emotional Response 5 
(Active Participation and Personalization) maintains strong and 
stable performance across data splits. These results underscore the 
model’s capacity to reliably capture patterns related to reflective 
engagement and user-driven interaction, which are likely more 
consistent and well-defined in the data. In contrast, Emotional 
Response 1 (Bodily Changes) shows the lowest accuracy and F1 
score across all sets, with a cross-validation accuracy of 0.490 
(±0.036) and a test accuracy of 0.397. This again reflects the 
challenge of modeling physical responses, which may be subject to 
more significant individual variation and ambiguity in 
self-reporting.

Overall, the relatively low standard deviations across cross-
validation folds suggest that the model exhibits stable performance 
and is not overly dependent on particular subsets of the training data. 

FIGURE 5

Confusion matrix.
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However, the discrepancy between emotional categories highlights 
the importance of feature representation quality. Bodily and 
emotional responses may highlight the potential benefit of 
incorporating richer temporal or sensor-based features in future 
modeling efforts.

6 Discussion

6.1 Summary of findings

This study employed a Random Forest (RF) algorithm to model 
and predict five distinct dimensions of emotional responses evoked 
by interactive installation art. Among these dimensions, the model 
demonstrated the highest predictive performance for Emotional 
Response 4 (Cognitive Responses) and Emotional Response 5 
(Active Participation and Personalization), yielding test accuracies 
of 0.769 and 0.705 and corresponding F1-scores of 0.746 and 0.673, 
respectively. These results indicate that responses involving 
reflection, interpretation, and user agency tend to follow more 
consistent and detectable patterns across individuals, making them 
well-suited for computational prediction. In contrast, the model 
exhibited considerably lower predictive performance for Emotional 
Response 1(Bodily Changes), with an F1-score of 0.379 and an 
accuracy of 0.397. This finding suggests that embodied and 
physiological reactions are more idiosyncratic and difficult to 
capture through symbolic or self-reported indicators alone, such as 
Likert-scale questionnaire ratings, keyword tagging, or post-
experience reflection logs, which may lack the temporal granularity 
and sensorimotor precision needed to represent real-time bodily 
responses. The moderate performance observed for Emotional 
Response 2 (Sensory Engagement) and Emotional Response 3 
(Emotional Connection) further highlights the modeling challenges 
posed by affective states characterized by subjectivity, pre-reflective 
qualities, or subtle experiential cues.

Model performance remained stable across training, cross-
validation, and test sets, demonstrating satisfactory generalizability and 
robustness. These findings collectively suggest that emotion types 
grounded in cognitive appraisal, intentional engagement, and user-
system interaction are more amenable to structured prediction. At the 

same time, those rooted in sensorimotor or affective processes may 
require richer, multimodal, or temporal data to enhance 
predictive precision.

6.2 Comparison with existing literature

This study’s differentiated predictive performance across 
emotional response dimensions is broadly consistent with existing 
theoretical and empirical research on affective engagement in 
interactive art. Pelowski et al. (2018) proposed a stratified model 
of art experience encompassing sensory, emotional, and cognitive 
tiers—a conceptual structure echoed in the layered nature of the 
current model’s performance. Specifically, the high predictability 
of Emotional Response 4 (Cognitive Responses) reinforces 
previous findings that reflective engagement and symbolic 
interpretation yield more structured and measurable 
emotional outcomes.

The significant predictive contribution of features such as 
customization (IE11) and conceptual richness (MI8) further 
supports the findings of Savaş et al. (2021), who underscored the 
importance of participatory agency and immersive content in 
intensifying emotional involvement. Similarly, Capece and 
Chivăran (2020) emphasized the emotional salience of sensorial 
complexity and adaptive feedback, a notion mirrored in our results 
through the prominent roles of SS2 (dynamic lighting) and SS5 
(multisensory coupling). These results align with the observations 
of Meinshausen (2006), who demonstrated that environmental 
parameters—such as spatial geometry and illumination—play a 
central role in modulating affective arousal during immersive 
experiences. This correspondence also resonates with the sensory 
dimensions posited by Russell’s Circumplex Model of Affect. 
Conversely, the model’s comparatively weak performance in 
predicting Emotional Response 1(Bodily Changes) reflects a 
recurring challenge in the literature. Baranauskas and Duarte 
(2024) noted that embodied affective states often elude precise 
prediction due to their inherently pre-reflective and idiosyncratic 
nature. Meinshausen (2006) and others have suggested that such 
phenomena may require the integration of physiological indicators 
(e.g., EEG, HRV) to overcome the limitations of symbolic and 

TABLE 9 Comparison of model evaluation metrics for emotional responses.

Training set Cross-
validation

Test set

Emotional 
response

Accuracy Precision Recall F1-
Score

Accuracy ± 
Std

Accuracy Precision Recall F1-
Score

Emotional 

response 1

0.436 0.404 0.436 0.411 0.490 ± 0.036 0.397 0.421 0.397 0.379

Emotional 

response 2

0.564 0.502 0.564 0.524 0.638 ± 0.018 0.551 0.529 0.551 0.523

Emotional 

response 3

0.603 0.617 0.603 0.554 0.634 ± 0.045 0.59 0.571 0.59 0.543

Emotional 

response 4

0.692 0.7 0.692 0.675 0.667 ± 0.034 0.769 0.74 0.769 0.746

Emotional 

response 5

0.667 0.645 0.667 0.629 0.680 ± 0.035 0.705 0.68 0.705 0.673
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self-report data—a methodological limitation acknowledged in our 
current study and one that warrants future multimodal extensions.

From a theoretical perspective, Kragel and LaBar (2016) have 
posited that emotional states are best conceptualized as discrete, high-
dimensional neural representations rather than simplified valence-
arousal coordinates. This framework provides a plausible rationale for 
the strong predictability of features linked to symbolic meaning-
making, user agency, and cognitive control—constructs manifest in 
more stable and computationally tractable patterns. In contrast, 
affective states grounded in somatosensory feedback and 
proprioceptive input are inherently more variable, thus complicating 
their algorithmic modeling. Moreover, our findings lend empirical 
support to enactive aesthetics (Gallagher, 2005; Varela et al., 1991) and 
affective loop theory (Höök, 2008), emphasizing the co-constructive 
dynamics between system and user in shaping emotional meaning. 
The model’s robust performance in predicting reflective responses 
suggests that emotionally meaningful interaction emerges most 
reliably when engagement is intentional, reciprocal, and semantically 
rich. These observations further advocate for a paradigmatic shift—
from viewing interactive art as a static object of reception to 
understanding it as a dynamic, relational system capable of eliciting 
coherent affective trajectories (Pelowski et al., 2018).

Given these findings—particularly the model’s strong performance 
in predicting cognitively and symbolically grounded responses—it 
becomes evident that symbolic and interpretable features offer a viable 
alternative to data-intensive deep learning methods when theoretically 
mapped and systematically selected. While approaches such as those 
by Hossain and Muhammad (2019) excel with audiovisual big data, 
our results reaffirm that theory-driven, semantically rich models can 
achieve comparable predictive efficacy, especially in contexts where 
explainability and psychological grounding are critical, such as 
emotionally responsive and experience-centered design.

6.3 Complementarity of models and 
justification for random forest adoption

The comparative analysis between the Random Forest (RF) and 
Support Vector Machine (SVM) models revealed a pattern of 
complementary strengths across the five emotional response 
dimensions. Although SVM achieved a marginally lower mean 
squared error (MSE) in predicting emotional connection (0.3601 vs. 
0.4074 for RF), the RF model exhibited more stable and balanced 
performance across all dimensions, particularly in cognitive reflection 
and active personalization. However, as no statistical significance tests 
were conducted, these differences should be interpreted as suggestive 
rather than conclusive.

One of the primary motivations for selecting the RF model lies 
in its advantageous balance between predictive reliability and 
interpretability—an essential consideration for theory-driven, 
exploratory research. The RF algorithm provides feature 
importance rankings, which allow researchers to trace how specific 
interaction design variables—such as dynamic sensory stimuli, 
narrative structure, and customization affordances—contribute to 
variations in emotional responses. Such transparency is critical 
when the research goal includes prediction and explanatory insight, 
particularly in the context of complex, multisensory experiences 
like interactive art. This interpretive capacity is particularly 

valuable for generating initial, non-definitive insights into the 
mechanisms by which interactive installations evoke 
emotional engagement.

The divergent performance trends observed between RF and SVM 
further suggest that each model may capture distinct aspects of 
emotional variability. Whereas RF appears more sensitive to 
generalizable, design-level patterns, SVM may be better equipped to 
detect boundary cases and finer-grained deviations. This 
complementarity implies that model selection should be guided by 
overall performance metrics and alignment with specific research 
goals—whether interpretability, generalizability, or sensitivity to 
extremes. While these inferences are promising, they remain 
speculative without additional empirical validation, and no claims are 
made regarding the overall superiority of either model.

Both models are well-suited for structured, tabular datasets; 
however, their relative strengths and weaknesses become more evident 
when extended to complex multimodal inputs, such as interaction 
logs or sensor-derived physiological features. RF’s robustness to noise 
and its moderate scalability render it a practical choice in such 
contexts, though its performance may still benefit from further feature 
engineering. In contrast, SVM is potentially more vulnerable to 
performance degradation under these conditions. Thus, the 
comparative evaluation highlights the potential utility of ensemble or 
hybrid approaches that strategically integrate the respective strengths 
of both models.

In sum, the adoption of RF in the present study reflects a broader 
methodological orientation within affective computing that seeks to 
integrate interpretability, theoretical coherence, and predictive 
competence. Given the inherently dynamic, co-constructed, and 
sometimes ambiguous nature of user responses in interactive 
installation art, transparent models such as RF may offer pragmatic 
value as exploratory tools. While not definitive, these initial findings 
support the application of RF in similar research contexts, and they 
highlight the need for future investigations involving larger samples 
and rigorous statistical validation to enhance generalizability.

6.4 Design implications and application

The findings of this study yield preliminary, theory-driven insights 
that may inform the design of emotionally responsive interactive 
installations. While the Random Forest model identified salient 
predictors across five emotional response dimensions, these results 
should be  interpreted as exploratory rather than prescriptive. The 
observed associations offer potential guidance for design strategies to 
elicit targeted emotional outcomes, although additional empirical 
work is needed to confirm underlying causal mechanisms.

To foster bodily engagement (e.g., physiological activation), 
designers may consider incorporating synchronized multisensory 
components—such as dynamic lighting, haptic feedback, and 
immersive audio environments—that have been theorized to enhance 
corporeal awareness and embodied affective states. In contrast, 
cognitive responses such as reflection and interpretation may be better 
supported by integrating abstract narrative prompts, symbolic 
metaphors, and decision-driven pathways. These design strategies are 
conceptually grounded in research on embodied cognition and 
participatory aesthetics, emphasizing the user’s active role in 
constructing meaning through sensory and symbolic interaction.
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Concerning emotional connection, two complementary design 
strategies can be delineated. First, emotionally coherent storytelling 
and expressive dramaturgical structures may strengthen empathic 
resonance. Second, adaptive feedback mechanisms—such as real-time 
visual cues or context-aware system responses—can adjust interaction 
dynamics based on the user’s emotional state. These techniques align 
with affective loop models, which conceptualize emotion as a dynamic 
feedback process between user and system; however, their empirical 
efficacy in interactive art contexts requires further validation.

Additional design features such as user-customizable interfaces 
and real-time interactivity may enhance perceived agency and 
emotional investment, which are foundational to participatory and 
user-centered interaction. Nonetheless, the extent to which such 
features exert a causal influence on emotional outcomes remains an 
open empirical question, warranting further exploration in controlled 
experimental settings.

Beyond theoretical exploration, the results suggest several 
potential—though not yet definitive—applications:

 • Museum and Exhibition Design: Emotion-informed interaction 
strategies could inform curatorial planning, enabling the shaping 
of emotionally resonant visitor experiences.

 • Therapeutic and Clinical Contexts: Emotion-sensitive 
installations may offer exploratory value in mental health 
interventions or emotion regulation training, although clinical 
efficacy must be systematically assessed.

 • Commercial and Experiential Environments: Interactive systems 
with basic affective responsiveness could be leveraged to support 
personalized engagement, particularly in brand storytelling and 
consumer experience design domains.

These possible implementations are within broader theoretical 
frameworks in affective computing and neuroscience-informed 
design, which conceptualize emotion as a multidimensional, 
embodied, and contextually modulated phenomenon (Kragel and 
LaBar, 2016). The comparatively stronger predictive performance 
observed in cognitively mediated responses—such as reflection and 
personalization—may reflect their greater structural consistency and 
interpretability, suggesting that specific emotional dimensions are 
more amenable to computational modeling.

In conclusion, while the present study does not offer prescriptive 
design solutions, it contributes to a growing empirical foundation for 
emotion-oriented interaction design. Future research should adopt 
interdisciplinary approaches—combining computational modeling, 
iterative design experimentation, and longitudinal validation—to 
realize the potential of emotionally adaptive systems across cultural, 
clinical, and commercial settings.

6.5 Theoretical contributions

This study advances the theoretical discourse on affective 
interaction by contributing to two interrelated domains: enactive 
aesthetics and participatory emotion modeling. The model’s strong 
predictive performance for cognitive and participatory emotional 
responses offers empirical reinforcement for frameworks that 
emphasize user agency, meaning-making, and the co-construction of 
emotional experience (Domingues et  al., 2014; Teo et  al., 2019). 

Crucially, successfully implementing a feature-driven predictive 
framework establishes a conceptual bridge between computational 
modeling and core psychological constructs such as intentionality, 
interpretive engagement, and reflective consciousness. These findings 
underscore the potential of machine learning to empirically ground 
abstract theoretical ideas, enabling a richer dialogue across disciplines 
such as human-computer interaction (HCI), affective computing, and 
digital aesthetics.

Furthermore, the observed predictive gradient—in which 
symbolic and agency-related responses (e.g., cognitive and 
participatory engagement) were modeled with higher accuracy than 
embodied or affective responses—demonstrates the utility of a 
mapping-based theoretical approach. The study highlights that some 
emotional states follow more structured, repeatable, and 
computationally learnable patterns by aligning interactional features 
with established emotion theories, such as Russell’s Circumplex Model 
and the Affective Loop framework. In addition, this work contributes 
to the expanding literature on computational aesthetics, showcasing 
how interpretable and theoretically anchored model outputs can 
support both scientific analysis and design-driven decision-making. 
The predictive framework introduced here facilitates emotion 
modeling in immersive environments and informs the development 
of emotionally intelligent systems grounded in well-articulated 
psychological theory.

Looking ahead, this symbolic and semantically rich modeling 
approach holds promise for visualizing affective dynamics, such as 
generating heatmaps of emotional resonance across interactive spaces 
or simulating user emotion trajectories over time. Such visual analytics 
could offer designers, curators, and researchers new tools for 
interpreting the emotional topography of interactive installations—
further reinforcing the theoretical-practical synergy underpinning 
this research.

6.6 Limitations and future research

Despite offering valuable insights into the predictive modeling of 
emotional responses to interactive art, this study is subject to 
certain limitations.

First, the data relied exclusively on self-reported emotional 
responses. While self-report instruments are standard in affective 
computing research, they are inherently limited in capturing 
embodied, pre-reflective experiences—particularly those associated 
with bodily changes. The model’s relatively low performance in 
predicting Emotional Response 1 (Bodily Changes) likely reflects the 
subjective nature and limited granularity of such self-reports, which 
are often shaped by individual introspective ability and contextual 
interpretation. Second, although the Random Forest algorithm 
demonstrated robust and interpretable performance, it is less effective 
in modeling temporal dynamics or latent emotional processes that 
evolve. In contrast, deep learning approaches—such as convolutional 
neural networks (CNNs) and long short-term memory networks 
(LSTMs)—have shown greater efficacy in extracting spatiotemporal 
features from sequential and multimodal data. However, this 
advantage often comes at the cost of model transparency and 
interpretability, which are essential in theory-driven design contexts. 
Third, the generalizability of our findings is constrained by the 
specific research context: a selected group of interactive installation 
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artworks and a relatively homogeneous participant sample. 
Emotional responses to interactive art may vary substantially across 
different media types, cultural backgrounds, and interaction 
modalities, limiting the current model’s external validity and 
broader applicability.

Fourth, the sample primarily consisted of university students 
(mean age = 19.84), with a gender distribution slightly skewed toward 
female participants. Although male participants were represented in 
non-negligible numbers, this demographic imbalance may have 
introduced bias and constrained the generalizability of the findings to 
more diverse populations. To enhance external validity, future 
research should strive to include a broader age range and a more 
balanced gender composition. Finally, while the built-in feature 
importance scores provided by Random Forest offer valuable insights 
into the relative contribution of input variables, they do not convey 
information regarding statistical significance. This limitation reduces 
the interpretability of model outputs and constitutes a methodological 
constraint of the present analysis. Future studies could address this 
issue by incorporating permutation-based importance measures or 
SHAP (Shapley Additive exPlanations) values to more rigorously 
assess the robustness and statistical reliability of the identified 
predictors. To address these limitations, future research may consider 
the following directions:

 • Multimodal data integration: Incorporating physiological signals 
such as heart rate, galvanic skin response, or eye-tracking data 
could enrich our understanding of affective states and capture 
preverbal or embodied emotional dimensions more effectively.

 • Temporal modeling: Leveraging time-series analysis or recurrent 
neural networks could allow for the detection of dynamic 
emotional transitions, particularly within critical “emotion 
windows” or micro-interaction moments that shape the 
unfolding of affective experiences. Capturing these short-term 
fluctuations can enhance the temporal granularity of prediction 
and support more context-aware, real-time adaptation in 
interactive environments.

 • Model comparison and hybrid approaches: Comparative analyses 
between interpretable models (e.g., Random Forests and SVMs) 
and deep learning methods—or their integration in ensemble 
architectures—could balance predictive accuracy with 
theoretical insight.

 • Audience segmentation: Adapting models to user-specific 
attributes such as prior artistic experience, interaction style, or 
personality traits may enhance model sensitivity and 
inclusiveness. Additionally, incorporating sociocultural 
variables—such as age, gender identity, or cultural background—
can account for contextual diversity in emotional perception and 
help ensure that emotion-aware systems remain equitable and 
representative across heterogeneous user populations.

As discussed in the final section, these directions address the 
current study’s limitations and lay a methodological foundation for 
broader research trajectories. By engaging with these avenues, future 
studies can advance both the theoretical and practical frontiers of 
emotion modeling in interactive systems—enabling the development 
of more adaptive, context-aware, and ethically responsible 
effective technologies.

7 Conclusion

Using a Random Forest model, this study proposed a data-driven 
framework for predicting emotional responses to interactive 
installation art. Grounded in theories of human-computer interaction 
and affective computing, the modeling approach was designed to align 
interactional variables with core emotional mechanisms. Drawing on 
390 valid responses from a questionnaire-based survey, we examined 
how sensory stimulation, immersive media, and interactive 
engagement predict five distinct emotional response dimensions: 
bodily changes, sensory engagement, emotional connection, cognitive 
reflection, and active personalization.

The model demonstrated the strongest predictive accuracy for 
cognitive responses and active participation, with F1 scores exceeding 
0.67 and a low MSE of 0.291 for cognitive responses. In contrast, 
predictions for bodily changes were considerably less accurate, 
underscoring the complexity and subjective variability of embodied 
emotional states. Such states often involve subtle and pre-reflective 
physiological phenomena—such as muscle tension, respiration, or 
thermoregulation fluctuations—that are difficult to verbalize or 
quantify using symbolic or self-reported measures alone (Damasio, 
1994; Niedenthal, 2007). This distinction aligns with the framework 
of embodied cognition, which posits that emotional meaning is rooted 
in bodily experiences and sensorimotor feedback loops that precede 
conscious appraisal (Niedenthal, 2007). Moreover, it supports the view 
that symbolic, appraisal-based emotional constructs—such as 
intentional reflection and user agency—tend to yield more consistent 
and computationally learnable patterns (Kragel and LaBar, 2016).

By integrating insights from affective computing, empirical 
aesthetics, and interactive system design, this work demonstrates the 
feasibility of using interpretable machine learning models to inform 
emotion-aware design strategies. These models are theory-aligned—
informed by established frameworks such as Russell’s Circumplex 
Model of Affect, Affective Loop Theory, and Enactive Aesthetics—
which collectively emphasize the dynamic, co-constructed nature of 
emotional meaning. The ability to link specific interaction features 
(e.g., personalization, narrative depth, multisensory coupling) to 
emotional outcomes thus provides both empirical grounding and 
actionable implications for creating emotionally adaptive, user-
centered art environments.

Future research should aim to advance the development of 
emotionally intelligent systems that can detect and adaptively 
respond to user affect in context-sensitive and ethically attuned 
ways. Such systems should move beyond isolated affect detection 
to support dynamic emotional co-regulation and longitudinal 
effective modeling—enabling real-time content adaptation based 
on evolving user profiles and emotional trajectories. Future studies 
may explore applications across diverse experiential domains, 
including immersive education, public cultural engagement, and 
therapeutic environments, to realize this vision. These contexts 
present unique emotional dynamics and social expectations, 
offering fertile ground for validating emotion-aware technologies 
in real-world settings. Additionally, emerging challenges such as 
emotional privacy, algorithmic bias, and the need for transparent, 
effective inference mechanisms warrant closer attention. 
Integrating concepts from affective ethics, emotional memory 
modeling, and cross-modal interpretability will ensure that 
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emotionally responsive systems remain inclusive, respectful, and 
human-centered.

Ultimately, the proposed framework offers a promising step 
toward developing emotionally intelligent interactive installations—
systems capable of dynamically adapting content based on users’ 
inferred emotional states. Such advancements hold potential for 
applications in art therapy, immersive learning, and public 
engagement, creating more inclusive, emotionally resonant interactive 
experiences and paving the way toward a new generation of 
emotionally attuned, human-centered design practices.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author/s.

Ethics statement

The studies involving human participants were reviewed and approved 
by the UiTM Research Ethics Committee (Malaysia). The participants were 
undergraduate students from a university in China. All participants 
provided written informed consent to take part in the study. Written 
informed consent was also obtained for the publication of any potentially 
identifiable data or images included in this article. The study was conducted 
in accordance with local legislation and institutional requirements.

Author contributions

XC: Writing – original draft. ZI: Supervision, Writing – review & 
editing. AA: Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This research was 
supported by the 2024 Annual Guangdong Provincial Education 
Science Planning Project (Special Project for Higher Education) 

(No. 2024GXJK253), titled “Research on the Collaborative 
Enhancement Mechanism of Artificial Intelligence Empowering 
Primary School Science Teachers’ Professional Competency”; the 
2023 General Project of the Guangdong Provincial Philosophy 
and Social Science Planning (No. GD23CJY14), titled “Exploring 
the Indigenous Paths and Mechanisms for the Growth of Science 
Teachers in Rural Primary Schools from the Perspective of 
Artificial Intelligence”; and the 2024 Shaoxing Higher Education 
Teaching Reform Project (No. SXSIG202414), titled “Competency-
Oriented Teaching Reform and Practice Based on Industry–
Education Integration: A Case Study of the Ruilin Light 
Environment College at Zhejiang Shuren University.”

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1609103/
full#supplementary-material

References
Akten, M., Fiebrink, R., and Grierson, M. (2019). Learning to see: You are what 

you  see. ACM SIGGRAPH 2019 Art Gallery. SIGGRAPH 2019, 1–6. doi: 
10.1145/3306211.3320143

Anadol, R. (2022). Space in the mind of a machine: immersive narratives. Archit. Des. 
92, 28–37. doi: 10.1002/ad.2810

Annal, S. (2022). Speech emotion recognition using random forests and prosodic 
features. J. Speech Lang. Process. 12, 289–305. doi: 10.1109/JSLP.2022.8560912

Baranauskas, M. C. C., and Duarte, E. F. (2024). Socioenactive interaction: Addressing 
intersubjectivity in ubiquitous design scenarios. International Journal of Human–
Computer Interaction 40, 3365–3380. doi: 10.1080/10447318.2023.2188536

Becker, C., Kopp, S., and Wachsmuth, I. (2004). “Simulating the emotion dynamics of 
a multimodal conversational agent” in Tutorial and research workshop on affective 
dialogue systems (Berlin, Heidelberg: Springer Berlin Heidelberg), 154–165.

Bishop, C. (2005). Installation art: a critical history. London: Tate Publishing.

Breiman, L. (2001). Random forests. Machine learning 45, 5–32.

Brooks, J., Lopes, P., Amores, J., Maggioni, E., Matsukura, H., Obrist, M., et al. (2021). 
Smell, taste, and temperature interfaces. Conf. Human Fact. Comput. Syst. Proceed. doi: 
10.1145/3411763.3441317

Caldarola, E. (2020). On experiencing installation art. J. Aesthet. Art Critic. 78, 
339–343. doi: 10.1111/jaac.12734

Cao, Y., Han, Z., Kong, R., Zhang, C., and Xie, Q. (2021). Technical composition and 
creation of interactive installation artworks under the background of artificial 
intelligence. Math. Probl. Eng. 2021:7227416. doi: 10.1155/2021/7227416

Capece, S., and Chivăran, C. (2020). The sensorial dimension of the contemporary 
museum between design and emerging technologies. IOP Conference Series: Materials 
Science and Engineering 949:012067

Chen, X. (2020). Application of random forests in speech emotion recognition. IEEE 
Trans. Audio Speech Lang. Process. 28, 1185–1195. doi: 10.1109/TASLP.2020.2934248

Chen, T., and Guestrin, C. (2016, August). “Xgboost: A scalable tree boosting system” 
in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery 
and data mining, 785–794.

https://doi.org/10.3389/fpsyg.2025.1609103
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1609103/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1609103/full#supplementary-material
https://doi.org/10.1145/3306211.3320143
https://doi.org/10.1002/ad.2810
https://doi.org/10.1109/JSLP.2022.8560912
https://doi.org/10.1080/10447318.2023.2188536
https://doi.org/10.1145/3411763.3441317
https://doi.org/10.1111/jaac.12734
https://doi.org/10.1155/2021/7227416
https://doi.org/10.1109/TASLP.2020.2934248


Chen et al. 10.3389/fpsyg.2025.1609103

Frontiers in Psychology 17 frontiersin.org

Chen, X., and Ibrahim, Z. (2023). A comprehensive study of emotional responses in 
AI-enhanced interactive installation art. Sustain. For. 15:15830. doi: 10.3390/
su152215830

Damasio, A. R. (1994). Descartes error: Emotion, Reason and the Human Brain, GP 
Putnam, New York. Dee, KC 2007 Student perceptions of High Course Workloads are 
Not Associated with Poor Students Evaluations of Instructor Performance. Journal of 
Engineering education, 96, 69–78.

De Bérigny, C., Gough, P., Faleh, M., and Woolsey, E. (2014). Tangible user interface 
design for climate change education in interactive installation art. Leonardo 47, 451–456. 
doi: 10.1162/LEON_a_00710

Domingues, D., Miosso, C. J., Rodrigues, S. F., Aguiar, C, S. R., Lucena, T. F., 
Miranda, M., et al. (2014). Embodiments, visualizations, and immersion with enactive 
affective systems. Engin. Reality Virtual Reality 9012:90120J. doi: 10.1117/12.2042590

Edmonds, E. (2011). “Art, interaction, and engagement” in Proceedings of the 
international conference on information visualisation, 451–456. doi: 10.1109/IV.2011.73

Gallagher, S. (2005). How the body shapes the mind. Oxford, UK: Oxford 
University Press.

Gharsalli, S., Emile, B., Laurent, H., and Desquesnes, X. (2016). “Feature selection for 
emotion recognition based on random forest” in International Conference on Computer 
Vision Theory and Applications, vol. 5 (Scitepress), 610–617. doi: 
10.5220/0005725206100617

Gharsalli, S., Emile, B., Laurent, H., Desquesnes, X., and Vivet, D. (2015). “Random 
forest-based feature selection for emotion recognition” in In 2015 International 
Conference on Image Processing Theory, Tools and Applications (IPTA) (IEEE), 
268–272. doi: 10.1109/IPTA.2015.7367144

Gonzalez, J., and Prevost, L. (2021). Personalizing emotion recognition with 
incremental random forests. In 2021 29th European Signal Processing Conference 
(EUSIPCO) (pp. 781–785). IEEE.

Höök, K. (2008). “Affective loop experiences–what are they?” in PERSUASIVE 
technology: Third international conference, PERSUASIVE 2008, Oulu, Finland, June 
4–6, 2008. Proceedings 3 (Berlin Heidelberg: Springer), 1–12.

Hossain, M. S., and Muhammad, G. (2019). Emotion recognition using deep learning 
approach from audiovisual emotional big data. Inform. Fusion 49, 69–78. doi: 10.1016/j.
inffus.2018.09.008

Jain, R., and Ramakrishnan, A. G. (2020). Electrophysiological and neuroimaging 
studies – during resting state and sensory stimulation in disorders of consciousness: a 
review. Front. Neurosci. 14, 1–15. doi: 10.3389/fnins.2020.555093

Kabakov, I. (1995). On the total installation (C. Hendrickson and G. Jackson, trans.). 
Ostfildern-Ruit, Germany: Hatje Cantz Verlag.

Konečni, V. J. (2015). Emotion in painting and art installations. Am. J. Psychol. 128, 
305–322. doi: 10.5406/amerjpsyc.128.3.0305

Kragel, P. A., and LaBar, K. S. (2016). Decoding the nature of emotion in the brain. 
Trends Cogn. Sci. 20, 444–455. doi: 10.1016/j.tics.2016.03.011

Krueger, J. (2021). “Empathy, engagement, entrainment: the interaction dynamics of 
aesthetic experience” in Art, aesthetics and the brain. eds. D. E. R. Silva and M. C. 
Sanches (Cham, Switzerland: Springer), 113–133.

Lee, J., and Jung, H. (2014). User interface of interactive media artworks using five senses 
as play therapy. Int. J. Bio-Sci. Bio-Technol. 6, 137–144. doi: 10.14257/ijbsbt.2014.6.1.15

Liang, J. (2022). Problems and solutions of art professional service rural revitalization 
strategy based on random forest algorithm. Wirel. Commun. Mob. Comput. 
2022:9752512. doi: 10.1155/2022/9752512

Liu, J. (2021). Science popularization-oriented art design of interactive installation 
based on the protection of endangered marine life—the blue whale. Journal of Physics: 
Conference Series 1827, 012116–012118.

Llewelyn, M. J., Budgell, E. P., Laskawiec-Szkonter, M., Cross, E. L., Alexander, R., 
Bond, S., et al. (2023). Antibiotic review kit for hospitals (ARK-Hospital): a stepped-
wedge cluster-randomised controlled trial. The Lancet Infectious Diseases 23, 207–221.

Lozano-Hemmer, R. (2006). Pulse room [installation]. Available online at: https://
www.lozano-hemmer.com/pulse_room.php (Accessed March 24, 2023).

Maurya, N. S., Kushwah, S., Kushwaha, S., Chawade, A., and Mani, A. (2023). Prognostic 
model development for classification of colorectal adenocarcinoma by using machine learning 
model based on feature selection technique boruta. Scientific reports 13:6413.

Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning 
Research, 7, 983–999. Available at: http://www.jmlr.org/papers/v7/meinshausen06a.html

Meinshausen, N., and Ridgeway, G. (2006). Quantile regression forests. Journal of 
machine learning research 7.

Niedenthal, P. M. (2007). Embodying emotion. Science 316, 1002–1005. doi: 
10.1126/science.1136930

Nunnally, J. C., and Bernstein, I. H. (1994). Psychometric theory. 3rd Edn.: 
McGraw-Hill.

Obeidat, A. (2013). Constructing transformations of image in the Jordanian contemporary 
art: Comparative-analytical study [Doctoral dissertation, University of Granada].

Patel, S. V., Tchakerian, R., Morais, R. L., Zhang, J., and Cropper, S. (2020). The 
emoting city: designing feeling and artificial empathy in mediated environments. 
Proceedings of the ECAADE.

Pavic, K., Chaby, L., Gricourt, T., and Vergilino-Perez, D. (2023). Feeling virtually 
present makes me happier: the influence of immersion, sense of presence, and video 
contents on positive emotion induction. Cyberpsychol. Behav. Soc. Netw. 26, 238–245. 
doi: 10.1089/cyber.2022.0245

Pelowski, M., Leder, H., Mitschke, V., Specker, E., Gerger, G., Tinio, P. P., et al. (2018). 
Capturing aesthetic experiences with installation art: an empirical assessment of 
emotion, evaluations, and mobile eye tracking in Olafur Eliasson’s “baroque, baroque!”. 
Front. Psychol. 9:1255. doi: 10.3389/fpsyg.2018.01255

Pelowski, M., Markey, P. S., Forster, M., Gerger, G., and Leder, H. (2023). The mind 
on art: cognitive functions and states associated with aesthetic engagement. Psychol. 
Aesthet. Creat. Arts 17, 1–19. doi: 10.1037/aca0000467

Picard, R. W. (1997). Affective computing. Cambridge, MA: MIT Press.

Random International. (2013). Rain room [installation]. Available online at: https://
www.moma.org/calendar/exhibitions/1352Raptis (Accessed March 24, 2023).

Raptis, G. E., Kavvetsos, G., and Katsini, C. (2021). MUMIA: multimodal interactions 
to better understand art contexts. Appl. Sci. 11:2695. doi: 10.3390/app11062695

Rebentisch, J., and Hendrickson, D. (2012). Aesthetics of installation art. Berlin, 
Germany: Sternberg Press.

Reiss, J. H. (2001). From margin to center: The spaces of installation art. Cambridge, 
MA: MIT Press.

Russell, J. A. (1980). A circumplex model of effect. J. Pers. Soc. Psychol. 39, 1161–1178. 
doi: 10.1037/h0077714

Savaş, E. B., Verwijmeren, T., and van Lier, R. (2021). Aesthetic experience and 
creativity in interactive art. Art Percept. 9, 167–198. doi: 10.1163/22134913-bja10024

Schreuder, E., van Erp, J., Toet, A., and Kallen, V. L. (2016). Emotional responses to 
multisensory environmental stimuli: a conceptual framework and literature review. 
SAGE Open 6. doi: 10.1177/2158244016630591

Teo, J., Chia, J. T., and Lee, J. Y. (2019). Deep learning for emotion recognition in 
affective virtual reality and music applications. Int. J. Recent Technol. Engin. 8, 219–224. 
doi: 10.35940/ijrte.B1030.0782S219

Tewes, C. (2022). Enactivism and ecological psychology: the role of bodily experience 
in agency. Front. Psychol. 13:811242. doi: 10.3389/fpsyg.2022.811242

Varela, F. J., Thompson, E., and Rosch, E. (1991). The embodied mind: Cognitive 
science and human experience. Cambridge, MA: MIT Press.

Vasquez, R., Carrion-Jumbo, J., Riofrío-Luzcando, D., and Guevara, C. (2023). 
Emotion classification using EEG headset signals and random forests. In 2023 18th 
Iberian conference on information systems and technologies (CISTI) (pp. 1–7)

Velasco, C., and Obrist, M. (2021). Multisensory experiences: a primer. Front. Comput. 
Sci. 3, 1–6. doi: 10.3389/fcomp.2021.614524

Xu, S., and Wang, Z. (2021). Diffusion: emotional visualization based on biofeedback 
control by EEG feeling, listening, and touching the real things through human brainwave 
activity. ARTNODES (Barcelona, Spain: Universitat Oberta de Catalunya) 28, 1–11. doi: 
10.7238/a.v0i28.385717

Zhou, J., Zhang, J., and Li, T. (2018). Dynamic monitoring of forest land in the 
Bashang area of Hebei based on MODIS imagery and the random forest algorithm. Acta 
Sci. Nat. Univ. Pekin. 54, 792–800. doi: 10.13209/j.0479-8023.2018.010

https://doi.org/10.3389/fpsyg.2025.1609103
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.3390/su152215830
https://doi.org/10.3390/su152215830
https://doi.org/10.1162/LEON_a_00710
https://doi.org/10.1117/12.2042590
https://doi.org/10.1109/IV.2011.73
https://doi.org/10.5220/0005725206100617
https://doi.org/10.1109/IPTA.2015.7367144
https://doi.org/10.1016/j.inffus.2018.09.008
https://doi.org/10.1016/j.inffus.2018.09.008
https://doi.org/10.3389/fnins.2020.555093
https://doi.org/10.5406/amerjpsyc.128.3.0305
https://doi.org/10.1016/j.tics.2016.03.011
https://doi.org/10.14257/ijbsbt.2014.6.1.15
https://doi.org/10.1155/2022/9752512
https://www.lozano-hemmer.com/pulse_room.php
https://www.lozano-hemmer.com/pulse_room.php
http://www.jmlr.org/papers/v7/meinshausen06a.html
https://doi.org/10.1126/science.1136930
https://doi.org/10.1089/cyber.2022.0245
https://doi.org/10.3389/fpsyg.2018.01255
https://doi.org/10.1037/aca0000467
https://www.moma.org/calendar/exhibitions/1352Raptis
https://www.moma.org/calendar/exhibitions/1352Raptis
https://doi.org/10.3390/app11062695
https://doi.org/10.1037/h0077714
https://doi.org/10.1163/22134913-bja10024
https://doi.org/10.1177/2158244016630591
https://doi.org/10.35940/ijrte.B1030.0782S219
https://doi.org/10.3389/fpsyg.2022.811242
https://doi.org/10.3389/fcomp.2021.614524
https://doi.org/10.7238/a.v0i28.385717
https://doi.org/10.13209/j.0479-8023.2018.010


Chen et al. 10.3389/fpsyg.2025.1609103

Frontiers in Psychology 18 frontiersin.org

Appendix A

Rationale for excluding XGBoost from final model comparison

While XGBoost is widely recognized for its predictive power in affective computing and related domains, it was excluded from the final 
comparative analysis due to its disproportionately high computational cost and marginal performance gains. Early trials using the same dataset 
and feature set revealed that XGBoost required significantly longer training times (up to 3.5 h per target dimension) compared to under 1 h for 
Random Forest or SVM, without meaningful improvements in MSE. In several cases, the model failed to converge under the available 
computational constraints (Intel i7-10750H, 16GB RAM). This observation is consistent with prior research (Chen and Guestrin, 2016; Llewelyn 
et al., 2023), which highlights the sensitivity of boosting models to dataset scale and feature redundancy. Given the study’s dual emphasis on 
predictive validity and interpretability, Random Forest emerged as the more suitable model due to its faster training and transparent feature 
importance ranking. SVM was retained for benchmarking due to its distinct performance profile and computational efficiency. Future work 
may revisit XGBoost or incorporate deep learning models should larger datasets and enhanced hardware environments become available.
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