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Introduction: With the increasing prevalence of electric vehicles, motion sickness 
has emerged as a critical factor impairing passenger comfort. Current studies relying 
on simulated driving face limitations in replicating real-road conditions.

Methods: We conducted real-vehicle experiments across six roadway scenarios: 
one-way left turn (R1), linear acceleration/deceleration (R2), sudden arrest-
activation (R3), uphill S-curve (R4), downhill S-curve (R5), and one-way right 
turn (R6). A synchronized system (BioRadio + vehicle gyroscopes) captured 
subjective ratings from participants (n = 10) and objective data.

Results: Significant changes occurred in mean values of meanGSR , meanHR , RMSSD, 
and meanRESP  during motion sickness (p < 0.05), while standard deviations 
( SDGSR , SDRESP ) showed no significance. Motion sickness severity ranked as: R4 
(8.4) > R5 (7.7) > R3 (6.3) > R2 (4.4) > R1 (2.0) > R6 (1.4), confirming S-curves as 
the primary trigger.

Discussion: The logistic regression model achieved 81.25% accuracy in predicting 
motion sickness states. This study provides empirical evidence for optimizing vehicle 
motion control and road design to enhance passenger comfort.
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1 Introduction

Electric vehicles are in a critical period of industrial upgrading and change (Martínez-Díaz 
et al., 2019), and it has been suggested that SAE Level 5 vehicles may enter the consumer 
market within the next few decades (Kyriakidis et al., 2015; Wadud et al., 2016). With the 
development of autonomous driving technology, the role of the driver is gradually shifting to 
that of a passenger, and research on issues such as ride comfort is becoming increasingly 
emphasized (Bellem et al., 2018; Zhang et al., 2021). Research shows that in autonomous 
vehicles, 40.25% of passengers engage in non-driving activities such as reading, texting, or 
entertainment (Diels, 2014). Among them, 14% often experience motion sickness, and 17% 
show moderate to severe symptoms of motion sickness. The incidence of motion sickness is 
17.24% higher compared to traditional vehicles (Clément et al., 2023; Diels, 2014; Keshavarz 
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and Golding, 2022). Schmidt et al. (2020) conducted an online survey 
of 4,479 participants from Brazil, China, Germany, the 
United Kingdom, and the United States. The survey found that 46% 
of participants had experienced motion sickness in the past 5 years, 
with China having the highest incidence rate at 61.7%, ranking first 
among all countries surveyed.

Motion sickness, accompanied by symptoms such as nausea, 
headache, rapid heartbeat, and vomiting, significantly impairs the 
riding experience of passengers (Reason, 1978; Cullen, 2019; Zhang 
et al., 2016). Its occurrence mechanism mainly involves sensory 
conflict theory and postural instability theory. The sensory conflict 
theory posits that when visual input conflicts with vestibular and 
proprioceptive information, the brain struggles to effectively 
integrate these conflicting signals, leading to discomfort and adverse 
reactions (Chua et al., 2023). The postural instability theory (Riccio 
and Stoffregen, 1991; Weech et al., 2018; Smart et al., 2023; Bailey et 
al., 2022) proposes that motion sickness arises from the effort or 
failure of the body to maintain postural stability when responding 
to motion perturbations, with a decline in postural control 
capabilities constituting the central factor. Building upon the 
postural instability theory, Smart et al. (2002) established a direct 
theoretical link between measurements of postural dynamics and 
the onset of motion sickness through empirical research, and 
validated the utility of these measurements for quantifying 
postural instability.

Currently, researchers both domestically and internationally have 
conducted various studies on motion sickness (Zheng et al., 2023). 
Research conducted by Li et  al. (2019) indicates that when 
acceleration exceeds 1.50 m/s2 or deceleration falls below −0.75 m/
s2, passengers are significantly more likely to experience motion 
sickness discomfort. Ren and Zhou (2023) conducted a study using 
a six-degree-of-freedom riding simulator and found that driving 
mode and passenger sensitivity to motion sickness significantly affect 
the severity of motion sickness. They also established a correlation 
model between brain oxygenation signals and the degree of motion 
sickness. Keshavarz et al. (2022) developed a model using galvanic 
skin response, electrocardiogram, respiration, and subjective 
responses, which can explain 41% of the variance in the subjective 
questionnaire scores for motion sickness symptoms (FMS). Wang 
et al. (2020) established a comfort prediction model based on vehicle 
motion and passenger physiological parameters, achieving an 
accuracy rate of 84%. Barabino et al. (2019) collected and analyzed 
passengers’ evaluations of motion sickness discomfort to develop a 
comfort detection system specifically for buses. This system focuses 
on assessing passengers’ motion sickness experiences while riding, 
effectively identifying the factors that impact passenger comfort. 
Additionally, it provides important insights for optimizing the quality 
of public transportation services, ultimately enhancing passengers’ 
overall riding experience and satisfaction. Yusof et  al. (2020) 
developed a wearable anti-motion sickness system that uses a smart 
vibrating sleeve worn on the passenger’s wrist. This device precisely 
triggers multi-frequency vibration waveforms during turns and other 
driving conditions to provide tactile feedback. The experimental 
results demonstrate its effectiveness in preventing motion sickness. 
However, research on motion sickness often employs simulated 
driving environments in the laboratory, failing to adequately account 
for the various complex dynamic factors present in real-world 
road conditions.

Common assessment methods for motion sickness include 
subjective and objective evaluation techniques. Subjective assessments 
primarily rely on the passengers’ personal feedback regarding their 
discomfort. Commonly used subjective scales include: The Motion 
Sickness Questionnaire (MSQ) (Kennedy et  al., 1965) requires 
participants to rate 20 to 30 symptoms based on their level of 
discomfort, ranging from no symptoms to vomiting. The Motion 
Sickness Susceptibility Questionnaire (MSSQ) (Golding, 1998) is used 
to assess a passenger’s susceptibility to motion sickness. The Misery 
Scale (MISC) (Bos et al., 2005) uses a rating system from 0 to 10 to 
assess discomfort based on the current state of the individual. In this 
study, the MSSQ was used to screen passengers for susceptibility to 
motion sickness, while the MISC assessed the level of motion sickness 
symptoms in real-time during the experiment.

Human physiological signals, as spontaneous responses of the 
body, are less likely to be influenced by the subjective awareness of 
passengers, resulting in good accuracy and scientific validity 
(Barabino et al., 2019; Beggiato et al., 2019; Tang et al., 2024; Wang 
et  al., 2019). Nobel et  al. (2012) identified skin conductance 
response as a measure of motion sickness and noted an inherent 
relationship between physiological signals such as sweating and 
body temperature and the occurrence of motion sickness. 
Radhakrishnan et  al. (2020) explored the effects of different 
autonomous driving modes on passenger comfort using heart rate 
variability (HRV) and galvanic skin response (GSR). The results 
indicated that galvanic skin response (GSR) is the optimal indicator 
for assessing passenger comfort. Liu et al. (2020) induced motion 
sickness using a driving simulator and collected 
electroencephalogram (EEG) signals. The results indicated that 
EEG data can effectively assess virtual-induced motion sickness 
(VIMS) and reveal significant individual differences in susceptibility 
to motion sickness. Galvanic skin response (GSR) (Yu et al., 2020), 
heart rate (HR) (Deng et al., 2024), and respiratory rate (RESP) 
(Shin et al., 2022) are easy to collect and cost-effective (Gao et al., 
2021; Diels et al., 2016), making them suitable for motion sickness 
research in real driving scenarios. Therefore, this study uses skin 
conductance, respiratory rate, and heart rate as indicators to assess 
changes in motion sickness levels. Evaluating motion sickness solely 
from a subjective or objective dimension poses certain limitations. 
Therefore, this study employs a combination of subjective and 
objective assessment methods.

This study aims to analyze the sensitivity differences in the levels 
of motion sickness induced by six types of road scenarios: one-way left 
turn (R1), linear acceleration and deceleration (R2), sudden arrest-
activation (R3), uphill S-curve (R4), downhill S-curve (R5), and 
one-way right turn (R6). This study aims to analyze the physiological 
mechanisms based on autonomic nervous responses and to develop a 
quantitative assessment model for the severity of motion sickness 
using multimodal physiological features. The ultimate goal is to 
quantify motion sickness levels, mitigate the severity of motion 
sickness, and enhance passenger comfort. Therefore, this study 
primarily addresses the following issues:

 (1) What changes occur in skin conductance, respiratory rate, and 
heart rate as a result of motion sickness?

 (2) Is there a correlation between objective physiological data and 
subjective levels of motion sickness? If so, what is the nature of 
this correlation?
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 (3) Is there a significant difference in the impact of six different 
road conditions on the severity of motion sickness?

2 Materials and methods

This study employed a real-vehicle testing method, dividing six 
types of road scenarios into six task points. As participants traveled 
through these task points, they were asked to rate their level of motion 
sickness discomfort at each point. Throughout the process, 
physiological data from the passengers were continuously collected. 
The data were segmented using a time-marking method, followed by 
further analysis of both subjective and objective data to quantify the 
severity of motion sickness under the six different road scenarios (as 
shown in Figure 1).

2.1 Participant

Research indicates that the incidence of motion sickness is higher 
in females than in males (Schmidt et al., 2020). Therefore, this study 
recruited 10 participants (6 females and 4 males) through a paid 
recruitment process, with an average age of 23.7 years (standard 
deviation = 4.53). All experimental procedures and contents of this 
study were approved by the Ethics Committee of Chongqing 
University of Arts and Sciences (Approval No.: CQWL202540), and 
the handling of participants’ data complied with the Declaration of 
Helsinki. The screening process was carried out in three rounds: the 
first round aimed to ensure the physical health of each participant, 
excluding those with cold symptoms, a history of vestibular 

dysfunction, or otolith disorder. The second round involved a 
subjective test using the Motion Sickness Susceptibility Questionnaire 
(MSSQ), requiring a total score of ≥6 to confirm that participants were 
susceptible to motion sickness. The third round excluded participants 
who had abnormal routines, consumed alcohol, or engaged in 
vigorous physical activity within the past 24 h. After obtaining the 
participants’ consent, the research team signed informed consent 
forms with the participants, informing them of the experimental 
content and the tasks they were required to complete during the study.

2.2 Experimental scenario

To ensure the safety of the experiment and the authenticity of the 
road scenarios, the trial site was selected on the roads of the university 
town. The test route includes typical straight sections, one-way turns, 
and S-shaped curves to meet the needs of the experimental testing. 
The total distance of the journey is 13 kilometers, with the driving 
speed at the task points set to 40 km/h, and the estimated driving time 
is approximately 40 min (as shown in Figure 2). Before the experiment 
begins, drivers need to familiarize themselves with the site in advance 
to ensure smooth and steady transitions between different 
road scenarios.

The experimental scenario setup (as shown in Figure 3) involves 
a 5-seat automatic electric vehicle. The participant is seated in the right 
side of the second row. The required equipment includes:

 (1) A three-axis gyroscope (data update frequency: 200 Hz; speed 
accuracy: 0.03 m/s) records the vehicle’s state parameters 
throughout the entire experiment.

FIGURE 1

Schematic diagram of the experimental process.

https://doi.org/10.3389/fpsyg.2025.1615498
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Tang et al. 10.3389/fpsyg.2025.1615498

Frontiers in Psychology 04 frontiersin.org

 (2) A multi-channel physiological recorder (featuring 8 single-
module channels with a sampling frequency of 250 Hz) gathers 
data on the participant’s skin conductance, electrocardiogram, 
respiration, and other physiological metrics.

 (3) A high-definition camera system captures the content of 
participant interviews; the MISC scale is used to assess 
participants’ motion sickness levels. Additional equipment, 
including data cables and a laptop, is utilized for data collection, 
transmission, storage, and subsequent analysis.

2.3 Experimental procedure

The experiment is divided into three phases: the preparation 
phase, the experimental implementation phase, and the completion 
phase. In the preparation phase, the lead investigator first verifies the 
participants’ basic information, then provides a detailed explanation 
of the experiment’s specific content and procedures, and assists the 
participants in wearing the experimental equipment.

During the experimental implementation phase, the vehicle will 
sequentially travel to six task points. Before and after each task point, the 
lead investigator will collect participants’ MISC subjective motion 
sickness ratings through a question-and-answer format and will mark 
the task points in the multi-channel physiological monitoring system. At 
the beginning of the experiment, the vehicle will proceed to the starting 
point of the road, where participants will adjust to a calm state and gather 
60 s of physiological data as a baseline. Following this, the vehicle will 
successively visit the six task points. Throughout the process, objective 
data will be continuously recorded and categorized based on task points 
and silent state markers; time stamping will be used to precisely capture 
data for different road conditions. At the end of Task 6, participants will 
collect 60 s of final state data (as shown in Figure 4). After the experiment 
concludes, the lead investigator will assist the participants in removing 
the experimental equipment and conduct in-depth interviews.

3 Data processing and analysis

3.1 Subjective data preprocessing and 
feature extraction

Data preprocessing was conducted on the raw subjective data to 
obtain valid analytical data: First, different road condition segments 
were precisely extracted using trial time alignment methodology; this 
was followed by data cleaning procedures, including the removal of 
outliers (Based on the Interquartile Range (IQR) method for outlier 
detection, with thresholds set at Q1–1.5 × IQR and Q3 + 1.5 × IQR, 
data points exceeding this range are flagged as outliers). Missing 
values are filled using the mean interpolation method based on 
adjacent data points. Finally, the data was standardized using Z-score 
standardization. After the above process, 80 sets of valid subjective 
data were obtained. The mean, maximum, minimum, and standard 
deviation of the subjective data for each task phase represent the signal 
values of that phase. The calculation process of the signal values is as 
follows Equations (1–4):

 =
= ∑

1

1 n

i
i

M M
n  

(1)

 ( )= max 1 2max , , , nM M M M  (2)
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In the formula: n is the number of data points, iM  is the ith 
data point.

FIGURE 2

Experimental route and real road scenarios.
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3.2 Comparative analysis of subjective 
assessment data

The collected raw physiological signals are often contaminated 
by noise and artifacts, necessitating preprocessing. In this study, a 

multimodal physiological signal processing approach was employed 
for the specific preprocessing of galvanic skin response (GSR), heart 
rate (HR), and respiratory (RESP) signals. The GSR signal was 
decomposed into multiple frequency sub-bands using discrete 
wavelet transform (DWT), followed by soft thresholding for 
denoising, and the processed sub-bands were ultimately 

FIGURE 3

Construction of a multimodal data collection experimental platform for motion sickness in real vehicles.

FIGURE 4

Schematic diagram of experimental data collection process.
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reconstructed into a complete signal through wavelet inverse 
transform. The HR signal underwent high-pass filtering with a cutoff 
frequency of 0.5 Hz to eliminate low-frequency noise and extract 
time-domain feature data. Additionally, the RESP signal was 
processed with a band-pass filter at a cutoff frequency of 0.1 Hz to 
extract the time-domain waveform.

Based on the six task nodes in the experimental process, the 
physiological signals collected synchronously were segmented, and 
feature parameters for each frequency band were extracted. For the 
galvanic skin response signal, the mean skin conductance level 
( meanGSR ) and the standard deviation of skin conductance level 
( SDGSR ) were extracted to represent the GSR values for that phase. For 
the heart rate signal, the average heart rate ( meanHR ) and the root 
mean square of successive differences (RMSSD) of the RR intervals 
were extracted to represent the heart rate values for that phase. For the 
respiratory signal, the mean respiratory frequency ( meanRESP ) and the 
standard deviation of respiratory frequency ( SDRESP ) were extracted 
to represent the respiratory signal values for that phase. The difference 
between the calm phase and the task phase is used to calculate the 
signal change value. The calculation processes for each signal value are 
as follows Equations (5–10):

 =
= ∑

1

1 n

mean i
i

GSR GSR
n  

(5)

In the formula: meanGSR  represents the mean skin conductance 
level during a specific phase, iGSR  denotes the skin conductance value 
at the ith phase, and n represents the number of sampling points.
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=
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− ∑ 2

1

1
1

n
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GSR GSR GSR
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(6)

In the formula: SDGSR  represents the standard deviation of skin 
conductance level during a specific phase.

 =
= ∑

1

1 n

mean i
i

HR HR
n  

(7)

In the formula: meanHR  represents the average heart rate during a 
specific phase, iHR  denotes the heart rate value at the ith phase, and 
N indicates the number of sampling points.
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In the formula: RMSSD represents the heart rate variability based 
on the root mean square of successive differences. iRR  indicates the 
RR interval at the ith moment, which is the time interval between 
heartbeats. −1iRR  denotes the RR interval at the (i − 1)th moment, 
representing the duration of the previous heartbeat cycle. RR interval 
refers to the time interval between two successive R waves on 
an electrocardiogram.

 =
= ∑

1

1 n

mean i
i

RESP RESP
n  

(9)

In the formula: meanRSEP  represents the mean respiratory rate for 
a given phase, and iRESP  represents the respiratory rate value for the 
ith phase.
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In the formula: SDRESP  represents the standard deviation of the 
respiratory rate for a given phase.

3.3 Comparative analysis of subjective data

A comprehensive dataset integrating subjective data and objective 
physiological indicators was constructed. Subsequently, a mapping 
model between subjective data and objective physiological indicators 
was developed to enable the quantitative assessment of motion 
sickness severity across different road environments. The specific 
formula is Equations (11, 12):

 ( ) ( ) ( ) ( )( )= , ,D t F G t H t R t  (11)

Where ( )D t  is the degree of motion sickness, F represents the 
mapping function, ( )G t  is the electrodermal activity data, ( )H t  is the 
heart rate data, ( )R t  is the respiratory rate, and t is the task phase time.

The selected test route comprised six typical road conditions. 
Participants subjectively ranked their susceptibility to motion sickness 
for each condition, with Rank 1 indicating the most motion sickness-
inducing scenario and Rank 6 the least. Results are presented in 
Table 1. Road Condition 4 was identified as the most motion sickness-
inducing scenario, ranked first by 50% of participants. Neither 
Condition 1 nor Condition 6 received any first-place rankings. This 
indicates that single-direction turns (R1and R6) are less likely to 
induce passenger motion sickness compared to other typical 
road conditions.

Based on the subjective ranking results of participants’ motion 
sickness susceptibility across six typical road conditions (Table 1), this 
study further quantified the induction effect weights of different road 
types on motion sickness symptoms. The calculation formula is 
as follows:

 = × ×2i jS P W  (12)

In the formula: S For motion sickness composite score. iP : The 
proportion of frequency at which a specific road scenario was rated as 
“most likely to induce motion sickness” (ranked 1) by occupants. 
(Exact percentage values are provided in Table 1.) jW : denotes the 
weighting factor, with rank-based weights assigned as follows: Rank 1 
(most motion sickness-inducing) = 5 points, Rank 2 = 4 points, Rank 
3 = 3 points, Rank 4 = 2 points, Rank 5 = 1 point, Rank 6 (least motion 

https://doi.org/10.3389/fpsyg.2025.1615498
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Tang et al. 10.3389/fpsyg.2025.1615498

Frontiers in Psychology 07 frontiersin.org

sickness-inducing) = 0 points. Normalization Factor 2: Convert the 
comprehensive score to a 0–10 scale, aligning with the MISC scale 
range to enhance result comparability. The final motion sickness 
comprehensive score S ranges from 0 to 10, where higher scores 
indicate greater likelihood of the road condition inducing motion 
sickness symptoms in occupants.

3.4 Comparative analysis of objective 
biometric datasets

This study employs the Kruskal-Wallis non-parametric test to 
analyze the statistical differences in physiological signal distributions 
among different levels of motion sickness. Furthermore, it utilizes 
partial η2 (Partial Eta Squared, η2

p) to quantify the explanatory power 
of each physiological indicator regarding motion sickness severity, 
thereby assessing their sensitivity. Finally, Pearson correlation analysis 
is used to validate the consistency between subjective motion sickness 
ratings and objective physiological changes.

3.5 Prediction of motion sickness severity 
in different road scenarios

A logistic regression prediction model was established to validate 
the effectiveness of physiological signal changes in predicting motion 
sickness severity induced by different road conditions. In the 
predictive model, physiological data indicators were used as 
independent variables, while the subjective MISC scale score (0–10 
points) was converted into a binary dependent variable based on the 
motion sickness threshold (MISC > 1), categorizing 0–1 points as 
“asymptomatic” and 2–10 points as “motion sickness discomfort.” The 
model’s predictive performance was objectively evaluated by 
calculating the Area Under the Receiver Operating Characteristic 
Curve (AUC).

4 Results

4.1 Comparative analysis results of 
subjective data

Based on the variation data of MISC motion sickness levels across 
different road scenarios (as shown in Figure 5), a one-way ANOVA 
was conducted to examine the effect of road type on passengers’ 

subjective motion sickness levels. Prior to data analysis, the 
Kolmogorov–Smirnov test was performed to assess normality 
(p > 0.05), followed by a homogeneity of variances test. The results 
indicated that the mean (W = 0.455, p = 0.768), maximum (W = 0.529, 
p = 0.715), minimum (W = 0.508, p = 0.730), and standard deviation 
(W = 0.537, p = 0.704) of the subjective motion sickness levels all met 
the criteria for homogeneity of variances (p > 0.05). With confirmation 
that the data satisfied the assumptions of normality and homogeneity 
of variances, the one-way ANOVA results demonstrated significant 
statistical differences in the effects of different road scenarios on 
passengers’ motion sickness levels (p < 0.05).

The comprehensive calculation results of the induced effects of six 
types of road conditions on motion sickness are shown in Figure 6. 
The results indicate that the motion sickness inducing intensity of 
different roads ranks as follows: R4 > R5 > R3 > R2 > R1 > R6. Among 
them, R4 has a significantly higher comprehensive motion sickness 
score (M = 8.4) than the other roads, suggesting that R4 exerts the 
strongest stimulation on the vestibular system of passengers and is the 
most likely to induce motion sickness symptoms. In contrast, R6 
shows the lowest comprehensive motion sickness score, indicating 
that R6 has relatively minimal sensitivity to inducing motion sickness.

4.2 Comparative analysis results of 
objective data

In the objective data analysis, we examined the significance and 
sensitivity of physiological information, including skin conductance, 
heart rate, and respiratory frequency, among participants, with the 
results shown in Table  2. Specifically, the indicators meanGSR  
(H = 23.89, p < 0.01, η2 = 0.070), SDGSR  (H = 10.19, p < 0.05, 
η2 = 0.029), meanHR  (H = 16.25, p < 0.05, η2 = 0.048), RMSSD 
(H = 16.61, p < 0.05, η2 = 0.049), and meanRESP  (H = 21.456, p < 0.05, 
η2 = 0.063) all exhibited significant differences. In contrast, SDRESP  
(H = 3.098, p > 0.05, η2 = 0.009) did not reach statistical significance, 
and its very low effect size indicates that this parameter has poor 
sensitivity to motion sickness responses. Among these indicators, 

meanGSR  (η2 = 0.070) showed the largest effect size, demonstrating a 
significant correlation with subjective data and indicating a notable 
sensitivity to motion sickness. Conversely, although SDGSR  (η2 < 0.04) 
achieved statistical significance, its small effect size results in relatively 
limited sensitivity for distinguishing levels of motion sickness. 
Therefore, this paper will primarily analyze the physiological 
characteristics of the four parameters: meanGSR , meanHR , 
RMSSD, and meanRESP .

TABLE 1 The statistical results of susceptibility to motion sickness in road scenarios.

Road scene Percentage (%)

Ranked 1 Ranked 2 Ranked 3 Ranked 4 Ranked 5 Ranked 6

R1 0% 0% 0% 20% 50% 30%

R2 0% 10% 20% 50% 10% 10%

R3 20% 20% 40% 10% 10% 0%

R4 50% 30% 10% 10% 0% 0%

R5 30% 40% 20% 10% 0% 0%

R6 0% 0% 10% 0% 30% 60%
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The monitoring and data analysis of various physiological 
indicators reveal significant differences in the induction of motion 
sickness symptoms across different road conditions. As shown in 

Figure 7A, the meanGSR  is significantly higher on road R4 compared 
to other road conditions, while the values for R1 and R6 are relatively 
low. The analysis of meanHR , presented in Figure 7B, indicates that the 
heart rate values for R4 and R5 are higher, with R4 reaching its peak 
average heart rate. The results for the RMSSD indicator, depicted in 
Figure 7C, show a contrasting trend, with higher RMSSD values for 
R1 and R6, while R4 has the lowest value. Additionally, the meanRESP  
indicator in Figure 7D shows larger values for roads R4 and R5, with 
R6 exhibiting the lowest value.

The statistical analysis of the objective data indicates that meanGSR ,  
meanHR , and meanRESP  are positively correlated with subjective 

motion sickness ratings, while the RMSSD indicator shows a negative 
correlation. However, all indicators consistently demonstrate that road 
R4 has the highest sensitivity for inducing motion sickness. In 
contrast, the motion sickness induced by a left turn (R6) and a right 
turn (R1) is relatively low, with a smaller range of difference in values.

In Pearson correlation analysis, the absolute value of the 
correlation coefficient (|ρ|) approaching 1 indicates a strong linear 
association between variables. Table 3 presents the full-sample Pearson 
correlation analysis results between physiological indicators and 
subjective motion sickness severity (MISC), demonstrating significant 
statistical associations (p < 0.05) between MISC and galvanic skin 
response mean ( meanGSR ), respiratory rate mean ( meanRESP ), heart 
rate mean ( meanHR ), and heart rate variability (RMSSD). Specifically, 

meanGSR (p = 0.685), meanRESP  (p = 0.629), and meanHR  (p = 0.432) 
exhibited significant positive correlations with MISC, with meanGSR  
demonstrating the strongest association. Conversely, the 
parasympathetic nervous activity marker RMSSD (p = −0.498) 
showed a significant negative correlation with MISC. The above results 
clearly confirm that different dimensions of the autonomic nervous 
system exhibit significantly differentiated response patterns in motion 
sickness reactions.

4.3 Prediction results of motion sickness 
severity based on physiological parameters

This study developed a logistic regression model to predict motion 
sickness severity (MISC) using autonomic physiological indicators: 
galvanic skin response ( meanGSR ), heart rate ( meanHR ), heart rate 
variability (RMSSD), and respiratory rate ( meanRESP ). The model 
identified significant positive associations between elevated MISC 
levels and increases in meanGSR (p < 0.05), meanHR  (p < 0.05), and 

meanRESP  (p < 0.05), while reduced RMSSD (p < 0.05) correlated 
negatively with symptom severity. Univariate predictive performance 
analysis demonstrated that meanGSR achieved the highest 
discriminative power (AUC = 0.8125) (as shown in Figure  8A), 
significantly surpassing meanHR  (AUC = 0.6375) (as shown in 

FIGURE 5

Statistical parameters chart of MISC motion sickness levels for 
different road types.

FIGURE 6

Comprehensive assessment scores for different road types.

TABLE 2 The results of the statistical analysis of objective physiological data.

Statistic Physiological measures

GSRmean GSRSD HRmean RMSSD RESPmean RESPSD

H 23.89 13.19 16.25 16.61 21.456 3.098

2η 0.070 0.038 0.048 0.049 0.063 0.009

P <0.05 <0.05 <0.05 <0.05 <0.05 p > 0.05
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Figure 8B), RMSSD (AUC = 0.650) (as shown in Figure 8C), and 
meanRESP  (AUC = 0.750) (as shown in Figure 8D), with meanHR  and 

RMSSD showing limited standalone predictive utility (AUC < 0.7). 

Further variable importance analysis confirmed that GSR had the 
greatest contribution to the model, with its predictive value clearly 
superior to that of heart rate and respiratory indicators. Therefore, 

FIGURE 7

Changes in objective physiological indicators across six different road scenarios. (A) Distribution characteristics of skin conductance across six road 
scenarios; (B) Distribution characteristics of heart rate across six road scenarios; (C) Distribution characteristics of heart rate variability across six road 
scenarios; (D) Distribution characteristics of respiratory rate across six road scenarios.

TABLE 3 Pearson correlation analysis of occupants’ subjective perception (MISC) with electrodermal activity GSRmean( ),  cardiac parameters 
( ,HRmean  RMSSD), and respiratory metrics ( )RESPmean  in the sample cohort.

Parameters Pearson correlation coefficient

MISC GSRmean HRmean RMSSD RESPmean

MISC 1 0.685** 0.432** −0.498** 0.629**

GSRmean 0.685** 1 0.316* 0.003 0.312

HRmean 0.432** 0.316* 1 −0.342** 0.360*

RMSSD −0.498** 0.003 −0.342** 1 −0.240

RESPmean 0.629** 0.312 0.360** −0.240 1

*Indicates significance at p < 0.05.
**Indicates significance at p < 0.01.
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when meanGSR  is used as an input for the model, the prediction 
performance is optimal, achieving an accuracy of 81.25% (as shown 
in Table 4).

5 Discussion

This study investigates the relationship between the degree of 
motion sickness and autonomic nervous system responses across 

different roadway scenarios. The results reveal significant differences 
in the levels of motion sickness induced by various road conditions, 
which lead to systematic changes in physiological indicators such as 

meanGSR , SDGSR , meanHR , RMSSD, meanRESP , and SDRESP . Among 
these, the trends in meanGSR (p < 0.05), meanHR (p < 0.05), RMSSD 
(p < 0.05), and meanRESP (p < 0.05) exhibit statistically significant 
differences. Although there are inter-group differences in SDGSR , its 
correlation with motion sickness levels is low (η2= 0.029), preventing 
it from reaching statistical significance. This indicates that changes in 

SDGSR  and SDRESP  cannot effectively distinguish whether an 
individual is experiencing motion sickness.

When passengers experience mild motion sickness induced by left 
turns (R1) and right turns (R6), the differences in meanGSR , meanHR , 
RMSSD, and meanRESP  across groups are relatively small. However, 
during moderate or higher levels of motion sickness induced by 
S-bends, meanGSR  shows a significant increasing trend. Although 

meanHR  and meanRESP  also rise concurrently, their increase is less 
pronounced. This finding is consistent with the conclusions drawn by 

FIGURE 8

ROC curves for the logistic regression model. (A) The ROC curve for GSRmean as a univariate input, (B) The ROC curve for HRmean as a univariate 
input, (C) The ROC curve for RMSSD as a univariate input, (D) The ROC curve for RESPmean as a univariate input. The AUC represents the area under 
the curve formed by the X and Y axes.

TABLE 4 Confusion matrix of the model under univariate input.

Anticipate

Data set Motion 
sickness

Asymptomatic Percentage 
correct

Motion 

sickness
65 15 81.25%
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Irmak et al. (2021), highlighting that skin conductance responses are 
highly sensitive to the severity of motion sickness.

Correlation analysis shows that meanGSR  (r = 0.685, p < 0.05), 
meanHR  (r = 0.432, p < 0.05), and meanRESP  (r = 0.629, p < 0.05) 

exhibit significant positive correlations with subjective motion 
sickness levels, while RMSSD (r = −0.498, p < 0.05) demonstrates a 
significant negative correlation. The comprehensive analysis of 
subjective and objective data indicates that the severity of motion 
sickness induced by six typical roadway conditions is ranked as 
follows: uphill S-curve (R4) > downhill S-curve (R5) > sudden arrest-
activation (R3) > linear acceleration and deceleration (R2) > one way 
left turn (R1) > one way right turn (R6). Among these, S-bends induce 
the highest motion sickness effects, likely due to the frequent changes 
in vehicle heading angle combined with low-frequency lateral 
oscillations (Xie et al., 2023).

The motion sickness prediction model constructed based on 
objective physiological indicators demonstrated an accuracy of 
81.25%. ROC curve analysis indicated that the predictive efficacy of 

meanGSR  (AUC = 0.8125) significantly outperformed other 
parameters: meanRESP  (AUC = 0.750), meanHR  (AUC = 0.6375), and 
RMSSD (AUC = 0.650). Notably, both meanHR  and RMSSD 
contributed relatively limited predictive power to the model, with 
AUC values below 0.7, clearly lower than that of meanGSR .

However, this study has some limitations. First, the physiological 
indicators extracted in the study were primarily confined to signals 
reflecting autonomic nervous activity (GSR, HR, RESP), yet failed to 
incorporate postural dynamics data that theoretically demonstrates 
strong predictive relevance. This limitation restricts the examination 
of a more comprehensive theoretical framework for motion sickness 
mechanisms. Assessment of motion sickness severity is relatively 
limited; future research could incorporate other physiological 
indicators, particularly in combination with high-precision postural 
kinematics monitoring devices. Second, the age range of participants 
recruited in this study was not sufficiently broad; future studies should 
expand the sample size to cover a more diverse population, thereby 
enhancing the reliability and generalizability of the research. Third, 
the study employed only logistic regression to build prediction 
models; future research should explore superior predictive models 
that integrate multi-source information by synchronously collecting 
postural dynamics and multimodal physiological data where feasible.

6 Conclusion

In summary, this study preliminarily identifies the autonomic nervous 
system changes (GSR, RESP, and HR) associated with different degrees of 
motion sickness induced by various roadway conditions, providing 
valuable insights for future research aimed at alleviating motion sickness. 
The findings have significant implications for the field of automotive 
engineering. At the vehicle design level, strategies can be implemented to 
optimize suspension system stiffness parameters and seat structural 
dynamics in response to the driving conditions associated with S-bends, 
effectively attenuating the transmission of vertical vibration energy caused 
by composite centripetal forces and thereby reducing passenger motion 
sickness severity. At the level of intelligent driving, the study contributes to 
the development of path planning algorithms by introducing a motion 
sickness risk cost function, which can enhance passenger comfort by 
limiting the rate of curvature change in continuous turns and the frequency 

of sudden accelerations and decelerations. Future research should expand 
the sample size (currently n = 10) and incorporate synchronized 
electroencephalogram (EEG) and eye-tracking monitoring to analyze the 
multi-level regulatory mechanisms of the vestibular, visual, and autonomic 
nervous systems, thereby establishing a more generalizable model for 
predicting and intervening in motion sickness.
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