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This paper contributes to the debate on creativity, art, and artificial intelligence (AI) 
by integrating insights from cognitive psychology and empirical aesthetics into the 
field of AI, with the goal of inspiring novel empirical research. We focus on two main 
topics. First, we examine the indices used in psychology to operationalize creativity 
in closed-ended and open-ended tasks, with the aim not only of demonstrating 
the multidimensionality involved in defining creativity, but also of stimulating 
reflection on the benefits that might arise from developing a similar standard set 
of indices to test AI scoring models for assessing creativity (of both human and 
AI-generated responses). Second, we focus on the situation in which the creative 
products generated by AI are works of art, and on their aesthetic evaluation by 
non-expert human observers. Bridging the literature developed in psychology 
of art and empirical aesthetics with the literature on AI, a number of questions 
emerge, regarding the bias about the “expected style” of AI-generated art, and 
possible variables that play a role in aversion to AI-generated art. They all suggest 
possible future empirical research directions.
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1 Introduction

There is considerable debate in current journals on creativity and artificial intelligence 
(AI)—the joint search of “creativity” and “AI” in Google scholar returned 18,200 scientific 
articles in the period 2020–2025 (data accessed on May 27, 2025). The discussion is 
multifaceted and touches on various issues (for an overview, see Elgammal, 2019; Cetinic and 
She, 2022; Du Sautoy, 2020; Liu et al., 2025; Manovich, 2022; Schröter, 2019; Yang and Xu, 
2025). As Arielli and Manovich (2022) point out, many of these questions stem from an 
anthropocentric perspective on creativity that assumes that AI mimics human performance 
whereas, conversely, conceptualizing creativity in relation to AI within a non-human paradigm 
might illuminate the debate in new ways (see also Landers, 2025; Mazzone and 
Elgammal, 2019).

We see the advantage of exploring the topic from a non-anthropocentric perspective. At 
the same time, however, we believe that there are still ample opportunities to link research 
developed in psychology on human creativity to the ongoing debate on creativity and AI, in 
order to stimulate new perspectives from which to approach the topic and new empirical 
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research. This paper contributes to these goals by focusing on two 
topics: first, the definition and operationalization of “creativity” in the 
psychology and AI literature; and second, the aesthetic appreciation 
of AI-generated art. In this context, aesthetic appreciation is defined 
as the response of liking (in terms of beauty and other possible scales, 
such as complexity, realism, effort, authenticity, etc.) in ordinary 
observers, as is commonly defined in the literature on the psychology 
of art. In other words, we are not dealing with evaluations made by 
artists, art critics, or other professionals of this sort. We are simply 
interested in comparing the reactions of naïve observers to human- 
and AI-generated artistic products, which is also the goal of all the 
literature cited in this paper. Understanding the cognitive biases 
behind the public’s common reaction to AI-generated artistic works 
is a timely topic that allows us to discover interesting aspects of the 
human mind and identify areas for improvement from the perspective 
of AI developers.

In reviewing the literature on these two topics, we adopt a specific 
point of view and do not address other topics, such as the definition 
of art and works of art. These are interesting subjects, but totally 
beyond the scope of this paper. Our overarching goal is to apply ideas 
and methods from cognitive psychology and empirical aesthetics to 
the current debate about AI creativity and AI-generated images that 
mimic artistic works. We also aim to identify new questions and future 
directions for empirical studies inspired by this perspective.

Before developing these two main topics in detail (see sections 
“Adopting indices used to assess human creativity in psychology and 
cognitive science to develop metrics/models for assessing 
AI-generated creativity” and “Empirical Aesthetics”) some preliminary 
considerations are necessary.

2 Some preliminary clarifications

2.1 Product versus process

First, it is crucial to clarify that the perspective adopted in this 
paper in no way implies that an AI capable of learning to produce 
highly regarded new paintings in the style of Mondrian (Noll, 1967), 
to generate Chinese landscapes so convincingly as to deceive observers 
(Xue, 2021), or to create a beautiful “next Rembrandt” (Sovhyra, 2021) 
follows the same processes as human artists. Even AICAN (Artificial 
Intelligence Creative adversarial Network), that is, an AI algorithm 
designed not simply to emulate an established style (as GAN 
algorithms tend to do), but to autonomously generate something new 
based on existing works (Elgammal, 2019; Elgammal et al., 2017), does 
not intend to reproduce the process that leads human artists to create 
their artworks.

Any human-generated artwork is the result not only of the human 
cognitive apparatus that supports its creation, but also of the personal 
and cultural (i.e., historical, conceptual, and symbolic) journey that 
led a particular artist to create a particular artwork. To put it in Yang 
and Xu (2025, p.  2) terms, human creativity is typically a highly 
personalized process, often emotion-driven and full of uncertainty 
and uniqueness (Garcia, 2024), with inspiration often being 
spontaneous and unpredictable. Consistent with this, it often has a 
self-expressing meaning and is not necessarily oriented towards 
external judgment (i.e., has a social meaning), while AI creativity 

relies or a computation-driven systematic process of analyses and 
reorganization of vast amounts of data (see also Runco, 2025). AI 
simply mimics the final product on a formal level (see also Arielli and 
Manovich, 2022; Hertzmann, 2020), corresponding to the 
minimization of a cost function of similarity to a known distribution 
of images (Goodfellow et al., 2020; Rombach et al., 2022) or, in the 
case of ICAN, generates a novel object that represents an “optimal” 
point between imitation and deviation from existing styles. AI has 
been successfully applied to design new paintings (Noll, 1967; 
Sovhyra, 2021; Xue, 2021), architecture with precise styles (e.g., 
Newton, 2019), to write poetry (e.g., Köbis and Mossink, 2021), novels 
(e.g., Green, 2020) and to complete the unfinished musical works of 
masters (e.g., Beethoven’s unfinished 10th Symphony was completed 
in “Beethoven X—The AI Project,” a collaboration between 
musicologists, composers, and computer scientists who fed the AI all 
of Beethoven’s existing works and sketches for the 10th Symphony; 
similarly, Schubert’s Unfinished No. 8 Symphony was completed by 
Huawei’s AI, which worked with Lucas Cantor to arrange these 
melodies into an orchestral score in Schubert’s style). In general, the 
creation of art using AI is nowadays a common practice for many 
video artists and sound artists, and even in film productions.

Since the focus in our paper is on the product, not on the process, 
questions that are interesting from a process point of view—for 
example, concerning consciousness and intentionality (Aru, 2025; 
Manu, 2024; Mikalonyté and Kneer, 2022; Moura, 2024; Redaelli, 
2025)—are not relevant to the analyses addressed here.

2.2 The role of previously learnt knowledge

The second clarification concerns the role of previously learned 
knowledge in AI creativity. All the convincing products cited above 
come from the recombination of features, or configurations of 
features, learned by the AI during an initial training phase. This 
training phase, carried out on large databases, allows the AI to learn 
deeply, leading to new instances (i.e., not present in the original 
database) of the same types of objects used in the training.

The emphasis on the role of prior knowledge in AI-generated 
artefacts is often explicitly contrasted with the “novelty” that 
characterizes human creative responses and is used to deny the 
creative nature of the AI-generated products (e.g., Runco, 2023, 2025). 
However, framing the analysis in these terms overlooks the importance 
of prior knowledge in various theoretical models of creativity (e.g., 
Chaudhuri et al., 2024; Meyer and Pollard, 2006; Tromp and Glăveanu, 
2023; van Welzen et al., 2024) and also in specific training procedures 
used to stimulate creativity (e.g., Birdi, 2016, 2020; Huo, 2020; Jones-
Chick et al., 2022; Kienitz et al., 2014; Ritter et al., 2020; Sun et al., 
2016). These procedures encourage individuals to make unusual 
associations between information “stored” in their knowledge bag. 
Unusual associations are typically thought of as remote associations, 
that is associations between elements that are “remote” in our usual 
representational network (for the importance of remote associations 
in the production of human creative responses, see Mednick, 1962; 
Kenett, 2019; Kenett and Faust, 2019; Olson et al., 2021; Toivainen 
et al., 2019; Wu C. L. et al., 2020). Encouraging the search for remote 
(rather than close and ordinary) associations is usually achieved by 
changing the default way in which individuals access their knowledge, 
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for example, by asking them to focus on the properties of the parts of 
the object (or problem or situation) rather than on the properties of 
the object as a whole (Huo, 2020), or to turn the object’s properties in 
their opposites (e.g., Bianchi and Branchini, 2023; Branchini et al., 
2021). However, in each case these strategies operate on the knowledge 
of the thinker, that is, on previously learnt material. Also atypical and 
unusual (because distant) connections presuppose linking concepts, 
features, and elements that were already present in one’s mental 
organization. In other words, just as AI relies on its training data, 
humans draw on their accumulated knowledge, experience (including 
training experience) and cultural heritage as input data when creating 
something new. By emphasizing the importance of prior knowledge 
in human creativity, we are not denying the existence of differences in 
the processes that lead to the recombination of this prior data. As 
we clarified in the previous section, we give for granted that these 
processes differ. We simply want to acknowledge the importance of 
prior knowledge as a fundamental ingredient in both human- and 
AI-generated creative products. Once this has been clarified, then a 
new question raises, that is, the question of how, if at all, the idea of 
transcending the accumulation of existing knowledge, matter, and 
concepts applies to products made by AI. This idea applies to human 
art, which transcends existing knowledge by offering unique 
perspectives, challenging established ideas, and prompting new ways 
of seeing the world, ourselves, and art itself. Can this apply to 
AI-generated art? How can we identify and measure this component 
of transcendence?

3 Adopt indices used to assess human 
creativity in psychology and cognitive 
science to develop metrics/models for 
assessing AI-generated creativity

Many classic definitions of creativity developed within cognitive 
science state that creativity is the ability to generate ideas that are both 
novel/original and effective, that is, appropriate and useful (e.g., 
Amabile and Tighe, 1993; Beghetto and Kaufman, 2022; Bruner, 1962; 
Kaufman and Sternberg, 2010; Mumford, 2003; Runco, 2012; Runco 
and Jaeger, 2012; Simon, 2001; Stein, 1953; Sternberg and Lubart, 
1999). In line with this definition, psychologists have modelled the 
creative process as an interaction between a generative component—
which supports the production of ideas—and an evaluative 
component—which concerns the selection of the ideas that seem most 
promising in terms of feasibility and potential success (e.g., Basadur 
et al., 1982; Ellamil et al., 2012; Finke et al., 1992; Hao et al., 2016; 
Rietzschel et al., 2019; Zamani et al., 2023).

Interest in the potential of AI to support the generative phase is 
certainly a major theme in the literature on AI, widely focused on 
developing and testing AI creative performance in comparison to 
human creative performance (e.g., Hubert et al., 2024; Ismayilzada 
et al., 2025; Koivisto and Grassini, 2023; Stevenson et al., 2023; Tian 
et al., 2023).

However, another interesting question is whether AI can also 
support the evaluative phase, or whether humans remain the 
gatekeepers, assessing the value and potential of AI creations. The 
latter position is suggested, for example, by Agrawal et al. (2017), 
Karimi et al. (2018), Magni et al. (2024), van Esch et al. (2019) and von 
Krogh (2018). At the same time, promising tests have been carried out 

in recent years on the possibility of using AI to assess the creativity of 
human-generated responses, in both verbal (e.g., Acar et al., 2021; 
Beaty and Johnson, 2021; Buczak et al., 2023; Dumas et al., 2021; 
Luchini et al., 2025; Patterson et al., 2024; Stevenson et al., 2020, 2023) 
and visual (e.g., Acar et al., 2025; Cropley and Marrone, 2025; Grassini 
and Koivisto, 2025; Patterson et al., 2024) creativity tasks. In some 
recent works the automated assessment was extended, comparatively, 
also to AI-generated responses (e.g., Chakrabarty et al., 2025; Hubert 
et al., 2024; Ismayilzada et al., 2025; Kern et al., 2024; Orwig et al., 
2024; Stevenson et  al., 2023). The goal in all cases is to develop 
automated scoring systems that mimic human classification of 
responses.1

In the next section, rather than comparing the performance of 
humans and AI on specific tasks, we will take a step back and consider 
the types of tasks and indices that are typically used in psychology to 
assess human convergent and divergent creativity (see Table  1). 
We will then discuss how this can inspire the development of new 
automated metrics and models to evaluate creativity in AI- and 
human-generated responses.

3.1 Transferring psychological constructs 
from convergent and divergent thinking 
tests to AI-generated responses

Classifying responses as creative or not (or as creative to varying 
degrees) has been a challenging topic for psychological research since 
it is not straightforward. The complexity of the classification becomes 
particularly evident when open-ended tasks are involved, that is, tasks 
that admit many alternative solutions and that relate to divergent 
thinking, while it is easier when creative convergent thinking and 
closed-ended tasks are concerned (for these definitions see 
Guilford, 1967a).

Closed-ended tasks are characterized by having one correct 
solution which is usually not obvious and not easily accessed due to 
some unnecessary constraints introduced by the human mind in the 

1  For example, Cropley and Marrone (2025) used a Convolutional Neural 

Network (deep learning) to automate the scoring of figural creativity. They 

focused on the Creative Thinking-Drawing Production test (TCT-DP; Urban 

and Jellen, 1996; Urban, 2005), in which participants are presented with squared 

frames containing incomplete and irregular figural fragments (e.g., a dot, a 

dashed segment, a circle) and are asked to complete the drawings. Based on 

the TCT-DP manual, 14 criteria must be used to score responses, such as 

connection by theme (do participants integrate the individual elements into a 

thematic whole?), the use of perspective, the presence of boundary-breaking 

(do participants draw elements that extend beyond the squared frame?), or 

unconventional use of the figural fragments/elements. Cropley and Marrone 

(2025) trained AI using a sample of responses produced by participants and 

scored by two independent raters (with inter-rater agreement always >0.90). 

They tested various AI models of scoring, which varied from two levels of 

creativity (low and high) to seven levels of creativity (corresponding to the 

seven classes defined in the TCT-DP test manual). Despite the small dataset 

of images used by AI in the training phase (N = 414), very good accuracy scores 

for the automated scoring emerged, along with high levels of inter-rater 

agreement with human raters.

https://doi.org/10.3389/fpsyg.2025.1648480
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Bianchi et al.� 10.3389/fpsyg.2025.1648480

Frontiers in Psychology 04 frontiersin.org

initial representation of the situation/problem. Typical closed-ended 
tasks used in psychology are visual–spatial problem-solving tasks (e.g., 
Gilhooly and Murphy, 2005; Webb et al., 2021) or verbal problem-
solving tasks (Webb et al., 2021) (Figure 1). 

With closed tasks, there are simple and accessible ways to assess 
participants’ performance, the most straightforward being the success 
rate, that is, the ability of the participant to find the correct solution. 
These kinds of problems are structured to push the observer towards 
an initial representation that cannot lead to the correct solution. 
Finding the correct solution manifests that the problem solver has 
been able to overcome the initial fixation and restructure their 
representation of the problem in a novel and less default—in this sense 
more creative—representation (Danek, 2018; Danek et al., 2020; Graf 
et al., 2023). Various other measures of creativity can complement the 
success rate, such as the number of attempts made, for example. In 
convergent creativity and closed-ended tasks, the best performance is 
associated with reaching the solution as soon as possible, that is, the 
less attempts made, the more creative one is considered (e.g., Bianchi 
et  al., 2020; Branchini et  al., 2016; Öllinger et  al., 2017). Other 
additional indexed aim to reveal the mental path followed by the 
participant while searching for the solution. For example, by analyzing 
the linguistic expressions used when thinking aloud in small groups, 
psychologists can track metacognitive aspects such as participants’ 
feelings of certainty or uncertainty, and how close they feel to finding 
the solution (Danek and Salvi, 2020; Danek and Wiley, 2017; 
Laukkonen et al., 2021; Salvi et al., 2016; Threadgold et al., 2018; Webb 
et al., 2016; Zedelius and Schooler, 2015). Other indexes concern the 
features of the drawings participants sketch while searching for a 
solution (e.g., Bianchi et al., 2020; Branchini et al., 2016; Fedor et al., 
2015; Öllinger et al., 2017), or neurophysiological states that co-occur 
with or precede the emergence of the solution (e.g., Danek et al., 2015; 

Danek and Flanagin, 2019; Salvi and Bowden, 2024), and eye 
movements (e.g., Bilalić et  al., 2021; Ellis et  al., 2011; Ellis and 
Reingold, 2014; Knoblich et  al., 2001; Xing et  al., 2018, 2019). 
Collecting all this information requires technical mastery and can 
be  time-consuming, but it is methodologically sound in terms of 
objectivity. All these measurements (except eye tracking and 
neurophysiologic responses) could be  in theory applicable in the 
context of analyses of AI creative performance. For example, we could 
present puzzles to Large Language Models / Vision Language Models 
that they could solve using chain-of-thought and explanations, and in 
this way could track the evolution of their attempts till they reach 
the solution.

When responses to an open task are concerned, the situation 
becomes more complicated also for the analyses of human 
creativity. Classic examples of open-ended tasks used in 
psychology studies are the Alternate Uses Task (AUT), or the Five 
Sentence Creative Story task (Figure 2), where 2–3 min time limits 
are usually set. The creation of an artwork is also an obvious 
example of open-ended task, since there are many alternative 
possible solutions.

Assessment of creativity measurement with this kind of tasks 
is more complicated, since there is no correct response and 
therefore success rate does not represent a meaningful measure of 
performance. The same measures used to capture participants’ 
mental paths with closed-ended tasks can be also used for open-
ended tasks (e.g., analyses of drawings produced in the search 
phase, analyses of thinking aloud processes, metacognitive 
feelings—see Ball and Christensen, 2009, 2020; Ball et al., 2021; 
Christensen and Friis-Olivarius, 2020), but with regard to the 
classification of the product, the following measures are usually 
considered: fluency, flexibility, originality and utility (see Beaty and 

TABLE 1  Summary of the measures typically used in psychology to assess human creativity in relation to closed- and open-ended tasks.

Measure Closed-ended tasks (CET) Open-ended tasks (OET)

Success rate ✓ –

Fluency (Number of attempts made, in CET/of ideas produced, in OET) ✓ ✓

Metacognitive feelings of certainty/uncertainty (feeling of confidence or rightness) ✓ ✓

Feeling of being close to the solution (i.e., feeling-of-warmth) in CET/close to find a 

good idea in OET
✓ ✓

Analyses of drawings produced during the search phase ✓ ✓

Neurophysiological states accompanying or preceding the emergence of the solution in 

CET/accompanying the idea generation in OET
✓ ✓

Eye-tracking movements ✓ ✓

Flexibility (number of categorically different ideas) – ✓

Originality:

	-	 Quantitatively (number or proportion of unique responses)

	-	 Qualitatively (expert ratings using the Consensual Assessment Technique [CAT])

– ✓

– ✓

Usefulness or utility (real-world applicability of an idea):

	-	 Feasibility, i.e., the practicality of an idea (expert ratings using the CAT)

	-	 Value, i.e., the effectiveness of an idea in achieving a goal or reducing economic costs 

(expert ratings using the CAT)

– ✓

– ✓

See the main text of the paper for a discussion of these two types of tasks and methods.
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Johnson, 2021; Bellaiche et  al., 2023a; Brosowsky et  al., 2024; 
Forthmann et al., 2020; Long and Pang, 2015; Primi, 2014; Primi 
et al., 2019; Reiter-Palmon et al., 2019; Silvia et al., 2008; Snyder 
et al., 2019; Weiss and Wilhelm, 2022).

Fluency refers to the number of ideas produced by the participant. 
Although fluency alone does not define creativity (e.g., Rietzschel 
et al., 2006), the assumption is that the more ideas produced, the 
higher the possibility that a creative idea emerges, especially because 
the first ideas are the less creative and the more the person persists in 
ideation, the more they arrive at more creative ideas (Lucas and 
Nordgren, 2020).

Flexibility refers to the number of categorically different ideas. 
The assumption is that the more different categories involved, the 
more creative the person is. For instance, in the Creativity 
Assessment Packet (Williams, 1993), where a series of drawings 
must be  produced starting from fragments of lines or shapes, 
flexibility is measured in terms of different categories of objects 
drawn. If a person draws a living being in one drawing, a landscape 
in another, a symbol in yet another, and a useful object in another, 
this is considered an indication of flexibility. A person whose 
drawings fall within the same category type (e.g., landscapes) 

demonstrates less flexibility. Likewise, in AUT, response patterns 
classified as more flexible are those that traverse various conceptual 
spaces—e.g., using a “brick” as a paperweight, step to gain height, 
and sidewalk chalk, rather than imagining uses which variously 
concern holding things in place (e.g., a paperweight, bookend, 
doorstop) (Hass, 2017; Nijstad et al., 2010).

Originality refers to the degree of uniqueness of the idea 
produced, and the evaluation of this aspect is more challenging. 
Originality can be  described quantitatively, in terms of the 
numbers of unique responses (initially formalized by Wallach and 
Kogan, 1965). The assumption is that the smaller the proportion 
of participants who come up with the same idea, the more original 
the idea is (e.g., DeYoung et al., 2008; Hocevar, 1979; Putman and 
Paulus, 2009; Webb et al., 2021—for a critical view of uniqueness 
scoring and ways to address its problems see Silvia et al., 2008). 
However, originality is traditionally measured qualitatively using 
Amabile’s (1983, 1996) Consensual Assessment Technique (CAT). 
In this technique, domain experts independently rate responses 
on a a scale ranging from “not at all creative” to “very creative” 
(Silvia et al., 2008; see also Baer and Kaufman, 2019; Kaufman 
et al., 2008).

FIGURE 1

Two classic closed-ended tasks used in psychology: a visuo-spatial task (top box), i.e., the nine dots problem (Maier, 1930), and a verbal task (bottom 
box), i.e., the remote associates test (Mednick and Mednick, 1967).

FIGURE 2

Two classic open-ended tasks used in psychology: the alternate uses task (Guilford, 1967b) (top box) and the five sentence creative story task 
(Prabhakaran et al., 2014) (bottom box).
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Usefulness, or utility, corresponds to the real-world applicability of 
an idea and is defined in terms of both feasibility—that is, the practicality 
of an idea (Poetz and Schreier, 2012; Rietzschel et al., 2010, 2019)—and 
value (Litchfield et al., 2015)—which lacks a universal definition but is 
mostly related to the effectiveness of an idea in achieving a goal or in 
terms of economic costs (e.g., Ford and Gioia, 2000). Usefulness is also 
usually measured with the CAT. However, because usefulness is difficult 
to score, raters are generally only asked to score originality, despite 
usefulness playing an important and distinct role in evaluating creativity 
(Diedrich et al., 2015; Rietzschel et al., 2019).

The problem with CAT scoring is, first, its reliability. While some 
studies have proven its validity (Amabile, 1982; Kaufman et al., 2007; 
Long and Wang, 2022; Myszkowski and Storme, 2019), others have 
highlighted the impact of personal or cultural biases on this subjective 
classification (e.g., Blair and Mumford, 2007; Dailey and Mumford, 
2006; Ivancovsky et al., 2019; Toh and Miller, 2016).2 Additionally, the 
consensus reached depends on the raters involved (e.g., Cseh and 
Jeffries, 2019; Forthmann et al., 2017; Plucker et al., 2019; Reiter-
Palmon et al., 2019; Zhou et al., 2017). Second, the CAT technique 
certainly requires time and efforts on the part of the raters, and costs 
for the researches. For this reason, as mentioned at the beginning of 
this section, automated scoring methods have recently been developed 
that have the potential to assist researchers and/or educators in 
assessing human responses. The classic procedure is to train the AI 
using a sample of human-generated responses scored by independent 
raters, and then to test different machine learning models for 
automated scoring.

Many of these studies have shown that AI scoring is as accurate 
and reliable as human raters (e.g., Beaty and Johnson, 2021; Cropley 
and Marrone, 2025; Dumas et al., 2021; Kern et al., 2024; Hubert 
et al., 2024; Luchini et al., 2025; Sun et al., 2024). However, when 
we compare these studies, a question emerges: What criteria are 
used to measure creativity? Stevenson et  al. (2023) compared 
human and open AI performance on the GPT-3 and GPT-4 in the 
Alternate Use Test (AUT), evaluating responses in terms of 
originality, usefulness, surprise, and flexibility. The same task was 
used by Hubert et al. (2024) in addition to two other open-ended 
tasks (the Consequences Task and the Divergent Association Task) 

2  Familiarity with the topic, for instance, can lead to overestimating the 

positive benefits and outcomes of an idea while underestimating the resources 

needed to implement it (e.g., Dailey and Mumford, 2006). Experts demonstrate 

higher interrater agreement in their evaluations than novices (e.g., Kaufman 

et al., 2008), but they also have a better understanding of the benefits of 

continuous (incremental) innovative ideas and more resistance toward 

discontinuous (radical) innovations, which are often better appreciated by 

non-experts (Moreau et al., 2001). The evaluative outcome also depends on 

personality factors. For instance, individual risk aversion and ambiguity aversion 

(Blair and Mumford, 2007; Toh and Miller, 2016) are associated with the 

selection of less creative ideas, while openness to experience (Silvia, 2008) 

correlates with the selection of more creative ideas. Information about the 

identity of the producer can also bias evaluators’ assessments: evaluators often 

rely on perceptions of the producer’s age, mental and emotional stability, and 

“genius” to guide their creativity evaluations (e.g., Baas et al., 2016; Rietzschel 

et al., 2019; Simonton, 2004, 2014). Judgments also depend on evaluators’ 

emotional states, whether positive, negative, or neutral (e.g., Mastria et al., 2019).

to compare human and GPT-4 performance in terms of fluency, 
originality and elaboration. Ismayilzada et al. (2025) used the Five 
Sentence Creative Story task to compare the performance of 
humans and of 60 different Large Language Models in terms of 
novelty, surprise, value, lexical and semantic diversity. The Five 
Sentence Creative Story task was also used by Orwig et al. (2024) to 
compare the performance of humans and GPT-3 and GPT-4, but 
the responses were scored in terms of a general creativity rating. 
Guzik et  al. (2023) compared ChatGPT (GPT-4) and human 
creative performance at the Torrance Tests of Creative Thinking by 
analyzing fluency, flexibility and originality.

A standardized system of creativity indices (dependent variables) 
would allow researchers to more easily compare the results of their 
studies and effectively compare the generative performance of 
different AI models with respect to different tasks. Furthermore, since 
some cited papers use AI to generate and score responses (Hubert 
et al., 2024; Ismayilzada et al., 2025; Kern et al., 2024; Orwig et al., 
2024), reaching a consensus on the definitions used to operationalize 
fluency, flexibility, originality/novelty, feasibility, and value would help 
identify the parameters used in these automated AI scoring systems. 
We are not suggesting that this is an easy goal to achieve—on the 
contrary—only that it could be valuable. The brief overview provided 
in this section will hopefully also help to highlight the risks of using a 
generic “provide a rating of creativity” prompt (e.g., Orwig et al., 2024; 
Seli et al., 2025), since the definition of creativity is multifaceted and 
encompasses many dimensions—as reflected in the struggle of 
cognitive scientists to find appropriate ways to measure it. Using 
precise prompts when defining the scoring criterion seems preferable, 
both for human raters and AI models. Several studies have gone in this 
direction (e.g., Hubert et al., 2024; Ismayilzada et al., 2025; Kern et al., 
2024; Stevenson et al., 2023).

4 From empirical aesthetics to AI

Let us now specifically focus on the situation in which the 
“creative” products generated using AI are artworks and on their 
aesthetic evaluation by human observers. Relatively little is known 
about (a) whether people can accurately attribute what they observe 
to the category of human-generated art versus AI-generated art (e.g., 
Chamberlain et al., 2018; Gangadharbatla, 2022; Hong and Curran, 
2019; Samo and Highhouse, 2023; Velásquez-Salamanca et al., 2025) 
and (b) how people aesthetically evaluate AI-generated artworks (e.g., 
Agudo et  al., 2022; Bellaiche et  al., 2023b; Chiarella et  al., 2022; 
Gangadharbatla, 2022; Hong and Curran, 2019; Horton et al., 2023; 
Messingschlager and Appel, 2025; Neef et al., 2025; Ragot et al., 2020; 
Velásquez-Salamanca et al., 2025; Wu Y. et al., 2020). However, it is not 
difficult to see how these are becoming hot topics for research. In a 
recent empirical study, Yang and Xu (2025) explored the core 
dimensions of AI creativity from the audience’s viewpoint, uncovering 
audience biases against AI creativity. Namely the more AI was said to 
be involved in a creative process, in collaboration with a human being, 
the less the results were perceived as deep, authentic and attractive. 
However, it was perceived as more original. Here, we will add to these 
biases about AI creativity, other “biases” that emerge from a broad 
review of existing literature. For each of them, we will highlight open 
questions that may inspire interesting directions for future research 
aiming to discover the cognitive sources of these biases.
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4.1 The “typical style” of visual artworks 
attributed to AI

In various studies in which participants were exposed to images 
of both abstract and figurative paintings purportedly generated by 
either AI or humans, it was found that figurative images were more 
often attributed to humans, whereas abstract images were attributed 
to AI (e.g., Gangadharbatla, 2022, study 1). Alternatively, some 
findings suggest that figurative art was attributed indifferently to AI 
and humans, while abstract art was preferentially attributed to AI (see 
Chamberlain et al., 2018, study 1).

Empirical aesthetic research has shown that non-art experts tend 
to have a clear preference for figurative art over modern art, which is 
more often appreciated by individuals with greater familiarity with 
and expertise in art (Bimler et al., 2019; Knapp and Wulff, 1963; Leder 
et al., 2012; Leder and Nadal, 2014; Mastandrea et al., 2011, 2021; 
Pihko et  al., 2011). The bias toward attributing abstract art to AI 
suggests an implicit appreciation of human art (since figurative art is 
generally preferred) and a devaluation of AI art (since abstract art is 
less preferred). This is further supported by studies in which aesthetic 
judgments of AI-generated compared to human-generated art were 
explicitly solicited, as discussed in the following section. However, the 
aspect we want to highlight here is that these attributions suggest that 
people implicitly assume that abstract art is the typical “style” of 
AI-generated images. This conclusion is consistent with some findings 
emerged from Chamberlain et al. (2018), where participants were first 
asked to attribute images of artworks to either humans or AI and later 
to explain “How did you decide if a work was computer-generated?” 
(free-response task). Thematic analyses of participants’ responses 
revealed that there were relatively few references to content or 
intentionality; instead, responses focused primarily on surface and 
structural aspects of the artworks. Namely, the most common 
justifications for categorizing images as computer-generated were 
bright or artificial colors and rigid, straight, regular shapes and lines. 
Conversely, human-generated images were classified as such based on 
their appearance of being handmade, as evidenced by irregular, 
imperfect lines and a larger distribution of orientations, as well as the 
presence of brushstrokes (for this last aspect, see also Fuchs et al., 
2015). Similarly, Noll (1967) and Schröter (2019) found that ordered 
and regular distributions of elements were associated with 
AI-generated art.

Gangadharbatla (2022, p. 15) suggests that this typical “style” of 
AI (associated more with simple and regular composition) may have 
originated from early experiences of AI generation, with algorithms 
that were not as sophisticated as current ones, leading people to 
expect that AI could only produce simpler (i.e., abstract) artworks, 
not compelling figurative artworks. However, following projects 
such as the next Rembrandt (Sovhyra, 2021) and the development 
of databases of high-resolution human faces and landscapes 
produced by the latest generation of AI algorithms (Rombach et al., 
2022), this limitation has been overcome. It seems promising to 
investigate whether participants exposed to these updated types of 
AI-generated images—either because of their professional or 
educational background, or because they are exposed to images such 
as the next Rembrandt during a training phase—still exhibit the 
abstract = AI versus figurative = human equation, or whether this 
association would be significantly reduced. Such data would help 
shed light on the roots of the prototypical idea of AI-generated art 

that people seem to hold. If it is simply due to a mere exposure 
effect, this should be  a very transient bias that disappears after 
exposure to a training session that allows participants to 
acknowledge the possibility of AI generating realistic figurative 
images. If the bias persists, it would suggest that the bias is related 
to other factors (perhaps linked to a broader technology vs. 
anthropological cognitive dimension) that would be  interesting 
to understand.

4.2 The diminished value of AI-generated 
art when compared to human-generated 
art

Psychology studies on the aesthetic evaluation of human-generated 
artworks have shown that people’s evaluation can be  modified by 
providing contextual information, such as historical information about 
the artist (e.g., Fischinger et al., 2020), the style of the artwork (e.g., 
Russell, 2003), the intentional message the artist wanted to convey (e.g., 
Millis, 2001), the thought process involved in the innovation displayed 
by the artwork (Bianchi et al., 2025), and the skills required to create 
the artwork (e.g., Hodge, 2012). This information increases non-art 
experts’ understanding of and interest in the artwork, more than the 
pleasantness of the artwork (e.g., Belke et al., 2006; Bianchi et al., 2025; 
Jucker et al., 2014, experiments 2a, 2b; Leder et al., 2006, experiment 1).

Research has only just begun to connect the fields of empirical 
aesthetics and AI, but the role of contextual factors also seems central for 
research on AI-generated art. Studies comparing evaluations of human-
generated and AI-generated art have found that providing contextual 
information about the creator (human or AI) changes participants’ 
appreciation of the artwork. This effect is typically assessed using 
experimental designs in which the same images are presented in two 
different conditions: one in which participants are unaware of the 
authorship and another in which they are informed that the artwork was 
created by a human or by “technical” tools; or by presenting the same 
images in one condition labelled as AI-created, and in another condition 
as human-created. These studies show, for example, that viewers rated 
images labelled as having been created in Photoshop as less aesthetically 
pleasing than the same images labelled as having been taken from an art 
gallery (Kirk et al., 2009). Similarly, participants rated the same images 
of painting as more beautiful when they were attributed to human 
creators than when they were said to have been generated by robots 
(Chamberlain et al., 2018; Di Dio et al., 2023) or AI machine learning 
algorithms (e.g., Hong and Curran, 2019; Horton et al., 2023; Millet et al., 
2023; Ragot et al., 2020; Wu Y. et al., 2020). The bias against AI-generated 
art persists even when it is emphasized that the artwork was created in a 
collaborative production between humans and AI (Horton et al., 2023, 
study 6; Messer, 2024, Yang and Xu, 2025) and is not exclusive to the 
visual arts. Participants rate the quality of a music lower when they were 
informed it was AI-generated rather than human-made (e.g., Agudo 
et al., 2022; Hong et al., 2020, 2022; Moffat and Kelly, 2006; Shank et al., 
2023). Similar results were observed in dance choreography (Darda and 
Cross, 2023). Neef et  al. (2025) suggest that lower appreciation of 
AI-generated art emerges in particular when it is compared to human-
generated images and not independently of this comparative framework 
(this is also highlighted in Horton et al., 2023).

In the following subsections we will focus on visual art, we outline 
five possible factors underlying this aversion that have been identified in 
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various literature (leaving aside the role of individual differences) and 
that prefigure possible promising lines of future research to be developed.

4.2.1 Is the aversion mitigated by the artistic style 
of the painting considered?

Aversion to AI-generated art may stem from a broader 
phenomenon known as “algorithm aversion” in decision making 
(Castelo et al., 2019; Dietvorst et al., 2015; Shaffer et al., 2013; Yeomans 
et al., 2019). However, the literature on decision making also suggests 
that in certain cases where decisions require objectivity, lack of bias, 
and neutrality, an opposite phenomenon occurs, referred to as 
“algorithmic appreciation” (Sundar, 2008). This phenomenon consists 
of an overestimation of machine performance compared to human 
performance (see Castelo et al., 2019; Liu and Wei, 2019; Logg et al., 
2019). The algorithmic appreciation phenomenon suggests that 
certain characteristics stereotypically attributed to machine 
performance can, under certain circumstances, elicit positive attitudes 
in observers. It has already been found that the use of AI led to more 
positive evaluations of intangible products, such as songs, compared 
to tangible products, such as paintings (Tigre Moura et al., 2023), but 
whether this might be related or not to algorithmic appreciation has 
not been discussed in the original paper. One relevant question is 
whether the appreciation of tangible, AI-generated art (i.e., paintings) 
might also benefit from algorithmic appreciation. For example, 
AI-generated paintings might be evaluated more positively in genres 
that require precision, accuracy, and programmed sequences of 
elements, and less positively in others.

Some studies have recently appeared on the different abilities of 
GenAI to imitate different artistic styles (Asperti et al., 2025; Ha et al., 
2024; Tang et al., 2025). For example, Asperti et al. (2025) found that 
AI generative models appear to be more adept at imitating artistic 
styles such as Impressionism, Cubism, Dadaism, and Futurism, which 
emphasize “abstraction, bold forms, and expressive brushwork” 
(p.  14), whereas they face greater challenges when attempting to 
imitate Renaissance, Baroque, Rococo, and Naive art styles. The 
inability to distinguish between human-generated and AI-generated 
art for some styles (reflecting gen-AI’s success at imitation) is not the 
same as appreciation. As we  have seen in the previous pages, 
participants often depreciate the same artworks when they know they 
are AI-generated, even though they cannot distinguish them from 
human-made artworks. It would be  interesting to study whether 
aversion to AI-generated art is weaker for certain styles. This aversion 
may be  weaker for styles, such as Op Art, Cubism, and Abstract 
Expressionism versus Impressionism, Renaissance and Baroque Art. 
This hypothesis is based on the implicit assumptions participants have 
about the “typical style” of visual art attributed to AI, as discussed in 
a previous section (section 4.1). A comparative analysis of the 
appreciation of AI-generated art in different styles would allow us to 
discover various implicit assumptions.

4.2.2 Is the aversion mitigated by witnessing the 
production process?

Based on the few studies that have examined the impact of 
personal beliefs on the appreciation of AI-generated art, we know 
that the bias against AI-generated art is primarily driven by 
participants who do not attribute creative skills to AI (e.g., Agudo 
et al., 2022; Chamberlain et al., 2018, study 2; Di Dio et al., 2023; 
Hong et al., 2020), have a negative attitude towards AI (Neef et al., 

2025), and hold anthropocentric beliefs about creativity, that is, 
they believe creativity is a uniquely human trait—which leads 
them to see less creative value in, feel less awe for, and be  less 
likely to purchase AI-generated art (Millet et  al., 2023). The 
negative bias towards AI-generated artworks was also found to 
depend on personality traits (e.g., Grassini and Koivisto, 2024) 
and cultural differences (e.g., Wu Y. et al., 2020). All these findings 
highlight the importance of more frequently assessing individual 
factors in future studies that aim to test the appreciation of 
AI-generated art.

With this premise in mind, an interesting hypothesis that merits 
further consideration is that exposure to the production process may 
improve evaluations of AI-generated art. Witnessing the art production 
process may enhance participants’ appreciation of the “ability” required 
by AI to create a painting, sculpture, or a piece of music, paralleling the 
appreciation we have for human artists’ technical skills. This hypothesis 
is provisionally supported by the results of few, but interesting, studies 
(e.g., Chamberlain et al., 2018, study 2; Tresset and Leymarie, 2013). In 
particular, Chamberlain et al. (2018, study 2) demonstrated that the 
aesthetic response and artistic value of portraits created by robotic 
artists increased when participants could observe them at work. In one 
condition, participants were present while the robots drew portraits of 
individuals sitting in a chair (for full details on the robot used, see 
Tresset and Leymarie, 2013) and could interact with them by having 
their portrait drawn. In another condition, they were presented with 
the drawings and informed that they had been created by a robot. In a 
third condition, they received no information about how the drawings 
were created. The aesthetic ratings of the drawings were higher when 
participants assisted the robots while drawing as compared to both the 
condition where only information about the artist was provided 
without direct observation or interaction, and the condition where no 
information was given (leading participants to assume the portraits 
were made by a human artist).

A connected factor to consider is the anthropomorphisms that is 
brought into play by the process. For instance, activation of the motor 
and premotor cortices was found when participants were exposed to 
Lucio Fontana’s Cuts (Umiltà et al., 2012) or Franz Kline’s artworks—
characterized by wide, marked traces of brushstroke (Sbriscia-Fioretti 
et al., 2013). These findings have been explained in terms of embodied 
simulation of the artist’s gestures during the perception of the artworks 
(see also Freedberg and Gallese, 2007; Oberman et al., 2007). In the 
context of AI, these findings raise the question of whether witnessing 
the art production process by AI might lead to increased engagement 
and a more positive evaluation of the generated output, and whether 
this is moderated by the amount of anthropomorphism prompted in 
the generative process (Waytz et al., 2014). The robots in Chamberlain 
et al. (2018) lacked humanoid visual characteristics, but the dynamics 
of their actions suggested them—particularly the robot’s alternating 
“looking behaviour” toward the person whose portrait was to be made 
and the drawing in progress. Direct exposure to the production action 
may activate the same mechanisms of motor simulation that occur 
when observing human actions.

4.2.3 Is the aversion mitigated by information 
about the effort and time needed to create the 
artwork?

We know from psychology studies, that the aesthetic appreciation 
of human artworks also depends on the information provided to 
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observers about the time the artist spent in direct contact with the 
artwork. The longer the contact, the higher the perceived value of the 
object (Newman and Bloom, 2012). Similarly, the more time and 
effort attributed to the artist in creating the artwork, the higher 
observers’ ratings of liking, quality, and value of the artwork (Jucker 
et al., 2014, study 3; Kruger et al., 2004).3 The effect of time has been 
explained through effort heuristics. Assessing quality can often 
be challenging—for instance, determining the monetary value of a 
painting or the scientific contribution of a paper or book. When this 
is the case, people use effort as a heuristic for quality. Effort is generally 
a reliable indicator of quality; all else being equal, paintings that have 
received prolonged attention from the artist, as well as papers/books 
that have required extensive time to create and revise, usually result in 
better work. This logic supports the existence of the heuristic. 
However, like all heuristics, it can sometimes lead to errors. Moments 
of inspiration, for example, can occasionally result in unexpectedly 
quick and optimal outcomes.

How can we relate this to AI-generated art? If participants assume 
by default that AI is “quick” in doing what it does—and robots and AI 
systems are typically perceived to reduce effort and labor for humans 
(see Bechwati and Xia, 2003; Kruger et al., 2004)—this may contribute 
to the negative aesthetic bias toward AI-generated art. Some empirical 
findings support this hypothesis. For example, Horton et al. (2023) 
found that participants evaluated AI-labeled artworks as having taken 
less time to produce and as being less creative and worth less money. 
Magni et al. (2024, Studies 2–3) found that participants rated AI as 
exerting less effort than humans when performing creative tasks (e.g., 
designing marketing campaign posters and generating business ideas). 
These attributions directly correlated with negative evaluations 
of creativity.

Would judgments change if observers were informed that, 
conversely, the creation of the artwork required significant time 
to AI or involved the interlocking action of multiple AI networks? 
These are pertinent questions for empirical research. To the best 
of our knowledge, there is currently very little literature on this 
topic. Magni et  al. (2024, study 4) found that in a condition 
where both information about the creator (AI versus human) and 
effort (low versus high) were manipulated, participants 
associated the highest creativity ratings with the human-high 
effort condition, followed by the human-low effort condition, the 
AI-high effort condition, and, finally, the AI-low effort 
condition. These findings indicate that effort could not substitute 
for the effect of the creator’s identity. However, they also 
demonstrate an extension of effort heuristics to the domain of AI 

3  For example, in studies conducted by Kruger et al. (2004), participants were 

exposed to the same poem (in experiment 1), paintings (in experiment 2), or 

arms and armor (in experiment 3), but were given different information about 

the time the artist spent writing the poem (four or 18 h), creating the painting 

(four or 26 h), or making the arms and armor (15 or 110 h). The findings revealed 

that participants gave more favorable evaluations of the artworks when they 

believed the creation process took longer. The influence of time on judgment 

was particularly evident when it was difficult for participants to evaluate the 

quality of the artwork itself (achieved in their study by using low versus high-

resolution images).

creativity. Indeed, time and effort were not irrelevant variables 
for judging AI products. Bellaiche et al. (2023b) found that the 
artworks that participants judged to have required high effort, 
received higher ratings of liking and beauty when they were 
attributed to humans. Conversely, the artworks that participants 
thought required low to moderate effort received higher liking 
and beauty ratings when attributed to AI.

4.2.4 Is the aversion mitigated by emotional 
engagement with AI-generated art?

In discussing whether computers can replace human artists, 
Hertzmann (2018) argues that “art requires human intention, 
inspiration, and a desire to express something.” Various authors have 
emphasized that the aesthetic value of an artwork also lies in its 
capacity to evoke experiences charged with emotions that the creator 
felt and transferred into the artwork (e.g., Di Dio and Gallese, 2021; 
Pelowski et  al., 2020, 2023). Framing the question in these terms 
seems to rule out any possibility of AI producing art since it is 
impossible for AI to transfer an experience or emotion “felt” by AI into 
the produced object (we can call this the impossibility of being 
emotionally engaged by AI art argument). In other words, when an 
artwork is created by a non-human entity, such as a computer, no 
human emotions can be expressed (e.g., Lu, 2005). Is this the reason 
why paintings labeled as AI-generated are rated by participants as less 
emotional than those attributed to humans (Demmer et al., 2023; 
Horton et al., 2023, study 1), and less awe-inspiring (Millet et al., 
2023)? Or why participants exposed to identical pieces of video art or 
music report greater emotional arousal (“To what degree would 
you say that it aroused your emotion?”) when they believe the artist is 
human than when they believe it is AI (Agudo et al., 2022)? Or why 
articles written by an algorithm are considered more objective but also 
less emotionally engaging than those written by humans (Liu and 
Wei, 2019)?

On the other side, there is evidence that people can be emotionally 
engaged by AI art (possibility of being emotionally engaged by AI art 
argument). Bellaiche et al. (2023b) found that, for both images labeled 
as to human-created artworks and images labeled as to AI-created 
artworks, ratings of liking and beauty increased as the emotion rating 
(“To what extent does this artwork elicit an emotional response in 
you?”) increased. Furthermore, as Arielli and Manovich (2022, p. 16) 
point out: “The success of virtual pop stars in East Asian cultures (such 
as Hatsune Miku and several K-pop ‘avatar’ bands, some of them 
AI-driven) reveals how the public can emotionally engage with a 
fictional performer, follow them on social media, attend their concerts, 
and purchase merchandise depicting them. We could go as far as to 
say: fans do not love them despite, but actually because they are 
openly fake.”

Finally, we  cannot help but notice that it is also a common 
experience that we sometimes appreciate a decorative pattern or the 
design of an object—such as a piece of furniture, a car, or a pair of 
shoes—without any emotional engagement with the feelings, 
experience, and intentions of the creator (the indifference to emotional 
engagement argument). These works can be pleasant, engaging, and 
entertaining in their own right.

We need further empirical evidence to clarify both the conditions 
that support an emotional response to AI-generated art and the 
necessity of an emotional engagement.
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4.2.5 Is the aversion better understood by 
analysing “liking” separately in terms of pleasure 
and interest?

Over the past decade, several models of aesthetic liking developed 
in the psychology of art and empirical aesthetics have conceptualized 
the idea of “liking” at two different levels (e.g., Graf and Landwehr, 
2015, 2017; Leder et al., 2004, 2012; Leder and Nadal, 2014; Pelowski 
et al., 2017), by applying dual-process theories developed in social 
psychology and the psychology of reasoning (e.g., Chaiken and 
Trope, 1999; Gawronski and Creighton, 2013; Evans, 2006, 2008; 
Evans and Stanovich, 2013) to the analyses of aesthetic appreciation. 
Here, we refer to the Pleasure and Interest model of Aesthetic liking 
(PIA), developed by Graf and Landwehr (2015, 2017) for human-
made art, as a framework for thinking about aesthetic appreciation 
in AI-generated art.

According to this model, aesthetic appreciation emerges from 
two hierarchical, fluency-based processes. The first level is based 
on an automatic, default process (“gut- response”) that results in 
an immediate affective response of pleasure or displeasure (Reber 
et al., 2004, p. 365; Strack and Deutsch, 2004; Winkielman and 
Cacioppo, 2001; Zajonc, 1980). The second level is activated when 
the observer engages in further controlled and effortful processing 
of the object, which involves an active and reflective interaction 
with the stimulus (Augustin and Leder, 2006; Belke et al., 2015; 
Pelowski et  al., 2016; Reber, 2022). The decision to process a 
stimulus at this second level is determined by the interplay 
between the observer’s motivation and the pleasure or displeasure 
experienced at the first level. If observers experience displeasure 
at the gut level (“I do not like it: why is this art?”)—or disfluency, 
using the model’s terminology—they may be motivated to activate 
the second stage in order to gain a deeper understanding of the 
object. This second level of processing can lead to an experience 
of liking that is different from the first type (pleasure) and is 
referred to as “interest.” Interest arises when the viewer feels that 
the information they have discovered or learned has improved 
their fluency in processing the object. Not only do they feel that 
they have learned something about what they are observing (the 
artwork), but they also experience a change in their way of 
thinking. They perceive themselves as adopting a different, more 
analytical style of processing, paying attention to non-salient 
attributes, and feel an increased sense of mastery as a result of this 
transformation. Metacognitive aspects are embedded into this 
second level of liking (Alter et al., 2007; Bullot and Reber, 2013; 
Christensen et al., 2023).

Keeping this framework in mind when analyzing human response to 
AI-generated art may help to identify new questions and consider new 
methods for inquiring whether participants like or dislike AI art. To the 
best of our knowledge, the PIA model has only been considered by 
Bellaiche et al. (2023a). Namely, it inspired them to investigate participants’ 
responses to art labeled as AI-generated (compared to art labeled as 
human-generated) at a multidimensional level, asking participants not 
only for ratings about liking and beauty (which capture the first level of 
liking, pleasure), but also for rating of profundity (“How profound is the 
artwork?”), meaning (“To what extent do you find this artwork personally 
meaningful?”), story (“To what extent can you imagine a story being 
communicated through this artwork?), in addition to questions about the 
amount of time and effort they believed was involved in creating the 
artwork and the emotional response it elicited.

We believe that applying the PIA model directly to AI-generated 
art could inspire at least two new research directions. One direction 
would examine the surface-level features of AI-generated artworks 
that are appreciated. Do these features correspond to those 
appreciated in human-generated art, such as symmetry (Reber, 2002; 
Wurtz et al., 2008), contrast or clarity (Bornstein and D’Agostino, 
1994; Halberstadt, 2006; Messinger, 1998; Reber et al., 1998; Reber 
et  al., 2004; Song et  al., 2021; van Geert and Wagemans, 2020; 
Winkielman et al., 2006)? Another research direction is to investigate 
whether exposure to information about the artist (i.e., AI), the 
concept behind the artwork (often encapsulated by its title), and the 
process leading to its creation would influence participants’ interest 
in the artwork, if not their perceived pleasure. Connected to this is 
exploring whether increased interest would also correspond to 
experiencing an improved sense of mastery and fluency in dealing 
with AI-generated art, that is, the metacognitive aspects involved in 
appreciation at the second level of the PIA model.

Table 2 summarizes the main biases toward AI creativity and the 
key research questions discussed in the previous sections.

5 Discussion

The purpose of this paper was to contribute to the ongoing 
discussion of how we can operationalize the constructs of creativity 
(which was developed to define one of the most distinctive 
capacities of the human mind) and aesthetic appreciation when 
applied to AI creations. As clarified in the Introduction, we adopted 
an operational perspective bridging concepts and methods taken 
from the literature about creativity and art appreciation as 
developed in cognitive psychology and empirical aesthetics into the 
ongoing debate on creativity and AI, with the aim to stimulate new 
perspectives and questions, and suggest new directions for future 
empirical research.

We started with two clarifications. First, by reminding that making 
comparisons between human-generated and AI-generated products 
(concerning both creative responses in general, or artworks) does not 
imply that the processes leading to them are the same. Second, by 
pointing out that previously learned knowledge is fundamental to 
both human and AI creativity—therefore, we should not jump too 
quickly to the conclusion that AI responses cannot be novel simply 
because they are based on prior knowledge.

We then moved on to the first of the two main topics of the paper. 
We examined the indices used in psychology to operationalize creativity 
in closed-ended tasks, where convergent creative thinking is involved, 
and in open-ended tasks, where divergent creative thinking is required 
(section entitled “Adopt indices used to assess human creativity in 
psychology and cognitive science to develop metrics/models for 
assessing AI-generated creativity”). The goals of this section were (a) to 
show the multidimensionality involved in the definition of creativity, (b) 
to provide a systematic list of indices and a clarification of the 
corresponding aspects they are intended to capture, and (c) to stimulate 
reflection on the benefits of developing a standard set of indices (and of 
using similar operational definitions) for research testing the 
performance of automated AI scoring models to evaluate the creativity 
of both human-generated and AI-generated responses.

The second major theme of the paper (developed in the section 
entitled “From empirical Aesthetics to AI”) focused on the situation 
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in which the creative products generated by AI are works of art, and 
on their aesthetic evaluation by human observers. Bridging the 
literature developed in psychology of art and empirical aesthetics 
with the literature and interest in AI, a number of new questions 
emerged. A first aspect focused on concerns the bias of associating 
abstract artworks with AI-generated art (and figurative artworks 
mainly with human-generated art, or both) and possible ways to 
empirically verify the factors underlying this bias. A second aspect 
concerns the diminished value usually attributed by participants to 
AI-generated art, compared to human-generated art. In reviewing the 
literature on the topic, we kept in mind some variables that have been 
shown in psychology to be  effective in explaining participants’ 
aesthetic appreciation of human-generated art, and suggested a set of 
five questions that can be applied to the study of human appreciation 
of AI-generated art. These questions suggest possible future empirical 
research directions: Is AI-generated art aversion mitigated by the type 
of art considered? Is the aversion mitigated by witnessing the 
production process? Is it mitigated by information about the effort 
and time required to create the artwork? Is the aversion mitigated by 
emotional engagement with AI-generated art? Is it better understood 
by analysing “liking” separately in terms of pleasure and interest? To 
all these questions we hope future experimental research will find 
valid and intriguing answers.
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TABLE 2  Key research questions related to some “AI creativity biases”.

Biases Research questions

Typical style: participants implicitly assume that the typical 

style of AI-generated images is abstract art, i.e., simple and 

regular compositions, bright or artificial colors, and rigid, 

straight, and regular shapes and lines.

	1.	 Is this bias rooted in prevalent exposure to early AI-generated images, and could it be corrected with 

extensive exposure to images resulting from the latest generation of AI algorithms?

	2.	 Does this bias reflect a broader underlying technological (precise, programmed, rigid) versus 

anthropological (imprecise, fantastical, flexible) divide?

Diminished value (Aversion to AI-generated art): 

participants tend to rate artistic performances (e.g., 

painting, music, and choreography) as less beautiful or 

aesthetically pleasing when attributed to AI rather than 

human creators.

	1.	 Is this aversion mitigated by the type of art considered? For instance, AI-generated art may be viewed more 

positively in genres requiring precision, accuracy, and programmed sequences of elements.

	2.	 Is this aversion mitigated by witnessing the production process? Seeing how AI creates a painting, 

sculpture, or piece of music may enhance participants’ appreciation of the technical skills required 

(likewise, as with human artists). This effect may be further moderated by the amount of 

anthropomorphism prompted in the generative process.

	3.	 Is this aversion mitigated by information about the effort and time needed to create the artwork (the more 

time and effort, the more appreciation—as for human-generated art)?

	4.	 Is the aversion mitigated by emotional engagement with AI-generated art or is emotional engagement 

unnecessary?

	5.	 Can this aversion be better understood by analyzing “liking” in terms of pleasure and interest separately (as 

foreseen by dual models of aesthetic liking)?

	 •	 Does AI-generated art spark more interest than pleasure?

	 •	� Are the same stimulus-based features that are liked in human-generated art, such as symmetry, contrast, 

and clarity, also appreciated in AI-generated art?

	 •	 Does exposure to information about the artist, the artwork, or the process of its creation enhance interest?

	 •	� Does experiencing increased interest also imply that you feel more mastery and fluency in dealing with 

AI-generated art?
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