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The Q-matrix serves as a bridge that links items and attributes, and its accuracy
affects the results of cognitive diagnosis. Inaccuracy of the Q-matrix are a
common issue frequently encountered in cognitive diagnosis research. This
study utilizes the topic “composition and structure of matter” from junior
high school chemistry as a representative example, employing Structural
Equation Modeling (SEM) to validate the original Q-matrix of the cognitive
diagnostic assessment tool. This method prioritizes qualitative analysis results
from the perspective of disciplinary connotation, while integrating the signs
and significance of regression weights, modification indices (MI), and model fit
indices, etc. obtained from SEM, to conducted an iterative process of model
revision, parameter estimation, and model evaluation, resulting in a better-fitting
revised Q-matrix. By employing the generalized deterministic input, noisy “and”
gat (GDINA) model, we conducted a comparative analysis between the Q-matrix
derived from the SEM approach and those obtained through the following two
approaches: the multiple logistic regression-based method utilizing exhaustive
search algorithms (MLR-B-ESA), and the multiple logistic regression-based
method utilizing priority attribute algorithm (MLR-B-PAA). The findings show
that the absolute fit of the Q-matrix derived through the SEM approach had
achieved excellent threshold, although it slightly underperformed compared to
the benchmark method in terms of comparative data. It is worth noting that
the relative fit of the Q-matrix obtained via the SEM approach was superior
to that derived from the comparative methods. This suggests that, as the SEM
approach emphasizes qualitative analysis grounded in disciplinary connotation,
the Q-matrix revision does not strictly conform to the data information obtained
from computation. As a result, this may have a certain quantitative impact on the
absolute fit. However, in comparative evaluations of methods, the SEM approach
exhibits superior performance.

KEYWORDS

Q-matrix, structural equation modeling, middle school chemistry, cognitive diagnosis,
revision

Introduction

Cognitive diagnosis

Cognitive diagnosis is a new-generation measurement theory that aligns with the
cognitive-level research paradigm (Frederiksen et al., 1993). This approach enables
evaluation to move beyond the macro-level of abilities by revealing learners’ micro-level
cognitive structures, thereby enabling a more nuanced and personalized evaluation of

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2025.1647968
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2025.1647968&domain=pdf&date_stamp=2025-10-09
mailto:linswchem@163.com
mailto:942625623@qq.com
https://doi.org/10.3389/fpsyg.2025.1647968
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2025.1647968/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lin et al. 10.3389/fpsyg.2025.1647968

cognitive development and underlying psychological processing
mechanisms. This can help reduce the biases introduced by
teachers’ subjective judgments, thereby facilitating targeted
improvements in instruction. As a result, an increasing number of
studies are focusing on cognitive diagnosis in the field of education
(Tong et al., 2022; Chen, 2024). However, from the perspective of
specific academic disciplines, although considerable research has
focused on STEM fields (e.g., Jiang et al., 2023; Hu et al., 2021),
investigations into the application of cognitive diagnosis in middle
school chemistry remain comparatively limited (e.g., Qi et al., 2024;
He et al., 2024; Wang et al., 2025).

Q-matrix

Typically, the Q-matrix is a 0-1 coding matrix with J rows
(where J denotes the number of items) and K columns (where
K denotes the number of attributes), representing the logical
correspondences between attributes and items (Chiu et al., 2009;
Henson et al., 2009). It specifies the correspondences between items
and attributes in cognitive diagnostic assessment tools (Tatsuoka,
1990), and is primarily used to identify the unobservable attributes
measured by items and to transform them into observable item
response patterns. It links the examinee’s unobservable knowledge
states with observable item response patterns, thereby providing
a foundation for further understanding and inference of the
examinee’s knowledge states (Tatsuoka, 1990; Song et al., 2024). The
incorrect specification of the Q-matrix can be categorized into two
types: over-specification and under-specification (Li et al., 2021;
Chen et al., 2013). Over-specification refers to the assignment of an
excessive number of attributes to an item in the Q-matrix, leading
to inaccurate specification in which attributes are erroneously
linked to an item that can be correctly answered without requiring
mastery of that attribute. In contrast, under-specification represents
the precise opposite scenario. Both of them may reduce the
accuracy of cognitive diagnosis and result in poor model-data fit
(de la Torre, 2008; Im and Corter, 2011; Gao et al., 2017; Liu
and Wu, 2023). Therefore, constructing a sound Q-matrix is a
critical step in the cognitive diagnosis process (de la Torre and
Chiu, 2016; Tatsuoka, 1983). The formation of the Q-matrix is
a process defining attributes for items (Luo, 2019) and it mainly
encompass two sorts of approaches: qualitative approaches and
data-driven approaches.

Qualitative approach is the earliest and most widely employed
strategy. Under this methodology, the Q-matrix is established by
discipline experts, who assign attributes to pre-designed items
based on predefined attribute definitions (Nájera et al., 2020). It
includes the following specific practical operational methods such
as literature review, theoretical analysis, expert interviews (Nájera
et al., 2020) and so on. However, due to cognitive limitations
of discipline experts, omissions or errors may occur during the
formation of the Q-matrix (DeCarlo, 2011). Therefore, qualitative
approaches are relatively subjective (Yu and Cheng, 2020) and
are susceptible to introducing errors into the Q-matrix due to
researchers’ cognitive biases (Chiu, 2013; Li and Suen, 2013).

To enhance the objectivity of the results, researchers have
developed a range of data-driven approaches, such as the δ-method

(de la Torre, 2008), the joint estimation algorithm (Chen and Xin,
2011), the unsupervised and supervised learning schema (Wang,
2012), the Bayesian approach (DeCarlo, 2012), the γ method (Tu
et al., 2012), the method based on the Likelihood D2 statistic (Yu
et al., 2015), the non-linear penalized estimation method (Xiang,
2013), the optimization of response distribution purity method
(Li et al., 2022), and the method based on the three random
forest models (Qin and Guo, 2023). The fundamental principle
underlying these methods is that if the attribute definitions of
items are inaccurate, the cognitive diagnosis model cannot establish
an accurate correspondence with examinees’ attribute mastery
patterns. This discrepancy results in distortion of the model’s
functioning and anomalies in its parameter estimates (Rupp and
Templin, 2008). Data-driven approaches focus on the fields of
statistical algorithms, emphasizing the exploration of algorithmic
principles and their mathematical derivations for estimating the Q-
matrix. For researchers without relevant professional backgrounds,
applying these methods in practical cognitive diagnostic research
remains challenging. It is worth noting that, might be due to the
inherent complexity of the content in the discipline of chemistry,
we haven’t seen any reports on the application of data-driven
methodologies to Q-matrix revision in cognitive diagnosis within
the domain of chemistry. On the other hand, although data-
driven approaches can minimize subjectivity in the determination
of the Q-matrix and enhance the model’s compatibility with the
data, they fail to integrate disciplinary relevance into the process
of refinement, thereby potentially yielding biased outcomes. This
study employs the content of “composition and structure of
matter” from junior high school chemistry as a case example,
and applies the structural equation modeling (SEM) to address
this limitation, efficiently integrating qualitative analysis with
data-driven refinement, the complementary strengths of both
approaches are effectively combined, thereby enhancing the
accuracy of the Q-matrix.

SEM

SEM is a multivariate statistical method that integrates factor
analysis and path analysis (Quintana and Maxwell, 1999) and is
used to evaluate the consistency between theoretical hypotheses
and empirical data (Fang et al., 2002). The core logic of SEM is
to empirically test a predefined theoretical model using observed
data and to analyze the causal pathways and complex interaction
mechanisms among variables (Moustaki et al., 2004). By utilizing
the covariance matrix of variables, the associations among multiple
continuous variables can be obtained (Jöreskog, 1988; Kline, 2016).
The confirmatory function of SEM is realized by comparing
the implied covariance matrix of the theoretical model with
the observed covariance matrix derived from empirical data,
thereby revealing discrepancies between the theoretical model
and empirical observations (Raykov and Marcoulides, 2006; Lee,
2007; Byrne, 2016). This process typically employs fit functions
to quantify these discrepancies, with commonly used estimation
methods including generalized least squares (GLS; Jöreskog and
Goldberger, 1972), maximum likelihood (ML; Jöreskog, 1971),
asymptotic distribution free (ADF; Bollen, 1989) and so on.
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For Q-matrix, an item often corresponds to multiple attributes,
which is consistent with the key feature of SEM that its ability
to allow a single observed variable to reflect multiple latent
variables simultaneously (Bollen, 2002; Brown, 2006; Muthén
and Asparouhov, 2012; Koizumi and In’nami, 2020). SEM can
simultaneously handle multiple observed and latent variables
(Diamantopoulos and Siguaw, 2000), which aligns well with the
structure of the Q-matrix in cognitive diagnosis, as it includes
multiple directly observable items and multiple unobservable
attributes. From the perspective of validating theoretical models,
SEM can compare discrepancies between the covariance matrix
implied by the Q-matrix and the covariance matrix derived from
actual response data, thereby providing feasibility for revising the
Q-matrix. Furthermore, SEM allows for measurement errors in
observed variables (Bollen and Long, 1993), which aligns with the
reality of guessing and slipping in students’ responses. Additionally,
multiple well-established software programs options are available
for the analysis of SEM (Hair et al., 2013; Byrne, 2016). Based on the
aforementioned considerations, this study employs SEM approach
to revise the Q-matrix.

Model hypotheses

The hypothesized model transforms the frame of Q-matrix into
a statistical model by presetting the correspondence paths between
items and cognitive attributes, as well as paths between different
cognitive attributes. Serving as the foundational starting point for
SEM approach research, it provides both the theoretical framework
and statistical basis for subsequent data analysis, model fitting,
and result interpretation. The hypothesized model comprises
two components: the measurement model and the structural
model. The measurement model delineates the relationship
between observed variables (i.e., items) and latent variables (i.e.,
cognitive attributes), while the structural model characterizes the
relationships among latent variables (e.g., cognitive attributes).
Therefore, when applying the SEM approach to revise the Q-
matrix, the central objective is the validation and optimization of
the measurement model. To enable estimation and validation of the
hypothesized model, the subsequent hypotheses are proposed:

H1 The items are treated as observed variables, and the
attributes are treated as latent variables. If an item assesses a specific
attribute, then that attribute can, to some extent, account for
students’ scores on the item. Therefore, a path should be established
from the given attribute (latent variable) to the corresponding
item (observed variable). Furthermore, the higher a student’s
level of mastery of an attribute, the greater the probability that
they will perform well on related items. There is a significant
positive correlation between them. This can be illustrated by the
following example:

As shown in Figure 1, assume that Item j measures four
attributes—A1, A2, A3, and A4—and that each of these attributes
can, to some extent, account for the student’s score on Item j. Four
paths should be established: A1→ Item j, A2→ Item j, A3→ Item
j, and A4→ Item j. It should be hypothesized that all four paths
have significantly positive regression weights (r > 0, p < 0.05),
where ej denotes the measurement error. If r < 0 or p ≥ 0.05, this

FIGURE 1

Schematic diagram of establishing paths from attributes to item.

suggests a potential problem in the correspondence between the
attribute and the item. Thus, it is necessary to reassess the attributes
measured by Item j.

H2 The following regression weights are assumed to be 1:
A1→ Item2, A2→ Item6, A3→ Item13, and A4→ Item1. Fixing
the specified regression weights from an observed variable to a
latent variable at 1 is a foundational step for defining the latent
variable’s scale and ensuring model identification. This process
effectively establishes a meaningful metric for latent variables by
selecting reference indicators, while simultaneously accounting
for measurement error, thereby achieving an appropriate balance
between theoretical assumptions and empirical data fit. Typically,
the observed variable that demonstrates the strongest theoretical
linkage and the highest level of reliability is chosen as the reference
indicator. Thereby, the criteria for standardizing the regression
weights between cognitive attributes and items to 1 are as follows:
(1) The item focused exclusively on the examination of a specific
attribute, and (2) when multiple items measure the same attribute,
the item exhibiting the strongest loading is selected. These criteria
were executed through expert consultation and questionnaires
to teachers.

H3 The attributes are not mutually independent but are
intrinsically related. Therefore, pairwise covariance among them
should be specified in the hypothetical model. Both H2 and H3 can
be illustrated by Figure 2.

Materials and methods

Study domain

This research focuses on “composition and structure of
matter,” one of the five themes outlined in China’s chemistry
curriculum standards of compulsory education (Ministry of
Education of the People’s Republic of China, 2022), as its study
domain. This theme reveals the composition of matter from a

Frontiers in Psychology 03 frontiersin.org

https://doi.org/10.3389/fpsyg.2025.1647968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lin et al. 10.3389/fpsyg.2025.1647968

FIGURE 2

Schematic diagram of fixed path regression weights and covariance relationships between attributes.

macroscopic perspective and its structure from a microscopic
viewpoint, while also providing a theoretical foundation for
other themes through the integration of macro- and micro-level
perspectives. It serves as an important vehicle for developing
students’ core literacy in chemistry. According to the content
studied, the following cognitive attributes are identified: (A1)
foundational conception of “composition and structure of matter;”
(A2) representation of “composition and structure of matter;”
(A3) foundational principles of “composition and structure of
matter;” (A4) investigative methods for “composition and structure
of matter.”

Instruments

A questionnaire survey was administered to discipline experts
and junior high school chemistry teachers to evaluate the following
aspects: (1) the rationality of the cognitive model for the
“composition and structure of matter” content, with particular
emphasis on its cognitive attributes; (2) the rationality of the draft
of the preliminary Q-matrix. The questionnaire has a five-point
Likert scale to assess the extent to which discipline experts and
teachers agree with. Furthermore, each item includes an open-
ended comment section where discipline experts and teachers can
offer specific revision suggestions concerning potential problem.

A cognitive diagnostic assessment tool for “composition and
structure of matter” was developed using dichotomous scoring,
with 1 point assigned for fully correct responses and 0 points for
omissions or incorrect answers. Specially, the multiple-choice items
(Item 23, Item 24), and subjective items (Item 30, Item 31) were
all dichotomized, with all non-top scores converted to 0. Pilot

testing (N = 205) led to the elimination of four problematic items,
based on the empirical criterion that RMSEA > 0.10 indicating
poor item quality (Kunina et al., 2009). The final assessment tool
comprised 32 items (Furthermore, another 1 item was removed
later in the revised Q-matrix obtained by SEM approach), with the
frequency of each cognitive attribute was assessed as follows: A1
(19), A2 (17), A3 (13), and A4 (8). The overall Cronbach’s α of
0.889 indicated good test reliability. Deletion of any item did not
lead to an increase in the Cronbach’s α greater than 0.02 (Bontte,
2002). The actual score of each item showed statistically significant
correlations with the total actual score (p < 0.01), with correlation
coefficients exceeding 0.20 (Gerbing and Anderson, 1988). The
correlation coefficient between the predicted total scores derived
from the generalized deterministic input, noisy “and” gat (GDINA)
model and the students’ actual test scores is 0.816. An extreme
group analysis was carried out as follows: the total actual scores for
each item were ranked in ascending order. The lowest 27% of the
scores were categorized as the low-score group, whereas the highest
27% were categorized as the high-score group. The extreme group
analysis demonstrated statistically significant differences between
the two groups across all items (t > 3, p < 0.001) (Thissen and
Orlando, 2001). The aforementioned analysis demonstrates that
the cognitive diagnostic assessment tool exhibits strong reliability
and validity.

Participators

Participators involved in this study, including experts, teachers,
and students, are all drawn from Jilin Province, Sichuan Province,
and the Guangxi Zhuang Autonomous Region of China. Oral
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reports were conducted with six representative students from a
key middle school in Jilin Province, in order to develop the draft
of original Q-matrix. Three of them are high-achieving students
(2 male/1 female, mean age 14.3 years, all of whom served as
chemistry class representatives) and three are students with average
academic performance (1 male/2 female, mean age 14.1 years, two
of whom had participated in academic competitions). To establish
the draft of original Q-matrix, we also conducted expert interviews.
Four experts (2 male/2 female, mean age = 46.3 years, SD = 2.1)
were selected, three of whom hold senior professional titles with
≥15 years’ middle school teaching experience. All of them are
currently involved in, or have previously participated in, municipal-
level or higher teaching research projects. In order to evaluate
the level of consensus among frontline educators concerning
the initial Q-matrix, a questionnaire survey was administered
to 26 chemistry teachers (mean age = 39.6 years, SD = 5.2;
57.7% held senior professional titles with ≥10 years’ teaching
experience; 73.1% female; 57.7% teaching in urban schools and
42.3% in rural settings; 76% currently participating in or have
participated in teaching research projects at the municipal level
or above). Cognitive diagnostic tests were conducted in samples
from six junior high schools in different regions as mentioned
above. The locations of these schools include both urban and
rural areas, ensuring the sample’s representativeness, with a total of
793 students participating. Seven hundred fifty-two (372 male/380
female, mean age 14.3 years) of them provided valid responses,
resulting in a valid response rate of 94.8%.

Data analyses

The statistical results indicate that the surveyed teachers’
consistency coefficient was 0.73 (> 0.70), and the variance was
0.20 (< 0.25), suggesting that although teacher agreement with
the original Q-matrix falls within an acceptable range, it is near
to the threshold, and the rationality of the matrix still requires
improvement (Okoli and Pawlowski, 2004; Qxley et al., 2024).

The SEM approach was employed to validate the original Q-
matrix using IBM Amos version 28.0 software and the ML was
used to parameter estimation. The ordered categorical variables
were treated as continuous variables. Hypothetical model was
established by the graphical user interface (GUI) of Amos.
During the revision process, we have adopted the following
strategies: (1) Any dropping or adding of paths should prioritize
qualitative analysis based on disciplinary connotation, with data-
driven quantitative methods serving only a supplementary role.
An iterative process guided by both disciplinary connotation
and data derived from SEM was implemented repeatedly. (2)
All path coefficients in the hypothesized model were required
to satisfy the criteria of r > 0 and p < 0.05. (3) Modification
suggestions derived from SEM are prioritized for implementation
in descending order of their modification indices (MI) values,
because the MI values reflect the expected reduction in the model’s
chi-square statistic upon implementing the suggested change, and
higher MI value indicates a more substantial improvement in
model fit (Saris et al., 1987; Bagozzi and Yi, 1988). (4) Prioritize

the establishment of pathways before proceeding to determine
covariance. (5) Each time a path or a covariance is added, the
model parameters need to be re-estimated. Subsequently, verify
whether the NFI and RFI values have met the threshold, and
whether all other parameters remain acceptable (any anomalies
indicated a reversal of the modification). Simultaneously, obtain
the updated MI values and the corresponding suggestions for
the subsequent round of modifications. (6) The measurement
errors of observed variables are uncorrelated with latent variables
(McDonald, 1985; Bollen, 1989; Jöreskog and Sörbom, 1993),
therefore no covariances are specified between the measurement
errors of observed variables and the latent attributes. (7) No
path can be established between observed variables (items)
(Kline, 2016; Byrne, 2016). (8) When adopt the suggestions
corresponding to the maximum MI value resulting in some
regression weights statistically insignificant (p ≥ 0.05), it indicated
that further path additions were no longer effective in improving
the model, and thus path specification should be discontinued.
(9) The revision process was deemed complete when all model
fit indexes criteria were satisfied and all path relationships were
consistent with disciplinary connotation. In summary, the SEM
approach employs a strategy that integrates both qualitative and
quantitative methodologies, prioritizing qualitative analysis due
to its alignment with disciplinary connotations. Throughout the
iterative process, MI values and all modification fit indexes
and all adjusted fit indices underwent continuous adjustments,
progressively converging toward optimal thresholds.

The overall process is illustrated in Figure 3 and the detailed
procedures are outlined as following:

Step 1: Establish the hypothesized model in Amos based on the
theoretical assumptions and the original Q-matrix. Calculate and
estimate the parameters according to the hypothesized model.

Step 2: Perform a qualitative analysis of the disciplinary
connotation associated with paths exhibiting correlation
coefficients r < 0, investigate the underlying causes of their
irrationality, remove these paths, and subsequently calculate and
estimate the parameters.

Step 3: Perform a qualitative analysis of the disciplinary
connotation associated with paths with p > 0.05, investigate the
underlying causes of their irrationality, remove these paths, and
subsequently calculate and estimate the parameters. At this stage,
all path coefficients are expected to meet the criteria of r > 0 and p
< 0.05. If all model fit indexes satisfy the threshold requirements,
proceed to Step 5. If any deficiencies are identified, advance to
Step 4.

Step 4: Examine the suggestions provided by the software
for establishing path relationships in descending order of MI
values. Even if the MI value is substantial, the corresponding
recommendation will not be adopted if it lacks disciplinary
connotation. Calculate and estimate the parameters after adopt
a suggestion. Examine whether any anomalies exist in the newly
generated path parameters. If anomalies occur, this suggests that
the proposed path relationship is statistically or theoretically
unjustified and should therefore be rejected. Further qualitative
investigation should be conducted to determine the underlying
causes of the inconsistency from the perspective of disciplinary
connotation. Remove the previously established unreasonable
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FIGURE 3

Flowchart for Q-matrix validation by SEM approach.

path and recalculate and re-estimate the parameters accordingly.
Subsequently, the same approach shall be employed to handle the
suggestion with the secondary large MI value. Repeat this process
iteratively until all the path relationship that aligns with disciplinary
connotation and suggestions corresponding to large MI values are
identified. Through this iterative process, all model fit indices will
be further refined. If although the addition of path relationships
improves the model fit, concurrently leads to anomalous path
parameters, this suggests that the strategy of adding path is no
longer effective, and the procedure advances to Step 5.

Step 5: Add the covariance relationships among attributes
sequentially in descending order of MI values, and perform
parameter estimation after each covariance relationship addition
until all model fit indices reach the desired thresholds. During
this process, there will be no newly abnormal path parameters,
but only both path parameters and the model fit will be further
optimized. In fact, the operation performed in this step does not
alter the Q-matrix, but instead functions as an additional validation
of the model’s rationality. If path parameter anomalies persist
after the adding of all covariance relationships, this suggests that
certain items within the cognitive diagnostic instrument may be
influencing the overall response data structure and it should be
eliminated. After the removal of the poorly fitted item, go back

to step a and initiate the next round of revisions until both path
parameters and model fit indices attain optimal values.

Researchers have proposed a range of approaches for validating
the Q-matrix, such as the general discrimination index (GDI)
method (de la Torre and Chiu, 2016), the Wald method (Ma
and de la Torre, 2020), the Hull method (Nájera et al., 2021),
and the multiple logistic regression-based (MLR-B) method (Tu
et al., 2022), and so on. Among them the MLR-B approach
demonstrates superior performance in both absolute model-data
fit and relative model-data fit (Tu et al., 2022). Each of the
aforementioned methods can be executed using two iterative
strategies: the exhaustive search algorithm (ESA) and the priority
attribute algorithm (PAA) (Qin and Guo, 2024). Based on the
aforementioned study, in order to validate the robustness of
the SEM approach, we conducted a real data comparative study
between the revised Q-matrix obtained by SEM approach and the
following: (1) the original Q-matrix; (2) the Q-matrix obtained by
ESA-based MLR-B method (MLR-B-ESA); and (3) the Q-matrix
obtained by the PAA-based MLR-B method (MLR-B-PAA). The
data used in the comparison are consistent with those employed
in the SEM approach. Given the complexity inherent in scientific
domains—particularly in chemistry—only the saturated GDINA
model was selected. Parameters were estimated using the ML
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method and BM algorithm for monotonicity assumption was
executed. The MLR-B method was implemented using the Qval R
package (Tu et al., 2022), and the model parameters were estimated
using GUI of GDINA R package (de La Torre and Akbay, 2019).

Results

A hypothetical model was specified based on the original Q-
matrix, comprising a total of 130 parameters, as presented in
Supplementary Table S1. In order to facilitate model identification
and support subsequent parameter estimation, the values of 36
parameters were fixed at 1, including four regression weights from
attributes to items and 32 regression weights from measurement
errors to items. A total of 94 parameters was estimated, including
52 regression weights from attributes to items, 6 covariance among
attributes, and 36 error variances for both observed and latent
variables. The number of data points amounts to 528, calculated
using the formula k(k + 1)/2, where k denotes the number of
items included in the hypothetical model, which is 32 in this case.
Therefore, the degrees of freedom df = 434, which can be obtained
by subtracting the number of parameters from the number of data
points (528 – 94 = 434). This outcome satisfies the t-criterion
requirement (df > 0), rendering the hypothetical model identifiable
and thus estimable (Byrne, 2016; Tabachnick and Fidell, 2007).

In the hypothetical model, the estimated covariances between
A1↔ A2, A1↔ A3, A1↔ A4, A2↔ A3, A2↔ A4, and A3↔
A4 were 0.006, 0.007, 0.016, 0.016, 0.016, and 0.022, respectively,
all of which were statistically significant (p < 0.001). The model
fit statistics before and after revisions are presented in Table 1
(Bentler and Bonett, 1980; Hu and Bentler, 1999). For the original
hypothetical model, all of the absolute and parsimonious fit indices
met the recommended thresholds, and among the incremental
fit indices, IFI, TLI, and CFI satisfied the recommended criteria,
whereas NFI and RFI fell below the acceptable level (< 0.90). These
results suggest that although the hypothetical model based on the
original Q-matrix generally fits the students’ actual response data,
the model fit still requires improvement, indicating the revision of
the original Q-matrix is necessary.

The regression weights from attributes to items of initial
hypothetical model corresponding to the original Q-matrix are
listed in Supplementary Table S2. According to the theoretical
hypothesis, the regression weights for A1→ Item2, A2→ Item6,
A3→ Item13, and A4→ Item19 were fixed at 1, and therefore,
standard errors (S.E.), critical ratios (C.R.), and p-values were
not reported for these paths. Two types of discrepancies from
theoretical expectations were identified: (1) Negative regression
weights (r < 0), including A2→ Item3 (r = −0.360), A4→ Item3
(r = −1.033), A1→ Item9 (r = −0.018), A2→ Item14 (r =
−0.017), A1→ Item18 (r = −0.642), A1→ Item20 (r = −0.300),
A1→ Item21 (r = −0.018), and A1→ Item24 (r = −0.082).
These results suggest that students’ mastery of certain attributes
is associated with lower scores on the corresponding items,
which is in clear contradiction to theoretical expectations. This
discrepancy indicates likely errors in the specified relationships
between these items and attributes, and the aforementioned paths
should therefore be removed. (2) The following path regression

weights were found to be statistically insignificant (p > 0.05):
A1→ Item7 (p = 0.119), A1→ Item10 (p = 0.228), A1→ Item11
(p = 0.863), A1→ Item15 (p = 0.089), and A1→ Item23 (p =
0.225). These results suggest that students’ mastery of attribute A1
does not significantly influence their performance on these items,
which is evidently inconsistent with theoretical expectations. This
indicates that the paths from attribute A1 to these items should
be revised. Subsequently, paths with negative regression weights
were iteratively removed from the model. After each removal,
model parameters were estimated again to examine whether any
anomalies remained. Finally, all paths have r > 0 and the regression
weights for A1→ Item4 and A3→ Item20 are significant at p <

0.01, while those for the remaining paths are significant at p <

0.001. No negative values were observed in neither the covariances
nor the error variances among the fit statistics. Except for the
NFI and RFI, which did not reach the recommended threshold,
all other model fit indices met the criteria. These results suggest
that the model’s alignment with the students’ actual response data
has significantly improved; however, there remains room for the
further refinement of the original Q-matrix. After the removal
of the aforementioned paths, the model modification suggestions
generated by SEM for adding either paths or covariance at this stage
are presented in Table 2.

Based on the MI values and qualitative analysis, paths were
added iteratively as recommended. When adding paths according
to the suggestions of SEM, if the newly estimated regression
weights are not significant, it indicates that the addition of path is
unreasonable, and further addition of the paths will no longer be
able to improve the fit of the model. Subsequently, six covariances
were introduced following MI-based recommendations: e2↔ e4,
e4↔ e5, e3↔ e29, e26↔ e27, e21↔ e24, and e30↔ e3, ultimately
yielding the revised model. The model fit statistics of the revised
model are shown in Table 1, and the regression weights from
attributes to items of it are listed in Supplementary Table S3.

Throughout the process of Q-matrix revision using SEM, the
approach is not purely data-driven. Rather, while data serves as
a critical supporting factor, qualitative analysis that is consistent
with disciplinary connotations is regarded as the primary basis for
decision-making. The following presents an example for each of
the three scenarios: dropping an attribute from an item (Sample
Item 1), adding an attribute to an item (Sample Item 2), and data
assistance enables a more in-depth qualitative analysis (Sample
Item 3). The cognitive diagnostic assessment tool used in this study
was originally developed in Chinese. All the sample items in this
article have been translated into English.

Sample item 1: (item ID: Item 7; answer: a; single choice
question) Scientists have obtained a new type of oxygen molecule (O4)
using ordinary oxygen molecules and charged oxygen ions. Which of
the following statements is correct? (a) O4 is a neutral molecule; (2)
One O4 molecule contains two O2 molecules; (3) O4 and O2 have
exactly the same properties; (d) The mixture of O4 and O2 forms a
pure substance.

The stem of this item, together with options a, b, and c, employs
chemical formulas as a form of chemical representation, thereby
exhibiting attribute A2 (representation of “composition and
structure of matter”). Option d involves the fundamental concept
of “pure substance,” it seems that, from a qualitative analysis
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TABLE 1 The model fit statistics of hypothetical model.

Statistical measures and their
critical values

Original Revised

Estimate results Meets threshold Estimate results Meets threshold

Absolute fit indices

RMR (< 0.05) 0.006 Yes 0.006 Yes

RMSEA (< 0.08) 0.034 (90% CI: 0.031, 0.037) Yes 0.028 (90% CI: 0.025, 0.031) Yes

GFI (> 0.90) 0.932 Yes 0.945 Yes

AGFI (> 0.90) 0.932 Yes 0.933 Yes

Incremental fit indices

NFI (> 0.90) 0.873 No 0.922 Yes

RFI (> 0.90) 0.855 No 0.901 Yes

IFI (> 0.90) 0.937 Yes 0.958 Yes

TLI (> 0.90) 0.927 Yes 0.952 Yes

CFI (> 0.90) 0.936 Yes 0.958 Yes

Parsimonious fit indices

PGFI (> 0.50) 0.766 Yes 0.781 Yes

PNFI (> 0.50) 0.764 Yes 0.790 Yes

PCFI (> 0.50) 0.819 Yes 0.844 Yes

CN (> 200) 450 Yes 524 Yes

χ2/df (< 2.00) 1.861 Yes 1.602 Yes

TABLE 2 Selected modification suggestions and MI values.

Suggestions MI Par change

Item5←A2 14.909 0.225

Item12←A2 12.381 −0.234

Item29←Item4 10.546 0.120

Item27←Item4 9.935 −0.102

Item22←A2 7.764 0.173

e4↔e5 16.866 0.017

e26↔e27 16.071 0.015

e29↔A4 15.26 0.006

e3↔e29 12.342 −0.015

e2↔e4 12.121 0.015

e21↔e24 11.888 0.015

e29↔e30 11.709 0.017

e30↔e31 11.516 0.016

e29↔e31 11.183 0.016

e6↔e26 10.400 0.013

perspective, this item also evaluates attribute A1 (foundational
conception of “composition and structure of matter”) to a certain
extent. Accordingly, in the original Q-matrix, the attribute profile
vector for this item is (1,100). However, this is in contradiction

to the non-significant results: A1 → Item7 (p = 0.120). This
prompted us to perform an additional qualitative analysis of the
path. In cognitive diagnostic research, it is advised not to assign an
excessive number of attributes to a single item (Cai et al., 2013;
Peng et al., 2016), as each attribute may encompass a range of
content and may exhibit potential hierarchical relationships with
others. Over-specification could lead to poor model-data fit. Item
7 simultaneously measures both lower-level content associated
with A1 and higher-level content related to A2. However, the
contribution of attribute A1 to correctly answering this item is
minimal, and the path from A1 to Item 7 should be removed.
Employing purely qualitative analysis methods results in inherently
ambiguous and highly subjective resolution criteria for this issue.
In contrast, the SEM approach offers an exceptionally robust
evaluative framework through its path coefficients. The rationale
for removing paths such as A1→ Item10, A1→ Item11, A1→
Item15, and A1→ Item23 is analogous to the explanation
provided above.

Sample item 2: (item ID: Item 22; answer: b; single choice
question) The number of protons in an atom must be equal to:
(a) neutron number; (b) the number of nuclear charges; (c) relative
atomic mass; (d) the number of electrons outside the nucleus.

In the Q-matrices derived from the MLR-B-ESA and MLR-
B-PAA approaches, the assessment pattern vectors for this item
all are (1,000). However, qualitative analysis based on disciplinary
connotations reveals that accurately answering this question
requires students to not only understand basic concepts such as
neutron number and relative atomic mass but also to be familiar
with the following principles: (1) For electrically neutral atoms, the
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number of positive charges (protons) in the nucleus must equal
the number of negative charges (electrons) outside the nucleus; (2)
Atoms can gain or lose electrons. Therefore, this item not only
assesses basic concepts related to the composition and structure of
matter but also tests fundamental principles and rules governing
this composition and structure. Through this qualitative analysis,
the assessment pattern vector for this item is ultimately determined
to be (1,010) when employing the SEM method.

Sample item 3:(item ID: Item 1; answer: b; single choice
question) Among the following substances, which one is a pure
substance? (a) Air; (b) Nitrogen; (c) Petroleum; (d) Milk.

During the process using the SEM approach, it was observed
that the path coefficient r for this item is less than 0. This
has prompted a more in-depth qualitative analysis of this issue.
The content examined in this item pertains to “pure substances”
and “mixtures.” From the perspective of knowledge attributes,
it belongs to the category of “foundational conception.” At first
glance, this appears consistent with Attribute A1 (the foundational
conception of “composition and structure of matter”). However, an
in-depth analysis of the disciplinary connotations reveals that the
concepts under examination are not related to the “composition
and structure of matter” In various editions of junior high school
chemistry textbooks in China, the concepts of “pure substances”
and “mixtures” are introduced at an early stage. At the point when
students are first exposed to these concepts, they have not yet
begun studying content related to “the composition and structure
of matter.” In other words, the understanding of these two concepts
does not presuppose prior knowledge of fundamental ideas such
as elements, atoms, or molecules. The domain assessed by the
cognitive diagnostic assessment tool in this study focuses on “the
composition and structure of matter.” The basic concepts within
this domain refer to foundational ideas from both a macroscopic
perspective, such as elements, and a microscopic perspective, such
as atoms and molecules. Therefore, by utilizing the information
obtained from SEM as the primary reference and conducting
in-depth qualitative analysis from the perspective of disciplinary
connotation, item 1 was removed during the revision of the Q-
matrix using the SEM approach.

Table 3 shows the adjustments made by the three approaches
to the original Q-matrix. The consistency results between the Q-
matrices suggested by these approaches and the original Q-matrix

are calculated by
∑I

i=1
∑K

k=1 I
(
q1

ik=q2
ik
)

I×K (where q1
ik and q2

ik represent
the values of attribute k for item i in two Q-matrices Q1 and Q2,
respectively), and they are presented in Table 4. It can be seen
that the revised Q-matrix obtained by SEM approach shows high
consistency with those obtained by MLR-B-ESA and MLR-B-PAA
approaches. Meanwhile, the similarity of Q-matrix obtained by the
methods between MLR-B-ESA and MLR-B-PAA is comparatively
higher attributed to the fact that both methods are based on
the MLR-B framework, differing solely in the search algorithm
employed.

As presented in Table 5, SEM suggests the most adjustments
to the Q-matrix, proposing modifications to 17 attributes (two
0→ 1, fifteen 1→ 0), while the adjustments made by MLR-B-ESA
and MLR-B-PAA approaches are 13 (two 0→ 1, eleven 1→ 0)
and 12 (two 0→ 1, ten 1→ 0), respectively. The SEM approach
underwent the most extensive modifications, reflecting its greater

TABLE 3 The original Q-matrix and it’s revision results.

Item Item ID A1 A2 A3 A4

1 Item 2 1∗ 0 0 0∗

2 Item 3 1∗+ 0+ 1 1

3 Item 4 1 0 0 0

4 Item 5 1 0 0 0

5 Item 6 0 1 0 0

6 Item 7 1 1 0 0

7 Item 8 1∗+ 1 0 0

8 Item 9 1∗+ 1 1 0

9 Item 10 1∗+ 1 0 0

10 Item 11 1∗+ 1 0 0

11 Item 12 1∗+ 0 0 1

12 Item 13 0 0 1 0

13 Item 14 1 0 1 0

14 Item 15 1 1 0 0

15 Item 16 0 0 1 0

16 Item 17 0 1 1 0

17 Item 18 1∗+ 0 1 1

18 Item 19 0 0 0 1

19 Item 20 1∗+ 1 1 1

20 Item 21 1∗+ 0 1 0

21 Item 22 1 0 0 0

22 Item 23 1 1 0 0

23 Item 24 1∗+ 1 1 0

24 Item 25 0 1 0 0

25 Item 26 0 1 1 0

26 Item 27 0 1 1 0

27 Item 28 0 1 1 0

28 Item 29 1∗+ 1 0 0

29 Item 30 0 0 0 1

30 Item 31 0 0 0 1

31 Item 32 0 1 0 1

0 Item 1# 1∗ 0 0 0∗

#This item was deleted in the Q matrix revised by SEM. The attributes marked with special
symbols imply that some validation methods suggest adjusting them to the opposite elements:
bold denotes the suggestion from SEM, ∗represents the suggestion from MLR-B-ESA, and
+indicates the suggestion from MLR-B-PAA.

potential for uncovering the underlying nature of the discipline.
The ratios of modification style of 0→ 1 and 1→ 0 are similar
for these three approaches (SEM 0.214, MLR-B-ESA 0.182, and
MLR-B-PAA 0.2). This phenomenon reveals that over-specification
is more prevalent than under-specification in the Q-matrix derived
from qualitative analysis. Absolute fit evaluates the correspondence
between a specified model and the observed data. In terms of M2,
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RMSEA2, and SRMSR, original Q-matrix shows the lowest values,
indicating that all the three methods showed no improvement in
absolute fitting performance. However, they all remained within
the excellent threshold (e.g., all yielded RMSEA < 0.05). Both
MLR-B-ESA and MLR-B-PAA yield lower values than SEM. This
suggests that although the absolute fit of the SEM approach is
excellent, it may not represent the best one. This phenomenon can
be attributed to the fact that the SEM approach differs from data-
driven approaches, as doesn’t rely solely on model modifications
suggested by the model-data fit, on the contrary, it prioritizes
qualitative analysis aligned with disciplinary connotation. Relative
fit is a criterion for comparing the rationality of multiple models.
As shown in Table 5, the SEM approach exhibits the lowest −2LL,
AIC, BIC, CAIC, and SABIC values, indicating superior relative fit.
This suggests that the SEM approach provides the best explanation
of the data and can be regarded as optimal.

Conclusion

The Q-matrix serves as a bridge linking test items to latent
attributes and plays a central role in cognitive diagnosis. Its
accuracy directly affects the reliability of the diagnostic results.
However, due to limitations or biases in understanding the
attributes, item content, and their interrelationships, discipline
experts may occasionally make errors when constructing the Q-
matrix. Although psychometricians have developed a series of data-
driven algorithm, these methods often go from one extreme to the
other. Due to the absence of expert judgment regarding disciplinary
denotation during the process of Q-matrix revision, the outcomes
may appear to exhibit favorable parameter estimates, yet they may
diverge from the fundamental disciplinary meaning.

TABLE 4 Consistency results between Q-matrices.

Original SEM MLR-B-ESA MLR-B-PAA

Original 1.000 0.863 0.903 0.911

SEM 0.863 1.000 0.895 0.903

MLR-B-ESA 0.903 0.895 1.000 0.976

MLR-B-PAA 0.911 0.903 0.976 1.000

In this study, an original Q-matrix was developed through
qualitative research firstly. Although expert validation indicated
a high degree of consistency, SEM analysis revealed that several
model fit indices did not reach optimal thresholds. Subsequently,
prioritizing expert qualitative evaluations, a refined Q-matrix was
derived through comprehensive integration of data from SEM
including the values and significance of regression weights, MI
values, model fits and other relevant metrics. Comparative analyses
against MLR-B-ESA and MLR-B-PAA approaches indicated that
the Q-matrix derived through the application of the SEM approach
has undergone the most substantial modifications, suggesting
its superior ability to capture the underlying structure of the
discipline. However, precisely due to this reason, it has somewhat
compromised the absolute fit. The absolute fit results indicate that
the SEM approach has achieved an excellent fit threshold, although
it performs slightly less favorably compared to MLR-B-ESA and
MLR-B-PAA in terms of data fit. The relative fit results demonstrate
that the SEM approach is the most effective, indicating its superior
performance in the comparative analysis of methods. Furthermore,
we discover that over-specification is more prevalent than under-
specification in the Q-matrix derived from qualitative analysis
under the setting of this report.

SEM approach adopted in this study shows the following
characteristics: (1) SEM approach exhibits feasibility. SEM is
capable of integrating multi-source data, such as items and
attributes, to evaluate the Q-matrix. By simultaneously considering
the relationships among multiple variables, SEM can uncover
latent structures and patterns in the data, thereby more
accurately identifying mis-specifications in the Q-matrix. (2) SEM
approach exhibits operational convenience. The application of
SEM approach does not require a high level of mathematical
foundation. The graphical software IBM Amos can offer user-
friendly surface to analysis. The operations are straightforward
and no coding is required. Therefore, SEM approach demonstrates
potential for implementation and promotion within primary and
secondary educational settings. (3) SEM approach exhibits excellent
accuracy. The SEM approach enables the systematic integration of
quantitative data with qualitative insights. This mixed methodology
not only addresses the limitations of purely quantitative approaches
in terms of disciplinary denotation, but also mitigates the
potential subjectivity inherent in purely qualitative analyses,
thereby enhancing the accuracy of the Q-matrix. Furthermore,
SEM can account for the influence of measurement error on the

TABLE 5 Relative and absolute ft statistics for the Q-matrices.

Q-matrix npar Relative fit Absolute fit Modifications

−2LL AIC BIC CAIC SABIC M2 test RMSEA2 SRMSR 0→ 1 1→ 0

M2 df p

Original 145 9705 19,701.0 20,371.3 20,516.3 19,910.8 540.8 383 0.000 0.023 0.036 – –

MLR
_B

ESA 113 9707.3 19,640.7 20,163.0 20,276.0 19,804.2 585.7 415 0.000 0.023 0.036 2 11

PAA 113 9709.0 19,644.1 20,166.5 20,279.5 19,807.6 591.3 415 0.000 0.024 0.036 1 11

SEM 103 9505.0 19,216.0 19,692.2 19,795.2 19,365.1 624.2 393 0.000 0.028 0.042 2 15

“npar” represents the number of parameters. Original represents the original Q-matrix. 0→ 1 and 1→ 0 represent the counts of adjusting 0 to 1 and 1 to 0, respectively.
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model by incorporating error terms, thereby enabling a more
accurate representation of the relationships among variables.

The SEM approach is applicable in the following scenarios: (1)
The user should have extensive familiarity with the disciplinary
connotation, preferably being a disciplinary expert or an
experienced frontline educator. When applying the SEM approach,
it is essential to integrate qualitative analysis with quantitative
analysis. Decisions concerning the dropping or adding of paths
should not be based solely on parameter estimates, but should
also incorporate qualitative reasoning informed by subject-matter
knowledge. Consequently, insufficient familiarity with the subject
area may lead to the development of an invalid or unreliable Q-
matrix. (2) The sample size should be sufficiently large. Generally,
a larger sample size contributes to more stable and reliable model
estimation results. Conversely, when the sample size is insufficient,
it may result in biased parameter estimates and compromised
validity of fit indices, which in turn can negatively impact the
quality of Q-matrix revision.

Limitations and future directions

This study has several limitations that warrant our
consideration in future research endeavors: (1) Given that
the primary focus of this study is methodological development, the
sample size was not expanded to a larger scale. Due to the limited
sample size, splitting the data could compromise the stability
and reliability of the results. Consequently, cross-validation was
not performed in this study. Therefore, to obtain more accurate
Q-matrix specifications, it is necessary to increase the sample
size and undertake a series of in-depth investigations in future
research. (2) Given the inherent complexity of chemistry test
items, this study focused solely on parameter estimation using
the GDINA model within the framework of saturated cognitive
diagnostic models. Further investigation is necessary in our
future studies to evaluate the accuracy of this methodology
under other saturated models and simplified models. (3) We
assume that students’ mastery of a given attribute exhibits
a linear relationship with their scores on the corresponding
assessment items. However, actual cognitive processes are highly
complex and may exhibit non-linear relationships between
attributes and the score of items. This assumption will affect
the model’s fit with the data, leading to an impact on the
accuracy of the estimation results. Therefore, our future research
will further explore methodologies for refining the Q-matrix
through the application of non-linear SEM (Zhao and Rahardja,
2011).
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