

OPEN ACCESS

EDITED BY Begoña Espejo, University of Valencia, Spain

REVIEWED BY Maura Crepaldi, University of Bergamo, Italy

*CORRESPONDENCE Francesca Borghesi ☑ francesca.borghesi@unito.it

RECEIVED 19 May 2025 ACCEPTED 27 July 2025 PUBLISHED 01 October 2025

CITATION

Borghesi F, Chirico A and Cipresso P (2025) Response: Commentary: Outlining a novel psychometric model of mental flexibility and affect dynamics. *Front. Psychol.* 16:1631344. doi: 10.3389/fpsyg.2025.1631344

COPYRIGHT

© 2025 Borghesi, Chirico and Cipresso. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

Response: Commentary: Outlining a novel psychometric model of mental flexibility and affect dynamics

Francesca Borghesi^{1*}, Alice Chirico² and Pietro Cipresso¹

¹Department of Psychology, University of Turin, Turin, Italy, ²Department of Psychology, Research Center in Communication Psychology, Universitá Cattolica del Sacro Cuore, Milan, Italy

KEYWORDS

Mental Flexibility, Cognitive Flexibility, affect, stability, variability, psychometrics

A Commentary on

Commentary: Outlining a novel psychometric model of mental flexibility and affect dynamics

by Ionescu, T., and Gros, H. (2025). *Front. Psychol.* 16:1463888. doi: 10.3389/fpsyg.2025.1463888

Introduction

We thank Ionescu and Gros for their thought-provoking commentary, which continues an important discussion on the conceptual foundations of Flexibility. The term Flexibility has long suffered from fragmentation across domains—cognitive, behavioral, affective, and psychological—leading to inconsistent operationalizations and reduced theoretical clarity. Cognitive Flexibility, in particular, is often treated either as the core construct or as entirely distinct from broader forms such as behavioral regulation or experiential openness in therapeutic models like ACT. In our model, we propose Mental Flexibility as a unifying, overarching construct that integrates these diverse expressions. Defined as an emergent capacity for adaptive variability, Mental Flexibility accounts for both changes in behavior and the maintenance of self-coherence across shifting contexts. Due to Flexibility's strong connection to the concept of variability, which involves shifting or changing, our framework also explores its interplay with affect dynamics, highlighting how shifts in cognition and behavior correspond to emotional fluctuations. The critiques addressed here pertain to conceptual clarity, measurement issues, and our theoretical positioning within the variability-stability-flexibility continuum.

Response to critique on mechanism, ability, and the conceptual framing of mental flexibility

Ionescu and Gros (2025) argue that conceptualizing Mental Flexibility as a property is incompatible with its association with mechanisms, skills, or abilities. They maintain that these are distinct categories and suggest that our use of Mental Flexibility lacks originality. However, we contend that these levels—property, mechanism, skill—are not mutually exclusive but represent interconnected layers of abstraction, like in intelligence or consciousness (Gamez, 2020; Kanai and Fujisawa, 2024).

As an emergent property, Mental Flexibility arises from the coordinated activity of sub-processes and not reducible to their components (de Schotten and Forkel, 2022), yet they require mechanistic elucidation (Miller et al., 2024). Mechanisms such as shifting, inhibition, updating, and control (Illari and Williamson, 2012; Machamer et al., 2000) provide the operational basis for Flexibility, just as encoding and retrieval support memory. These mechanisms are embedded within broader systems like cognitive control and episodic memory (Egner, 2023). Skills and abilities describe how such mechanisms manifest behaviorally, evolving from effortful to automatized processes (Ackerman, 1992; Hambrick et al., 2018; Sheffler et al., 2022). Hence, Flexibility manifests as both ability and trait (Zhang et al., 2020). Performance tasks assess momentary flexibility, based on time response of switching cost (Demanet et al., 2011; Grol and De Raedt, 2018; Howell and Hamilton, 2021), while self-reports capture dispositional tendencies (Bond et al., 2011; Dennis and Vander Wal, 2010; Gabrys et al., 2018; Martin and Rubin, 1995; Rogge and Lin, 2024). Low correlations between methods are common across constructs-such as Intelligence, Empathy, Creativitywhere different behavioral measures tap into the same underlying trait but remain weakly correlated (Costa and Faria, 2020; Decety, 2011; Howlett et al., 2021, 2022; Kandler et al., 2016). Finally, in our conceptualization, Mental Flexibility is not a synonym for Cognitive Flexibility as in Anziano et al. (2023); it is a superordinate construct uniting cognitive, affective, behavioral, and psychological domains, re-anchored within psychological science. Throughout our conceptual work, we used the terms Flexibility and Mental Flexibility interchangeably, as both refer to an emergent property or meta-function involved in cognitive and affective shifting or switching processes. The addition of the adjective Mental was a deliberate choice to prevent confusion with uses of Flexibility in other scientific domains—such as material science, chemistry, physics (Bruns et al., 2020), logistic organization of workplace (Manders et al., 2017) and motor functional ability (Stathokostas et al., 2012). Rather than being redundant, this specification serves a clarifying and boundary-setting function within psychological science. It aims to identify overarching features that may unify the various domain-specific definitions of Flexibility (e.g., cognitive, affective, behavioral, and psychological flexibility). These definitions remain distinct and autonomous, but the goal is to facilitate integration by highlighting their shared, higher-order characteristics-connections that, until now, have rarely been conceptually aligned.

Methodological considerations and the use of Markov chains

Ionescu and Gros (2025) criticize the omission of several classical tasks—such as the Dimensional Change Card Sort (DCCS) (Zelazo, 2006), Navon task (Kimchi, 1992; Navon, 2003), Plus-Minus (Miyake et al., 2000), and Brixton test (Spitoni et al., 2018)—from our framework, and our reliance on self-report measures. Our article, however, did not aim to review all flexibility tools, but to present a novel model integrating cognitive, affective, and behavioral dimensions within affect dynamics. We included

representative direct and indirect measures to illustrate a key point: tools labeled as Flexibility measures often show weak intercorrelations (Fang and Ding, 2022), underscoring the need for a more integrated model. The excluded tasks are valid but context-specific: DCCS is optimized for preschoolers; Navon targets low-level perceptual shifts, not executive flexibility. Plus–Minus and Brixton assess rule-shifting mechanisms already covered by other tools in our model. Even recent reviews (Hohl and Dolcos, 2024) mention only the DCCS from Ionescu's list.

Regarding Discrete Time and Space Markov chains, we framed them as a heuristic for modeling affective transitions (Borghesi et al., 2025; Hamaker et al., 2015), not as a validated tool. Inspired by socioemotional flexibility models (Hollenstein, 2015), we propose that affective variability may reflect Mental Flexibility. Although our initial work utilizes self-report data, the model is extendable to performance-based tasks and warrants further empirical refinement.

Dynamic models and the interplay of variability, stability, and flexibility

Ionescu and Gros (2025) critique our conceptualization of Mental Flexibility as an emergent property characterized by adaptive variability, favoring instead a developmental continuum from variability to stability and then flexibility (Ionescu, 2017). However, empirical evidence suggests this progression is neither linear nor universally adaptive. In Blakey et al. (2016), children move from mixed responding to perseveration—not directly to flexibility-highlighting that variability is not random, and perseveration does not represent functional stability. Similarly, Event-Related Potentials (ERPs) studies show that infants exhibit systematic responses to phonological prediction errors (Ylinen et al., 2017), supporting predictive coding models (Millidge et al., 2021), where behavior is guided by internal models that minimize prediction error (van de Cruys et al., 2014). This finding aligns with predictive coding theories, which propose that behavioral variability is structured and guided by internal models continuously updated to minimize prediction error. Supporting this, Gopnik et al. (2017) liken children's exploration to simulated annealing algorithms, reflecting strategic, inferencedriven behavior. Defeyter and German (2003) similarly show that children's openness to noncanonical object use stems from Cognitive Flexibility, not random variability. These findings challenge Ionescu's developmental continuum by showing that early variability is structured, purposeful, and indicative of an already flexible and exploratory cognitive system.

Nonetheless, the proposal by Ionescu and Gros fits within a broader discussion regarding the relationship between stability and flexibility. Traditionally, many scholars have embraced a stability–flexibility trade-off model, wherein cognitive stability (i.e., task focus, resistance to distraction) and flexibility (i.e., task-switch readiness) are conceptualized as opposing ends of a single continuum. According to this model, enhancing stability necessarily reduces flexibility, and viceversa, due to a shared control parameter—often described as an "updating threshold" within

working memory (Dreisbach et al., 2024; Goschke and Bolte, 2014; Hommel and Colzato, 2017).

Our conceptualization draws from this flourishing debate, shifting the focus toward the trade-off between stability and variability—an approach that aligns with statistical frameworks commonly used in dynamic analysis (Del Giudice and Crespi, 2018; Geddert and Egner, 2022). We conceptualize Mental Flexibility as a meta-property that dynamically balances variability and stability in response to internal goals and contextual demands. Flexibility, in this sense, is not mere reactivity but involves intentional modulation—choosing stability when consistency is required and shifting when adaptation is needed. This adaptive variability reflects a goal-directed form of switching, rather than random change, and is closely tied to personal meaning and self-regulation. The capacity for variability is typically assessed through switching costs in neuropsychological tasks, and through self-report measures that emphasize the exploration of alternatives, such as shifts in perspective and behavior. Conversely, the capacity for stability, often neglected in literature, is reflected in self-report instruments like the Cognitive Flexibility Inventory (CFI) (Dennis and Vander Wal, 2010), the Cognitive Control and Flexibility Questionnaire (Gabrys et al., 2018) (CCFQ - Control subscale), the Coping Flexibility Scale (Co-Flex-Reflection component) (Vriezekolk et al., 2012), and the Multidimensional Psychological Flexibility Inventory (MPSI-Acceptance and Values subscales) (Rolffs et al., 2018). Stability also emerges in performance-based tasks through the analysis of switching costs, which quantify the cognitive effort required to maintain vs. shift responses across trials.

Ionescu and Gros (2025) question our use of "adaptability", suggesting it conflates behavioral adjustment with a loss of authenticity. However, our references to Chen and Tang (2022) were intended to highlight that adaptation may sometimes reflect reactive rather than agentic strategies—such as "avoidance crafting," which is driven by threat appraisals and may lead to disengagement. Similarly, our use of O'Toole et al. (2020) aimed to emphasize the role of emotional complexity in promoting authentic, context-sensitive adaptation: "The ability to experience and distinguish multiple emotions can help inform more nuanced and flexible responses."

Discussion

Our model thus distinguishes between superficial adaptation and deep, emotionally integrated Flexibility. It treats Flexibility not as a midpoint between extremes but as a meta-function coordinating transitions between stability and variability across domains-cognitive, affective, behavioral, and psychological.

Mental Flexibility offers a clear, integrative visualization of Mental Flexibility as the dynamic regulation between stability and variability over time. The U-shaped curve could represent Flexibility as optimal when both behavioral change and duration remain within a balanced range. At the two extremes, Flexibility collapses: inertia arises when the system remains overly stable for too long (minimal change), while instability reflects prolonged, uncontrolled variability (excessive change).

The central zone—labeled the *normal spectrum of Flexibility*—illustrates where adaptive functioning occurs. Here, the individual can oscillate between stable and variable behaviors depending on internal goals and contextual demands. The central vertical marker further highlights that Flexibility is not about avoiding change or pursuing it blindly, but about selectively and meaningfully regulating one's position along this continuum.

Our reconceptualization supports a multidimensional view of Flexibility and opens practical avenues for profiling patterns—rigid, disorganized, or adaptively flexible—to guide interventions such as Acceptance and Commitment Therapy (ACT) or emotion regulation training. It invites future research to develop assessments that bridge momentary performance and long-term dispositional flexibility across domains.

Author contributions

FB: Conceptualization, Methodology, Writing – original draft, Writing – review & editing. AC: Conceptualization, Supervision, Writing – review & editing. PC: Methodology, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. The research was funded by PON R&I 2014-2020 (FSE REACT-EU) and Grants PRIN 2022 PNRR P2022PXAZW funded by European Union NextGeneration EU.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Ackerman, P. L. (1992). Predicting individual differences in complex skill acquisition: dynamics of ability determinants. *J. Appl. Psychol.* 77, 598–614. doi: 10.1037/0021-9010.77.5.598

Anziano, M., Mouthon, M., Thoeny, H., Sperber, C., and Spierer, L. (2023). Mental flexibility depends on a largely distributed white matter network: causal evidence from connectome-based lesion-symptom mapping. *Cortex.* 165, 38–56doi: 10.1016/j.cortex.2023.04.007

Blakey, E., Visser, I., and Carroll, D. J. (2016). Different executive functions support different kinds of cognitive flexibility: evidence from 2-, 3-, and 4-year-olds. *Child Dev.* 87, 513–526. doi: 10.1111/cdev.12468

Bond, F. W., Hayes, S. C., Baer, R. A., Carpenter, K. M., Guenole, N., Orcutt, H. K., et al. (2011). Preliminary psychometric properties of the acceptance and action questionnaire–II: a revised measure of psychological inflexibility and experiential avoidance. *Behav. Ther.* 42, 676–688. doi: 10.1016/j.beth.2011.03.007

Borghesi, F., Simoncini, G., Cremascoli, R., Bianchi, L., Mendolicchio, L., Cappelli, S., et al. (2025). A stochastic model for affect dynamics: methodological insights from heart rate variability in an illustrative case of Anorexia Nervosa. *Front. Psychiatry* 16:1502217. doi: 10.3389/fpsyt.2025.1502217

Bruns, B., Herrmann, F., Polyakova, M., Grünewald, M., and Riese, J. (2020). A systematic approach to define flexibility in chemical engineering. *J. Adv. Manuf. Process.* 2. doi: 10.1002/amp2.10063

Chen, L., and Tang, K. (2022). Adapting to frequent changes: the roles of job crafting and personal needs. J. Appl. Behav. Sci. 58, 417–441. doi: 10.1177/00218863211026093

Costa, A. C. F., and Faria, L. (2020). Implicit theories of emotional intelligence, ability and trait-emotional intelligence and academic achievement. *Psihologijske Teme* 29, 43–61. doi: 10.31820/pt.29.1.3

de Schotten, M. T., and Forkel, S. J. (2022). The emergent properties of the connected brain. *Science* 378, 505–510. doi: 10.1126/science.abq2591

Decety, J. (2011). The neuroevolution of empathy. Ann. N. Y. Acad. Sci. 1231, 35–45. doi: 10.1111/j.1749-6632.2011.06027.x

Defeyter, M. A., and German, T. P. (2003). Acquiring an understanding of design: evidence from children's insight problem solving. *Cognition* 89, 133–155. doi: 10.1016/S0010-0277(03)00098-2

Del Giudice, M., and Crespi, B. J. (2018). Basic functional trade-offs in cognition: An integrative framework. *Cognition* 179, 56–70. doi: 10.1016/j.cognition.2018.06. 008

Demanet, J., Liefooghe, B., and Verbruggen, F. (2011). Valence, arousal, and cognitive control: a voluntary task-switching study. *Front. Psychol.* 2:336. doi: 10.3389/fpsyg.2011.00336

Dennis, J. P., and Vander Wal, J. S. (2010). The cognitive flexibility inventory: instrument development and estimates of reliability and validity. *Cognit. Ther. Res.* 34, 241–253. doi: 10.1007/s10608-009-9276-4

Dreisbach, G., Musslick, S., and Braem, S. (2024). Flexibility and stability can be both dependent and independent. *Nat. Rev. Psychol.* 3, 636–636. doi: 10.1038/s44159-024-00348-3

Egner, T. (2023). Principles of cognitive control over task focus and task switching. Nat. Rev. Psychol. 2, 702–714. doi: 10.1038/s44159-023-00234-4

Fang, S., and Ding, D. (2022). Which outcome variables are associated with psychological inflexibility/flexibility for chronic pain patients A three level meta-analysis. *Front. Psychol.* 13:1069748. doi: 10.3389/fpsyg.2022.1069748

Gabrys, R. L., Tabri, N., Anisman, H., and Matheson, K. (2018). Cognitive control and flexibility in the context of stress and depressive symptoms: the cognitive control and flexibility questionnaire. *Front. Psychol.* 9:2219. doi: 10.3389/fpsyg.2018.02219

Gamez, D. (2020). The relationships between intelligence and consciousness in natural and artificial systems. *J. Artif. Intellig. Consciousn.* 7, 51–62. doi: 10.1142/S2705078520300017

Geddert, R., and Egner, T. (2022). no need to choose: independent regulation of cognitive stability and flexibility challenges the stability-flexibility trade-off. *J. Exp. Psychol.: General* 151, 3009–3027. doi: 10.1037/xge0001241

Gopnik, A., O'Grady, S., Lucas, C. G., Griffiths, T. L., Wente, A., Bridgers, S., et al. (2017). Changes in cognitive flexibility and hypothesis search across human life history from childhood to adolescence to adulthood. *Proc. Natl. Acad. Sci. USA.* 114, 7892–7899. doi: 10.1073/pnas.1700811114

Goschke, T., and Bolte, A. (2014). Emotional modulation of control dilemmas: The role of positive affect, reward, and dopamine in cognitive stability and flexibility. *Neuropsychologia* 62, 403–423. doi: 10.1016/j.neuropsychologia.2014. 07.015

Grol, M., and De Raedt, R. (2018). The effect of positive mood on flexible processing of affective information. *Emotion* 18, 819–833. doi: 10.1037/emo0000355

Hamaker, E. L., Ceulemans, E., Grasman, R. P. P. P., and Tuerlinckx, F. (2015). Modeling affect dynamics: state of the art and future challenges. *Emot. Rev.* 7, 316–322. doi: 10.1177/1754073915590619

Hambrick, D. Z., Burgoyne, A. P., and Oswald, F. L. (2018). "Domain-general models of expertise: the role of cognitive ability," in *The Oxford Handbook of Expertise*, 56–84.

Hohl, K., and Dolcos, S. (2024). Measuring cognitive flexibility: a brief review of neuropsychological, self-report, and neuroscientific approaches. Front. Hum. Neurosci. 18:1331960. doi: 10.3389/fnhum.2024.

Hollenstein, T. (2015). This time, its real: affective flexibility, time scales, feedback loops, and the regulation of emotion. *Emot. Rev.* 7, 308-315. doi: 10.1177/1754073915590621

Hommel, B., and Colzato, L. S. (2017). The social transmission of metacontrol policies: Mechanisms underlying the interpersonal transfer of persistence and flexibility. *Neurosci. Biobehav. Rev.* 81, 43–58. doi: 10.1016/j.neubiorev.2017.01.009

Howell, B. C., and Hamilton, D. A. (2021). Trait affective differences influence behavioral flexibility in virtual spatial and non-spatial discrimination tasks. *Pers. Individ. Dif.* 170:110424. doi: 10.1016/j.paid.2020.110424

Howlett, C. A., Wewege, M. A., Berryman, C., Oldach, A., Jennings, E., Moore, E., et al. (2021). Same room - different windows A systematic review and meta-analysis of the relationship between self-report and neuropsychological tests of cognitive flexibility in healthy adults. *Clin. Psychol. Rev.* 88:102061. doi: 10.1016/j.cpr.2021.102061

Howlett, C. A., Wewege, M. A., Berryman, C., Oldach, A., Jennings, E., Moore, E., et al. (2022). Back to the drawing board—the relationship between self-report and neuropsychological tests of cognitive flexibility in clinical cohorts: a systematic review and meta-analysis. *Neuropsychology* 36, 347–372. doi: 10.1037/neu0000796

Illari, P. M. K., and Williamson, J. (2012). What is a mechanism Thinking about mechanisms across the sciences. *Eur. J. Philosophy Sci.* 2, 119–135. doi: 10.1007/s13194-011-0038-2

Ionescu, T. (2017). The variability-stability-flexibility pattern: a possible key to understanding the flexibility of the human mind. *Rev. General Psychol.* 21, 123–131. doi: 10.1037/gpr0000110

Ionescu, T., and Gros, H. (2025). Commentary: outlining a novel psychometric model of mental flexibility and affect dynamics. *Front. Psychol.* 16:1463888. doi: 10.3389/fpsyg.2025.1463888

Kanai, R., and Fujisawa, I. (2024). Toward a universal theory of consciousness. Neurosci. Consciousn. 2024:niae022. doi: 10.1093/nc/niae022

Kandler, C., Riemann, R., Angleitner, A., Spinath, F. M., Borkenau, P., and Penke, L. (2016). The nature of creativity: the roles of genetic factors, personality traits, cognitive abilities, and environmental sources. *J. Pers. Soc. Psychol.* 111, 230–249. doi: 10.1037/pspp0000087

Kimchi, R. (1992). Primacy of wholistic processing and global/local paradigm: a critical review. *Psychol. Bull.* 112, 24–38. doi: 10.1037/0033-2909.112.1.24

Machamer, P., Darden, L., and Craver, C. F. (2000). Thinking about mechanisms. $Philos.\ Sci.\ 67,\ 1-25.\ doi:\ 10.1086/392759$

Manders, J. H. M., Caniëls, M. C. J., and Ghijsen, P. W. Th. (2017). Supply chain flexibility. *Int. J. Logist. Manag.* 28, 964–1026. doi: 10.1108/IJLM-07-2016-0176

Martin, M. M., and Rubin, R. B. (1995). A new measure of cognitive flexibility. $Psychol.\ Rep.\ 76, 623-626.\ doi:\ 10.2466/pr0.1995.76.2.623$

Miller, E. K., Brincat, S. L., and Roy, J. E. (2024). Cognition is an emergent property. Curr. Opin. Behav. Sci. 57:101388. doi: 10.1016/j.cobeha.2024.101388

Millidge, B., Seth, A. K., and Buckley, C. L. (2021). Predictive coding: a theoretical and experimental review. arXiv [preprint] arXiv.2107.12979. doi: 10.48550/arXiv.2107.12979

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., and Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex "frontal lobe" tasks: a latent variable analysis. *Cogn. Psychol.* 41, 49–100 doi: 10.1006/cogp.1999.0734

Navon, D. (2003). What does a compound letter tell the psychologist's mind $Acta\ Psychol.\ 114, 273–309.$ doi: 10.1016/j.actpsy.2003.06.002

O'Toole, M. S., Renna, M. E., Elkjær, E., Mikkelsen, M. B., and Mennin, D. S. (2020). A systematic review and meta-analysis of the association between complexity of emotion experience and behavioral adaptation. *Emot. Rev.* 12, 23–38. doi: 10.1177/1754073919876019

Rogge, R. D., and Lin, Y.-Y. (2024). "Multidimensional psychological flexibility inventory (MPFI)," in $\it Handbook$ of Assessment in $\it Mindfulness$ Research, 1–18.

Rolffs, J. L., Rogge, R. D., and Wilson, K. G. (2018). "Multidimensional psychological flexibility inventory," in *PsycTESTS Dataset*.

Sheffler, P., Rodriguez, T. M., Cheung, C. S., and Wu, R. (2022). Cognitive and metacognitive, motivational, and resource considerations for learning new skills across the lifespan. *Wiley Interdiscipl. Rev.: Cognit. Sci.* 13:e1585. doi: 10.1002/wcs. 1585

Spitoni, G. F., Bevacqua, S., Cerini, C., Ciurli, P., Piccardi, L., Guariglia, P., et al. (2018). Normative data for the hayling and brixton tests in an italian population. *Arch. Clini. Neuropsychol.* 33, 466–476. doi: 10.1093/arclin/acx072

Stathokostas, L., Little, R. M. D., Vandervoort, A. A., and Paterson, D. H. (2012). Flexibility training and functional ability in older adults: a systematic review. *J. Aging Res.* 2012, 1–30. doi: 10.1155/2012/306818

van de Cruys, S., Evers, K., van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L., et al. (2014). Precise minds in uncertain worlds: predictive coding in autism. *Psychol. Rev.* 121, 649–675. doi: 10.1037/a0037665

Vriezekolk, J. E., van Lankveld, W. G. J. M., Eijsbouts, A. M. M., van Helmond, T., Geenen, R., and van den Ende, C. H. M. (2012). The coping flexibility questionnaire: Development and initial validation in patients with chronic rheumatic diseases. *Rheumatol. Int.* 32, 2383–2391. doi: 10.1007/s00296-011-1975-y

Ylinen, S., Bosseler, A., Junttila, K., and Huotilainen, M. (2017). Predictive coding accelerates word recognition and learning in the early stages of language development. *Dev. Sci.* 20:12472. doi: 10.1111/desc.12472

Zelazo, P. D. (2006). The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. *Nat. Protoc.* 1, 297–301. doi: 10.1038/nprot.2006.46

Zhang, L. M., Aidman, E., Burns, B., and Kleitman, S. (2020). Integrating self-report and performance-based assessment of adaptability in a university context. *J. Res. Pers.* 88:103988. doi: 10.1016/j.jrp.2020.103988