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Introduction: Current understanding of the neural mechanisms underlying facial 
trustworthiness perception is primarily based on studies using static facial stimuli. 
However, real-life social interactions are dynamic and complex, and the neural 
processes involved in such naturalistic contexts remain largely unexplored.

Methods: In this study, we analyzed EEG data collected by Chen et al. (2024) 
during a deception game involving two participants: a player and an observer 
engaged in real-time interaction. The player either followed instructions or made 
spontaneous decisions to lie or tell the truth, while the observer judged whether 
to trust the player based solely on his or her facial expressions. We examined 
observers’ behavioral data, event-related potentials, and interhemispheric EEG 
asymmetries in both signal magnitude and instantaneous phase.

Results: The results revealed a significant effect of trustworthiness on hemispheric 
asymmetry in the observer’s centroparietal phase activities especially after ~800 ms 
post-stimulus until the end of the trial at 3,000 ms post-stimulus. Subsequent 
frequency-based analysis revealed that this asymmetry in phase progression was 
primarily driven by lateralized signal frequency.

Discussion: These findings suggest that the perception of facial trustworthiness 
involves dynamic hemispheric lateralization. Whereas previous studies using static 
face stimuli indicate that trustworthiness perception occurs rapidly, our findings 
suggest that trustworthiness perception can be  modulated by persistent and 
dynamic affective processing in real-time social contexts.
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1 Introduction

A line of studies has demonstrated that people rapidly and intuitively form impressions of 
others’ social attributes, such as trustworthiness, based on facial expression perception. In a 
notable study, Willis and Todorov (2006) examined participants’ judgments of various traits 
(e.g., trustworthiness, attractiveness, etc.) from face stimuli presented for 100 ms, 500 ms, and 
1,000 ms. They found that participants’ judgments were highly correlated across all time 
conditions, suggesting that reliable first impressions regarding the social attributes can 
be formed in as little as 100 ms. Building on this work, Todorov et al. (2009) conducted 
another experiment with a similar paradigm but employing finer-grained exposure durations 
ranging from 17 ms to unlimited viewing time. They reported that trustworthiness judgments 
were significantly above chance after only 33 ms of exposure. Subsequently, using a composite-
face paradigm, that aligned trustworthy upper halves of faces and untrustworthy lower halves 
versus the opposite, Todorov et al. (2010) found that participants failed to discern between 
these two types of stimuli when judging trustworthiness with exposure times shorter than 
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100 ms. However, with longer viewing durations, participants rated 
the composites with trustworthy upper halves more positively, 
supporting the role of early holistic processing in trustworthiness 
perception. These studies demonstrated that impressions of social 
attributes formed from faces are instinctive evaluations, shaped more 
by perception than by deliberate reasoning. Such findings have been 
replicated by many subsequent studies (Bar et al., 2006; Porter et al., 
2008; Holtz, 2015). Further investigations have explored additional 
factors that influence the perception of facial trustworthiness. For 
example, Krumhuber et al. (2007) found both genuine and fake smile 
faces were perceived to be  more trustworthy than neutral faces, 
highlighting the role of emotional cues. Additionally, Robinson et al. 
(2014) identified the eyes and mouth as critical facial regions for facial 
trustworthiness perception, and demonstrated that manipulating the 
relative saliency of these regions could bias trustworthiness judgments. 
Other factors include the observer’s age (Cassidy et  al., 2019), 
knowledge about others’ social category (Xie et al., 2019; Schmid et al., 
2022), experience (Cheung et  al., 2024), and even momentary 
associations (Fenske et al., 2005). These findings emphasize the roles 
of both perceptual and non-perceptual factors in biasing 
trustworthiness perception.

EEG has been instrumental in uncovering the temporal dynamics 
of cortical activities during facial trustworthiness perception, as well 
as its relationship to other cognitive functions. In an ERP study, Yang 
et al. (2011) observed a larger C1 component (within 40–90 ms post-
stimulus) in response to trustworthy compared to untrustworthy 
faces. This finding supports previous behavioral findings that facial 
trustworthiness perception occurs at remarkably early stages. 
Additionally, a larger late positive component was detected in response 
to trustworthy faces, suggesting increased attentional demand. In 
another study, Calvo et al. (2018) investigated the interaction between 
emotional expression and trustworthiness perception. They presented 
faces with multiple types of emotional expression and found that facial 
expression processing could occur earlier than trustworthiness 
judgment, potentially reflecting a temporal hierarchy where emotional 
cues may precede and influence the evaluation of social attributes like 
trustworthiness. The effects of trustworthiness perception on face-
related event-related potentials (ERPs) were also examined. N170 is a 
typical ERP signature, usually peaking between 140 and 230 ms, 
linked to the perception of emotional face-body compound stimuli 
(Meeren et al., 2005; Blau et al., 2007; Hinojosa et al., 2015). Previous 
studies have found that the trustworthiness of faces can modulate the 
subsequent component of N170, early posterior negativity (EPN), 
which suggested an affective evaluation process (Dzhelyova et al., 
2012; Calvo et  al., 2018). While these studies relied on explicit 
judgment tasks, other research has employed fast periodic visual 
stimulation (FPVS) to investigate implicit neural processing of facial 
trustworthiness. FPVS involves rapidly presenting visual stimuli at 
fixed frequencies, allowing the extraction of frequency-tagged EEG 
responses (Rossion, 2014). By updating face stimuli rapidly, this 
approach enables the decoding of EEG data patterns induced by 
relatively automatic and implicit neural functions, which are 
constrained by a short exposure duration. Using this approach, Swe 
et  al. (2020) presented face stimuli at a base rate of 6 Hz, with 
trustworthiness systematically varying at 1 Hz. They successfully 
detected trustworthiness-related neural responses at 1 Hz, providing 
strong evidence for implicit encoding of facial trustworthiness 
perception. In another experiment using FPVS, trustworthy faces 

(oddballs) were interspersed every fifth stimulus among untrustworthy 
faces, and vice versa, resulting in an oddball rate of 1.2 Hz and a base 
rate of 6 Hz (Verosky et al., 2020). They found that the trustworthiness 
of oddball faces had a significant effect on the EEG signals at 1.2 Hz. 
These EEG studies align with behavioral data on the intuitive 
processing of facial trustworthiness, highlighting the role of implicit 
mechanisms in trustworthiness perception.

Regarding the cortical regions involved in facial trustworthiness 
perception, previous studies using fMRI have consistently identified the 
amygdala, a key region for affective processing, as showing different 
BOLD signals in response to face stimuli varying in perceived 
trustworthiness (Adolphs et al., 1998; Engell et al., 2007; Todorov and 
Engell, 2008; Said et al., 2009; Winston et al., 2013). It is well established 
that amygdala activity exhibits hemispheric asymmetry, particularly in 
the context of emotion processing (a review of neuroimaging studies 
regarding this issue: Baas et al., 2004). Early research using visual masking 
paradigms indicated that this lateralization depends on the observer’s 
awareness of emotional facial expressions, with unconscious processing 
primarily engaging the right amygdala (Morris et al., 1998). Additional 
theories about the functional differences between the left and right 
amygdala were also hypothesized, positing that the right amygdala 
supports rapid, automatic emotional responses, whereas the left amygdala 
is involved in more sustained and finer modulation of emotional arousal 
(Gläscher and Adolphs, 2003). Although the exact relationship between 
amygdala lateralization and EEG measures remains unclear, emotional 
processing is known to elicit hemispheric asymmetries in EEG signals. 
For example, the left frontal ERP was found to be lateralized to happy 
faces, while the right was lateralized to neutral faces (Graham and 
Cabeza, 2001). Such lateralization effects in EEG signals related to 
emotional valence were also detected in spectral analysis (Ahern and 
Schwartz, 1985; Pane et  al., 2019) and instantaneous phase analysis 
(Costa et al., 2006; Val-Calvo et al., 2019; Cao et al., 2020). However, it is 
important to note that EEG is widely recognized for its limited spatial 
resolution, which restricts its ability to directly reflect subcortical activity 
within specific nuclei, such as the amygdala.

Previous research has significantly contributed to our knowledge 
about the cortical dynamics underlying facial trustworthiness 
perception and its associated mechanisms. However, the vast majority 
of these studies have relied on static facial photographs or 
algorithmically generated face images drawn from databases with 
preassigned trustworthiness scores. In contrast, real-world social 
interactions involve dynamic, temporally evolving facial expressions 
that unfold during interpersonal exchanges. Such naturalistic 
conditions may modulate trustworthiness perception over time in 
ways not captured by static stimuli. Yet perceiving actual faces in a 
real-time manner could complicate the cortical processing; however, 
little is known about the neural activities under such conditions. 
Particularly, the neural signatures revealing trustworthiness versus 
untrustworthiness in natural settings may not be readily inferred from 
previous findings based on static facial stimuli. To address this gap, 
we analyzed a novel EEG dataset collected simultaneously from a 
“player” and an “observer” during a task designed to encourage 
deception (data descriptor: Chen et al., 2024). At each time, the player 
decided to relay either the true or false information to the observer, 
who viewed the player’s face before choosing to trust the player or not. 
This design enabled us to investigate the effects of observers’ responses 
on their EEG activities, to uncover the EEG signatures reflecting the 
perception of trustworthiness in real-time social contexts.
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2 Materials and methods

2.1 Description of the dataset

As illustrated by Chen et al. (2024), the dataset we used in the 
present investigation was curated from a data description study 
published in Scientific Data. This dataset contains a complete set of 
raw behavioral data and EEG data, as well as a preprocessed EEG 
dataset that were collected in a two-player deception experiment. 
Twenty-four participants (12 females, age: 25 ± 4.34 yrs) with normal 
or corrected-to-normal vision and no reported history of neurological 

disorder participated in this experiment for monetary rewards of 
around USD10/h. This experiment was approved by the Institutional 
Review Board with the number KUIRB-2019-0043-01. All participants 
were naïve to the experimental paradigm and gave written informed 
consent prior to the experiment.

2.2 Experimental procedures

As depicted in Figure 1, the task of this experiment involved two 
participants serving as the player and the observer, respectively, at 

FIGURE 1

Illustration of the experiment. This figure was adapted from Figure 1 in Chen et al. (2024), and the colored circles around the electrode labels in this 
figure have no specific meanings.
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each time. The two participants faced each other and sat in front of 
two separated 24-inch monitors (resolution: 1,920 × 1,080 2px , refresh 
rate: 60 Hz; produced by LG, South Korea), with an HD pro C920 
webcam (Logitech, Switzerland) installed on the top of the player’s 
monitor (Figure 1). As illustrated in Figure 1, a trial began with a 
fixation period of 1,000 ms, during which both participants were 
asked to fixate on a fixation cross that appeared in the center of their 
respective monitors. Then, a card containing a colored digit (ranging 
from 1 to 6) was presented on the monitor of the player’s side, whereas 
on the observer’s side, the monitor showed a live stream of the player’s 
face. This stage lasted for 3,000 ms, and during this period, the player 
had to decide which number to relay to the observer depending on the 
color (black, purple, or blue) of the presented digit. The three colors 
cued three different strategic conditions: (1) the instructed truth 
condition that the player had to relay the same number presented in 
the card to the observer; (2) the instructed lie condition that the player 
had to relay a different number than the presented one; and (3) the 
spontaneous condition that the player chose any number within the 
range of 1–6 to relay. Following this player decision stage, the player 
was asked to relay the number by pressing a corresponding button on 
a RB-740 response pad (Cedrus Corporation, United States) within 
3,000 ms, during which only the background was presented on the 
observer’s side. Triggered by the player’s response, a card showing the 
relayed number in black was presented on the observer’s monitor and 
the observer was asked to decide whether the information was a lie 
(perceived untrustworthy) or the truth (perceived trustworthy) by 
pressing one of two buttons on a response pad within 3,000 ms. The 
observer would be  the winner if he  or she responded correctly, 
otherwise the player would be the winner; and the other party would 
be the loser. Upon the observer’s response, feedback was given to both 
participants according to a scoring system: if the player lied, the 
winner earned +15 points while the loser received −5 points; if the 
player told the truth, the winner gained +10 points and the loser still 
lost −5 points. This scoring system, explained before the experiment, 
was designed to encourage active participation of both participants by 
successfully deceiving and detecting in exchange for higher scores. At 
the end of each trial, a status screen displayed the cumulative score, 
number of trials and rounds won, and overall game progress. For the 
monitors of both sides, the trial scores that both participants acquired 
were presented for 1,000 ms and followed by a summary showing the 
accumulated scores, number of trials and rounds won by each side, as 
well as the progress of the experiment for 2,000 ms.

The 24 participants were separated into 12 pairs, and in each pair, 
two participants took turns serving as the player and the observer. 
This resulted in 24 paired cases, and 23 of them successfully finished 
the experiment. For each case, the entire experiment consisted of 11 
sessions, in which each session contained 44 trials (spontaneous: 22, 
instructed lie: 11, instructed truth: 11) and these trials were presented 
in a randomly shuffled order. During all the sessions, EEG and 
responses of both participants were recorded. This experiment was 
programmed in Python using PsychoPy.

2.3 EEG apparatus

According to the data description, the EEG data was recorded 
with two BrainAmp amplifiers (Brain Products, Germany) from 30 
EEG electrodes and an EOG electrode. Electrode locations on the 

caps are visualized in Figure 1. Due to connection issues, the Oz 
channel was removed from the dataset. The data was digitized at 
500 Hz, nose-referenced online, and forehead grounded to the 
electrode Fpz. No online filtering was reported in the original 
data descriptor.

2.4 Data analysis

2.4.1 Data preprocessing
In the preprocessed dataset, the data were down-sampled to 

100 Hz and filtered at 1–49 Hz. Here an aggressive high-pass filter was 
used, with a cutoff frequency of 1 Hz. As reported by Acunzo et al. 
(2012), although a cut-off at 1 Hz has been widely used in the 
literature, a high-pass filter with a cut-off frequency higher than 
0.1 Hz can alter the waveform of ERPs. On the other hand, a higher 
cut-off frequency can help mitigate slow baseline drift caused by body 
motion (Onikura et al., 2015). To replicate a real-life social context, 
this study did not use a chin rest or any other device to stabilize 
participants’ heads. Taking all these factors into account, 
we considered a 1 Hz cut-off acceptable. Artifacts were detected and 
rejected using EEGLAB functions and ICA-based algorithms with 
MATLAB (The MathWorks, United States). Data from each channel 
were then baseline corrected by 500 ms prior to the stimulus onset. 
Further details about the algorithms during preprocessing can 
be found in the data description (Chen et al., 2024). Since this study 
targeted facial trustworthiness, we selected the observers’ data from 
the “player decision making” stage (as labeled in Figure 1), which 
lasted 3,500 ms beginning from 500 ms prior to the facial expression 
display, and ending 3,000 ms afterwards. The resulting EEG signals 
were then re-referenced to the electrode Cz.

We conducted four analyses conditioned by the observers’ 
responses, either trustworthy or untrustworthy, toward the players. In 
these analyses, we analyzed the effects of the observer’s perception of 
trustworthiness by examining how their EEG data could reflect 
observers’ responses. First, we performed an ERP analysis to examine 
whether these social evaluations elicited amplitude differences across 
scalp electrodes and to identify the associated cortical regions. Second, 
to explore hemispheric asymmetries, we paired electrodes across the 
left and right hemispheres and compared the magnitude of their 
signals, assessing how perceptions of trustworthiness modulated these 
interhemispheric differences. Third, we extracted the instantaneous 
phases of EEG signals and repeated the interhemispheric analysis 
based on phase differences between homologous electrode pairs, 
enabling a finer-grained investigation of cortical synchrony and 
temporal alignment related to trustworthiness perception. A linear 
regression was performed on the phase progression-related profiles as 
a function of time to reflect the general frequency of the original 
signals. Finally, we calculated the weighted average of the frequencies 
of selected signals in a spectral centroid analysis to further examine 
how the instantaneous phase was affected.

Furthermore, as a control condition to the data segmentation 
based on trustworthiness, we randomly partitioned the data from each 
observer into two epochs 1,000 times with equal numbers of trials in 
each epoch that were balanced by the observer’s attitude to create a 
null distribution. The effects of trustworthiness on EEG signals were 
then compared to the null distribution in order to test the effects of 
trustworthiness against other factors.
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2.4.2 ERP analysis
For each observer, we segmented the EEG data into two conditions 

based on their responses: one consisting of trials in which the observer 
deemed the player as trustworthy, and the other consisting of trials in 
which the observer deemed the player untrustworthy. We  first 
examined the behavioral and neural strategies by analyzing ERPs. 
Subsequently, we  identified electrodes and time windows that 
exhibited signal differences associated with the observer’s responses. 
This was done by averaging ERP signals across all trials and 
participants separately.

2.4.3 Interhemispheric electrode pairs
To examine interhemispheric differences, we paired electrodes 

across the frontal-posterior hemispheres, selecting those located at 
symmetric scalp sites. This resulted in 12 electrode pairs: F3–F4, F7–
F8, F9–F10, FC1–FC2, FC5–FC6, C3–C4, CP1–CP2, CP5–CP6, P3–
P4, P7–P8, PO3–PO4, and O1–O2. For each pair, we  computed 
difference waveforms by subtracting the signal from the right 
hemisphere electrode from its left hemisphere counterpart. Consistent 
with the ERP analysis, EEG signals from each participant were divided 
into two conditions based on the observer’s responses. We  then 
averaged the signals within each condition to generate signal profiles 
for statistical analysis.

2.4.4 Instantaneous phase analysis
In this study, we performed an instantaneous phase analysis to 

uncover the dynamic spectral properties of EEG signals. Although 
Fourier transform has been widely used in spectral analysis, it is 
limited in analyzing nonstationary time-series as it is synthesized 
based on the entire signal and thus the time-varying features are 
averaged out, whereas instantaneous phase can reflect the dominant 
frequency at each time point with high temporal resolution by 
computing its derivative (Huang et  al., 1998; Shea et  al., 2021). 
Although time-frequency analysis reflects how spectral content 
evolves over time, it inherently averages signal components over a 
time window. As a result, its temporal resolution is limited by the 
window size or kernel used, making it less temporally precise than 
instantaneous phase analysis, which can offer finer time resolution.

In this regard, instantaneous phase analysis is suitable and has 
been widely used in synthesizing EEG signals related to brief mental 
processes (Schack et al., 1999; Kumar et al., 2018; Wang et al., 2006) 
or state transitions in rhythms (Freeman and Rogers, 2002; McIntosh 
and Sajda, 2020; Nelli et al., 2017). Here, we utilized this approach to 
track how the observers’ EEG signals varied dynamically and instantly 
in revealing the perception of trustworthiness.

The instantaneous phase dynamics of a signal was computed using 
the approach of Hilbert transformation, as illustrated by 
Equations 1 and 2.

 ( ) ( ) ( )( )1ˆ sgng t F j f G f−= − ⋅ ⋅
 (1)
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−1F  is the inverse Fourier transform of the input signal, ( )G f  is the 

Fourier transform of ( )g t , and ( )φg t  is the instantaneous phase of 
( )g t . We then unwrapped ( )φg t  to remove the discontinuity of the 

instantaneous phase profile and uncover the phase progression.

2.4.5 Spectral centroid analysis
The spectral centroid of an EEG signal was computed using 

Equation 3 based on its power spectral density (PSD) ranging from 0 
to 50 Hz along the frequency domain with a bin of 0.5 Hz.
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where SC stands for spectral centroid, ( )andkf X k∣ ∣ are 
frequency and magnitude of PSD at bin k, and N stands for the total 
number of bins depending on the frequency range and bin size.

3 Results

3.1 Behavioral results

The mean (SD) accuracy across observers was 49.82% (2.74%), 
and a t-test revealed that the observers’ accuracy was not significantly 
different from the chance level of 50% (t(22) = −0.31, p = 0.76). The 
average number of trials in which observers deemed the player as 
trustworthy was 244.91 (10.63), while for untrustworthy it was 
238.96 (10.64). A paired-samples t-test indicated no significant 
imbalance in the distribution of the two types of judgments 
(t(22) = 1.34, p = 0.19).

In addition, observers’ performance remained relatively stable 
throughout the experiment. As shown in the left panel of Figure 2, no 
significant difference in mean accuracy was found across the 11 sessions. 
A repeated-measures ANOVA with session number as the factor revealed 
no significant effect on mean accuracy (F(10, 220) = 0.55, p  = 0.86, 

2 0.02pη = ). In the spontaneous condition, where players could freely 
choose to tell the truth or lie, we  analyzed whether their behavior 
influenced observers’ responses through linear regression. As shown in 
the right panel of Figure  2, the proportion of lying ranged from 
approximately 30–65%. Despite this individual variability, there was no 
significant correlation between the observer’s mean accuracy and the 
player’s lying proportion (r(21) = −0.1, p = 0.65).

These findings suggest that observers’ judgments were largely 
intuitive and inaccurate, aligning with theories that social evaluations 
based on faces are instinctive and difficult without contextual 
information (see review by Todorov et al., 2015).

3.2 ERP analysis

Figure  3 displays ERPs from selected frontal and posterior 
electrodes (Fz, P7, P8, O1, O2). A clear N170 component was 
observed around 200 ms, indicating engagement with facial expression 
processing. However, no significant effects of trustworthiness were 
found on ERP magnitudes. Figure  4 illustrates the topographic 
distribution of differences between trustworthy and untrustworthy 
trials, averaged over 100 ms windows. Across all electrodes, differences 
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FIGURE 2

Left: Change in observers’ performance over the course of experiment. The mean accuracy across observers with respect to the 11 sessions of 
experiment is plotted. The shading indicates the standard error across observers. Right: Linear regression of observers’ performance with respect to the 
proportion of lying in the players’ behavior in the spontaneous tasks. Each dot represents a participant pair. The shading indicates the standard error of 
the estimate.

FIGURE 3

Grand average ERPs for the observers. The left panel shows the signals during the entire trial. The right panel shows the signals during 1,000 ms post-
stimulus, and a dashed line marks 170 ms.

FIGURE 4

Topographics of grand ERP difference between trustworthy and untrustworthy epochs.
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remained below 1 μV, and repeated-measures ANOVAs with 
trustworthiness as the main factor found no significant effects on 
observers’ ERPs during any time window (α = 0.05 ).

3.3 Interhemispheric comparisons

3.3.1 Difference in signal magnitude
Figure 5 shows pairwise signal differences between left and right 

hemisphere electrodes, across trustworthy, untrustworthy, and 
control conditions. Notable differences were observed in P100 and 
P300 components, with stronger signals in the right hemisphere—
especially evident at P7–P8, where subtracting P8 from P7 yielded 
negative peaks. For P100 (the average value during 80–130 ms), a 
paired-samples t-test detected a significant difference between the 

mean amplitude of P7 and that of P8 (t(22) = −3.32, p < 0.01). For 
P300 (250–300 ms): t(22) = −3.1, p < 0.01. A larger N170 component 
in the right hemisphere than that in the left hemisphere was also 
observed, mostly evident in O1-O2, where subtracting O2 from O1 
yielded to a positive peak (170–220 ms: t(22) = 2.23, p < 0.05). These 
effects are also reflected in Figure 3. These effects confirm emotional 
face recognition and are consistent with prior reports of right-
lateralized N170 components (Ibáñez et al., 2012; Nakajima et al., 
2012; Gao et al., 2019; Dundas et al., 2013, 2014). Whereas right-
lateralized N170 was only detected in response to face stimuli 
(Maurer et al., 2008; Rossion et al., 2003; Dundas et al., 2013, 2014), 
the effects of right lateralization on the other two peaks were reported 
for both word and face stimuli (Dundas et al., 2014).

However, comparisons between the trustworthiness conditions 
and control revealed no significant differences across electrode pairs. 

FIGURE 5

Grand average interhemispheric ERP differences as conditioned by trustworthy, untrustworthy, and control. The shading for the control condition 
indicates the 95% confidence interval of null distribution consisting of 1,000 times of resampling.
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Profiles for both trustworthy and untrustworthy trials lay within the 
95% confidence interval of the control condition in all cases.

3.3.2 Difference in signal phase progression
In this section, we synthesized the phase progression of the signals 

from each electrode and calculated the phase shift between 
interhemispheric electrode pairs. To examine the effect of 
trustworthiness, for each observer, we determined the conditioning 
interhemispheric phase shift, by calculating the absolute difference in 
mean interhemispheric phase shift across trustworthy- and 
untrustworthy-related trials. We controlled it by the null distribution 
of that between two equal-size epochs for 1,000 times of random 
resampling, as mentioned in Section 2.4.1. Our null hypothesis was 
that the profiles of conditioning interhemispheric phase shift 

representing trustworthiness and random control should be equal if 
trustworthiness can induce no effect on the interhemispheric phase 
shift progression.

Averaging across all the observers, Figure 6 illustrates the effects 
of trustworthiness on interhemispheric phase shifts for all electrode 
pairs. We observed that phase dynamics were generally asymmetrical 
between the two hemispheres. Also, these effects appeared to be highly 
variable, as conditioning interhemispheric phase shift profiles on both 
conditions deviated from zero over time across electrode pairs.

Comparing conditioning interhemispheric phase shift profiles 
between the trustworthiness condition and the null distribution, 
significant phase asymmetries emerged in centroparietal regions—
most notably at CP1-CP2—where the phase shift exceeded the 95% 
confidence interval of the control condition, particularly from 

FIGURE 6

Mean profiles of conditioning interhemispheric phase shift on trustworthiness and control. The shading for the control condition indicates the 95% 
confidence interval of null distribution consisting of 1,000 times of resampling.
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~800 ms to 3,000 ms post-stimulus. This suggests that trustworthiness 
perception enhances hemispheric divergence in phase progression.

From Equations 1 and 2, we  know that the instantaneous 
phase is the integral of instantaneous frequency over time. 
We  thereby performed linear regressions on each participant’s 
conditioning interhemispheric phase shift at CP1  - CP2 and 
analyzed the average difference in signal frequency between CP1 
and CP2 based on the resulting slopes. As for the control 
condition, we used the median level within the null distribution 
for each observer, so that a repeated-measure comparison between 
trustworthiness and control conditions could be  performed. 
Figure 7 shows the results of linear regressions and Figure 8 shows 
the slopes in a unit of Hz. The average frequency difference 
(slope) conditioned by trustworthiness and control were 
2.18 ± 2.16 Hz and 1.16 ± 0.26 Hz, respectively. A repeated-
measures ANOVA confirmed a significant difference between the 
trustworthiness and control conditions on the slopes (F(1, 
22) = 5.91, p < 0.05, 2 0.21pη = ). These results indicate a higher 
divergence between two hemispheres by means of signal frequency 
induced by facial trustworthiness perception than random states. 
More specifically, the frequency difference between signals in CP1 
and CP2 was 1.16 Hz by average under random states, but 
perceiving trustworthy and untrustworthy faces induced a 
significantly increased interhemispheric divergence with an 
average degree of 2.18 Hz.

3.4 Spectral centroid analysis on CP1 - 
CP2

Visual inspection from the profiles of phase shifts in Figure 6 
suggested a high slope difference between trustworthiness and 
control conditions during 800–2,000 ms. Based on these findings, 
we  conducted spectral centroid analysis for CP1–CP2 using 

signals from 800 to 2000 ms. Mean spectral centroid values were 
compared across trustworthy and untrustworthy trials, and 
against the control condition, in which each time of random data 
segmentation resulted in two half-epochs, labeled as “control1” 
and “control2,” and averaged values across all times of resampling 
were used.

As shown in Figure 9, we found that the spectral centroid at 
CP1  - CP2 was dependent on trustworthiness. A repeated-
measures ANOVA with two factors (electrode and trustworthiness) 
revealed a significant interaction between the electrode and 
trustworthiness (F(1, 22) = 6.44, p  = 0.018, ηp

2
0= . 23) on the 

mean spectral centroid, but did not detect any factorial effects 
(channel: F(1, 22) = 0.14, p = 0.71, 2 0.pη < 01; trustworthiness: 
F(1, 22) = 0.03, p  = 0.86, 2 0.pη < 01). Post hoc analyses using 
Tukey’s HSD examining the simple effects of trustworthiness 
within the electrode revealed no significant differences between 
the trust and untrust conditions at either CP1 (mean 
difference = −1.18, 95% CI = [−2.96, 0.6], p-adjusted = 0.19) or 
CP2 (mean difference = 0.82, 95% CI = [−0.56, 2.19], 
p-adjusted = 0.24). However, the difference in the simple effects 
of trustworthiness across CP1 and CP2 was statistically significant, 
as indicated by a paired-samples t-test (t(22) = −2.54, p = 0.019, 
Cohen’s d = −0.67), confirming a crossover interaction pattern. 
Specifically, the spectral centroid was higher in trust condition 
than untrust at CP1, but this pattern reversed at CP2. In contrast, 
no significant effects were found in the control condition 
(channel: F(1, 22) = 0.37, p  = 0.55, 2 0.pη = 02; control: F(1, 
22) = 0.1, p = 0.76, 2 0.pη < 01; channel×control: F(1, 22) = 0.38, 
p = 0.54, 2 0.pη = 02).

These results confirm the earlier findings, indicating that 
hemispheric asymmetry in the centroparietal region reflects 
trustworthiness perception. Specifically, the observed phase 
asymmetry appears to be  driven by a lateralization of signal 
frequency: trustworthy faces were likely to induce relatively 

FIGURE 7

Results of linear regression on conditioning interhemispheric phase shift per subject for trustworthiness and control conditions. Each color represents 
an observer. For better visualization, the scatters are binned by a time window of 100 ms.
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higher frequencies in the left hemisphere, while untrustworthy 
faces could induce relatively higher frequencies in the 
right hemisphere.

4 Discussion

In this study, we examined EEG signals from Chen et al. (2024) to 
explore how observers assess facial trustworthiness during real-time 
social interactions. Unlike prior research using static facial images, 
Chen et al. (2024) used live video streams, offering a more ecologically 
valid perspective. We  found that trustworthiness perception is 
modulated by sustained hemispheric asymmetries, particularly in 
centroparietal regions from ~800 to 3,000 ms post-stimulus. Whereas 
earlier studies using static face stimuli suggested that facial 
trustworthiness perception is rapid and prolonged exposure to facial 
stimuli did not substantially alter trustworthiness judgments, our 

findings emphasize the role of dynamic and persistent affective 
processing in real-time social interactions.

For observers’ behavioral responses, we  found that their 
performance was balanced between trustworthy and untrustworthy 
conditions, and their accuracy was around the chance level during the 
time course of the experiment. These findings align with previous 
research suggesting that judgments of facial trustworthiness can 
be intuitive and often inaccurate (Bond and DePaulo, 2006; Bond and 
DePaulo, 2008; Rule et al., 2013; see review by Todorov et al., 2015). One 
possible explanation is the inherent instability of facial appearance. 
Prior studies have shown that participants exhibit high variability when 
identifying faces across different photographs of the same individual, 
comparable to the variability observed between different individuals 
(Jenkins et al., 2011; Burton et al., 2016). This high degree of variation 
has also been observed in social attribution tasks, where judgments 
about traits like trustworthiness showed similar within- and between-
individual variability (Olivola and Todorov, 2010).

FIGURE 8

Slopes resulted by the linear regression analysis as transformed to be in a unit of Hz. The error bars indicate one standard error across observers.

FIGURE 9

Spectral centroid of the signals from the electrode pair CP1 - CP2. The error bars indicate one standard error across observers.
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Although often inaccurate, research indicates that trustworthiness 
judgments can be made extremely quickly, within the first 100 ms of 
stimulus presentation (Willis and Todorov, 2006), a finding supported 
by EEG studies showing early ERP components reflecting such 
evaluations (Yang et al., 2011). However, our findings indicate that 
when viewing faces in real-time, trustworthiness perception is 
dynamic, as reflected by a sustained interhemispheric phase 
divergence in the centroparietal cortex. As explained in section 2.4.4, 
the instantaneous phase represents the position within the cycle of an 
oscillatory signal at a given time. While phase itself reflects the timing 
of the waveform, changes in phase over time directly relate to the 
frequency of the signal: when the phase advances quickly, the 
frequency is higher; when it advances more slowly, the frequency is 
lower. This allows us to capture moment-to-moment fluctuations in 
frequency, even in signals that are nonstationary or not perfectly 
sinusoidal, which is often the case with EEG data related to brief 
mental processes (Schack et al., 1999; Kumar et al., 2018; Wang et al., 
2006;), rhythmic transitions (Freeman and Rogers, 2002; McIntosh 
and Sajda, 2020; Nelli et al., 2017), or auditory perception such as 
speech comprehension (Li et  al., 2022) and music perception 
(Poikonen et al., 2018). In this study, as shown in Figures 6–8, the 
diverging phase progression between signals at CP1 and CP2 stemmed 
from a difference in their frequencies, which can be measured by the 
slope of conditioning interhemispheric phase shift, since frequency is 
defined as the rate of change of unwrapped phase. Further, a spectral 
centroid analysis was performed to examine how trustworthiness 
perception impacted the weighted average frequency of signals at CP1 
and CP2. As shown in Figure 9, we found that the spectral centroid 
was higher in trust condition than untrust at CP1, but this pattern 
reversed at CP2, which indicates a phenomenon of hemispheric 
lateralization in EEG frequency.

As one of the novelties of the experiment in Chen et al. (2024), 
using live video streams of players could address two significant 
limitations associated with the use of posed facial stimuli in 
conventional emotion recognition research. First, posed facial 
expressions tend to lack the spontaneity and subtle muscular 
movements that characterize genuine emotional expressions. Such 
posed displays are typically categorized or stereotyped in the 
laboratory conditions and these artificial natures can limit their 
ecological validity and evoke poorly natural responses from observers 
(Long et al., 2023; Peluso et al., 2025). As evidence, McLellan et al. 
(2010) found that observers’ response time to the categorical words 
was shorter after watching the associated genuine faces than posed 
faces, which suggests a higher sensitivity to genuine facial expressions 
than posed ones. In a subsequent fMRI study, McLellan et al. (2012) 
detected differential cortical activation patterns from observers when 
they judged posed facial emotion versus genuine facial emotion. 
However, in this experiment, the players spontaneously generated 
expressions in response to their internal states and thus the live videos 
of their facial expressions are more likely to convey authentic, nuanced 
facial dynamics. This could enhance the realism of the emotional 
display and provide a richer, more complex set of cues for observers 
to interpret (Barrett, 2006). Second, static images of faces display only 
one status of expressions, whereas dynamic stimuli such as live videos 
provide temporally unfolding information, allowing observers to 
process the onset and offset of emotional cues, as well as the 
continuous changes between them. Research suggests that these 
transitional phases carry important affective information (Filipowicz 

et al., 2011). Also, it was found that live facial expressions enhanced 
the observers’ emotional reactions (Hsu et al., 2020). By using live, 
temporally contiguous expressions, the experiments in this study 
mirror real-life social interactions more closely, thereby increasing the 
ecological validity of the experimental setting and improving the 
generalizability of the findings.

Despite these advantages, the methodology of this experiment 
also presents certain limitations: it did not record the video feed of the 
players during the live interaction, nor did they capture eye movement 
data from the observers. As a result, it is unable to verify precisely 
which aspects of the facial cues the observers attended to for 
trustworthiness judgment during the game. Although we detected 
N170, a typical ERP associated with the perception of emotional faces, 
from observers’ EEG data, we still could not rule out the possibility 
that observers may have relied on non-expression cues, such as stable 
facial structures (Lee et al., 2017), rather than facial expressions alone. 
Therefore, we cannot conclusively determine the extent to which facial 
expressions, as opposed to other cues, drove participants’ 
recognition judgments.

Our key findings are grounded in the well-established 
phenomenon of hemispheric lateralization. Extensive research has 
shown that both face and social perception engage lateralized neural 
networks across the cerebral hemispheres. Early studies highlighted 
the dominance of the right hemisphere in face processing. For 
instance, De Renzi (1986) documented two patients with right 
hemisphere damage who exhibited profound impairments in 
recognizing familiar faces. Also, Kanwisher et al. (1997) identified the 
fusiform face area (FFA) as a cortical region specialized for face 
perception, noting stronger activation in the right hemisphere 
compared to the left when participants viewed facial stimuli. 
Subsequent EEG studies further confirmed this lateralization, showing 
that the face-sensitive ERP component, N170, consistently exhibits 
greater amplitude in the right hemisphere (Ibáñez et  al., 2012; 
Nakajima et al., 2012; Gao et al., 2019; Dundas et al., 2013, 2014). This 
right-lateralized N170 effect was also observed in our study, as 
illustrated in Figures  3, 5. Beyond face perception, the right 
hemispheric lateralization has also been implicated in processing 
social information across multiple modalities, including auditory, 
visual, and olfactory cues (Brancucci et al., 2009). Specifically in the 
domain of facial stimuli, prior research has shown a perceptual bias 
toward the left visual field, which was suggested to be associated with 
right hemisphere processing, in tasks involving gender identification 
(Butler et al., 2005), assessments of attractiveness (Zaidel et al., 1995), 
and health judgments (Reis and Zaidel, 2001), further supporting the 
right hemisphere’s dominancy in social evaluation.

The neural network responsible for face perception is intricately 
connected to other functional systems, with one particularly 
important connection being the emotional processing circuitry 
centered around the amygdala (Said et al., 2010). Emotion-related 
hemispheric lateralization has been extensively documented within 
the field of affective neuroscience (see review by Harmon-Jones et al., 
2010). Interestingly, emotional face processing has often been 
associated with left-lateralized amygdala activation. In a 
comprehensive meta-analysis of PET and fMRI studies, Baas et al. 
(2004) found that amygdala activation was predominantly lateralized 
to the left hemisphere when participants were presented with 
emotional facial stimuli. This pattern of lateralization has also been 
observed in electrophysiological studies. For instance, early research 
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reported increased alpha activity over the left hemisphere during 
affective conditions, particularly in posterior brain regions (Smith 
et al., 1987). Moreover, studies have demonstrated links between left 
frontal electrical activity and the expression of positive emotions, 
with greater activation observed during joyful facial expressions 
(Ekman and Davidson, 1994; Graham and Cabeza, 2001). Supporting 
these findings, Zotev et al. (2016) used simultaneous fMRI and EEG 
to show a correlation between frontal EEG asymmetry and amygdala 
BOLD signal lateralization. Nonetheless, as noted in the Introduction, 
the precise functional distinctions between the left and right 
amygdala, as well as the mechanisms linking EEG measures to 
amygdala activity, remain incompletely understood and warrant 
further investigation. In our study, we  observed hemispheric 
asymmetry mainly at the centroparietal cortex. Although there is not 
yet extensive evidence directly linking the centroparietal EEG 
asymmetry and amygdala activities, simultaneous EEG-fMRI studies 
have shown that greater amplitudes in centroparietal ERPs 
co-occurred with increased activation in amygdala and/or its 
surrounding regions (Sabatinelli et  al., 2007; Liu et  al., 2012) in 
emotional processing. This has led to the suggestion that the 
amygdala may influence the magnitude of the centroparietal EEG 
activities, possibly through its role in signaling emotional salience to 
higher-order cortical networks. However, the underlying mechanisms 
of this interaction remain unclear, and further research is needed to 
better understand how subcortical emotion processing may 
be reflected in cortical EEG signals like this.
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