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At least a quarter of adult patients with severe brain injury in a disorder

of consciousness may have cognitive abilities that are hidden due to motor

impairment. In this case series, we developed a tool that extracted acoustic and

semantic processing biomarkers from electroencephalography recorded while

participants listened to a story. We tested our method on two male adolescent

survivors of severe brain injury and showed evidence of acoustic and semantic

processing. Ourmethod identifies cognitive processingwhile obviating demands

on attention, memory, and executive function. This lays a foundation for graded

assessments of cognition recovery across the spectrum of covert cognition.
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1 Introduction

In at least 25% of adults with severe brain injury who are diagnosed with a disorder

of consciousness (DoC) such as vegetative state, functional magnetic resonance imaging

(fMRI) and electroencephalography (EEG) can reveal high-level cognitive activity that is

otherwise hidden due to profound motor impairment (Bodien et al., 2024).

Covert cognition is currently detected via fMRI and EEG tests that measure brain

responses correlated with imagined or attempted movements to command. Brain activity

following the command “move your hand” is contrasted against the command “relax”;

a positive response indicates the patient’s ability to hear, understand, and repeatedly

perform the task without loss of attention, drowsiness, or other factors limiting

sustained performance (Bodien et al., 2024). This unequivocally signals cognitive-motor

dissociation (CMD).

However, the patient must cross a very high threshold of cognitive functioning

to achieve a positive response in established CMD testing (Talukdar et al., 2019).
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Unsurprisingly, these tasks may fail to identify patients in whom

cognitive abilities have only partially recovered.

Brain responses to language provide an attractive alternative

window into covert cognition. Comprehension of a spoken

text—in other words, integration of successive word meanings

to form a context—requires attention, lexical access, syntactic

parsing, working memory operations and inference, among other

tightly integrated cognitive processes (Moore, 2007). As such, it

entails many of the elements of cognition—just as command-

following paradigms encompass a different but overlapping subset

of elements (Bodien et al., 2024). EEG correlates of semantic

processing are known to have prognostic value: examples include

the N400 event-related potential (ERP) to incongruent sentence

endings (Steppacher et al., 2013), and the rhythmic modulation

of EEG responses phase-locked to modulation at word, phrasal

and sentential linguistic levels (Gui et al., 2020). Unfortunately,

the stimuli used by these studies are artificially manipulated and

the meaning of each stimulus is disconnected from the next,

which makes listening both jarring and monotonous—and hence,

susceptible to inattention.

Recent approaches have begun to focus on natural-language

story listening (O’Sullivan et al., 2015). EEG correlates of

auditory processing, while listening to Lewis Carroll’s Alice

In Wonderland, were similar between healthy subjects and

patients with CMD (Braiman et al., 2018). New signal-processing

methods have been developed for extracting responses that

are specific to semantic content in natural language—in

non-brain-injured controls, these responses are exquisitely

sensitive to the subject’s understanding of meaning in natural

speech (Broderick et al., 2018, 2022).

We apply these novel methods to two adolescents with DoC

resulting from severe brain injuries sustained as children. We have

previously demonstrated CMD in these subjects based on positive

motor command-following responses (Kim et al., 2022b,a); we

also showed supporting evidence from ERPs to classical, discrete,

auditory language stimuli (Kim et al., 2022a). Here, we derive

acoustic and semantic processing markers from natural-language

stimuli using methods that estimate temporal response functions

(TRFs) (Crosse et al., 2016). The acoustic TRF reflects perceptual

and attentional aspects of auditory processing; it contains analogs

of the N100 and other event-related potentials that are more

familiarly seen in discrete-stimulus designs (Martin et al., 2008).

The semantic TRF contains a distinctive component that is spatio-

temporally similar to the N400 event-related potential—here, we

will include both the N400 and its TRF analog under the umbrella

termmeaning-induced neural dynamics (MIND).

2 Methods

2.1 Participants

In this paper, we report the data of two adolescent participants

with DoC following severe brain injury. Participant P1 had

experienced a traumatic brain injury complicated by hypoxemia

and associated cardiac arrest at age 9. P1 participated in the

current study during a single testing session, at age 16. Participant

P2 experienced anoxic brain injury secondary to cardiac arrest

at age 13. P2 participated in two separate testing sessions: the

discrete semantic paradigm (discussed in detail in Section 2.3.3)

was collected at age 18, and the remaining paradigms (discussed

in Section 2.3) were collected at age 21. Assessments with the

Coma Recovery Scale-Revised (CRS-R) (Giacino et al., 2004) were

consistent with vegetative state (P1’s total score was 7; P2’s total

score was 6 in both assessments).

Both participants were previously included in two studies (Kim

et al., 2022b,a); they were labeled as participants C and E in Kim

et al. (2022b) and as P1 and P2 in Kim et al. (2022a). In the

study Kim et al. (2022b), we reported two EEG tests as part

of a larger cohort: auditory evoked potentials (AEPs) in simple

auditory paradigms, and correlates of motor command-following

in oscillatory EEG components (MCF-EEG). In the associated

case-series publication (Kim et al., 2022a), we provided a multi-

modal profile for P1 and P2, including fMRI motor command-

following (MCF-fMRI), EEG correlates of discrete semantic

comprehension (N400), fluorodeoxyglucose positron emission

tomography, structural MRI, and clinical histories along with the

previously-reported ERP and MCF-EEG findings.

All procedures were approved by the institutional review board

(IRB) of Weill Cornell Medicine. Parental consents were obtained

as per IRB protocols.

2.2 Data acquisition

EEG data were recorded with a 128-channel HydroCel

Geodesic Sensor Net (EGI, Eugene, OR) (Tucker, 1993). In P1, gel-

based sensors were used; in P2, saline sponge and gel-based sensors

were used. The impedance of all electrodes was <75 k� at the

beginning of the recording as per the manufacturer’s specifications.

The signals were recorded at 1000 Hz. A 2-piece speaker system

was located at 45◦ (left/right of the midline) at a distance of 57 cm

to the ears. Each speech stimulus was normalized to a volume of 70

dB SPL. Stimulus presentation and data acquisition were conducted

using the BCI2000 software platform (Schalk et al., 2004).

2.3 Stimuli and tasks

We estimated an acoustic and a semantic TRF from the EEG

elicited by continuous natural-language listening. We compared

these responses against those from the discrete ERP-based

paradigms. The paradigms used in this study are described below.

2.3.1 Discrete “clicks” paradigm
For P1, our assessment of auditory processing comes from a

click presentation paradigm, in which a rapid sequence of click

sounds is designed to elicit an auditory evoked potential (AEP).

This paradigm requires no participation beyond passive listening.

The click stimuli were a train of 300 biphasic square pulses each

with a duration of 1 ms, presented every 745 ms± 15 S.D.

2.3.2 Discrete “beeps” paradigm
For P2, our assessment of auditory processing was derived

from responses to “standard” stimuli in an auditory oddball

paradigm (Polich, 2007). This paradigm has frequently been

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1616963
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Alkhoury et al. 10.3389/fpsyg.2025.1616963

used in both adults and children—including children with brain

injury (Kim et al., 2022b; Duszyk et al., 2019)—to assess early

attentional processing. During this paradigm, the participant listens

to a sequence of abrupt, frequent standard stimuli mixed in random

order with rarer deviant stimuli. This task requires no participation

beyond passive listening. For the purposes of the current analysis,

we consider only the responses to the 270 “standard” stimuli, which

comprised about 66% of the stimuli and which were square-wave

beeps of 340 ms duration with a fundamental frequency of 400 Hz,

repeated with a period of 1 second. Further details about the stimuli

used in this paradigm can be found in Kim et al. (2022b).

2.3.3 Discrete N400 paradigm
To estimate P1 and P2’s discrete semantic ERPs, we used the

sentences from the classic N400 paradigm (Bloom and Fischler,

1980) that are composed of 6–8 words (Connolly and Phillips,

1994). For P1 the stimulus total duration was around 11 min and

consisted of 60 congruent sentences (e.g., “Apples and cherries are

a type of fruit.”) and 60 incongruent sentences (e.g., “A wild pig

is called a shirt.”). For P2, the stimulus total duration was around

6 minutes and consisted of 40 congruent and 40 incongruent

sentences. More details can be found in Kim et al. (2022a).

2.3.4 Continuous natural language paradigm
During this paradigm, the participants listened to continuous

age-appropriate natural language stimuli, as an audiobook. For P1,

we presented 5 min and 40 s of Yertle the Turtle and Other Stories

by Dr. Seuss read by an adult female reader. For P2, we used around

14 min of Judy Moody Gets Famous! by Peter H. Reynolds read by

an adult male reader; this was divided into four sections of equal

length, with pauses of a few seconds added between sections.

2.4 Data processing

Data were processed offline using the MNE package for

Python (Gramfort et al., 2013). First, the EEG signals were re-

referenced to the average of the right and left mastoids and down-

sampled to 250 Hz (after applying an anti-aliasing filter). The

signals were then visually inspected by an expert, who marked

bad channels (which were then removed and reconstructed via

linear interpolation) and bad data segments (which were removed

from the analysis in the case of discrete stimuli only). Afterward,

the signals were high-pass filtered with a cut-off frequency of

1 Hz. Undesired artifacts from blinks, cardiac activity, and muscle

contractions were removed by rejecting the corresponding sources

from an independent component analysis (ICA) decomposition

using the Infomax algorithm (Bell and Sejnowski, 1995) and

projecting back into the sensor space. Lastly, a low-pass filter at

8 Hz was applied to the cleaned EEG signals as in Broderick et al.

(2018) and O’Sullivan et al. (2015).

2.5 Discrete stimuli analysis

The discrete stimuli (clicks, beeps, and N400 paradigms), elicit

an event-related potential (ERP). For this analysis, the data were

segmented into epochs time-locked to the onset of the target

sound stimuli. For the clicks and beeps paradigms, epochs spanned

100 ms pre-stimulus and 500 ms post-stimulus. For the N400

paradigm, epochs spanned 200 ms pre-stimulus and 800 ms post-

stimulus. Each epoch was baseline-corrected by subtracting the

mean voltage over the pre-stimulus interval. For the discrete

acoustic paradigms (clicks and beeps), the epochs were then

processed by the MNE implementation of autoreject (Jas et al.,

2016, 2017) which identified and rejected bad epochs (autoreject

was not used for the N400 paradigms due to the small number of

epochs of this paradigm 60 congruent and 60 incongruent for P1,

40 congruent and 40 incongruent for P2). The ERP was obtained

from each session by averaging across epochs at each time point.

2.6 Continuous stimuli analysis

Linear de-convolution techniques were used to estimate

temporal response functions (TRFs) (Crosse et al., 2016) that

reflected the brain’s response to continuous stimuli. Separate

analyses estimated TRFs from the acoustic and semantic features of

the stimuli, with the goal of extracting evidence for both “hearing”

and “understanding”. We used a Python implementation of the

TRF algorithm developed in our lab and inspired by the one made

public by Crosse and colleagues (Crosse et al., 2016; Steinkamp,

2023; Bialas et al., 2023).

2.6.1 Acoustic TRF (A-TRF)
The acoustic TRF was obtained by relating an acoustic

representation of the stimulus to the EEG signal. First, the left and

right channels of the audio file were averaged to obtain one sound

signal. As proposed in the mTRF Toolbox (Crosse et al., 2016,

2021), we extracted the speech envelope directly from the sound

signal, after down-sampling to match the EEG sampling rate of 250

Hz, by computing the root-mean-square (RMS) over a window of

samples and applying a logarithmic compression factor of 0.3 as

in Crosse et al. (2021) and Biesmans et al. (2016). We report the

A-TRF using the forward model, which aims to derive a linear de-

convolved mapping from the stimulus to each of the EEG channels

independently. Thus, one can plot the spatial representation of

these models across the scalp—akin to the kinds of topographic

analyses that are common in ERP research (see Crosse et al., 2016

for more details). The TRFs are then found by multiple linear

regression, with a regularization parameter λ set to 105 (a value that

we had been found to be a reasonable one-size-fits-all setting from

similar data sets).

2.6.2 Semantic TRF (S-TRF)
The semantic TRF was obtained by relating a semantic

representation of the stimulus to the EEG signal. Here, we use the

lexical surprisal index from each word of the presented stimuli: each

word was represented by its conditional probability of occurrence

given the word sequence that preceded it, calculated using a large

languagemodel—specifically, the 12-layer, 117Mparameter version

of GPT-2 (Radford et al., 2019). Since brain responses tend to be

larger for unexpected words compared to expected words (Kutas

and Hillyard, 1984; Mesik et al., 2021), surprisal was represented
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as an impulse at the onset of each word, where the impulse height

was equal to the negative log of the conditional word probability.

This leads to less-expected (more informative) words receiving

higher surprisal values (Mesik et al., 2021). For this analysis,

we employed the forward modeling approach, where the spatial

patterns were obtained using equation (5) from Crosse et al. (2016).

The regularization parameter in the linear regression was set as

λ = 105.

2.7 Spatial and temporal range of interest

For the discrete and continuous paradigms, we computed the

acoustic and semantic responses from Cz and Pz, respectively, as

in published studies (Kim et al., 2022b; Broderick et al., 2018;

Gonzalez-Heydrich et al., 2015; Takeshita et al., 2002; Chalehchaleh

et al., 2024). For the acoustic paradigms, we noted the latency of the

largest negative peak within the range of 80–300ms (Sussman et al.,

2008; Lightfoot, 2016; Stapells et al., 2002). We used a wide range

for identifying the auditory evoked potential since a longer-latency

response (around 200 ms) is expected in children younger than

12 (Sussman et al., 2008; Lightfoot, 2016; Stapells et al., 2002) and

this had previously been found to have persisted into adolescence

for P1 (Kim et al., 2022a). For the semantic paradigms, we identified

the MIND component as the largest negative peak within 250-

500 ms, by analogy with the N400 event-related potential (Kutas

and Federmeier, 2000; Kutas and Hillyard, 1980; Camarrone and

Van Hulle, 2019).

2.8 Statistical analysis

2.8.1 Discrete stimuli
We performed a one-sample two-sided t-test at each time

point across trials for both the “clicks” and “beeps” paradigms to

identify when the ERP response was significantly different from

zero. For the classic “N400” paradigm, we performed a two-sample

two-sided t-test at each time point across trials to determine

when the incongruent response significantly differed from the

congruent response. Statistically significant time points (p < 0.05,

uncorrected) are shown as black horizontal lines in Figure 1.

2.8.2 Continuous stimuli
Adapting the approach of Chalehchaleh et al. (2024) and

Synigal et al. (2023), we established significance in two ways:

(1) To test the presence/absence of a stimulus-specific response,

we performed a permutation test on overall prediction

accuracy: for both the acoustic and semantic paradigms, we

generated 1000 re-permuted versions of the stimuli—either

by randomly shifting the starting time (for acoustic features)

or by shuffling the numerical values of the lexical surprisal

features at the fixed time offsets of each word (for semantic

features). For each re-permuted instance, we computed a TRF

and calculated its cross-validated prediction accuracy (R)—this

was a value ranging from -1 to 1 that estimated how well the

computed TRF weights would predict unseen brain responses

given corresponding stimulus information. We computed a p-

value as the proportion of R values from the 1,000 re-permuted

instances that exceeded the R of the original stimulus. We

use asterisks in the legends of Figure 1 to denote this overall

statistical significance level: *for p-values < 0.05 and **for

p-values < 0.01.

(2) To visualize relevant parts of the waveform, we compared

against the TRFs computed from re-permuted stimuli at

each time-sample of the TRF waveform. Note that the TRF

waveforms from the original stimuli, and from the 1,000 re-

permuted stimuli, have arbitrary scaling when first computed.

Therefore, each waveform was scaled so that the absolute

extent of its largest positive or negative peak was equal to

the respective overall R. The rescaled re-permuted TRFs were

then compared time-point by time-point with the waveform

from the rescaled original TRF. We use black horizontal lines

in Figure 1 to indicate time periods where the original TRF

significantly differed (p < 0.05, uncorrected) from the re-

permuted TRFs.

3 Results

Figure 1 shows the acoustic and semantic responses to

discrete stimuli and continuous stimuli for participant P1 and

participant P2.

For P1, we observed a negative peak at 256 ms in the acoustic

response to discrete stimuli, and at 180 ms for the acoustic TRF

in response to continuous stimuli. Though the responses are not

identical, they agree substantially as regards temporal response

morphology, peak latency, and spatial localization. The acoustic

response appears to be more characteristic of children under 12

(Sussman et al., 2008) than of P1’s actual age at testing—it is possible

that P1’s brain injury before age 12 could have influenced the full

maturation of the auditory cortex as previously noted (Kim et al.,

2022b,a). P1’s semantic response exhibits a negative peak at 472 ms

for discrete stimuli (obtained using classical N400 paradigm) and

388 ms for continuous stimuli (obtained using semantic TRF).

For P2, we observe a negative peak at 164 ms for the discrete

acoustic response and at 108 ms for the continuous acoustic

response. We observe semantic responses with a latency of 416 ms

for discrete stimuli and 440 ms for continuous stimuli.

For both participants, and both continuous and discrete

stimuli, scalp maps (Figure 2) show dominant negative responses

over central scalp for acoustic features, and over parietal scalp

for semantic features. Permutation tests confirmed the overall

significance of both participants’ acoustic TRFs by rejecting the null

hypothesis that goodness-of-fit is unaffected by the time ordering of

the acoustic features, with p = 0.0055 and p = 0.0005 for the two

participants, respectively. Additional permutation tests confirmed

overall significance of the semantic TRFs by rejecting the null

hypothesis that goodness-of-fit is unaffected by the ordering of the

contextual-meaning-derived information values of the words, with

p = 0.0175 and p = 0.0035 for the two participants, respectively.

(Further details about the permutation tests are provided in

Section 2.8.2, above; see also the caption of Figure 1).
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FIGURE 1

Event-related EEG markers of acoustic and semantic processing of discrete and continuous stimuli for P1 (left) and P2 (right). Top-left subplots:

average auditory evoked potential recorded from channel Cz (from “click” stimuli in the case of P1, and 340 ms “beep” stimuli for P2). Top-right

subplots: acoustic TRF response, estimated at channel Cz. Bottom-left subplots: average di�erence between responses to incongruent and

congruent stimuli in the classical ‘N400’ paradigm, at channel Pz. Bottom-right subplots: TRF response correlated with lexical-surprisal feature values

at channel Pz. Dotted vertical lines indicate the latency of the largest negative peak (Figure 2 shows the corresponding topographic scalp maps). For

discrete stimuli, time points at which event-related potentials were significantly di�erent from zero (uncorrected p-value < 0.05) are indicated with a

black horizontal line. For continuous stimuli, asterisks in legends denote the overall statistical significance level: *for p-values < 0.05 and **for

p-values < 0.01. Additionally, we show the mean of the re-permuted TRFs (see Section 2.8.2) as cyan traces, and their mean ± one standard

deviation as cyan-shaded regions: this is a visualization of the distribution of the TRFs under the null hypothesis that stimulus ordering does not

influence the response.

FIGURE 2

Topographic scalp maps of the ERP and TRF responses to discrete and continuous stimuli for P1 (left) and P2 (right). Each map is computed at the

time lag corresponding to the largest negative peak marked by a dotted vertical line in the corresponding panel of Figure 1. The locations of Cz and

Pz are marked as white squares and triangles, respectively.

4 Discussion

We have highlighted a new method for deriving correlates of

acoustic processing and semantic comprehension that agree with,

but go beyond, those of classical methods. In two adolescents

in a disorder of consciousness following severe brain injury,

we have shown evidence of preserved processing of auditory

and semantic information. The acoustic and semantic results

from the continuous stimuli are consistent with previous studies;

displaying prominent negativity at around 100–300 ms over central

scalp (Crosse et al., 2016; Sussman et al., 2008) for the former,

and 400 ms over parietal scalp (Broderick et al., 2018; Kutas and

Federmeier, 2000) for the latter. Consistent with what has been

reported before in healthy adults (Broderick et al., 2018), there

is a strong correspondence between responses from discrete and

continuous stimuli.

We previously reported that the two participants in this study

met diagnostic criteria for cognitive motor dissociation (CMD).
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This was based on their positive EEG responses to the commonly-

used task of attempted motor command-following, indicating

covert volitional engagement. Our current findings—evidence

of covert semantic processing—enrich their CMD diagnosis by

providing further supporting evidence of covert cognition from a

complementary cognitive task.

The meaning-induced neural dynamics (MIND) identified in

the semantic TRF (S-TRF), and our statistical tests of their overall

significance, are the basis for our strongest claims of preserved

cognition. Not only do these participants’ N400 waveforms and

analogous MIND peaks in the S-TRF qualitatively resemble those

of healthy subjects (Broderick et al., 2018, 2022), they also depend

specifically on the semantically-coherent ordering of the words.

This is because the S-TRF is estimated by regression against

surprisal, a measure of each word’s informational contribution

given its preceding context. Broderick et al. (2022) demonstrated

experimentally that the S-TRF MIND depended on the stimulus

text having coherent meaning, rather than being a non-specific

word-level response: the peak deteriorated as stimulus word order

was increasingly scrambled. In the current study, our permutation

tests perform a similar scrambling, but on the analysis side: they

simulate the null hypothesis that the same set of surprisal values,

time-locked to the same set of word onset times, would produce

equally well-fitting and predictive S-TRF results regardless of their

ordering. We were able to reject this null hypothesis for both

participants, indicating that the specific ordering of word meanings

in the stimulus text was crucial for recovering the observed S-

TRF from their EEG. For these participants’ families, this is the

strongest evidence to date that the participants’ brains were capable

of processing spoken word meanings in context.

Using the brain’s response to continuous natural language

stimuli as a proxy measurement of cognitive function offers many

benefits. First, it offers a feasible method for deriving correlates

of sensory and semantic processing in patients remaining in a

DoC, requiring low effort from the patient—i.e., only the effort of

listening to a story in contrast to the sustained attention and arousal

control that is required in mental-imagery tasks, or in listening

to monotonous, meaningless stimuli. This new method is no less

feasible compared to traditional methods in that it does not require

longer sessions. In fact, a semantic response can be estimated

from a single minute of continuous data alone (O’Sullivan et al.,

2015; Broderick et al., 2018), offering the potential for more-

granular analyses that track variations in attention and arousal

through the session. Second, because of the limitless corpus of

potential stimulus material, multiple repeats of this paradigm can

be employed without repeating the stimulus; in people recovering

from brain injury, tracking residual and emerging functions can

therefore be conducted while keeping the test engaging. Third,

this method has been used in adult non-brain-injured controls to

detect attention in the presence of competing stimuli (O’Sullivan

et al., 2015); when employed in this manner, it has the potential

to assess higher-order cognitive abilities, e.g. executive attention.

Fourth, this method can be employed in very young children

for whom methods requiring more cognitive resources such

as motor command-following may be infeasible (Souto et al.,

2020). Fifth, the complexity and genre of the material can be

tailored according to the patient’s age and interests; this not

only allows accommodation of a wide range of situations but

has the potential to allow complexity to be varied to gauge the

degree of language recovery. Lastly andmost importantly, assessing

the brain’s response while hearing a story has the potential of

identifying cognitive recovery across a continuum beginning with

sensory awareness of sounds through higher-order processing of

semantics. This is expected to identify patients who have recovered

some, but not all, cognitive abilities. This may include, but may

not necessarily be limited to, patients identified as having metabolic

preservation in the fronto-parietal network, who are referred to as

MCS* (Thibaut et al., 2021).

In conclusion, while studies have reported on discordance

between bedside function and covert-command-following, there

is no knowledge of the range of cognitive function that may be

hidden by motor impairment. Our new tool offers a way to assess

a non-verbal person’s speech processing abilities hierarchically

(from lower-level sensory responses to processing of higher-

level semantic features), and to grade their comprehension (by

comparing responses to material of varying complexity). As such,

we expect this method can be appliedmore generally to identify and

characterize covert cognition both within and beyond the context of

cognitive-motor dissociation.

5 Limitations

While some normative EEG data from adults are available and

relevant to our participants, who were in late adolescence to early

adulthood, the lack of age-matched healthy pediatric controls limits

our ability to fully contextualize the observed neural responses. The

discrete N400 does not differ drastically between adolescents and

adults (Cummings et al., 2008)—though we might expect the same

to be true of the analogousMIND in the semantic TRF, this remains

to be confirmed. Future research should aim to develop normative

TRF datasets in healthy children and adolescents to strengthen

interpretability in clinical populations.
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