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This study presents a comprehensive, data-driven investigation into students’ 
seating preferences within academic library environments, aiming to inform user-
centered spatial design. Drawing on over 1.3 million ten-minute passive infrared 
(PIR) sensor observations collected throughout 2023 at the UCL Bartlett Library, 
we modeled seat-level occupancy using 24 spatial, environmental, and temporal 
features through advanced machine learning algorithms. Among the models 
tested, Categorical Boosting (CatBoost) demonstrated the highest predictive 
performance, achieving a classification accuracy of 72.5%, with interpretability 
enhanced through SHAP (Shapley Additive exPlanations) analysis. Findings reveal 
that seating behavior is shaped not by individual factors but by two dominant 
dimensions: (1) environmental controllability, including access to personal 
lighting and fresh air, and (2) distraction management, characterized by quiet 
surroundings, visual privacy, and low-stimulation workspace finishes. In contrast, 
features commonly presumed to be influential, such as desk width, fixed computer 
availability, or daylight alone, had minimal impact on seat choice. Despite extensive 
modeling and optimization, prediction accuracy plateaued at approximately 72%, 
reflecting the complexity and variability of human behavior in shared learning 
environments. By integrating long-term behavioral data with explainable machine 
learning, this study advances the evidence base for academic library design and 
offers actionable insights. These findings support design strategies that prioritize 
individual environmental control, as well as acoustic and visual privacy, offering 
actionable, evidence-based guidance for creating academic library environments 
that better support student comfort, focus, and engagement.
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1 Introduction

Academic libraries play a pivotal role in supporting students’ learning, research, and well-
being by offering spaces for intensive study and educational engagement. Among the many 
design aspects that shape their effectiveness, the configuration and quality of seating in 
academic libraries play a critical role in influencing students’ comfort, productivity, and well-
being, especially for those who spend extended periods within these environments. Therefore, 
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understanding what drives students’ seating preferences is essential to 
optimizing these spaces for their health, well-being, and academic 
achievements (Peng et al., 2022).

Seating design goes beyond mere furniture selection; it plays a 
direct role in shaping the learning experience by influencing students’ 
concentration, social interaction, and sustained cognitive effort. 
Ergonomically designed seating, tailored to users’ needs, helps 
mitigate discomfort associated with prolonged study sessions, 
supports healthy posture, and reduces physical strain, thereby enabling 
longer and more effective study periods (Applegate, 2009).

Numerous studies have highlighted that ergonomically designed 
seating reduces physical strain, enhances concentration, and supports 
cognitive engagement, whereas poor seating arrangements can hinder 
students’ ability to sustain attention and engage in long-duration study 
sessions (Uche and Okata Fanny, 2016).

The consequences of prolonged exposure to uncomfortable or 
poorly designed environments extend beyond discomfort, often 
leading to musculoskeletal problems such as back pain and poor 
posture (Bai et al., 2024) and even contributing to elevated stress levels 
(Merga, 2021). Furthermore, the broader physical environment, 
including spatial openness, proximity to resources, and the overall 
atmosphere, can influence students’ collaborative behaviors, 
communication styles, and engagement in academic tasks (Zheng 
et al., 2024). Seating preferences in libraries are not merely the result 
of students’ practical or habitual choices; instead, they reflect deeper 
connections to students’ physical comfort, psychological well-being, 
and social engagement (Applegate, 2009). Optimizing library seating 
is not only a matter of improving academic outcomes but also creating 
inclusive, comfortable, and health-supportive environments that 
respond to diverse users’ needs and promote their health and 
well-being.

Placing seating areas near essential resources, such as bookshelves, 
computers, and charging stations, enhances the overall usability of 
library spaces by allowing students to access necessary materials and 
technology easily (Khoo et al., 2016). In addition to functionality, the 
comfort and atmosphere of the seating environment play a significant 
role in reducing stress and promoting a positive study experience, 
which can increase students’ focus and willingness to engage in 
academic tasks (Bryant et al., 2009).

Offering a range of acoustical settings also enables students to 
choose study areas that match their individual concentration needs, 
thereby supporting more effective and sustained learning (Gordon-
Hickey and Lemley, 2012). Libraries that provide various seating 
options are better positioned to support different study approaches, 
from quiet individual work to collaborative group activities. This 
adaptability helps accommodate students’ varying preferences and 
encourages peer interaction, which is essential for both academic 
success and collaborative learning (Montgomery and Miller, 2011). 
Comfortable and welcoming areas also promote social engagement, 
allowing students to connect with peers, form study groups, and build 
supportive academic networks (Shill and Tonner, 2004).

Providing seating arrangements that address both functional 
requirements and social preferences is essential for creating library 
environments that are inclusive, adaptable, and conducive to academic 
success. Responding to the diverse needs of students not only 
enhances comfort and reduces stress but also supports improved 
learning outcomes and fosters a stronger sense of community. 
Furthermore, understanding how students interact with the physical 

environment offers valuable insights into improving user satisfaction 
(Paone and Bacher, 2018) and optimizing spatial use and energy 
performance within the library (Fabi et  al., 2012). Accordingly, 
designing seating environments that respond to student needs and 
expectations constitutes a strategic decision that enhances user 
experience and supports institutional objectives related to academic 
performance, space utilization, and operational efficiency 
(Bennett, 2011).

Comfort within a library is shaped by environmental and spatial 
factors, including lighting conditions, ambient noise, furniture design, 
spatial layout, and access to peers and resources (Uşma and Gürsoy, 
2022). In academic library settings, seating preferences are shaped by 
a complex interaction between environmental conditions and 
individual user characteristics. Among environmental variables, the 
most consistently influential factors include natural lighting, access to 
outdoor views, ambient noise levels, spatial positioning relative to 
circulation zones, and furniture ergonomics (Izmir Tunahan and 
Altamirano, 2022e). The lighting environment and visual access to the 
outdoors, in particular, have been shown to affect users’ seat selections 
significantly. Multiple studies have documented users’ preference for 
seats adjacent to windows that provide both daylight and external 
views, as these features support mood enhancement and sustained 
cognitive performance (Keskin et  al., 2017; Izmir Tunahan et al., 
2022b; Gou et al., 2018).

Acoustic conditions likewise play a critical role. Users typically 
avoid noisier areas and favor quieter zones to minimize distraction 
and promote concentration (Manna and De Sarkar, 2024). The spatial 
proximity of seating to high-traffic locations, such as doors, corridors, 
or common pathways, can introduce both auditory and visual 
disturbances, making spatial positioning an important consideration 
in the selection process (Fan et  al., 2022). Additionally, furniture 
characteristics, particularly their alignment with anthropometric 
standards, directly influence comfort and perceived usability (Osquei-
Zadeh et al., 2012). Complementary design features such as seating 
layout, desk dividers, and task-specific lighting have also been 
associated with greater user engagement and are frequently mentioned 
as determinants in seat selection (Blair, 2023).

While these environmental variables are well-documented in the 
literature, users tend not to evaluate them equally; instead, individuals 
selectively attend to a limited set of salient cues during the decision-
making process (Keskin, 2019). Such selective attention complicates 
efforts to establish direct correlations between specific environmental 
stimuli and seating behavior, as users are simultaneously exposed to 
multiple spatial and sensory inputs (Izmir Tunahan, 2022c). 
Consequently, the mechanisms underlying the interaction between 
occupants and their physical surroundings remain only partially 
understood, highlighting the need for further empirical investigation 
(Boyce, 2014).

Individual-level factors likewise play a critical role in seating 
behavior. Expectations regarding indoor environmental quality and 
behavioral tendencies vary across users and are often influenced by 
personality traits (Nel and Fourie, 2016) and the nature of the task at 
hand (Delzendeh et al., 2017). Prior experience and spatial familiarity 
also contribute to seat selection; frequent users may repeatedly choose 
the exact location based on favorable past experiences, whereas 
newcomers rely more heavily on perceivable cues such as lighting or 
sound conditions (Keskin, 2019). Psychological variables, including 
arousal, motivation, and anticipated performance outcomes, further 
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shape cognitive strategies and spatial decisions (Boyce, 2014). Finally, 
seating availability imposes a practical constraint: early arrivals have 
greater flexibility and are thus more likely to secure their preferred 
location (Izmir Tunahan, 2022c).

Various methodological approaches have been employed to 
investigate individuals’ seating behaviors in library settings. These 
methods vary regarding realism, experimental control, and data 
richness, with studies broadly divided between laboratory-based 
experiments and real-world observations. Laboratory studies allow for 
controlled manipulation of the environmental variables but often lack 
ecological validity, as participants’ awareness of observation can alter 
their natural behavior. This limitation, coupled with the artificiality of 
laboratory contexts, restricts the generalizability of findings to real-
life environments.

In contrast, field-based studies conducted in naturalistic settings 
offer the advantage of unobtrusive observation, minimizing behavioral 
bias so long as users are unaware of being monitored. While these 
approaches enhance ecological validity, they often provide less control 
over confounding variables (Keskin, 2019). In real-world settings, as 
illustrated in Figure  1, investigations of seating behavior typically 
adopt either revealed preference methods, which infer choice based 
on observed actions, or stated preference methods, which rely on self-
reported perceptions, motivations, and intentions gathered through 
interviews or surveys (Izmir Tunahan, 2022c).

Revealed preference approaches offer robust data on actual 
behavioral patterns but often lack insight into the subjective reasoning 
behind seat selection. Conversely, stated preference methods provide 
valuable information on users’ preferences and expectations, yet are 
constrained by small sample sizes and limited generalizability. 
Accordingly, many scholars advocate for the combined use of both 
approaches to develop a more holistic understanding of seating 
behavior (Izmir Tunahan, 2022c).

Among revealed preference techniques, three commonly 
employed sub-methods are snapshot recordings, walk-through 
observations, and occupancy monitoring. Snapshot recordings 

capture periodic headcounts, such as every 30 min, to quantitatively 
track occupancy across different spatial zones. Walk-through 
observations provide richer qualitative data, such as noting 
movement paths and behavioral indicators like posture, activity type, 
or social grouping. However, due to their subjective nature and 
limited scale, such observations typically require multiple rounds to 
achieve generalizability. Finally, occupancy monitoring systems, 
often enabled by passive infrared (PIR) or motion sensors, facilitate 
large-scale, continuous, and non-intrusive tracking of seat usage. 
These systems offer high-resolution insights into spatial behavior at 
scale while preserving the ecological validity of the 
observed environment.

Occupancy monitoring refers to the systematic observation of 
the usage status of individual seats at specified time intervals (Izmir 
Tunahan, 2022c). This technique serves two primary purposes: 
quantifying spatial utilization for layout optimization (Min and Lee, 
2020) and developing predictive models of occupant behavior using 
various sensor technologies (Liang et  al., 2016). Occupancy 
monitoring plays a critical role in identifying the patterns that shape 
user behavior over time and space, particularly in studies examining 
human movement and spatial decision-making within built 
environments. Two main approaches are typically employed: manual 
headcounts and sensor-based systems. While commonly used, 
manual observation is labor-intensive and time-consuming, 
requiring considerable manual effort to collect seat-level data at 
consistent intervals. In contrast, sensor-based methods utilize 
advanced technologies such as PIR sensors, ultrasonic sensors, sound 
detectors, light-switch monitors, carbon dioxide sensors, and image-
based tracking systems to detect and log seat occupancy continuously 
and autonomously (Pang et al., 2018).

A growing body of literature highlights the importance of 
designing flexible, student-centered library spaces that support 
concentration, encourage social interaction, and contribute to 
psychological comfort (Applegate, 2009; Khoo et al., 2016; Bryant 
et  al., 2009; Gordon-Hickey and Lemley, 2012; Montgomery and 

FIGURE 1

Overview of methodological approaches to assessing seating preferences in libraries (Izmir Tunahan, 2022c).
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Miller, 2011; Shill and Tonner, 2004). However, creating environments 
requires more than general design principles; it demands a detailed 
understanding of the factors influencing students’ seating decisions. 
Despite the increasing focus on user-centered library design, several 
critical gaps remain in the current literature. First, while numerous 
studies explore general environmental aspects, such as lighting, noise, 
or thermal comfort, only a few examine the specific characteristics of 
seating itself and how they relate to user satisfaction and preference 
(Izmir Tunahan, 2022c; Keskin et  al., 2017; Izmir Tunahan et al., 
2022b; Gou et al., 2018). Second, much of the existing research relies 
heavily on self-reported data, which can be subjective and susceptible 
to bias. Third, most investigations capture only short-term behaviors, 
lacking long-term, context-rich insights into how students actually use 
library seating over time.

As a result, there is a pressing need for objective, data-driven 
methodologies that can track behavioral patterns across extended 
periods and uncover subtle interactions between users and their 
environments (Izmir Tunahan, 2022c; Manna and De Sarkar, 2024; 
Fan et al., 2022; Osquei-Zadeh et al., 2012; Blair, 2023). Despite their 
capacity to generate high-resolution, long-term datasets, sensor-based 
approaches remain underutilized in seating preference research. This 
is primarily due to the high cost and logistical complexity of installing 
dedicated sensors on every seat or cluster of seats under observation 
(Izmir Tunahan, 2022c). As a result, many studies either rely on 
manual counting or limit sensor deployment to a select subset of 
seating areas, thereby constraining both the spatial and temporal 
resolution of the analysis (Chamilothori et al., 2016).

This study addresses these gaps by employing a novel, 
computational approach to investigate seating preferences in a real-
world academic setting. Using passive infrared (PIR) motion sensors 
installed beneath each desk in the UCL Bartlett Library, a year-long 
dataset of occupancy records was collected and linked with detailed 
environmental and spatial variables, such as daylight exposure, access 
to fresh air, noise level, proximity to circulation routes, and desk 
configuration. Unlike earlier research relying on short-term 
observation windows or self-reported preferences, this study offers a 
comprehensive, objective dataset at the seat level.

Advanced machine learning (ML) models were applied to analyze 
this extensive dataset (over 1.3 million 10-min observations) and 
uncover the key factors influencing seat selection. These included both 
traditional classifiers, such as decision trees and logistic regression, 
and ensemble learning models, such as random forest, gradient 
boosting, Extreme Gradient Boosting (XGBoost), Light Gradient 
Boosting Machine (LightGBM), and Categorical Boosting (CatBoost). 
To further enhance model performance and interpretability, a mutual 
information-based feature selection process was implemented, 
followed by SHAP (Shapley Additive exPlanations) analysis to 
quantify the contribution of each feature to the model’s predictions.

Despite the emergence of PIR and real-time analytics in library 
management, few studies to date have explicitly identified which 
spatial and environmental factors most strongly influence seat 
selection, nor have they integrated state-of-the-art explainable 
machine learning techniques to generate design-oriented guidance. 
Addressing this gap, the present study couples a year-long dataset 
comprising over 1.35 million PIR sensor records with gradient 
boosting models and SHAP-based interpretability tools. This study 
offers a robust, multidimensional perspective on how students interact 
with library spaces by combining long-term behavioral monitoring 

with interpretable artificial intelligence techniques. The findings 
deepen our understanding of spatial behavior in academic settings 
and provide actionable insights for designing and managing library 
environments. In particular, the results reveal the most influential 
factors, such as lighting quality and spatial exposure, and those 
commonly assumed to be essential but shown to have limited impact, 
challenging prevailing assumptions in library design. This research has 
the potential to inform evidence-based strategies that enhance 
comfort, reduce stress, and support student well-being and academic 
performance through thoughtful and responsive spatial planning.

The previous studies highlighted that while numerous 
environmental, spatial, and individual factors are acknowledged to 
influence students’ seating choices in academic libraries, their precise 
interplay and relative importance, particularly when assessed through 
objective, long-term behavioral data, remain less clearly defined. 
Existing research often relies on short-term observations or subjective 
self-reports, and there is a noted underutilization of sensor-based data 
and advanced computational methods to uncover nuanced, context-
rich insights into actual seat usage over extended periods. 
Furthermore, while machine learning offers potential for modeling 
such complex behaviors, the translation of these models into 
actionable, design-oriented guidance through explainable AI (XAI) 
techniques, particularly methods like SHAP analysis, is an emerging 
area in this domain.

This study, therefore, employs a novel, computational approach, 
leveraging a comprehensive year-long PIR sensor dataset from the 
UCL Bartlett Library and advanced machine learning techniques. This 
approach addresses the identified limitations by providing objective, 
granular data on seat-level occupancy and the contextual variables. 
Given this methodological framework and the identified knowledge 
gaps, several critical lines of inquiry emerge. Firstly, to build a 
foundational understanding from this rich dataset, it is essential to 
determine which specific attributes of the library environment 
demonstrably drive long-term seating patterns, a need underscored 
by the existing literature seeking to move beyond general principles to 
a detailed understanding of influencing factors. Secondly, with the 
application of sophisticated predictive models as outlined in this 
study’s methodology, it becomes imperative to evaluate their efficacy 
in capturing the complexities of seat selection behavior and to 
benchmark their performance. Finally, to ensure this research yields 
practical value for library design and management, it is crucial to 
move beyond predictive accuracy to uncover the underlying drivers 
of these predictions interpretably, specifically through SHAP analysis 
employed in this study, thereby facilitating evidence-based 
design decisions.

To guide this investigation, the following research questions 
are posed:

RQ1: Which spatial and environmental attributes most strongly 
influence long-term seat occupancy in an academic library?

RQ2: How accurately can advanced machine learning models 
predict seat utilization, and how do their performances compare 
to baseline classification algorithms?

RQ3: What design-relevant insights can be  derived from 
explainable AI techniques (e.g., SHAP) to inform more user-
responsive library seating layouts?
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2 Materials and methods

2.1 Field site

This empirical study was conducted at the UCL Bartlett Library, 
located on the ground floor of the Central House in London, UK. The 
library comprises three distinct study rooms, each characterized by 
unique spatial and environmental features that make the site 
particularly well-suited for analyzing seat selection behavior. Room 1 
includes two north-facing windows and features a combination of 
eight shared desks and four individual study cubicles. Room 2 is 
comparatively more open and better illuminated, with multiple 
windows facing north and east. It contains twelve shared desks and 
eleven individual desks. Room 3 is a large open-plan area lit primarily 
by two overhead skylights, accommodating 32 shared desks arranged 
in a single, flexible layout (Figure 2).

In addition to room-level differences, individual desks vary in 
surface color, divider height, chair type, and the presence or absence 
of reading lamps, among other design attributes (Izmir Tunahan and 
Altamirano, 2022d). These spatial and material variations provided a 
robust context for examining how environmental and furniture-
related characteristics influence students’ seating preferences in a 
naturalistic academic setting.

2.2 Data collection

PIR sensors underneath each desk collected 10-min occupancy 
data for each desk in the Bartlett Library from January 2023 to January 
2024, which was then retrieved from the OccupEye Cloud. Previously, 
the authors benefited from this database for various purposes: to 
understand the impact of daylight availability on library users’ seating 
preferences (Izmir Tunahan and Altamirano, 2022e) and to explore 
the changes in the use of study spaces before and after the pandemic 
(Izmir Tunahan and Altamirano, 2022d). Those studies, however, 
analyzed the average occupancy rates of desks and rooms on a daily, 
weekly, monthly, and annual basis rather than evaluating each desk 
individually, such as desks and rooms with more and less demand, 
desk preference order, and length of stay at the same desk. In those 
studies, a desk was considered occupied if a seat was occupied for at 
least 90% of a defined time period (Figure 3).

Since assessing each seat’s occupancy status in 10 min against 
changing daylight circumstances throughout the year was impossible, 
this enormous dataset could not be evaluated using SPSS or other 
statistical software. In contrast, this study utilizes machine learning 
algorithms to assess the occupancy condition of each seat in 
ten-minute intervals over 2023 against various desk parameters, as 
illustrated in Table 1.

The authors’ previous research on the link between daylight 
availability and library users’ seating behavior demonstrated that 
daylight availability strongly motivated students to choose specific 
seats with abundant daylight (Izmir Tunahan et al., 2022b; Izmir 
Tunahan and Altamirano, 2022e; Izmir Tunahan and Altamirano, 
2022a). This study also aimed to validate their prior work with long-
term occupancy data and previously used surveys, interviews, daylight 
boundary line drawings, and average desk occupancy data acquired 
from sensors. For this aim, the occupancy status of each desk in the 
library was recorded at 10-min intervals over a year and compared to 

the amount of daylight available on that desk at that time. The 
occupancy data was obtained from motion sensors in 10-min 
intervals, like in other parts of the study. Daylight availability at a 
specific location and time was determined through a combination of 
daylight simulations conducted at the Bartlett Library, as referenced 
in (Izmir Tunahan, 2022c), and external illuminance data collected at 
10-min intervals in London from Public Health England for 2023. The 
instant internal illuminance for each seat was calculated using the 
external illuminance at the given time intervals and the daylight factor 
obtained from the simulations, where the daylight factor is defined as 
the ratio of indoor horizontal illuminance to outdoor 
daylight illuminance.

2.3 Dataset description

The dataset used in this study was derived from the UCL Bartlett 
Library, encompassing detailed seat-level occupancy data for 67 
individual desks. Occupancy was recorded at 10-min intervals 
between January and December 2023, with each record indicating 
whether a given seat was occupied (“Yes”) or unoccupied (“No”). Data 
collection was conducted automatically during operational hours, 
from 9:00 a.m. to 7:50 p.m. daily, resulting in a total of 1,347,654 
individual records. In addition to the binary occupancy status, the 
dataset includes 24 contextual and spatial attributes detailed in Table 1, 
capturing a wide range of environmental, temporal, and design-related 
factors. The dataset is approximately balanced, consisting of 741,977 
“No” entries and 605,677 “Yes” entries. Importantly, the dataset is 
complete, with no missing values across recorded attributes.

To support temporal analysis, the original “Time” attribute was 
converted into a categorical variable comprising four distinct 
periods: morning (before 10:00 a.m.), noon (10:00 a.m. to 
2:00 p.m.), afternoon (2:00 p.m. to 6:00 p.m.), and evening (after 
6:00 p.m.). Season and Academic Calendar Status were additional 
features derived from the “Date” attribute. The Season variable 
classified each record into one of four meteorological categories: 
Spring (March–May), Summer (June–August), Autumn 
(September–November), or Winter (December–February). The 
Academic Calendar Status variable indicated whether each entry 
occurred during term time, out-of-term periods, or designated 
holiday closures, including bank holidays and reading weeks, based 
on the official UCL academic calendar. The original “Date” attribute 
was subsequently excluded from model training and analysis.

The complete list of features used in the analysis is presented in 
Table 1, along with corresponding definitions and value types. The 
Visual Openness Score was rated on a scale from 0 to 8, where lower 
values indicate greater enclosure (e.g., corner desks or those 
surrounded by dividers), and higher values represent more open, 
exposed locations (e.g., centrally located desks or skylit zones). 
Scores were derived through a combination of on-site assessments 
and spatial simulation metrics. The Visual Exposure Index 
quantifies the number of other users who can potentially view a 
desk’s screen based on line-of-sight proximity. Scores range from 0 
(fully private) to 12 (maximum visibility) and were calculated 
through systematic visibility assessments across the library floor 
plan. Additionally, several variables include a “Not applicable” 
category to represent cases where the feature does not logically 
apply to a specific desk, such as Desk Divider Color without a 
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divider or Corner Position for centrally located desks. These values 
were retained to preserve the integrity of categorical representations 
during model development.

2.4 Applied machine learning methods for 
seat occupancy prediction

This section outlines the machine learning algorithms utilized in 
the experimental studies. The entire implementation was carried out 
using Python in Google Colab. Two widely used traditional models, 
Decision Tree (DT) and Logistic Regression (LR), were first applied. A 
Decision Tree is a non-parametric supervised learning algorithm that 
splits the dataset into subsets based on feature values, forming a tree-
like model of decisions (Breiman et al., 1984). It recursively partitions 
the feature space into regions associated with specific target outcomes, 
making it both intuitive and interpretable for classification tasks (Azam 
et al., 2023). Logistic Regression, on the other hand, is a linear classifier 
that predicts the probability of class membership using a logistic 
function (Hosmer et al., 2013; Zheng et al., 2024). It is computationally 
efficient and often serves as a strong baseline, especially when the 
relationship between features and the target is approximately linear.

To enhance predictive performance beyond what individual base 
models can achieve, this study employed five advanced ensemble 
learning methods: Random Forest (RF), Gradient Boosting Machine 
(GBM), Extreme Gradient Boosting (XGB), Light Gradient.

Boosting Machine (LGBM), and Categorical Boosting (CatBoost). 
Ensemble learning is a machine learning paradigm that combines the 
outputs of multiple models, often called “weak learners,” to produce a 
more accurate and robust prediction than any single model alone.

Random Forest enhances model robustness by aggregating the 
predictions of multiple decision trees trained on bootstrapped samples 
and random feature subsets, reducing the risk of overfitting (Breiman, 
2001; Sun et al., 2024). GBM, a foundational ensemble method, builds 

models its predecessors (Friedman, 2001). XGBoost improves upon the 
traditional GBM approach by incorporating regularization techniques 
and supporting parallel computation, which makes it both accurate and 
scalable (Chen et al., 2016; Ma et al., 2021). LightGBM further optimizes 
training efficiency using histogram-based feature binning and a leaf-wise 
tree growth strategy, enabling it to effectively handle large-scale datasets 
with high dimensionality (Machado et al., 2019; Li et al., 2023). CatBoost 
is a gradient boosting framework particularly designed to handle 
categorical features without the need for extensive preprocessing 
(Prokhorenkova et al., 2018). Using techniques such as ordered boosting, 
CatBoost mitigates overfitting and provides reliable performance with 
minimal tuning. Its ability to natively process categorical variables and 
deliver high accuracy makes it exceptionally advantageous in real-world 
tabular data scenarios (Guo et al., 2023; Geeitha et al., 2024). Collectively, 
these models provide a well-rounded toolkit for modeling seat preference 
behavior, offering a balance between interpretability from simpler 
models and predictive strength from advanced ensemble techniques.

The models DT, LR, GBM, and RF were implemented using the 
scikit-learn (sklearn) library, while XGB, LGBM, and CatBoost were 
developed using their respective libraries: xgboost, lightgbm, and 
catboost. Model evaluation was conducted using 5-fold cross-
validation, a robust validation strategy that partitions the dataset into 
five equal subsets. In this approach, each subset is used once as the test 
set while the remaining four subsets serve as the training data, 
ensuring that the model is assessed across multiple data splits to 
improve reliability and reduce variance in performance estimation.

3 Data analysis and results

This section presents the analytical findings based on over 1.3 
million seat-level observations collected throughout 2023 at the UCL 
Bartlett Library. As seen in Figure 4, both linear (Pearson correlation) 
and nonlinear (Mutual Information) feature evaluation techniques 

FIGURE 2

The floor plan of the UCL Bartlett Library [taken from Izmir Tunahan et al., 2022b]. Arrows show the viewpoints of accompanying photos.
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were applied to identify the factors shaping student seating 
preferences, prior to training machine learning (ML) models. Seven 
classifiers were developed, optimized, and validated using 5-fold 
cross-validation. The best-performing model, CatBoost, was further 
interpreted using SHAP (Shapley Additive exPlanations) to provide 
transparent, model-agnostic insights into feature importance. The 
results are structured into six sequential stages: exploratory correlation 
analysis, MI-based feature selection, model implementation and 
tuning, performance evaluation, model comparison, and final 
interpretation via explainable AI.

3.1 Dataset overview

Figures  5, 6 establish the following empirical context for the 
inferential analysis. It depicts the distribution of the 1.3 million 10-min 
passive-infrared (PIR) observations across all categorical variables and 
shows the proportion of observations in which each seat was recorded 
as occupied (“Yes”) or vacant (“No”). Temporal and spatial patterns 
emerge clearly in the data. The majority of observations were logged 
during term time (53%), followed by out-of-term periods (38%) and 
holiday periods (9%). Seat use was relatively balanced across Spring, 
Summer, Autumn, and Winter, although Spring exhibited the highest 
instantaneous occupancy (52%). The library was busiest in the 
Morning and at Noon; these two periods together yielded more than 
70% of all “Yes” records, whereas the Evening period contributed only 
about 11%. Simulated daylight levels were predominantly low, with 
illuminance values under 500 lux comprising nearly two-thirds of the 
dataset. Around 70% of seats lacked an outdoor view, and 80% were 
not positioned directly in front of a wall. Approximately 25% were 
located at a corner, and visual openness and exposure metrics were 
centered on the mid-range, reflecting a balanced spatial composition. 
Only 30% of records indicated the presence of a reading lamp, and 
35% showed a contrast between desk and divider finish.

Furniture and proximity attributes are also detailed. Seat locations 
were evenly distributed across entrance-distance and circulation-route 
bands, though nearly half fell on the innermost circulation loop. Fixed 
computers were available at only 4.6% of seats, suggesting that seats 
offered access to operable windows, and those with individual 

fresh-air control displayed visibly higher raw occupancy rates. Desk 
color was predominantly white (65%), and wide desks outnumbered 
narrow desks nearly tenfold.

Approximately one in four seats (26%) were positioned 
in locations potentially affected by thermal discomfort due to their 
proximity to windows, while the presence of ambient noise was evenly 
distributed across the dataset. Desk dividers were absent in roughly 
half the cases; when present, the most common form was a 
surrounding long panel. Visual contrast between desk and divider was 
absent in two-thirds of instances; dark textures, often thought to 
enhance privacy, were the least frequent and least occupied.

Conditional occupancy rates, also shown, reveal several influential 
predictors. Seats with reading lamps were occupied 57% of the time, 
compared to 40% for those without. The contrast between the desk 
and the divider was also underutilized.

3.2 RQ1: spatial and environmental 
predictors of seat occupancy

3.2.1 Exploratory linear associations
As an initial step, the relationships between features were 

examined using Pearson correlation coefficients, which measure 
the strength and direction of linear relationships between pairs of 
variables (Lee Rodgers and Wander, 1988). The values range from 
−1 to 1, where values closer to ±1 indicate a stronger linear 
relationship, and values near 0 suggest little to no linear  
correlation.

The Pearson correlation coefficient, r, is calculated using 
Equation 1, in which ix  and iy  are individual data points, whereas x ̅ 
and y ̅ are the mean values of the n observations of the features X and 
Y, respectively.
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The correlations among the features based on Pearson correlation 
coefficients are visualized in the heatmap presented in Figure  7. 
Darker blue indicates a stronger correlation, whereas light blue or 
white values show little or no correlation. Given that the primary focus 
of this study is the seat preference attribute, special attention was paid 
to its pairwise correlations with other features. While none of the 
features showed a strong linear relationship (i.e., no correlation 
coefficient exceeded 0.5  in magnitude), several features displayed 
moderate positive or negative associations with seat preference as 
follows; “Reading lamp,” “color of the desk,” “thermal proximity to 
windows,” and “color of the desk divider” are the leading ones that 
have slight positive correlations with seat preference. Availability of a 
reading lamp is the most positively correlated factor that students 
slightly prefer seats with better lighting. Desk color may have an 
aesthetic comfort influence. The positive correlation in “thermal 
proximity to windows” seems counterintuitive, but it might suggest 
that colder seats are sometimes preferred, possibly confounded by 
window views.

The color of the desk divider may subtly influence preference, 
potentially through visual comfort. On the other hand, “the contrast 

FIGURE 3

Heatmap of desk occupancy patterns throughout the study period 
(January–December 2023).
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between the desk and the desk divider,” “the desk divider,” “noise,” and 
“located at the corner” have the most influence in terms of negative 
correlation. High contrast may be visually disruptive or uncomfortable. 
The desk divider may reduce openness or perceived comfort. As 
expected, noisier areas are less preferred. Seats in corners may feel 
isolated or constrained.

“The attributes ‘Term Holiday Status’, ‘Computer’, ‘Width of the 
Desk’, and ‘Daylight’ show negligible correlation with seat preference, 
suggesting they do not substantially impact seat selection behavior. In 

summary, no feature shows a strong correlation (≥ ± 0.5) with seat 
preference, which indicates that seat preference is likely influenced by 
a combination of many weak factors, rather than one dominant factor. 
Nonlinear models or feature interactions may capture more 
complex patterns.

3.2.2 Mutual-information ranking
Pearson correlation captures only linear relationships. Because 

there is no obvious linear relationship between the features and the 

TABLE 1 Input features, descriptions, and values for seat occupancy prediction models.

Attribute name Explanation Values

Date Date on which the data was collected {Year, Month, Day}

Time slot Time of data collection (10-min intervals) {Hour: Minute}

Daylight availability

Estimated daylight exposure at the desk, measured in lux, 

based on daylight factor calculations and external illuminance 

data

Integer value (relative range; higher indicates more 

daylight)

Desk divider type Type and position of the desk divider

“Yes, in front of, short,” “Yes, in front of, long,” “Yes, 

surrounding, long,” “Yes, beside, short,” “No desk 

divider”

Sharing capacity Number of users assigned per desk {0, 1, 2}

Outdoor view quality Level of visibility to outdoor or sky elements from the desk
“Partially outdoor view,” “Full outdoor view,” “Sky view,” 

“Building view,” “No outdoor view”

Reading lamp availability Availability of a reading lamp at the desk “Yes,” “No”

Access to fresh air Accessibility to manually openable windows to get fresh air “Yes,” “No”

Computer availability Availability of a built-in computer on the desk “Yes,” “No”

Desk width Physical width category of the desk “Narrow,” “Wide”

Divider color Surface color of the desk “White,” “Wood”

Desk divider color Color or texture of the attached desk divider “Dark color texture,” “Wood,” “Not applicable”

Desk-divider contrast The degree of visual contrast between the desk and its divider “Yes,” “No,” “Not applicable”

Quiet zone Classification of the room as a silent or quiet area “Yes,” “No”

Thermal exposure from window proximity Exposure to thermal discomfort due to proximity to windows “Yes,” “No”

Corner position Placement of the desk in a corner of the line “Yes,” “No,” “Not applicable”

Desk those faces, Wall Orientation of the desk directly toward a wall “Yes,” “No”

Circulation exposure level
Spatial and visual relationship of the desk to nearby circulation 

paths

“Seats that face away from a corridor (and thus 

movement flow) directly (1),”

“Seats that have direct, straight-ahead visual contact 

with the main corridor (2),”

“Seats that represent immediate side-by-side directness 

(3),”

“Seats that have a distanced side-by-side directness with 

corridors (4)”

Proximity to entrance Relative distance from the desk to the nearest room entrance “Very close,” “Moderate,” “Far,” “Very far”

Visual openness score Perceived spatial openness at the desk
An integer between 0 and 8 representing a value from 

“very narrow” to “very good”

Visual exposure index
The estimated number of users who can view the screen from 

nearby positions
Integer (0–12); higher values indicate greater visibility

Room type Functional category of the room where the desk is located “Small,” “Main,” “Hot desk space,” “Skylight”

Season Seasonal period during which the data was collected “Autumn,” “Winter,” “Spring,” “Summer”

Term status Academic calendar phase at the time of collection “Term time,” “Out-of-term time,” “Holiday”

Observed seat use Occupancy status of the seat at the recorded time “Yes,” “No”
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seat preference, selecting the most informative ones that significantly 
affect the target feature is essential before applying machine learning 
methods. For this purpose, a nonlinear method, namely Mutual 
Information (MI), was employed in this study. Unlike correlation 
(which measures linear relationships), MI can capture any kind of 
dependency; linear or nonlinear, monotonic or not, using a model-
independent filter method that selects features based on their intrinsic 
properties, independent of any machine learning model (Vergara and 
Estévez, 2014). It explains how knowing a feature’s value reduces 
uncertainty about the target variable. Because it is model-independent, 
the process is fast without needing to train machine learning models 
to evaluate features.

MI is applied step by step as follows: (1) the joint probability 
distribution of the feature and the target is estimated, (2) MI is 
calculated using Equation 2 for each feature concerning the target, 
where ( ),p x y  denotes their joint probability, and ( )p x  and ( )p y  are 
the marginal probabilities of the feature X and target Y, respectively. 
(3) The features are ordered according to their MI scores, and (4) the 
top-k features, those with the highest MI scores, are selected as the 
most informative k features.

 
( ) ( ) ( ) ( ) ( )( )( )

∈ ∈
= ∑ ∑, , log , /
x X y Y

MI X Y p x y p x y p x p y
 (2)

The machine learning methods were first integrated with a feature 
selection process using mutual information. Based on the feature 
subset that yielded the highest classification accuracy, a subsequent 
step of hyperparameter tuning was carried out to enhance model 
performance further. Through analysis utilizing both linear (Pearson 
correlation) and non-linear (Mutual Information) feature evaluation, 
it was shown that no single environmental or spatial attribute strongly 

predicts seat choice; instead, behavior is driven by a combination of 
modest effects. Mutual information interpretation reveals that two 
main thematic bundles dominate students’ preferences:

3.2.2.1 Environmental-controllability bundle
These features collectively empower users with a degree of agency 

over their immediate study environment. A personal lamp allows students 
to fine-tune the lighting at their workspace according to their preferences 
and visual needs. This direct adjustment supports comfort during 
prolonged reading or computer work, especially under varying ambient 
light conditions. Operable windows allow users to introduce fresh air into 
their immediate vicinity, offering real-time adjustments to air quality and, 
to some extent, temperature. An operable window can also influence 
noise levels, as students may choose to open or close windows depending 
on outside activity. Edge-zone temperature refers to seats located at a 
space’s perimeter (edge-zones), which often experience different thermal 
conditions than the room’s core. Students in these areas may have more 
options to relocate, adjust window blinds, or take advantage of user-
controlled features (such as radiator valves or nearby openings), thus 
indirectly enhancing their ability to regulate local comfort.

This bundle aligns with adaptive comfort theory, which holds 
that people experience greater satisfaction and well-being in 
indoor environments where they can control core comfort 
parameters such as lighting, air quality, and temperature. Rather 
than being passive recipients of uniform building conditions, users 
value and benefit from the ability to shape their own microclimate 
actively, improving physical comfort, psychological well-being, and 
perceived autonomy.

3.2.2.2 Distraction-management bundle
These features collectively protect users from involuntary sensory 

input, creating a calmer and more focused study environment. Low 

FIGURE 4

Methodological framework of the study.
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background speech refers to seats in quieter library zones, away from 
areas with high levels of conversation or noise. This minimises 
cognitive load by reducing auditory distractions, supporting sustained 
concentration and mental performance. Set-back from main circulation 
routes describes desks distanced from busy aisles, corridors, or main 
walkways with frequent movement. By limiting exposure to foot traffic 
and unpredictable peripheral motion, these locations help reduce both 
acoustic and visual interruptions. Low-contrast desk finishes use 
visually subtle desk surfaces and partitions that avoid strong color 
contrasts or patterns. Such finishes create a visually calm workspace, 
helping to minimize visual “noise” and distractions in the user’s 
immediate field of view.

This bundle aligns with cognitive load theory and 
psychophysiological research, which emphasize that minimizing 
involuntary sensory disturbances, whether auditory or visual, is 
essential for supporting deep focus and working memory. Rather than 
being distracted by environmental “noise,” students can concentrate 
more fully, leading to improved learning outcomes and a more 
pleasant study experience.

These bundles consistently outweighed other factors and 
interacted to shape seat selection. While exact information 
contributions may vary, the consistent emergence of these bundles in 
MI ranking analysis points to their central role in governing students’ 
choices. This supports adaptive comfort and cognitive load theories, 
underscoring the importance of both control and calm for sustained, 
high-quality study. Reporting these as ‘dominant’ or ‘most influential’ 
bundles is therefore justified, even without precise percentages for 
each variable.

3.3 RQ2: machine learning performance in 
predicting seat utilization

3.3.1 Model implementation and optimization
The experimental results were obtained by training models on 

both the complete feature set and the selected features. All machine 
learning models were optimized by tuning their hyperparameters 
individually for each fold during 5-fold cross-validation, ensuring 

FIGURE 5

Distribution of dataset records across categories of key temporal, environmental, and spatial attributes.
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fair and robust evaluation. For the DT model, two key 
hyperparameters were tuned: min_samples_split: the minimum 
number of samples required to split an internal node, which 
controls how deep the tree can grow and helps prevent overfitting, 
and min_samples_leaf: the minimum number of samples needed to 
be  present in a leaf node, which affects how fine-grained the 
terminal decisions can be. The search space for min_samples_split 
ranged from 2 to 20, increasing in steps of 2, while min_samples_
leaf was varied from 1 to 10. The Gini impurity metric was used to 
evaluate the quality of splits during tree construction, guiding the 
model in selecting the most informative features at each node.

For the LR model, several key hyperparameters were tuned to 
optimize performance. The penalty parameter, which determines 
the type of regularization applied to prevent overfitting, was 
explored using the options: “l1” (Lasso), “l2” (Ridge), “elasticnet” (a 
combination of L1 and L2), and “None” (no regularization). The C 
parameter, which controls the inverse of regularization strength, 
was searched over the values [0.01, 0.1, 1, 10]. Smaller values of C 
indicate stronger regularization, while larger values allow the model 

to fit the training data more closely. The solver parameter, which 
specifies the optimization algorithm used during model training, 
was tuned using the options: “liblinear,” “lbfgs,” and “saga,” each 
suited for different combinations of penalties and dataset 
characteristics. When the penalty was set to “elasticnet,” an 
additional parameter, l1_ratio, was introduced to determine the 
balance between L1 and L2 regularization. It was tuned using the 
values [0.25, 0.5, 0.75], where 0 represents pure L2 and 1 represents 
pure L1 regularization.

The learning rate (η) and the number of estimators (n_
estimators) are critical hyperparameters that significantly influence 
the performance of gradient boosting models such as XGB, GBM, 
and LGBM. The learning rate controls the contribution of each 
individual tree to the final model. A lower learning rate leads to 
slower but more precise learning, requiring more trees to converge, 
while a larger learning rate speeds up training but may risk 
overshooting or overfitting. The number of estimators refers to the 
total number of boosting rounds or trees used to build the ensemble. 
More estimators can capture complex patterns, but may increase 

FIGURE 6

Observed seat occupancy proportions for categories of various environmental and spatial attributes.
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training time and overfitting if not regularized. In this study, the 
optimal learning rate was searched from the list as [0.01, 0.025, 
0.05, 0.075, 0.1, 0.15, 0.2]. The number of estimators was tuned 
within the range 50 to 500 for XGB and LGBM, and 50 to 250 for 
GBM, increasing in steps of 50.

Another ensemble learning method, RF, was implemented by 
tuning two important hyperparameters: max_depth and n_
estimators. The max_depth parameter defines the maximum depth 
of each decision tree in the forest, controlling how many splits each 
tree can make. A deeper tree can capture more complex patterns but 
may increase the risk of overfitting. The search range for max_depth 
included the values 5, 10, 15, 20, and None, where None allows the 
tree to grow without depth restriction until all leaves are pure or 
contain fewer than the minimum required samples. The n_
estimators parameter specifies the number of trees in the forest. 
Increasing this value generally improves performance up to a point, 
but also increases computational cost. It was tuned using values 
from 50 to 250, in increments of 50, to find the optimal balance 
between accuracy and efficiency.

The final boosting method, CatBoost, was evaluated by tuning 
two key hyperparameters: learning_rate and depth. The learning_
rate controls the step size at each iteration as the model updates 
its predictions. Lower values result in slower but more stable 
learning, potentially leading to better generalization. This 
parameter was optimized using the values [0.005, 0.01, 0.02, 0.03, 

0.05]. The depth parameter determines the maximum depth of the 
trees used in the boosting process. Deeper trees can model more 
complex relationships but may also increase the risk of overfitting. 
The depth was tuned using integer values from 6 to 12, enabling 
the model to balance complexity and performance across 
various configurations.

3.3.2 Performance evaluation
A set of standard performance metrics was employed to assess 

how effectively the applied machine learning models predicted 
students’ future seat preferences based on the criteria outlined in 
Table  1. Each metric is defined concerning the actual and 
predicted labels.

True Positive (TP) defines that the model correctly predicted “yes,” 
i.e., the student was predicted to occupy the seat, and actually did. True 
Negative (TN) expresses that the model correctly predicted “no,” i.e., the 
student was predicted not to occupy the seat, and indeed did not. False 
Positive (FP) points to an error case where the model incorrectly 
predicted “yes” that the student was predicted to occupy the seat, but did 
not. Another error case is False Negative (FN) in which the model 
incorrectly predicted “no,” i.e., the student was not to occupy the seat, 
but did.

The primary metric used here is classification accuracy, which 
quantifies the proportion of all correct predictions (both “yes” and 

FIGURE 7

Percentage of samples labeled as “yes” (seat occupied) and “no”(seat not occupied) for each distinct feature value.
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“no”) among all predictions by measuring the overall correctness of 
the model in predicting seat occupancy as given in Equation 3:

 ( ) ( )= + + + +/Accuracy TP TN TP FP TN FN  (3)

In addition to accuracy, the evaluation considered other important 
metrics to provide a more comprehensive assessment: recall, precision, 
F1-score, and Area Under the Curve (AUC). These metrics were 
computed for each model, and their weighted averages were reported 
to account for class imbalance.

The performance of each model was evaluated from multiple 
perspectives by analyzing these metrics collectively, ensuring a more 
robust and reliable comparison. Recall, also known as Sensitivity, is 
the proportion of correctly predicted occupied seats among all 
occupied seats. It gives the information that out of all students who 
took a seat, how many were correctly predicted as “yes” by using the 
formula in Equation 4:

 ( )= +/Recall TP TP FN  (4)

The proportion of correctly predicted occupied seats among all 
seats the model predicted would be occupied is given by the Precision 
metric. It specifies that out of all the seats the model predicted would 
be  occupied, how many actually were. The following equation 
(Equation 5) is applied in the background:

 ( )= +/Precision TP TP FP  (5)

The common inference between precision and recall can be made 
using the F1-score, which is their harmonic average, by balancing FP 
and FN. It summarizes the model’s performance for predicting seat 
occupation in a single score as given in Equation 6:

 

( )
( )

∗
− = ∗

+
1 2

Precision Recall
F Score

Precision Recall  
(6)

Area Under the Curve (AUC) evaluates the model’s ability to 
distinguish between classes based on the predicted probabilities by 
computing the area under the Receiver Operating Characteristic 
(ROC) curve. A higher AUC indicates better class separability 
between the “yes” and “no” labels. An AUC closer to 1 means the 
model effectively distinguishes between labels.

Initial experiments were conducted using the default parameter 
settings of the aforementioned classifiers, without applying any feature 
selection method. Regarding classification accuracy, the Logistic 
Regression (LR) model yielded the lowest performance at 59.31%, 
followed by the Decision Tree (DT) with an accuracy of 65.72%. 
Compared to ensemble learning methods, these relatively low results 
are expected, as ensemble classifiers such as Random Forest, Gradient 
Boosting, and their variants are designed to improve predictive 
performance by combining multiple weak learners. This aggregation 
process enables them to reduce variance and bias more effectively than 
individual models like LR or DT, thereby producing more robust and 
accurate predictions in complex tasks such as seat preference 

classification. The tree-based ensemble learning model Random 
Forest (RF) improved slightly over the standalone Decision Tree (DT), 
achieving a classification accuracy of 66.10% compared to DT’s 
65.72%. However, significantly better results were obtained using 
boosting-based ensemble methods, outperforming both RF and 
Logistic Regression (LR). Among these, CatBoost demonstrated the 
highest performance, reaching an accuracy of 72.26%, indicating its 
effectiveness in capturing complex, non-linear relationships within the 
data. The other boosting models also showed competitive 
performance, with XGBoost (XGB) achieving 72.06%, LightGBM 
(LGBM) achieving 71.71%, and Gradient Boosting Machine (GBM) 
reaching 70.21%. These results highlight the advantage of boosting 
techniques in modeling nuanced patterns for predicting seat 
preference, especially compared to traditional classifiers.

In the next step, Mutual Information (MI) was employed as a 
feature selection technique to identify the most representative features 
for predicting seat preference. The order of the features was found 
from the most informative one to the least as follows: Sharing, Width 
of the desk, Noise, Time, Access to fresh air, Room Type, Contrast 
between desk and desk divider, Desk divider, Term holiday status, 
Color of the desk, Located at corner, Reading lamp, Outdoor view, 
Season, Cold from windows, Color of the desk divider, Visual 
openness, Close to entrance, Visual exposure, Circulation route, 
Daylight, In front of a wall, Computer. The order indicates how much 
each feature reduces uncertainty about the target (seat preference: 
“yes”/"no).

It can be inferred that certain environmental and spatial factors 
play a more decisive role in student seat selection. For instance, 
whether a student is sharing a desk, the physical width of the desk and 
the ambient noise level around the seat emerged as critical factors 
influencing their preference. This aligns with practical expectations. 
For example, students may avoid seats in noisy or crowded areas when 
seeking a quiet study environment or choose wider desks for increased 
personal space and comfort. Students preparing for exams or working 
on individual assignments may prefer seats with more privacy and 
fewer distractions. In such cases, shared desks can be less desirable, as 
they may introduce unwanted noise, reduced personal space, 
or interruptions.

On the other hand, students engaged in group work or 
collaborative study may deliberately choose shared desks. This 
variability highlights why the “sharing” attribute is highly informative, 
and it directly reflects social and functional preferences, which are key 
determinants in seat selection behavior. Conversely, features such as 
the presence of a computer at the desk, whether the desk is positioned 
in front of a wall, and the amount of daylight in the area showed 
minimal predictive contribution. It suggests that either these factors 
have a genuinely limited influence on seat preference or that their 
effects are already implicitly captured by other, more informative 
variables, rendering them somewhat redundant.

Identifying and utilizing only the most impactful features is 
crucial, as it allows the classifier to achieve comparable or even 
improved accuracy with fewer inputs. This reduces computational cost 
and training time and also helps to minimize overfitting, making the 
model more generalizable to new data. Therefore, each model was 
evaluated using progressively larger feature sets, where features were 
added one at a time based on their ranking according to the MI scores. 
The feature subset that yielded the highest performance was then 
selected as the optimal configuration for that particular model. As a 
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result of the feature selection process, the number of selected features 
(out of 23 total) varied across models: 21 for Decision Tree (DT), 20 
for Random Forest (RF), 22 for LightGBM (LGBM), 19 for Logistic 
Regression (LR), 22 for Gradient Boosting Machine (GBM), 22 for 
XGBoost (XGB), and 23 for CatBoost. Among them, CatBoost 
required the full feature set to achieve its highest accuracy, while 
Logistic Regression performed best with the most reduced subset, 
using only 19 features. Subsequently, all models were fine-tuned using 
the hyperparameter ranges described in Section 4.3, and their optimal 
parameter values were determined based on classification accuracy.

Table  2 shows the 5-fold cross-validation results of each 
classifier in terms of the metrics, namely accuracy (ACC), precision 
(PRE), recall (REC), F1-score (F1), and area under the curve 
(AUC). CatBoost outperforms all other models across all five 
metrics. This indicates that CatBoost is the most effective model for 
predicting seat preference in this context, likely due to its strong 
handling of categorical features and ability to model complex, 
nonlinear relationships. LGBM and XGB show very similar 
performance, both substantially outperforming simpler models like 
DT, LR, and RF. Their high AUC values suggest strong 
discriminative ability between the “yes” and “no” seat preference 
classes. GBM and RF provide moderate performance with scores 
around 71.2–71.3% accuracy, slightly below boosting-based 
approaches XGB and CatBoost. Their performance is relatively 
balanced but lacks the fine-tuning capabilities of more advanced 
gradient boosting variants. DT performs surprisingly well as a 
baseline. With an accuracy of 71.65%, DT outperforms both RF and 
GBM, though it is slightly less robust in terms of generalization 
(lower AUC than CatBoost and XGB). It may still be helpful in 
scenarios where interpretability is prioritized. Logistic Regression 
(LR) performs the worst with the lowest accuracy (59.58%) and 
AUC (61.06%). It struggles to capture the complexity of the feature 
relationships. This result confirms that the problem is not linearly 
separable, reinforcing the value of tree-based and ensemble models.

Despite using strong ensemble models and tuning, performance 
seems to plateau around 72–73%. Here are possible reasons:

 • Human behavior is complex and inconsistent, especially with 
preferences like seat selection. Students may choose seats based 
on unobserved or unrecorded factors, such as Personal mood, 
temporary distractions (e.g., availability of friends), habits, or 
randomness. These introduce label noise that no model can 
fully capture.

 • Although 23 features are available, they may not fully reflect the 
real decision-making context. Features like desk color or room 
type may have limited predictive value, and higher-resolution 
behavioral or spatial data might be  needed. Possible missing 
features: Real-time seat availability, past seat history, peer 
influence, course schedules, or workload.

 • If features for “yes” and “no” preferences significantly overlap in 
value distributions, it is harder for any classifier to separate them 
cleanly. Even with good mutual information scores, features may 
still interact non-discriminatively.

 • Tree-based boosting models like CatBoost and LGBM are already 
very expressive. If performance does not improve further, the 
model has likely learned all it can from the available data. Adding 
model complexity (deep learning, ensembles of ensembles, etc.) 
may not help if the signal-to-noise ratio is low.

3.4 RQ3: design-relevant insights from 
explainable AI

Since CatBoost was identified as the best-performing model and 
achieved its optimal results using the entire feature set without any 
prior feature elimination, a follow-up experiment was conducted 
within the scope of Explainable Artificial Intelligence (XAI). 
Specifically, SHAP (SHapley Additive exPlanations) values were 
analyzed to interpret the model’s behavior by quantifying the individual 
impact of each feature on the prediction outcomes (Lundberg and Lee, 
2017). This approach enabled a deeper understanding of how and to 
what extent each input feature contributed to the model’s decisions.

Figure 8 displays the resulting summary plot. It is designed in a 
way that the features are ranked from top to bottom on the y-axis 
according to their importance. The x-axis indicates how much a feature 
pushes the prediction away from the average toward a specific 
outcome, where a positive SHAP value pushes the prediction up, and 
a negative SHAP value pushes the prediction down. Another key factor 
is the color, where red points to high values, whereas blue points to low 
values of the features. Each dot represents a SHAP value for one sample.

 • Top features (e.g., Time, Term holiday status, Season) have the 
most significant average impact on the model’s predictions.

 • For Time, the blue and red points (Noon/Afternoon) mostly 
appear on the right side with positive SHAP values, and the 
purple and pink points (Morning/Evening) mostly appear on the 
left with negative SHAP values. Students are predicted to be more 
likely to choose seats in the afternoon or at noon. It is possible 
when students have breaks, return to study, or stay after classes. 
Morning and evening may reflect lower activity due to early 
lecture schedules, late arrivals, or a tendency to avoid early 
study hours.

 • If Term holiday status is analyzed, SHAP values range both 
positive and negative, but blue dots (Holiday) mostly appear on 
the left side with negative SHAP values and pink dots (term time) 
cluster more on the right with positive SHAP values. This means 
that students are less likely to use seats during holidays, while the 
model is more likely to predict yes in the case of term time. It is 
reasonable that fewer students are on campus during official 
holidays, leading to lower seat preference. During the out-of-
term, behavior is more variable and neutral.

 • Season shows a moderate spread of SHAP values around zero. 
The blue dots (low values: Spring and Summer) are concentrated 
on the left side with negative SHAP values. The red dots (high 
values: Autumn and Winter) are more often on the right with 
positive SHAP values. The model is less likely to predict “yes” in 
Spring and Summer, whereas it is more likely to predict “yes” in 
Autumn and Winter.

 • If daylight is analyzed, red (high daylight values) is mainly 
associated with negative SHAP values. Blue (low daylight) values 
cluster around zero or slightly positive. It is inferred that more 
daylight (red) slightly reduces the model’s likelihood of predicting 
“yes.” Students may avoid well-lit seats (e.g., to prevent glare or 
distractions). Less daylight (blue) has a neutral or slightly positive 
impact, suggesting dimmer areas might be  more preferred, 
potentially for concentration or comfort.

 • The “Close to entrance” feature is interpreted as blue points (very 
close to the entrance) are primarily on the right side with positive 
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SHAP values, but red points (very far from the entrance) are 
primarily on the left side with negative SHAP values. Students 
prefer seats close to the entrance. Possibly for convenience, 
quicker access, or a sense of control over entering/exiting. 
Especially relevant for short visits, group work, or casual use. 
Seats far from the entrance are less preferred, potentially due to 
feeling isolated or being harder to reach or being less visible.

 • Circulation route span both sides of the axis, but blue points 
(Seats that face away from a corridor (and thus movement flow) 
directly) are primarily on the left (negative SHAP values) whereas 
red points (Seats that have a distanced side-by-side directness 
with corridors) are more scattered or lean slightly more positive. 
Seats that face away from a corridor are less preferred and 
decrease the likelihood of being chosen. Seats with direct, 
straight-ahead visual contact with the main corridor have a 
neutral to slightly negative impact. Seats representing immediate 
side-by-side directness have a neutral effect, with neither 
consistently positive nor negative. Seats with a distanced side-by-
side directness with corridors increase the chance of being 
chosen, so they are more preferred.

 • Taking Contrast between the desk and the desk divider into 
consideration, blue dots (No contrast) tend to be on the right side 
of the plot by having positive SHAP values, and red dots 
(Contrast exists) appear more on the left side by having negative 
SHAP values. Students are more likely to choose seats where the 
desk and divider visually blend (no contrast). Strong contrast 
may be  visually distracting, or feel more “separated” or 
institutional. A harmonious visual environment appears to 
support comfort and preference in seat selection.

 • For the feature “In front of a wall,” red points (seat is in front of a 
wall) mostly appear on the left, while blue points (not in front of 
a wall) are more toward the right. Students are less likely to prefer 
seats that face a wall. Facing a wall may feel enclosed, visually 
restricted, or even claustrophobic. It might reduce access to 
natural light, external views, or a sense of space. Seats not in front 
of a wall provide a more open environment, which many students 
find more comfortable or stimulating.

 • The blue points (not having reading lamp) in Reading lamp are 
on the left side, while the red points (having reading lamp) are on 
the right side, revealing that students strongly prefer seats with 
reading lamps, as indicated by consistently positive SHAP values 
for those cases. Providing better lighting enhances focus and is 
beneficial in low-light or cloudy conditions. Seats without 

reading lamps tend to be avoided, suggesting task lighting is a 
significant factor in seat selection behavior.

 • In the case of outdoor view, blue dots (no outdoor view) appear 
mostly on the right side, and red dots (building view) appear 
more on the left side. According to this, students are more likely 
to prefer seats with no outdoor view. This may be due to fewer 
distractions, no windows, no movement, and no visual 
interruptions. Building views seem to impact preference 
negatively, possibly because they offer little aesthetic or daylight 
benefit. They may feel boxed in or less psychologically open than 
a wall with no view at all. While a partially outdoor view 
moderately increases the chance of seat selection, sky view 
negatively affects the case. The complete outdoor view shows no 
strong positive or negative influence, suggesting neutrality.

 • Visual Openness in the library refers to the degree of visibility 
and exposure a student experiences while seated. Blue dots (low 
values: 0–1, i.e., very narrow to narrow) are on the right. This 
means that seats with low visual openness (narrow, confined 
spaces) tend to increase seat preference. Users may prefer such 
seats for privacy or reduced distractions. Red dots (high values: 
4–8, medium to maximum openness) are on the left (negative 
SHAP values). This indicates that seats with high visual openness 
(very open spaces) decrease seat preference. Users may avoid 
these due to feelings of exposure or lack of privacy.

 • The feature “Sharing” reflects whether a desk is shared and with 
how many people. Blue dots (no sharing) tend to be on the left, 
and red dots (shared with two people) tend to lean slightly to the 
right. A private, unshared desk decreases the preference for that 
seat (negative impact on the prediction). This could indicate that 
users prefer a more social or collaborative environment, even in 
a library. A seat shared with two other people slightly increases 
the preference for that seat by preferring a more socially engaging 
environment, such as study groups. Sharing with one person has 
a neutral effect on seat preference. It may not significantly 
influence user preference either way.

 • Visual exposure represents the number of students who can 
potentially see a user’s computer screen at a workspace. Low 
Values (0–2 Students, Blue Dots) in the summary plot are 
primarily on the right. This indicates that seats with low visual 
exposure (very few people can see the screen) increase seat 
preference. Users likely prefer such seats for privacy and 
concentration. Medium Values (3–6 Students, Purple Dots) are 
closer to zero, suggesting a neutral impact. High Values (7–12 
Students, Red Dots) are mostly on the left (negative SHAP 
values). This indicates that seats with high visual exposure 
(many people can see the screen) decrease seat preference. 
Users may avoid these seats to protect their privacy or 
minimize distractions.

 • For the feature “Located at corner,” blue dots are spread around 
zero, indicating that when the corner status is not applicable, it 
has a neutral impact on seat preference. Red dots are slightly 
shifted to the right (positive SHAP values). This suggests that 
corner seats tend to positively impact preference, making them 
more likely to be chosen by students. They offer a sense of privacy 
and reduced distractions, which many library users may prefer 
for focused study. Purple dots (located not at the corner) slightly 
lean to the left (negative SHAP values), indicating that not being 
in a corner slightly decreases seat preference.

TABLE 2 Results of the applied methods in terms of different 
performance measures (%).

Method ACC PRE REC F1 AUC

DT 71,65 71,86 71,65 71,71 78,95

LR 59,58 59,16 59,58 57,87 61,06

RF 71,19 71,34 71,19 71,23 78,33

GBM 71,31 71,34 71,31 71,32 78,43

XGB 72,27 72,45 72,27 72,32 79,75

LGBM 72,30 72,52 72,30 72,36 79,85

CatBoost 72,51 72,69 72,51 72,56 80,11
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 • Cold from windows refers to whether a desk is exposed to 
uncomfortable thermal conditions, particularly cold air near 
windows. Students appear indifferent to whether a desk is near 
a cold window. Possible explanations are as follows. 
Temperature variation near windows may not be  severe or 
consistently uncomfortable. Other factors (e.g., lighting, 
privacy, desk size) might outweigh thermal concerns. The 
model did not learn a strong association between this feature 
and seat preference.

 • SHAP values for the Color of the desk appear moderately close 
to zero. Blue points (White desks) tend to appear in the middle, 
giving a neutral effect, and red points (Wood desks) appear 
slightly more on the right. Students show a slight preference for 
wood-colored desks over white ones. Possible reasons are: 
Wood may be  perceived as more natural or cosy by giving 
warmth and comfort. White desks may reflect more light, 
which could be visually distracting in bright conditions. The 
overall effect is small, meaning desk color alone does not drive 
strong decisions.

 • Room Type has a neutral effect on seat preference. The SHAP 
values are clustered around zero. Blue to red points are evenly 
spread, with no particular value dominating. Students do not 
show a strong, consistent preference or aversion to any specific 
room type (small, main, hot desk space, skylight). This suggests 
that other physical or environmental features of a seat may 
be more influential in guiding their decisions.

 • There is no dominant color trend aligning with strong SHAP 
values for the Color of the desk divider. The visual material or 
color of the desk divider (wood/dark) appears to have little 
influence on students’ seating decisions. Aesthetic features like 
color may be  secondary to factors like light, comfort, 
or privacy.

 • A similar issue is observed for the Desk divider, where no strong 
directional effect is visible. While different divider types exist, the 
model does not strongly favor or disfavor any single configuration.

 • SHAP values for “Width of the desk” are clustered tightly around 
zero. There is no strong skew to the left or right. Both blue 
(narrow desks) and red (wide desks) points are distributed fairly 
symmetrically. It suggests that the width of the desk has a neutral 
or minimal influence on the model’s prediction.

3.5 Key findings

RQ1: Which spatial and environmental attributes most strongly 
influence long-term seat occupancy in an academic library?

The analysis revealed that students’ long-term seat occupancy is 
most strongly influenced by two interrelated bundles of factors: 
Environmental-controllability features, including the presence of a 
personal reading lamp, access to operable windows (fresh air), and 
seats located in edge zones with distinct thermal conditions, were 
consistently associated with higher seat occupancy. These attributes 
grant users greater agency over their immediate environment, 
supporting adaptive comfort and autonomy. Distraction-management 
features, such as low ambient noise, distance from main circulation 
routes, and minimal visual contrast between desk and divider, played 
a critical role, with students favoring locations that reduce auditory 
and visual distractions. Other positive predictors included proximity 
to entrances, corner seating (for privacy), and slight preferences for 
wood-toned desks. In contrast, factors like high visual exposure (many 
people can see the user’s screen), seats facing a wall, strong contrast 
between the desk and divider, and high noise levels were negatively 
associated with seat selection. Variables such as daylight availability, 
room type, computer presence, and desk width showed minimal 
influence on occupancy.

RQ2: How accurately can advanced machine learning models 
predict seat utilization, and how do their performances compare 
to baseline classification algorithms?

Advanced machine learning models, especially gradient boosting 
approaches such as CatBoost, XGBoost, and LightGBM, achieved 
substantial improvements in predictive performance compared to 
baseline models. CatBoost, the best-performing model, reached a 
classification accuracy of 72.51%, with comparable precision, recall, 
and F1-scores. These ensemble methods significantly outperformed 
simpler models such as logistic regression (59.58% accuracy) and 
standalone decision trees (71.65% accuracy). The results indicate that 
while advanced models can capture complex, nonlinear relationships 
in seat selection, the inherent unpredictability of human behavior and 
unmeasured contextual factors limit maximum achievable accuracy 
to around 72–73%.

RQ3: What design-relevant insights can be  derived from 
explainable AI techniques (e.g., SHAP) to inform more user-
responsive library seating layouts?

Explainable AI techniques, notably SHAP (Shapley Additive 
exPlanations), provided granular insight into the relative influence 

FIGURE 8

Impacts of the features on model output.
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of each spatial and environmental feature on seat selection 
predictions. The SHAP analysis confirmed the primacy of features 
that enable environmental control and reduce distraction: seats 
with adjustable lighting, access to fresh air, and positions away from 
busy corridors were consistently favored. Visual privacy (lower 
visual exposure), subtle desk/divider contrasts, and avoiding seats 
facing walls further emerged as design priorities. Importantly, 
SHAP interpretation also revealed that some commonly assumed 
drivers of preference, such as daylight availability or desk size, are 
less influential than previously thought. This highlights the need for 
library layouts emphasizing user agency (control over comfort 
conditions), sensory calm, and visual harmony over traditional 
“one-size-fits-all” solutions. Overall, explainable AI improved 
model transparency and translated predictive results into 
actionable, evidence-based design recommendations for 
academic libraries.

4 Discussion

4.1 Interpretation of results

The findings of this study confirm that no single environmental 
or spatial attribute dominates seat choice in academic libraries; 
instead, seat selection is shaped by the interplay of multiple modestly 
influential factors. The low Pearson correlation coefficients observed 
for all variables (|r| < 0.20) support prior behavioral research on the 
“small-effect world” of environmental preferences (Lee Rodgers and 
Wander, 1988). Only the presence of a personal reading lamp and 
access to an operable window showed any notable, though still 
modest, positive associations with seat preference, in line with 
evidence that occupant-controlled lighting and fresh-air access can 
enhance perceived comfort and concentration (Veitch and Newsham, 
2000; Brager and De Dear, 1998; Kim and de Dear, 2013).

Conversely, the most substantial negative influences were audible 
noise, adjacent to main circulation routes, and strong contrast between 
the desk and the divider. These reinforce extensive evidence that both 
acoustic and visual distractions hinder cognitive performance in 
shared environments (Hongisto, 2005; Haapakangas et  al., 2018; 
Gordon-Hickey and Lemley, 2012).

Deeper analysis using mutual information (MI) revealed that the 
most informative predictors group into two main conceptual bundles: 
environmental controllability (control over lighting, access to fresh air, 
and edge-zone thermal conditions) and distraction management 
(reducing exposure to unwanted noise or visual distractions). 
However, the boundaries between these bundles are not always rigid; 
for instance, operable windows can offer users fresh air and help 
mitigate distractions, such as stuffiness or unwanted odors. 
Recognizing such overlap highlights the importance of holistic spatial 
strategies that address multiple user needs simultaneously.

In contrast to common design assumptions, daylight availability 
was not a primary determinant of seat preference in this study. Both 
correlation and feature importance analyses indicated only a weak 
influence of daylight on seat selection. SHAP analysis suggested that 
higher daylight levels might be less preferred, possibly due to glare or 
distraction; however, our data did not support a detailed analysis of 
conditional or interaction effects. This aligns with research cautioning 
that daylight’s benefits are highly context-dependent, being greatest 

when glare and thermal discomfort are minimized (Boyce, 2014). 
From a practical standpoint, this suggests that while daylight can 
enhance spatial quality, its design should prioritize glare control and 
complement other comfort and distraction-mitigating features, rather 
than serve as the sole or primary focus in library planning.

Advanced machine learning, particularly CatBoost, confirmed 
that seat preference is best predicted by the non-linear combination 
of comfort-enhancing and distraction-reducing features, rather than 
by any single factor. SHAP value interpretation illustrated that seat 
preference is maximized when multiple positive features coincide, but 
is strongly diminished by the presence of unwanted noise, even if 
other features are favorable (Lundberg and Lee, 2017; Hongisto, 2005)
Despite advanced modeling, the plateau in predictive accuracy around 
72% is consistent with reviews describing a behavioral “noise floor” in 
occupant behavior research (Yan et al., 2015; Dutta and Roy, 2022), 
highlighting the inherently complex and context-dependent nature of 
human choice. Importantly, the patterns identified here may not apply 
uniformly to all users. For example, preferences could differ by 
academic discipline, study purpose (individual vs. group), or even 
time of day, as suggested by recent research on the diversity of library 
user needs (Applegate, 2009). While the current study’s dataset did not 
allow for detailed subgroup analysis, future work could profitably 
examine how demographic, academic, or psychological differences 
shape seat selection and environmental preferences.

Finally, temporal segmentation of the data showed that these 
behavioral patterns were robust across term weeks, examination 
periods, and academic breaks, echoing findings on the stability of 
occupant adaptation behaviors such as window opening, daylight seat 
choice, and thermostat adjustment (O’Brien and Gunay, 2014; Aries 
et al., 2015; Hong et al., 2017).

In summary, this study demonstrates that library seat selection 
arises from the joint effect of comfort-related and distraction-
mitigating features, with commonly assumed drivers such as daylight 
playing only a minor and context-dependent role. The evidence 
supports and extends adaptive comfort and cognitive load theories in 
the library context, emphasizing the need for holistic, evidence-based, 
and user-responsive design strategies. Future research should consider 
layering in dynamic social variables (e.g., group size, collaboration 
intent), physiological measures of stress or engagement, and explicit 
analysis of user subgroups to further unravel the nuanced drivers of 
spatial behavior in learning environments.

4.2 Implications for library design

The findings of this study offer actionable guidance for academic 
library design and management, emphasizing the value of user-
responsive and evidence-based strategies over generic, one-size-fits-all 
approaches. Results consistently show that students’ seating 
preferences are shaped not by isolated attributes, such as desk size or 
daylight alone, but by the combined effect of comfort-enhancing and 
distraction-reducing features. This understanding is crucial for both 
the creation of new library spaces and the refurbishment of 
existing ones.

First, prioritizing environmental controllability is essential. 
Providing students with individual task lighting (such as personal 
reading lamps) and access to operable windows for fresh air 
emerged as significant factors in seat choice. These features allow 
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users to adjust their immediate environment according to personal 
comfort needs, supporting adaptive comfort and promoting 
autonomy (Brager and De Dear, 1998; O’Brien and Gunay, 2014). 
Library design should therefore include locally controllable 
lighting and opportunities for natural ventilation, especially in 
study zones intended for prolonged use.

Second, minimizing unwanted distractions, both acoustic and 
visual, is critical. Seats located away from busy corridors and with 
reduced exposure to noise were consistently preferred. The disruptive 
effect of intense color contrast between desks and dividers further 
highlights the value of visually harmonious finishes. Designers 
should consider zoning study areas to buffer quiet, individual study 
seats from high-traffic walkways and group workspaces, using sound-
absorbing materials and muted or natural surface finishes to create a 
visually calm environment (Hongisto, 2005; Haapakangas et al., 2018; 
Gordon-Hickey and Lemley, 2012).

Daylight, while a valuable aspect of spatial quality, did not 
emerge as a primary determinant of seat choice in this study. Its 
positive effects were only evident when daylight was carefully 
managed to avoid glare and discomfort. Rather than relying on 
large windows or skylights alone, effective library design should 
integrate shading devices, glare control, and flexible seating 
arrangements that allow students to select preferred light 
conditions (Boyce, 2014). Daylight can be leveraged as an amenity, 
but should be balanced with user comfort and control.

Factors such as desk width and fixed computer availability 
were found to have minimal influence on seat preference, 
challenging longstanding assumptions in library planning. Rather 
than maximizing desk size or digital infrastructure at each seat, 
greater emphasis should be placed on flexibility, privacy, and user 
control over the immediate study environment.

The robustness of seat preferences across different times and 
academic calendar phases suggests that these recommendations are 
broadly applicable and not tied to specific seasons or usage patterns. 
Nevertheless, acknowledging user diversity remains essential. 
Libraries should offer a variety of seat types and environments, quiet 
vs. collaborative, open vs. enclosed, reflecting the varying needs of 
individuals, tasks, and groups (Applegate, 2009).

It is also important to note that even advanced machine 
learning models could not capture all aspects of user behavior, 
underscoring the ongoing influence of social dynamics, personal 
routines, and psychological factors. As a result, ongoing post-
occupancy evaluation and engagement with users should 
be  central to the library design process, ensuring that spaces 
remain adaptable and genuinely supportive of student well-being 
and academic success (O’Brien and Gunay, 2014). Where relevant, 
library planners may wish to consult established best practice 
guidelines, such as IES recommendations for lighting, ASHRAE 
for thermal comfort, or ISO for acoustics, as operational 
benchmarks; however, specific thresholds should be selected with 
care, as this study did not directly measure or validate compliance 
with these standards.

In summary, this study advocates for library environments 
that empower students to control their immediate surroundings, 
minimize sources of distraction, and offer flexibility and 
inclusivity. Such spaces are well-positioned to support the diverse 
and evolving needs of today’s learners and to remain resilient as 
educational practices and technologies continue to change.

4.3 Limitations and directions for future 
research

While this study offers valuable insights into the determinants 
of students’ seating preferences in academic libraries, several 
limitations should be  acknowledged. Firstly, this research was 
conducted at a single site, the UCL Bartlett Library, within a specific 
cultural, climatic, and institutional context. Although the 
comprehensive dataset spans a full academic year, the findings may 
not be  fully generalizable to libraries with different layouts, user 
populations, or environmental conditions. Moreover, comfort 
priorities can vary with climate, building typology, and disciplinary 
culture; thus, the relative importance of comfort and distraction 
factors reported here may differ in science libraries, 24-h learning 
commons, or buildings in other regions. Replication across multiple 
libraries, climates, and academic cultures, ideally over several 
academic years, will be essential to validate and generalize these 
findings for broader design guidance.

Another methodological constraint is the reliance on PIR sensor-
based occupancy data, which allows for objective, high-resolution 
tracking of seat usage. It cannot distinguish between multiple users at 
shared tables, record sustained presence, or identify the type of activity 
or collaboration. The system records motion but not continuous 
presence, and while obvious false positives were filtered, some errors 
may remain. Privacy-compliant combinations of PIR, depth cameras, 
and Wi-Fi localization have achieved higher accuracy in recent studies 
and merit consideration once ethical approval is secured.

A further limitation is that seat choice was correlated with 
simulated daylight but not with continuous desk-level measurements 
of temperature, humidity, CO₂ concentration, or octave-band noise. 
Consequently, brief periods of glare, thermal discomfort, or acoustic 
peaks could not be  matched to occupancy events. Incorporating 
low-cost data loggers that stream these physical variables in future 
work would close this gap and align with recent recommendations for 
multimodal occupant research.

Notably, the study was observational rather than experimental. 
In-semester manipulation of lighting, ventilation, or desk orientation 
was not feasible, as it would have disrupted normal operations and 
potentially breached research ethics protocols. As a result, the 
associations revealed by mutual-information ranking and machine 
learning models cannot entirely eliminate confounding variables. 
Semester-long, randomized interventions, such as adding task lamps 
to a subset of carrels or implementing acoustic treatments, would 
provide much more substantial causal evidence when feasible.

Data collection covered only one academic year; unusual events 
such as renovation work, pandemic restrictions, or extreme weather 
outside the observation window could alter seat-selection patterns. 
Multi-year monitoring would be valuable to test the stability of the 
identified preference patterns under such exogenous shocks.

Another significant limitation is that subjective outcomes, 
such as perceived comfort, well-being, productivity, or 
satisfaction, were not directly measured, nor were any 
demographic or user profile data collected. Occupancy traces 
indicate what seats are chosen but not why. As a result, the current 
model operates under a one-size-fits-all assumption, which may 
overlook important differences in seating behavior across user 
subgroups. Factors such as age, gender, task type, frequency of 
library use, or even academic discipline may influence tolerance 
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to noise, preference for daylight, or need for privacy. Incorporating 
such heterogeneous behavioral insights in future research could 
significantly enhance the explanatory power, personalization, and 
real-world applicability of seat preference models.

Additionally, while the predictive models used in this study 
were relatively accurate, they reached a performance plateau 
around 72% accuracy. This suggests that some behavioral “noise” 
or unmeasured factors limit the predictability of seat choice. 
Exploring additional features, interaction effects, or alternative 
modeling methods, such as deep learning or agent-based 
simulation, may improve predictive power and deepen 
understanding of complex human-environment relationships.

This study did not directly assess the impact of specific design 
or operational interventions, such as installing new lighting, 
introducing acoustic measures, or deploying digital feedback 
systems. Controlled field experiments and post-occupancy 
evaluations of targeted changes would provide stronger causal 
evidence for the practical effectiveness of proposed 
design solutions.

In summary, these limitations do not undermine the central 
finding that personal control and reduced distraction jointly 
govern seat choice. Instead, they define the boundary conditions 
for this study and point to clear priorities for future research: 
continuous environmental sensing, ethically approved field 
experiments, mixed-method inquiry, and multi-site replication. 
Advancing along these lines will refine evidence-based guidance 
for creating academic library environments that are both 
comfortable and adaptable to users’ diverse and evolving needs.

5 Conclusion

This study offers one of the most comprehensive, data-driven 
examinations of students’ seating preferences in academic 
libraries, combining a year-long PIR sensor dataset, advanced 
machine learning, and explainable AI to uncover the underlying 
drivers of seat selection in a real-world educational setting. The 
analysis demonstrates that seat choice is not dictated by any single 
environmental or spatial attribute, but by the nuanced interplay 
of multiple factors that foster comfort, autonomy, and freedom 
from distraction.

Two key bundles, environmental controllability and 
distraction management, consistently emerged as the strongest 
predictors of seat preference. Features such as user-controlled 
lighting, access to fresh air, and reduced exposure to noise and 
movement enhance physical comfort and support psychological 
well-being and sustained academic engagement. In contrast, 
factors traditionally presumed important, such as daylight 
availability, desk size, or built-in computers, had negligible 
influence on real-world user behavior once the broader context of 
comfort and distraction was considered.

The application of advanced machine learning, particularly 
ensemble methods and explainable AI, revealed both the 
complexity and the inherent variability of user preferences. Even 
the most accurate models plateaued at around 72% accuracy, 
reflecting the persistent influence of contextual, social, and 
unmeasured factors on human behavior in learning environments. 
Importantly, explainable AI tools (such as SHAP) enabled the 

translation of these complex models into clear, actionable 
guidance for spatial design and management.

This research advances our understanding of how students 
interact with academic library spaces by moving beyond 
conventional design assumptions and employing robust, objective 
methodologies. The findings advocate for library environments 
that prioritize user control, minimize sources of distraction, and 
provide flexible, inclusive settings capable of adapting to the 
evolving needs of diverse learners. Furthermore, the study 
demonstrates the societal and institutional value of data-driven, 
student-centered design in promoting student well-being, learning 
outcomes, and engagement.

While this research is based in a single, design-focused 
institution, its methodological approach and core insights are 
relevant across various educational contexts. Replicating this 
protocol in diverse cultural, climatic, and institutional settings 
will be crucial to establishing the best global library design and 
operation practices. The limitations of this work, such as its 
observational design and lack of subjective or demographic data, 
also point the way for future research, which should integrate 
multimodal environmental sensing, qualitative user input, 
controlled interventions, and multi-site replication.

Ultimately, this study underscores that optimizing library 
seating and spatial experience is not merely a question of furniture 
layout or lighting provision, but of fostering environments where 
students can thrive academically, physically, and psychologically. 
As educational spaces and technologies evolve, libraries that 
combine advanced analytics with user-centered design principles 
will play a transformative role in supporting student success and 
institutional resilience in a rapidly changing world.
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