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Mean centering is not necessary 
in regression analyses, and 
probably increases the risk of 
incorrectly interpreting 
coefficients
Lee H. Wurm * and Miles Reitan 

Psychology Department, Gonzaga University, Spokane, WA, United States

Scholars trained in the use of factorial ANOVAs have increasingly begun using linear 
modelling techniques. When models contain interactions between continuous 
variables (or powers of them), it has long been argued that it is necessary to 
mean center prior to conducting the analysis. A review of the recommendations 
offered in statistical textbooks shows considerable disagreement, with some 
authors maintaining that centering is necessary, and others arguing that it is 
more trouble than it is worth. We also find errors in people’s beliefs about how 
to interpret first-order regression coefficients in moderated regression. These 
coefficients do not index main effects, whether data have been centered or not, 
but mischaracterizing them is probably more likely after centering. In this study 
we review the recommendations, and then provide two demonstrations using ordinary 
least squares (OLS) regression models with continuous predictors. We show that 
mean centering has no effect on the numeric estimate, the confidence intervals, 
or the t- or p-values for main effects, interactions, or quadratic terms, provided 
one knows how to properly assess them. We also highlight some shortcomings 
of the standardized regression coefficient (β), and note some advantages of the 
semipartial correlation coefficient (sr). We  demonstrate that some aspects of 
conventional wisdom were probably never correct; other concerns have been 
removed by advances in computer precision. In OLS models with continuous 
predictors, mean centering might or might not aid interpretation, but it is not 
necessary. We close with practical recommendations.
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1 Introduction

Areas of research that were long characterized by tightly-controlled factorial ANOVAs are 
seeing an increase in the use of regression-based techniques (van Rij et al., 2020; Wurm and 
Fisicaro, 2014). This is a positive development, as the tools are far more flexible and powerful 
than the corresponding ANOVAs, and allow a more natural examination of the roles played 
by independent or predictor variables. However, this development also brings with it a set of 
issues relating to the proper use and interpretation of the techniques. Many researchers seem 
unfamiliar with some of these issues, or perhaps in need of a refresher. Some of this is probably 
a holdover from people’s training in the realm of ANOVA (Darlington and Hayes, 2017; Hayes 
et al., 2012; Irwin and McClelland, 2001).
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The current study consists of a non-technical discussion plus two 
demonstrations, and focuses on the issue of mean centering in 
regression analyses. We address three issues. The main motivation is 
the contradictory prescriptions given by statistical experts regarding 
mean centering of continuous variables. The question is most pressing 
in the case of analyses that contain either an interaction term, as in 
Equation 1:

 = + + +0 1 1 2 2 3 1 2Ŷ b b X b X b X X  (1)

or a polynomial term, as in Equation 2:

 = + + 2
0 1 2Ŷ b b X b X  (2)

We will explore what mean centering does, and what it does not 
do, in these contexts.

A related issue addressed in the current paper is the interpretation 
of first-order regression coefficients in the presence of an interaction 
term or polynomial term (b1 and b2 in Equation 1; b1 in Equation 2). 
Here, too, we see conflicting assertions by experts about the proper 
interpretation of these coefficients. Paradoxically, we think it possible 
that misinterpretations are more likely after centering.

A final issue addressed in this paper will be  the use and 
interpretation of β, the standardized regression coefficient. We will 
note several problems associated with the calculation and reporting of 
β, and following Darlington and Hayes (2017) and Warner (2013, 
2020), we will point out some advantages of the semipartial correlation 
coefficient (sr) as a possible alternative.

Our discussion and demonstrations will use ordinary least squares 
(OLS) regression with continuous predictors. Throughout this paper, 
we will use b to indicate unstandardized regression coefficients, and β 
to indicate standardized regression coefficients. For clarity and 
consistency, when we quote other authors’ work, we will substitute 
these symbols for those that might have been used in their original text.

2 Mean centering

Examination of Equations 1, 2 will make it clear that the first order 
predictors can be very highly correlated with interaction products or 
polynomial terms. Mean centering (subtracting the mean from every 
score) reduces these correlations, sometimes dramatically, and it is this 
fact that seems to be  the foundation for many authors’ views 
on centering.

Quotations from two seminal books on multiple regression 
illustrate the thinking: “Very high levels of multicollinearity can lead 
to technical problems in estimating regression coefficients. Centering 
variables will often help minimize these problems” (Aiken and West, 
1991, pp. 32–33). “The existence of substantial correlation among a set 
of IV’s creates difficulties usually referred to as ‘the problem of 
multicollinearity.’ Actually, there are three distinct problems—the 
substantive interpretation of partial coefficients, their sampling 
stability, and computational accuracy” (Cohen and Cohen, 1983, 
p. 115).

Tabachnick and Fidell (1989) were more explicit than most other 
authors in describing where the trouble comes from: “The problem is 

that singularity prohibits, and multicollinearity renders unstable, 
matrix inversion…With multicollinearity, the determinant…is zero 
to several decimal places. Division by a near-zero determinant 
produces very large and unstable numbers in the inverted matrix” 
(p. 87; see also Tabachnick and Fidell, 2001, 2007, 2013). A long list of 
authors has expressed this same view (Cohen et al., 2003; Fox, 1991; 
Navarro, 2018; Navarro and Foxcroft, 2022; Navarro et  al., 2019; 
Reinard, 2006).

A related concern was noted by Cohen and Cohen (1983), who 
said, “Large standard errors mean both a lessened probability of 
rejecting the null hypothesis and wide confidence intervals” (p. 116; 
see also Aiken and West, 1991; Bobko, 2001; Fox, 1991).

Many of the preceding claims have been long known to be false 
(Dalal and Zicker, 2012; Echambadi and Hess, 2007; Hayes et al., 
2012), but statistical textbooks contain advice on centering that ranges 
from describing it as mandatory to concluding that it might not 
be worth the trouble. Warner (2013) says, “When both predictor are 
quantitative, is it necessary to center the scores on each predictor 
before forming the product term that represents the interaction” 
(p.  632; bold in the original). In a section on the assumptions of 
regression, Navarro and Foxcroft (2022) list “Uncorrelated predictors,” 
and then go on to say, “The idea here is that, in a multiple regression 
model, you do not want your predictors to be too strongly correlated 
with each other. This is not ‘technically’ an assumption of the 
regression model, but in practice it’s required” (pp. 317–318; see also 
Navarro, 2018, and Navarro et al., 2019).

Cohen et al. (2003) do not go so far as to say that centering is 
required, but they do say, “…we strongly recommend the centering of 
all predictors that enter into higher order interactions in MR prior to 
analysis” (p. 267; italics in the original). They also noted, though, that 
“If a predictor has a meaningful zero point, then one may wish to keep 
the predictor in uncentered form” (p. 266).

Some authors are less enthusiastic about centering. Bobko (2001), 
for example, says, “…about the only gain from centering is that the 
new b’s will be estimated with less variance” (p. 229). Hayes et al. 
(2012) go a little further, saying, “…the advantages of [centering] are 
generally overstated” (p. 9). Darlington (1990) seems to discourage 
centering, noting that “Measures of unique contribution, such as bj, 
prj, srj, or the values of t or F that test their significance, are affected by 
centering for all but the highest-power term…We usually want 
statistics that are not affected by centering or similar adjustments 
“(p. 300; emphasis in the original). Echambadi and Hess (2007) leave 
no doubt about their conclusion, saying that mean centering “…does 
not hurt, but it does not help, not one iota” (p. 439), adding, “The cure 
for collinearity with mean-centering is illusory” (p. 441).

This lack of agreement among experts on the necessity (or not) of 
centering was the primary motivation for the current study.

2.1 Main effects vs. simple/conditional 
effects

In the context of regression analyses, it is very useful to think of 
main effects as constants. For example, in Equation 3, the slope of the 
relationship between the dependent variable (DV) and X1, controlling 
for X2, is b1.
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 = + +0 1 1 2 2Ŷ b b X b X  (3)

It is a constant value across all possible values of X2.
Interaction means that the effect of a predictor is not a constant; 

it depends on the specific value of one (or more) other predictors. 
Returning to Equation 1, b1 is the slope of the relationship between the 
DV and X1, but only when X2 = 0. The slope is not a constant—it is 
different for every possible value of X2. In ANOVA contexts, these 
specific, non-constant effects are called simple effects, and their 
number is limited by the number of levels of X2. In the context of 
regression analyses, they tend to be called conditional effects. With 
continuous predictors, infinitely many are possible; but the logic is the 
same as that seen in ANOVA.

2.2 What mean centering does

Centering often reduces the intercorrelations between first-order 
variables and their product or their polynomial terms. This makes 
researchers feel better about their analyses, but it fails to take into 
account the difference between essential and non-essential collinearity 
(e.g., Dalal and Zicker, 2012). Non-essential collinearity has to do with 
how variables are scaled, whereas essential collinearity reflects the 
underlying correlational structure of the predictor set. Mean centering 
is nothing more than subtracting a constant from each value on a 
predictor, and as such, it does not affect that variable’s dispersion or its 
underlying relationship to other predictors in the set. It can only effect 
non-essential collinearity.

Centering does unquestionably change the values and 
interpretations of the first-order coefficients (b1 and b2 in Equation 1; b1 
in Equation 2). Authors appear to be nearly unanimous in noting that 
this change makes those coefficients “…likely to be more interpretable” 
(e.g., Darlington and Hayes, 2017, p. 355). Below, we will explore why 
this is, and also point out two perhaps unexpected downsides.

2.3 What mean centering does not do

Attempts to describe the effects of centering run a very wide range 
in terms of specificity, clarity, and accuracy. Warner (2013) writes, 
“The purpose of centering is to reduce the correlation between the 
product term and the X1, X2 scores, so that the effects of the X1 and X2 
predictors are distinguishable from the interaction” (p. 632). We will 
present evidence below that suggests Warner might believe that the 
coefficients b1 and b2 in Equation 1 index the main effects of X1 and X2 
(they do not), but either way, it is unclear what it would mean to make 
such effects “distinguishable” from the interaction.

Reinard (2006) asserts, “Many, but certainly not all, scholars 
suggest the wisdom of standardizing scores first so that a zero point 
may be included” (p. 389). This language, too, is problematic. The 
regression solution is going to “include” a zero point whether scores 
are standardized or not, though it will have different meanings in the 
two cases. Weinberg et al. (2023), say that analysts can center “To 
impart meaning to the b-weights of the first-order-effect variables in 
an equation that contains an interaction term…” (p. 576). Again, the 
coefficients in question have meanings, centered or not, and it is the 
analyst’s responsibility to know what those meanings are.

Some claims made about the effects of centering appear to 
be wrong. Weinberg et al. (2023) assert that centering increases the 
power of the statistical test on the interaction in Equation 1, but this 
is shown to be false by Echambadi and Hess (2007, see also Dalal and 
Zicker, 2012, Hayes et al., 2012, and Shieh, 2009). As we will see below, 
centering variables has literally no effect on the value of the regression 
coefficient b3, or its associated standard error, t statistic, or p value.

Tabachnick and Fidell (2013, see also Tabachnick and Fidell, 2001, 
2007) assert that “Centering an IV… does affect regression coefficients 
for interactions or powers of IVs…” (p. 158). Centering does not have 
this effect (e.g., Aiken and West, 1991; Darlington, 1990), which 
we will demonstrate below.

Tabachnick and Fidell (2013; see also Tabachnick and Fidell, 2001, 
2007) appear to be  wrong about other things, as well. They say, 
“Analyses with centered variables lead to the same unstandardized 
regression coefficients for simple terms in the equation (e.g., b1 for X1 
and b2 for X2 as when uncentered)” (p.  158). That has long been 
known to be false (Aiken and West, 1991; Cohen and Cohen, 1983; 
Cohen et al., 2003), as we will show again below. They go on to say, 
“The significance test for the interaction also is the same, although the 
unstandardized regression coefficient is not (e.g., b3 for X1X2)” 
(pp. 158–159). The first part of this is correct—the significance test for 
the interaction is the same—but in fact, the unstandardized regression 
coefficient is, too.

A final thing that centering does not do is convert the first-order 
regression coefficients (b1 and b2) to indexes of the main effects of X1 
and X2 in Equation 1. The temptation to interpret them in such a way 
is strong, especially for researchers experienced with factorial 
ANOVAs (Darlington and Hayes, 2017; Hayes, 2005; Hayes et al., 
2012; Irwin and McClelland, 2001). This temptation is probably made 
even worse by mean centering. We turn to this topic next.

2.4 Interpretation of first-order regression 
coefficients

In the context of Equation 1, Irwin and McClelland (2001) note, 
“A common misinterpretation (perhaps as an overgeneralization from 
ANOVA) is to refer to b2 as the ‘main effect’ of X2. The term ‘simple 
effect’ is preferable, because this term refers to the simple relationship 
between the dependent variable and an independent variable at a 
particular level of the other independent variable(s)” (p. 102).

Darlington and Hayes (2017) echo this, saying, “We have observed 
many instances in the literature of investigators interpreting b1 and b2 as 
“average” effects or ‘main effects’ as in ANOVA, as the effect of X1 and X2 
collapsing across the other variable. But that is not what b1 and b2 
quantify” (p. 434). They go on to say that despite the fact that statisticians 
have known this for a long time already, “…the message has been slow 
to disseminate among users of regression analysis” (p. 434).

To use the language of Darlington (1990), the interaction term 
X1X2 in Equation 1 changes the meaning of the first-order terms from 
“global” to “local:” b1 is not a main effect, but a conditional (or simple) 
effect; it is the effect of X1 at a single specific value of X2. That specific 
value is zero. By analogy, b2 is the conditional effect of X2 when X1 
equals zero. As Irwin and McClelland (2001) put it, “An average or 
main effect does not change with the addition of a moderator term; 
the apparent change is the result of a shift from a main effect test to a 
test of a particular simple effect in the moderator model” (p. 102).
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Centering changes the meaning of zero, and here, then, we see the 
interpretational advantage that might be gained (Aiken and West, 
1991; Cohen et al., 2003; see also Darlington, 1990 and Darlington and 
Hayes, 2017 for the analogous discussion of b1 in Equation 2). Without 
centering, a value of zero on X1 or X2 might be outside the range of 
values observed in a study, or even meaningless or impossible. 
Centering guarantees that b1 and b2 index effects at values that are at 
least possible, and probably meaningful.

This does not, though, make them main effects. Main effects 
are generally thought of as additive, or “general” (Cohen and 
Cohen, 1983, p. 12) or “constant” (Aiken and West, 1991, p. 38). As 
Aiken and West (1991) note, “The b1 and b2 coefficients never 
represent constant effects of the predictors in the presence of an 
interaction” (p. 38). The effects indexed by b1 and b2 in Equation 1 
are not constants but variables, whose value depends on the 
meaning of zero on X1 and X2.

Irwin and McClelland (2001) point out one reason why the risk 
of misinterpretation might be heightened here: after mean centering, 
what’s represented by b1 or b2 “…is closer to what most researchers 
mean when they refer to the main effect. However, except for special 
situations (e.g., when the X distribution is exactly symmetric), it still 
will not be the same as the average difference between groups across 
all levels of X” (p. 102; italics added).

Most models will contain regressors in addition to those involved 
in an interaction. This makes interpretation of first-order coefficients 
even more complex, because technically, “b1 is the estimated difference 
in Y between two cases that differ by 1 unit on X1 but whose scores on 
X2 equal zero (and are the same on any covariates)” (Darlington and 
Hayes, 2017, p. 386; italics added). In many real datasets, this situation 
is so statistically unlikely as to render the situation all but impossible.

It should be  noted that the foregoing considerations are only 
relevant if one intends to interpret or test the significance of those 
first-order coefficients. Darlington (1990) noted that they are unlikely 
to be of any interest in the context of an interaction. Even if they were 
main effects—but they are not—Venables (1998) reminds us, “If there 
is an interaction between factors A and B, it is difficult to see why the 
main effects for either factor can be  of any interest…” (p.  13). 
Nevertheless, sometimes researchers are interested in such main 
effects. As we will see below, a hierarchical approach is required in 
such cases (e.g., Aiken and West, 1991; Bobko, 2001; Cohen and 
Cohen, 1983).

Finally, it should be  highlighted that any interpretational 
advantage of centering is not because of reduced collinearity: Hayes 
et al. (2012) note that “Although the regression coefficients, t statistics, 
p-values, and measures of effect size are changed for those variables 
involved in the interaction, this has nothing to do with reducing 
multicollinearity. These differences are attributable to the effects of 
rescaling a variable in such a way that the ‘zero’ point is changed” 
(p. 10).

Readers may be inclined to say that anyone who went to graduate 
school knows all this, but our recent experiences with colleagues, 
collaborators, and reviewers of manuscripts and grant proposals 
suggests that there might be some lingering misapprehension due to 
some people’s stronger familiarity with factorial ANOVAs. This can 
even affect how the topics are treated in statistics textbooks, which has 
obvious and very serious consequences.

An example from Warner’s (2013, 2020) textbook illustrates how 
difficult it can be to maintain the proper interpretation of these effects. 

In this example, physical illness symptoms are being predicted by age 
(X1) and number of healthy habits (X2), along with their interaction 
(X1X2). Both predictors were centered prior to computation of their 
product (recall from above that Warner believes such centering is 
necessary). A model was then fitted, using the original, uncentered X1 
and X2, along with the product of the centered versions of those 
predictors.1

Warner (2013) describes the results as follows:

The interaction was statistically significant… Age was also a 
statistically significant predictor of symptoms (i.e., older persons 
experienced a higher number of average symptoms compared 
with younger persons). Overall, there was a statistically significant 
decrease in predicted symptoms as number of healthy habits 
increased. This main effect of habits on symptoms should 
be interpreted in light of the significant interaction between age 
and habits” (pp. 633–634; italics added).

The words “average,” “overall,” and “main effect” make it clear that 
Warner believes these to be main effects. They are not.

Warner (2020) includes the same worked example, and the 
description of the results no longer has the words “overall” or “main.” 
However, the language continues to suggest that these are being 
interpreted as main effects, and in a preliminary list of questions used 
to guide the analysis, Warner asks, “Which of the three predictors (if 
any) are statistically significant when controlling for other predictors 
in the model…?” (p. 234). The three predictors are X1, X2, and the 
product of their centered versions.

The same problem undercuts the argument of Iacobucci et al. 
(2016). They examined the effects of mean centering under 
differing amounts of collinearity, in regression models that 
included an interaction term. It is clear from their wording that 
they believe the first-order coefficients to be  indexes of main 
effects: “We ran a regression using the main effects and 
interaction, X1, X2, and X1X2 to predict Y” (p. 1313); “…we focus 
on the results for the main effect predictors” (p. 1313); “Mean 
centering…is good practice when testing and reporting on effects 
of individual predictors” (p. 1314); “…mean centering reduces 
standard errors and thus benefits p-values and the likelihood of 
finding β1 or β2 significant” (p. 1313).

Mean centering does not reduce standard errors or benefit the 
likelihood of a significant result, if one is testing a main effect. What 
is happening is that a different conditional effect is being estimated 
before vs. after centering. This has been known for a long time, and 
we will demonstrate it again below.

2.5 Review of β

Darlington (1990) notes, “The most widely used measure of a 
regressor’s relative importance is β, which is defined as the value of b 

1 We have not seen anyone else use this strategy. Warner (2020) writes that 

this strategy “makes interpretation of results easier” (p. 233), even though she 

had acknowledged earlier (Warner, 2013) that it affects no part of the analysis 

other than the intercept (b0 in Equation 1).
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we would find if we standardized all variables including Y to unit 
variance before performing the regression” (p. 217). The rationale 
behind the use of β is “…to eliminate the effects of noncomparable raw 
(original) units” (Cohen and Cohen, 1983, p. 84), and “…to compare 
the relative impact of each independent variable on the dependent 
variable” (Sirkin, 2006, p. 530).

Fox and Weisberg (2019) call this practice “dubious” and 
“misleading” (p. 185). Hayes (2005) had earlier noted some of the 
problems with β, saying “…some people prefer standardized 
coefficients because, it is claimed, they allow for comparisons of the 
relative importance of predictor variables in estimating the outcome, 
they are comparable across studies that differ in design and the 
measurement procedures used, and they can be used to compare the 
effect of one variable on the outcome across subsamples. But none of 
these claims are unconditionally true” (p. 337).

Darlington and Hayes (2017) suggest that people should not use 
the term “beta” at all, saying it “is used in so many ways by different 
people who write about regression that doing so just invites confusion” 
(p. 48).

What’s more, the apparently straightforward, easy computational 
procedure is complicated when we have interaction terms (Equation 1) 
or powers of X (Equation 2). Fox and Weisberg (2019) add, “…it is 
nonsense to standardize dummy regressors or other contrasts 
representing a factor, to standardize interaction regressors, or to 
individually standardize polynomial regressors or regression-spline 
regressors…” (p. 185). As will be seen, this is precisely what most 
software does.

Darlington (1990; see also Darlington and Hayes, 2017) notes 
several conceptual problems with β, while other authors focus on 
disagreements about how to calculate it in equations with interactions 
or polynomial terms. Considerations such as this have led some 
authorities to advise, “Ignore any output referring to standardized 
regression coefficients” (Tabachnick and Fidell, 2013, p. 159; see also 
Tabachnick and Fidell, 2001, 2007). Cohen et al. (2003) also say, “The 
‘standardized’ solution that accompanies regression analyses 
containing interactions should be ignored” (p. 283).

These problems have been known about for a very long time, but 
the field has been reluctant to abandon the measure. We will follow 
Darlington and Hayes (2017; see also Warner, 2013, 2020) in noting 
some advantages in using the semipartial correlation coefficient (sr) 
instead.

2.6 Objectives of the current study

The current research had three primary objectives. One was to 
examine the effects of mean centering on OLS regression analyses with 
continuous predictors. A second objective was to clarify the 
interpretation of first-order regression coefficients, in models that 
have interactions or polynomial terms. The third objective was to 
discuss the limitations of the standardized regression coefficient (β) as 
a measure of relationship strength.

Our overarching goals are pedagogical. We use small datasets, 
with limited information available about the samples; but we are not 
concerned with the robustness of any particular statistical inference, 
or its generalizability to new samples. Our pedagogical conclusions 
can be demonstrated with any existing (or new, randomly-generated) 
dataset a researcher happens to have on hand.

3 Demonstration 1

We examine Equation 1 in the context of a dataset, comparing 
uncentered with centered results. Even though we  agree with the 
standard cautions (e.g., Darlington, 1990; Venables, 1998), we assume 
for this demonstration that researchers would be interested not only 
in the possible interaction between X1 and X2, but in the separate 
main effects.

3.1 Method

All analyses were conducted in SPSS (IBM Corp, 2023), and 
confirmed in Jamovi (The Jamovi Project, 2024) and JASP (JASP 
Team, 2024). Analytic procedures for this demonstration, for these 
programs and for R (R Core Team, 2024) are available in the 
Supplementary materials (note that the files there are listed as tables, 
even though they contain analytic procedures).

For this demonstration, we used the IceCream dataset from the 
“sur” R package (Harel, 2020, GNU General Public License ≥ 2). This 
dataset consists of 30 cases in which the number of ice cream bars sold 
was recorded, along with that day’s temperature and relative humidity. 
In a first analysis, we predicted the number of ice cream bars sold, 
using as predictors the temperature in degrees Fahrenheit (X1), the 
relative humidity (X2), and their product (X1X2). We  then mean-
centered temperature and humidity, computed a new product, and 
repeated the analysis.

Finally, we re-did both analyses using a hierarchical procedure, 
which is required if one wants to assess the main effects of temperature 
and of humidity (e.g., Aiken and West, 1991; Bobko, 2001; Cohen and 
Cohen, 1983).

3.2 Results

Table 1 shows the zero-order correlations between interaction 
term and the individual predictors that were multiplied to create it, 
before and after centering. As can be  seen, mean centering 
accomplished what many researchers want it to: It dramatically 
weakened the correlations between the individual predictors and their 
product. 0.886 and 0.926 have become 0.310 and 0.559. The correlation 
between temperature and humidity is the same, whether they are 
centered or not.

The best-fitting regression equation using the original variables is 
shown in Equation 4:

 

( ) ( )
( )

= − + × + ×
+ − × ×

98.675 2.968 Temp 2.583 Humidity
0.027 Temp Humidity

Ŷ

 (4)

TABLE 1 Correlations among predictors before and after mean centering.

Variable Temp Humidity Temp × Humidity

Temp – 0.649 0.886

Humidity 0.649 – 0.926

Temp × Humidity 0.310 0.559 –

Correlations above the diagonal are for the original variables. Correlations below the 
diagonal are for the mean-centered variables.
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Equation 5 shows the result using the centered variables:

 

( ) ( )
( )

= + × + ×
+ − × ×
165.839 0.852 TempC 0.542 HumidityC

0.027 TempC HumidityC
Ŷ

 (5)

Centering temperature and humidity led to dramatic changes in 
b0, b1, and b2. The intercept (b0) is of little interest, but if one holds a 
mistaken belief about what b1 and b2 index (e.g., Warner, 2013, 2020; 
Iacobucci et al., 2016), they might erroneously conclude that centering 
has had a dramatic effect on the main effects. However, as emphasized 
above, “…care must be taken when interpreting (b1 and b2) so as to not 
misinterpret them as if they are ‘main effects’ in an ANOVA sense, or 
‘average’ effects, which they very much are not” (Darlington and 
Hayes, 2017, p. 386).

As expected, centering had no effect on the highest-order effect in 
the equation—the interaction. In both analyses, it was significant 
(p = 0.016). To visualize it, we  defined low and high values on 
temperature and humidity as one standard deviation below and above 
the mean, and used those values in the two equations.

For temperature, these values were 65.99 and 83.88 (original; 
−8.94 and 8.94 when centered). For humidity, these values were 67.17 
and 88.17 (original; −10.50 and 10.50 when centered). The results are 
shown in Figure  1 for the original analysis, and Figure  2 for the 
centered analysis.

As can be seen, the two figures are identical but for the values 
shown on the X-axis. Higher temperature is associated with more bars 
sold, and the effect is stronger when the humidity is lower.

Many researchers would consider this sufficient for characterizing 
the interaction, but some might be  interested in the statistical 
significance of the visualized slopes. Aiken and West (1991) showed 
that centering never affects the statistical tests on such slopes, so our 
results are not surprising: The L slope was 1.138 (SE = 0.153, 
t(26) = 7.419, p < 0.001) in both Figures 1, 2; the H slope was 0.566 
(SE = 0.167, t(26) = 3.391, p = 0.002) in both cases (see Demo1. R in 
the Supplementary Materials). Nothing was affected by centering.

It is worth noting that any desired conditional effect can be tested; 
it need not be a standard deviation above or below the mean, which 
we have used here. This provides yet another piece of evidence that b1 
and b2 are not main effects: If we choose zero as the test value for the 
slope, we obtain precisely the result that too often gets mistakenly 
interpreted as a main effect.

Mean centering changes nothing except the labeling of values. In 
the original data, scores of 0 literally meant 0 degrees Fahrenheit and 
0% relative humidity. In the centered data, 0 meant a temperature of 
74.93 degrees, and a relative humidity of 77.67%.

For temperature, literal zero is both possible and meaningful, 
although far from the minimum observed in the dataset. For relative 
humidity, literal zero may not even be  possible. However, such 
considerations are irrelevant to the regression solution.

Centering does not change what the interaction “looks like” or 
how we would describe it. Does it change any of the actual statistics? 
Tables 2, 3 shows the results in more detail, for the original analysis 
and then the centered analysis. In addition to the unstandardized and 
standardized regression coefficients, we include the standard error of 
b, the 95% confidence interval, and sr, the semipartial correlation 
coefficient. As we noted above, sr has been proposed as an alternative 
to β (e.g., Darlington, 1990; Darlington and Hayes, 2017). In addition, 
it has an intuitively appealing interpretation: sr2 yields the proportion 
of variance in the dependent variable uniquely attributable to a 
predictor (Warner, 2013, 2020).

We asserted above that the only effect of interest in these analyses 
is (probably) the interaction. For that effect, all that differs between 
the two analyses is the β (−3.185 vs. −0.207). We will have more to say 
about this in the General Discussion, but both values are wrong 
(Aiken and West, 1991; Cohen et al., 2003; Friedrich, 1982; Hayes, 
2005; Tabachnick and Fidell, 2001, 2007, 2013). We discuss how to 
obtain the correct value (−0.215) below (see also Demo1. R in the 
Supplementary materials).

Centering had more noticeable changes on the other lines in the 
tables, which is to be expected. A reminder of the proper interpretation 
is warranted here: the b1 and b2 slopes were dramatically reduced not 

FIGURE 1

Bars sold as a function of temperature and relative humidity 
(uncentered variables).

FIGURE 2

Bars sold as a function of temperature and relative humidity 
(centered variables).
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because the effects of X1 and X2 got any weaker, but because different 
conditional effects are being estimated with the centered vs. the 
original variables. For example, b1 is the estimated conditional effect 
of temperature when humidity equals 0. If that’s literally zero, the slope 
is 2.968, but if it’s centered 0—in other words, about 77.67%—then the 
slope is 0.852. Similarly, the slope of the estimated conditional effect 
of humidity is 2.583 when the temperature is literally 0, or 0.542 when 
it is about 74.93 degrees Fahrenheit.

As noted in the Introduction, centering ensured that each value 
represents a conditional effect at a meaningful value on the other 
variable, but it did not turn these into main effects (Cohen and Cohen, 
1983; Irwin and McClelland, 2001). We believe that the statistical 
significances of b1 and b2 in either table are of extremely limited 
interest in most cases (Darlington, 1990; Venables, 1998), and so 
specific as to render them irrelevant to most research questions. Each 
of them is a test of one specific slope, conditioned on a single score for 
the other predictor.

Paradoxically, because the centered conditional effects are closer 
to the actual main effects, the risk is heightened that they will 
be misinterpreted as such. If the actual main effects are of genuine 
interest, they need to be assessed in a different way.

3.2.1 Main effects
Despite the frequent cautions about interpreting main effects in the 

presence of an interaction, researchers do sometime remain interested in 
them. What is necessary in this case is a regression model that does not 
contain the interaction term (Cohen and Cohen, 1983; Bobko, 2001; 
Irwin and McClelland, 2001). Because of this, our default preference for 
analyzing this type of data would be the hierarchical analysis we present 
next. Step 1 of the analysis includes only temperature and humidity, 
allowing for assessment of their main effects. Step 2 includes temperature, 
humidity, and their product (see Equation 1), allowing for assessment of 
the interaction. The simultaneous models presented in Tables 2, 3 are in 
fact these “Step 2” models.

This was done for the original variables, and then repeated 
following mean centering. Table 4 shows the results of the hierarchical 
regression analysis with the original variables. Controlling for 
humidity, the slope for temperature was 0.878. Controlling for 
temperature, the slope for humidity was 0.397. These effects can 

properly be  thought of as main effects (or constant or additive or 
general effects, depending on the author). Any discussion of them 
would be discouraged by some experts, and must at least be qualified 
by the significant interaction we already knew about, assessed at Step 2 
of this analysis.

Table 5 shows the results of the same analysis using the centered 
predictors. Comparison of Tables 4, 5 show that exactly one value has 
changed: β for the interaction. We  saw both of these (incorrect) 
values above.

One of the major conclusions of the current study is now clear: 
For proper assessment of main effects and interactions in moderated 
regression, the decision to center makes quite literally no difference.

Visualization of the interaction would be  the same as above, 
because it always requires use of the full equation containing X1, X2, 
and their product (Bobko, 2001; Cohen and Cohen, 1983). Full 
equations are not always reported with hierarchical analyses, but 
we believe they should be, so that readers understand how the plots 
were made. There is no way to get to the correct, appropriate plots 
from the hierarchical analysis that assesses both the main effects and 
the interaction.

3.3 Discussion

Mean centering had no effect on the numeric value, statistical 
significance, nature, or verbal description of either main effect or the 
interaction. Likewise, although we  did not present them, mean 
centering had no effect on any indices or statistical tests associated 
with model fit.

Mean centering did affect the values and significance tests of the 
conditional effects represented by b1 and b2 in the full equation 
containing the interaction term. Centering also changed β for the 
interaction, but this should not be  taken as evidence that mean 
centering is necessary. As noted, both β values are wrong (Aiken and 
West, 1991; Cohen et  al., 2003; Friedrich, 1982; Hayes, 2005; 
Tabachnick and Fidell, 2001, 2007, 2013), and some authors 
discourage the use of βs altogether (Darlington, 1990; Darlington and 
Hayes, 2017). We  will have more to say about this in the 
General Discussion.

TABLE 2 Predictors of bars sold (original variables).

Variable b SE b β sr 95% CI t p

Constant −98.675 64.677 [−231.620, 34.269] −1.526 0.139

Temp (°F) 2.968 0.816 2.229 0.240 [1.290, 4.646] 3.635 0.001

Humidity (%) 2.583 0.851 2.278 0.201 [0.834, 4.333] 3.035 0.005

Temp x Humidity −0.027 0.011 −3.185 −0.171 [−0.049, −0.006] −2.586 0.016

Variance inflation factors for Temp, Humidity, and Temp × Humidity were 86.04, 128.88, and 346.93, respectively.

TABLE 3 Predictors of bars sold (centered variables).

Variable b SE b β sr 95% CI t p

Constant 165.839 0.992 [163.799, 167.878] 167.146 <0.001

Temp (°F) 0.852 0.116 0.640 0.485 [0.614, 1.091] 7.338 <0.001

Humidity (%) 0.542 0.113 0.478 0.316 [0.309, 0.776] 4.779 <0.001

Temp × Humidity −0.027 0.011 −0.207 −0.171 [−0.049, −0.006] −2.586 0.016

Variance inflation factors for Temp, Humidity, and Temp × Humidity were 1.74, 2.29, and 1.47, respectively.
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Mean centering is always appropriate, provided the analyst knows 
the correct interpretation of the conditional effects. The decision of 
whether or not to center variables rests completely on which 
description/visualization is preferred by the data analyst. Some might 
prefer Figure 2, in which a score of 0 indicates the mean temperature. 
Others might prefer Figure  1, in which the interaction is plotted 
against actual observed temperatures.

3.3.1 How is it that centering has so little effect?
Table 1 clearly shows reduced intercorrelations after centering, which 

supports most authors’ idea about the purpose of centering. There have 
been a number of convincing proofs and derivations showing how it can 
be that this does not affect the results (e.g., Echambadi and Hess, 2007). 
Dalal and Zicker (2012) summarize, “…because the relationship between 
an interaction term and the outcome is best indexed by a partial regression 
coefficient, and not a bivariate correlation, substantive conclusions do not 
change after centering…” (p. 344; italics added).

We remind readers of the distinction between essential and 
non-essential collinearity. We noted above that subtracting a constant 
from each value on a predictor cannot change the underlying 
structural relationship between that predictor and the rest of the set, 
and thus cannot affect essential collinearity. Pedhazur (1997) wrote 
that, “…centering X in the case of essential collinearity does not 
reduce it, though it may mask it…” (p. 306; see also Belsley, 1984). The 
supposed benefit of reduced collinearity from mean centering is 
illusory (Echambadi and Hess, 2007; Hayes et al., 2012).

Iacobucci et al. (2016) wished to substitute the terms “micro” and 
“macro” multicollinearity here, and argued that people who believe 
centering reduces collinearity and those who believe it does not are 
both correct. As noted above, though, their argument hinges on a 
mischaracterization of X1 and X2 (and b1 and b2) as having to do with 
main effects: They even refer to these as “main effect variables” and 
“main effect terms” (p.  1309), language we  have not previously 
encountered. Those are not main effects.

Re-examination of the conditional effects in Tables 2, 3 shows that 
centering does indeed produce values that are closer to the main 
effects shown in Table 4 or Table 5. However, they will still differ, by 
an amount that depends on the precise distributions of X1 and X2 

values (Irwin and McClelland, 2001). The centered temperature 
conditional effect is about 3% off from its correct main effect value, 
while the centered humidity conditional effect is 37% off from its 
correct value. In neither Table 2 nor Table 3 is the associated statistical 
test correct as a test of a main effect.

We now turn to a demonstration in which two predictors (X and 
X2) are correlated 0.995 with each other, and show that mean centering 
is still not necessary.

4 Demonstration 2

Data for this demonstration were collected during an exam given 
in an undergraduate statistics class. As each exam (N = 31) was turned 
in, the exam proctor wrote down how long that student had worked on 
it, rounded to the nearest minute.2 After the usual grading procedure, 
these times were matched up with the scores earned by each student.

The examination was a midterm exam covering roughly a fourth of 
the material covered in a required undergraduate statistics course. Nothing 
was recorded about this sample of participants other than the time the 
person spent on the exam and the resulting score, so no further 
demographic information is available. Based on long-running observations 
of this population, the average age was probably near 20 years. The sample 
was likely 75–80% women, and almost entirely psychology majors.

As in Demonstration 1, though, our emphasis is not on the 
statistical inferences made in this analysis or the extent to which they 
might generalize to other samples of students. We are concerned solely 
with the effects of centering the time variable.

The motivation for collecting completion times was the 
observation made over many years that while exams turned in at the 
very end of an exam period tended to have lower scores, so did those 
turned in very quickly. This suggests a parabolic relationship between 
time and score, which we can model with a quadratic term.

2 Because time is a continuous variable, it has to be rounded somewhere. 

We judged the nearest minute sufficient for our purposes.

TABLE 4 Hierarchical regression predicting bars sold (original variables).

Step Variable ΔR2 b SE b β sr 95% CI t p

Step 1 0.857 < 0.001

Temp 0.878 0.127 0.659 0.501 [0.617, 1.139] 6.894 < 0.001

Humidity 0.397 0.108 0.350 0.266 [0.174, 0.620] 3.659 0.001

Step 2 0.029 0.016

T × H −0.027 0.011 −3.185 −0.171 [−0.049, −0.006] −2.586 0.016

TABLE 5 Hierarchical regression predicting bars sold (centered variables).

Step Variable ΔR2 b SE b β sr 95% CI t p

Step 1 0.857 < 0.001

Temp 0.878 0.127 0.659 0.501 [0.617, 1.139] 6.894 < 0.001

Humidity 0.397 0.108 0.350 0.266 [0.174, 0.620] 3.659 0.001

Step 2 0.029 0.016

T x H −0.027 0.011 −0.207 −0.171 [−0.049, −0.006] −2.586 0.016
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When we regress score (Y) on time (X) and a quadratic term for time 
(X2), the resulting equation takes the form shown in Equation 6:

 = + + 2
0 1 2Ŷ b b X b X  (6)

We saw in Demonstration 1 that an X1X2 interaction term changes 
the interpretation of the coefficients for X1 and X2, making them 
conditional (“local”) effects. Similarly, the presence of a quadratic term 
in the equation above affects the meaning of b1. Without the quadratic 
term, its correct (and obvious) interpretation would be as an index of 
the (linear) relationship between X and Y. With the quadratic term in 
the equation, b1 represents the slope of the parabola at X = 0. As with 
the conditional effects in Demonstration 1, this coefficient and its 
associated statistical test might or might not even have a meaningful 
interpretation at all, depending on what X is and how it is scaled. The 
coefficient for the quadratic term, b2, represents the type and amount 
of curvature in the parabola. Positive values indicate a U-shaped 
parabola, and negative values indicate an upside-down U shape.

4.1 Method

All analyses were conducted in SPSS (IBM Corp, 2023), and 
confirmed in Jamovi (The Jamovi Project, 2024) and JASP (JASP 
Team, 2024). For this demonstration we  will only present our 
preferred hierarchical analysis (original and then centered). Data were 
analyzed hierarchically. Step  1 of the analysis included Minutes, 
allowing for assessment of the linear relationship between exam score 
and time. Step  2 included Minutes and Minutes2, allowing for 
assessment of the quadratic relationship. This was done for the original 
time variable, and then repeated following mean centering.

Analytic procedures for this demonstration, for these programs 
and for R (R Core Team, 2024) are available as Supplementary materials 
(note that the files there are listed as tables, even though they contain 
analytic procedures).

4.2 Results

The mean length of time students spent on the exam was 
53.61 min (SD = 12.08). The mean score on the exam was 65.45 
(SD = 18.41).

Just as interaction terms are often highly correlated with their 
individual components, a squared variable is often very highly 
correlated with the original version. For this dataset, the correlation 
between Minutes and Minutes2 was 0.995 before centering, and 0.510 
after centering.

Tables 6, 7 show the results of the hierarchical regression analysis 
with actual minutes and mean-centered minutes, respectively. The 
only value that differed was the β for the quadratic term, which has 
gone from −4.136 to −0.472. As in the case of the interaction analyses 
in Demonstration 1, both of these β values are wrong (Aiken and 
West, 1991; Cohen et  al., 2003; Friedrich, 1982; Hayes, 2005; 
Tabachnick and Fidell, 2001, 2007, 2013). We discuss how to obtain 
the correct value (−0.437) below (see also Demo2. R in the 
Supplementary materials).

4.2.1 Visualizing the quadratic relationship
The full equation containing both Minutes and Minutes2 

must be  used to visualize the quadratic effect (Bobko, 2001; 
Cohen and Cohen, 1983). The equation for the original time 
variable is shown in Equation 7:

 ( ) ( )= − + × + − × 276.530 5.727 Minuˆ tes 0.055 MinutesY
 

(7)

Notice that if we erroneously interpreted b1 as the linear effect of time, 
we would conclude that scores go up the longer students take on the 
exam. In analyses of this type, Cohen and Cohen (1983) note that “…b1 
in the quadratic equation is, at most, of academic interest; it is certainly 
not a test of whether there is a significant linear component in the 
regression” (p. 229; italics in the original). Step 1 of the correct hierarchical 
analysis showed us that the linear slope for time was −0.545, irrespective 
of whether we used the original or centered variable.

Equation 8 shows the result for the centered variables:

 ( ) ( )= + − × + − × 272.231 0.178 MinutesC 0.055 Minutˆ esCY
 

(8)

We defined the X-axis as a vector running from the minimum to the 
maximum observed value of Minutes. We then plotted the individual data 
points, and drew the parabola indicated by the Step 2 equation. The 
resulting plots are shown in Figure 3 (original time) and 4 (centered time).

As is evident, mean centering made no difference in the nature of 
the effect. In Figure 3, a score of 0 on Minutes (not shown) means that 
the student had worked on the exam for 0 min. In Figure 4, a score of 
0 Minutes (centered) means that the student had worked on the exam 
for 53.61 min. Mean centering is always appropriate, and the decision 
would be made depending on which visualization the analyst prefers.

4.3 Discussion

Mean centering affected nothing having to do with the linear 
“main” effect of time, or the nature of the quadratic relationship, or 

TABLE 6 Hierarchical regression predicting exam score (original variables).

Step Variable ΔR2 b SE b β sr 95% CI t p

Step 1 0.128 0.048

Minutes (linear) −0.545 0.264 −0.358 −0.358 [−1.085, −0.004] −2.062 0.048

Step 2 0.165 0.016

Minutes (quadratic) −0.055 0.022 −4.136 −0.406 [−0.099, −0.011] −2.557 0.016

Variance inflation figures for Minutes and Minutes2 were both 103.56.
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any of the p values or confidence intervals or indices of model fit. It 
did dramatically change β for the quadratic term, but both values were 
incorrect, once again highlighting one of the shortcomings of 
that measure.

Because centering changes the meaning of a score of 0, it changed 
the conditional effect of time (from 5.727 to −0.178). Neither of these 
represents the linear effect of time; they represent the conditional 
(“local”) effect of time, i.e., the slope of the parabola, either at the 
moment the student is handed the exam (0 = 0 min), or 53.61 min 
later (0 = the mean completion time). These values are needed for 
visualizing the quadratic effect, but as above, we maintain that they are 
almost certainly not of theoretical interest (Darlington, 1990; 
Venables, 1998).

The conclusion here is the same as in Demonstration 1: Mean 
centering is not required. Some analysts might find Figure 4 preferable, 
in which a time of 0 indicates 53.61 min. We find Figure 3 preferable, 
in which a time of 0 indicates 0 min.

5 General discussion

As we  have noted in both demonstrations, mean centering is 
always an appropriate choice for a data analyst to make, provided they 
know the correct interpretation of the effects being estimated. The 
current study demonstrates very clearly, though, that centering is not 
necessary in OLS regression analyses. It might aid interpretation of 
specific conditional effects—and it might not. It has no effect on the 
results that are likely to be of most interest to researchers, such as main 
effects, interactions, and quadratic effects, if the analyses are 
done correctly.

We are not the first the make these claims or to provide 
demonstrations. Darlington and Hayes (2017) noted, “Thus, you will 
often find people describing how they mean-centered X1 and X2 prior 
to producing the product ‘to avoid the problems produced by 
collinearity.’ This myth has been widely debunked…” (p.  435). 
Echambadi and Hess (2007) provided convincing demonstrations of 
many of the things we  have shown, and concluded, “Whether 
we estimate the uncentered moderated regression equation or the 
mean-centered equation, all the point estimates, standard errors and 
t statistics of the main effects, all simple effects, and interaction effects 
are identical and will be computed with the same accuracy by modern 
double-precision statistical packages. This is also true of the overall 
measures of accuracy such as R2 and adjusted-R2” (p. 444; see also 
Dalal and Zicker, 2012).

Friedman and Wall (2005) wrote that because of improvements in 
computational precision, “…multicollinearity does not affect standard 
errors of regression coefficients in ways previously taught” (p. 127). 
Indeed, “computational accuracy” was dropped from the list of reasons 
for centering in Cohen et al. (2003), leaving issues related to interpretation 

and to sampling stability on the list.3 Echambadi and Hess (2007) would 
argue that interpretation is the only item that properly belongs on any 
such list of considerations: “…mean-centering does not change the 
computational precision of parameters, the sampling accuracy of the 
main effects, simple effects, interaction effects, or the overall model R2” 
(p. 443; see also Dalal and Zicker, 2012).

How could so many people be wrong about this, including the 
authors of statistical textbooks? One key to the apparent dispute seems 
to be failing to distinguish essential and non-essential multicollinearity. 
Correlations that have only to do with scaling are reduced, which can 
lead researchers to conclude that they have (partially) addressed what 
they believe to be a serious problem, when in fact they have not (Hayes 
et al., 2012; see also Belsley, 1984; Pedhazur, 1997).

Cohen et al. (2003), while arguing in favor of centering, implicitly 
acknowledge that it has no effect on essential collinearity. They wrote, 
“Centering all predictors has interpretational advantages and 
eliminates confusing nonessential multicollinearity” (p.  267). 
We  think “eliminates” might overstate the case, and we  wonder 
whether it is useful to potentially mask essential collinearity. We are 
reminded of a statement by Anderson (1963), who said, “…one may 
well wonder exactly what it means to ask what the data would be like 
if they were not what they are” (p. 170).

3 Paradoxically, their recommendation in favor of centering is even stronger 

than that given previously by subgroups of the same authors, when 

computational accuracy was still on the list.

TABLE 7 Hierarchical regression predicting exam score (centered variables).

Step Variable ΔR2 b SE b β sr 95% CI t p

Step 1 0.128 0.048

Minutes (linear) −0.545 0.264 −0.358 −0.358 [−1.085, −0.004] −2.062 0.048

Step 2 0.165 0.016

Minutes (quadratic) −0.055 0.022 −0.472 −0.406 [−0.099, −0.011] −2.557 0.016

Variance inflation figures for Minutes and Minutes2 were both 1.35.

FIGURE 3

Exam score as a function of time (uncentered).
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Another key to the ongoing confusion is a misunderstanding of 
what is represented by first-order coefficients in an analysis with an 
interaction or a polynomial term. With uncentered data, those 
coefficients might refer to impossible values, and so it should be crystal 
clear that they cannot represent main effects. However, subtracting a 
constant from each score does not magically convert them to main 
effects, even if the constant happens to be the mean. In fact, a number 
of authors have pointed out that values other than the mean can 
be subtracted, if they are interesting or meaningful (Darlington, 1990; 
Cohen and Cohen, 1983). For example, if a researcher (for some 
reason) had an interest in the effect of temperature when relative 
humidity is 85%, he or she could center humidity at 85 rather than its 
mean (77.67). The resulting analysis would show (and test) the 
conditional effect of temperature when centered humidity is 0 
(meaning that actual humidity is 85). Nobody seems to believe that 
would be  a main effect; so why would it be  if the researcher had 
centered at the mean instead of at 85?

Aiken and West (1991) showed that centering never affects the 
statistical tests on conditional effects, and we provided yet another 
demonstration of it in connection with Figures 1, 2. In the present 
hypothetical example, in which a researcher for some reason has a 
very specific interest in the conditional effect of temperature when 
humidity is 85%, the results are identical whether one tests that 
conditional effect by centering humidity at 85 and then specifying a 
value of 0; or centering it at its mean and then specifying a value of 
7.33; or not centering it at all and then specifying a value of 85.4

5.1 Reasons to consider abandoning β

Despite its widespread use as a standardized measure of 
relationship strength, we  argued above that the standardized 

4 In all three analyses, b1 = 0.653, SE = 0.145, t(26) = 4.506, p < 0.001 (see 

Demo1.R in the Supplementary materials).

regression coefficient (β) suffers from several shortcomings. We have 
seen in the current study that centering did affect some of the βs 
produced by SPSS, Jamovi, and JASP. However, those βs are known to 
be incorrect for analyses that contain interaction terms or powers of 
X (Aiken and West, 1991; Cohen et al., 2003; Hayes, 2005; Tabachnick 
and Fidell, 2001, 2007, 2013). We question the use of a measure that 
software cannot be trusted to reliably compute.

Cohen et al. (2003) explain that the values are wrong because 
software packages conduct operations in the wrong order. For 
interaction analyses, X1, X2, and their product are turned into 
z-scores (for quadratic analyses, X and X2 are turned into z-scores), 
and then the analysis is conducted on the z-scores of the DV. As 
Bobko (2001) noted, the software has no way of knowing that there 
is anything special about a product or power. The proper order, if 
a standardized solution is desired, is to convert the individual 
predictor variables (and the DV) to z-scores, and then recompute 
the product or quadratic term. The unstandardized coefficients 
from this analysis will be the desired βs.5

We have included R code in the Supplementary materials to illustrate 
how to obtain the correct (and the incorrect) values. However, Sirkin 
(2006) questioned the utility of standardized regression solutions, saying, 
“…we normally never use the betas in a prediction equation. We would 
rarely want to make predictions in standard deviation units” (p. 530). 
Many others have questioned the wisdom of standardizing dummy 
variables and factors (e.g., Darlington, 1990; Darlington and Hayes, 2017; 
Fox and Weisberg, 2019).

5.2 The semipartial correlation coefficient: 
an alternative to β?

If our reason for using β is to compare relationship strengths, the 
semipartiartial correlation coefficient (sr) might be preferable. Recall 
that β is intended to convey the predicted amount by which a DV 
changes, in standard deviation units, as a result of a one standard 
deviation increase in a predictor, with the value of all other predictors 
remaining the same. As Darlington and Hayes (2017; see also 
Darlington, 1990) point out, depending on the correlational structure 
of a dataset, it can be exceedingly rare (or even impossible) for such 
cases to exist. The result is that β overstates the importance of 
predictors, except in the special case of complete independence 
among predictors (including any interaction terms, polynomial 
terms, and anything else in the model).

The factor by which β exaggerates a predictor’s importance is the 
square root of the variance inflation factor (VIF).6 Because of this, sr 
can be thought of as a “corrected” β. sr has the same interpretation as 
β except that it uses the conditional distribution of X (Darlington and 
Hayes, 2017). In other words, it takes into account the correlational 
structure of the dataset.

A comparison of sr vs. β in all tables of the current study shows 
that even after mean centering, β exaggerates each predictor’s 

5 Any βs offered by the software are still likely to be incorrect for product 

terms and polynomials, and should again be ignored.

6 VIF is the reciprocal of tolerance, a measure of independence of each 

predictor from all other predictors in a set.

FIGURE 4

Exam score as a function of time (centered).
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importance, except in the Step 1 model of Demonstration 2, where 
there was literally only one predictor (Minutes) in the model.

There is at least one other advantage of sr: Squaring it yields 
ΔR2, the proportion of variance in the DV that is uniquely 
explainable by a given predictor. This is an intuitively pleasing way 
to conceptualize effect size, and it always works for sr. It never 
works for β, except in the special case of complete independence 
among all predictors. For these and other reasons, Darlington 
(1990; Darlington and Hayes, 2017) advocate moving away from 
reporting β at all. We  echo this, along with some other 
recommendations we hope are useful.

5.3 Recommendations for regression 
models with interactions or polynomials

 1 If main effects are of interest, the analysis must 
be done hierarchically.

 2 When plotting a visual representation of an interaction or 
polynomial regression, it is essential to show the full equation 
from the final step of the hierarchical analysis, with an 
indication that this is the equation appropriate for plotting.

 3 We very strongly recommend reminding readers that the 
lower-order effects in this equation are not main effects. This is 
no less true with centered data.

 4 We recommend not reporting β values at all. For most 
purposes, we believe that the semipartial correlation coefficient 
(sr) is more meaningful, both in its original form and, when 
squared, as a measure of the variance uniquely accounted for. 
If editors or reviewers insist on βs, we  recommend also 
including the sr values, along with some explanatory text about 
the many shortcomings of β.

6 Limitations

Our demonstrations used OLS regression models with continuous 
predictors, but we believe our results should apply to linear models in 
general (see Hayes et al., 2012; Irwin and McClelland, 2001).7 The issue of 
continuous vs. discrete predictors would not seem to be  crucial: 
Mathematically, the results would necessarily be identical if temperature 
and relative humidity (or minutes) were discrete variables, rather than 
continuous ones that just happened to be rounded to the nearest integer. 
Nevertheless, a limitation of the current work is that our conclusions can 
technically only be applied to OLS models with continuous predictors. 
Additional work is required to locate the boundaries beyond which our 
conclusions do not hold.
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