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Introduction: The purpose of the study was to investigate potential asymmetry 
in contralateral muscle excitation (CME) in proximal versus distal muscles. Given 
the dominant arm’s greater accuracy in unilateral tasks, reinforced by habitual 
use and neural specialization, along with neurophysiological constraints in 
the central nervous system and functional differences between proximal and 
distal muscles, higher CME was hypothesized in both the dominant compared 
to non-dominant and proximal compared to versus distal muscles. Secondly, 
a proximal-distal gradient of asymmetry in CME was hypothesized, with more 
pronounced bilateral asymmetry for distal compared to proximal muscles.
Methods: Isometric shoulder and index finger flexion on the dominant and non-
dominant arm was performed at 25, 50, 75, and 100% of maximum isometric 
force. Muscle excitation was measured using sEMG placed on the non-active 
contralateral flexor carpi radialis (FCR; distal condition) and on the anterior 
deltoid (proximal condition) on both the dominant and non-dominant arm.
Results: In the unilateral shoulder flexion (proximal condition), no CME 
asymmetry between the non-active anterior deltoid on the dominant and non-
dominant arm was observed. In contrast, in unilateral index finger flexion (distal 
condition), a pronounced asymmetry in CME was observed, with the FCR on 
the dominant arm exhibiting greater CME compared to the FCR on the non-
dominant arm.
Discussion: These findings highlight neurophysiological distinctions of the 
dominant side, especially in distal muscles where refined neural circuits support 
greater CME. In contrast, the absence of asymmetry in proximal muscles is 
consistent with their stronger bilateral communication, facilitated by denser 
interhemispheric and spinal commissural pathways. Overall, the results indicate 
that CME asymmetries are shaped by both cortical specialization and structural 
differences in neural connectivity, offering new insight into how dominance and 
proximal–distal distinctions interact in motor control.
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Introduction

Human movement is characterized by a tendency to favor one side 
of the body, known as lateral preference. While 25–45% of individuals 
exhibit a distinct preference for their right foot, this asymmetry is more 
pronounced in the upper extremities, where up to 90% favor their right 
arm (Carpes et al., 2010; Čuk et al., 2001; Gilbert and Wysocki, 1992; 
Porac and Coren, 1977). This preference significantly influences daily 
motor tasks, with the most evident asymmetry observed in arm function 
(Aune et  al., 2016; Loffing et  al., 2024; Mohr et  al., 2003). From an 
environmental perspective, arm function is inherently asymmetrical, as 
illustrated by everyday tasks like writing or unscrewing a jar, where the 
non-dominant arm provides stabilization while the dominant arm 
performs precise, dynamic manipulations (de Poel et al., 2007; Guiard, 
1987; Hammond, 2002). As a result, the dominant arm exhibits greater 
accuracy, dexterity, and efficiency in unilateral motor tasks (Aune et al., 
2016; de Boer et al., 2013; Gueugneau and Papaxanthis, 2010; Todor and 
Kyprie, 1980).

This advantage is attributed to the dominant hemisphere’s more 
developed motor control areas, strengthened by habitual use and 
practice, and thus enhancing neural specialization (Changeux and 
Edelman, 2017; Hammond, 2002; Michel, 2021). Repeated use of the 
dominant arm refines its neural pathways, improving synaptic 
connections and enabling faster and more efficient signal transmission 
(Bruttini et al., 2016; Michel, 2021; Uehara et al., 2014; Vercauteren 
et al., 2008).

In contrast, the non-dominant arm receives less specialized 
neural drive to the appropriate muscles, and is even more susceptible 
to contralateral muscle excitation (CME), where neural signals 
aimed at specific neural pathway unintentionally interfere with other 
neural pathways and cause co-activation of muscles (Bruttini 
et al., 2016).

Subsequently, the inefficient neural circuitry in the non-dominant 
arm leads to reduced movement precision and making the dominant 
arm consistently superior in tasks requiring high movement accuracy.

Furthermore, previous research has shown that footedness, rather 
than dominance, can influence motor unit discharge behavior and 
force steadiness during dorsiflexion in tibialis anterior (Petrovic et al., 
2023). In contrast, a later study reported no differences in force 
variability between dominant and non-dominant limbs during 
dorsiflexion, but asymmetries appeared at the motor unit level in 
tibialis anterior during less frequently used ankle adduction task, with 
greater variability and discharge rate in the non-dominant limb 
(Sahinis et al., 2024).

In addition, it is reported that the biceps brachi in dominant limb 
receive a higher proportion of coherent synaptic input to motoneurons, 
reflecting greater and more coordinated spinal motoneuronal output 
compared to the non-dominant limb (Lecce et  al., 2025a). Such 
enhanced neural drive may contribute to more efficient muscle 
activation pattern and could influence the degree of contralateral 
muscle excitation observed between limbs.

These spinal and cortical-level differences raise a broader question 
that has intrigued researchers for decades: what underlying 
mechanisms give rise to motor asymmetry in the upper limbs?

Understanding the origin of motor asymmetry has long been a 
subject of interest, yet its causes remain partially unexplained despite 
extensive research (Agnew et al., 2004; Corballis, 1998; Hugdahl, 2005; 
Liederman and Kinsbourne, 1980; McManus, 2002; Parma et  al., 
2017). Some researchers suggest that the uneven prevalence of 

right- versus left-arm dominance points to a genetic basis for laterality 
(Annett, 1978a; Coren and Porac, 1980; Annett, 1978b; Liederman 
and Kinsbourne, 1980). Conversely, other studies estimate that genetic 
influence accounts for only 10–20% of side preference, with 
environmental factors after birth responsible for the remaining 
80–90% (Ashton, 1982; Aune et al., 2016; Carpes et al., 2010; Coren, 
1993; Harris, 1991; Raymond and Pontier, 2004).

Furthermore, the development of laterality is also shaped by both 
the structure and function of the nervous system, particularly through 
bilateral neural communication occurring at multiple levels including 
the spinal cord, the corticospinal tract, and cortical regions (Delwaide 
and Pepin, 1991; Hortobágyi et  al., 2003; Jankowska et  al., 2005a; 
Kiehn, 2016; Pierrot-Deseilligny and Burke, 2005). At the cortical level, 
the cerebral hemispheres communicate via transcallosal fibers in the 
corpus callosum, which enable both inhibitory and excitatory 
interactions between corresponding cortical areas (Baker, 2011; 
Kuypers, 1973; Kuypers, 1978; Kuypers, 1964; Rosenzweig et al., 2009). 
In primates, there is a notably greater density of transcallosal 
connections between areas in primary somatosensory cortex (S1) and 
primary motor cortex (M1) associated with proximal muscles 
compared to those related to distal muscle control (Brodal, 2010; Gould 
et al., 1986; Jenny, 1979; Pandya and Vignolo, 1971; Rouiller et al., 1994).

On the spinal level, interneurons controlling axial, proximal, and 
whole-body muscles typically cross the midline to either activate or 
inhibit motor neurons on the opposite side, whereas those associated 
with distal muscles exhibit significantly less midline crossing 
(Jankowska et al., 2005a; Jankowska et al., 2005b). Furthermore, Aune 
et al. (2016), investigating precision asymmetry, found a proximal-distal 
gradient in bilateral asymmetry, with more pronounced asymmetry for 
the index finger compared to the shoulder for both spatial and temporal 
variables, which was associated to the differences in bilateral 
communication. Additionally, unpublished findings from our 
laboratory demonstrate higher contralateral muscle exciation (CME) 
for proximal compared to distal muscles across different force levels.

Based on these considerations, the present study aimed to investigate 
the effect of contractions with either the dominant or non-dominant 
arm on asymmetry in CME in proximal and distal muscles. It was 
hypothesized that CME (excitation of the non-active muscle) would 
be higher in the dominant compared to non-dominant proximal and 
distal muscles. Further, it was hypothesized that there would be  a 
proximal-distal gradient of asymmetry in CME, with more pronounced 
bilateral asymmetry for distal compared to proximal muscles.

Materials and methods

Participants

A sample of 13 healthy university students with no known 
neurologically disorders, three women (mean age 25.4 ± 7.5) and ten 
men (mean age 29.4 ± 7.6 years), were recruited. As indicated by the 
Edinburg Handedness inventory test (Oldfield, 1971), four 
participants were left-armed (laterality index (LI) = −0.64 ± 0.23) and 
nine participants were right-armed (LI = 0.87 ± 0.12). All participants 
provided written, informed consent before the study. The study 
protocol was reviewed and approved by the Norwegian Agency for 
Shared Services in Education and Research (SIKT; project number: 
152360), and all procedures were conducted in compliance with the 
latest revision of the Declaration of Helsinki.
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Task

The motor task used in the present study has been extensively 
described in a previous study (Aune et al., 2013). Briefly explained, 
participants were positioned in a custom-made chair 2.5 m from a screen 
(148 × 110 cm), and the task involved pulling a securely mounted S-type 
push-pull load cell using both maximal voluntary isometric contraction 
(MVIC) and submaximal contraction in both a proximal (shoulder 
flexion) and distal (index finger flexion) movement. Participants first 
completed three MVICs with either elbow or finger flexion. Based on the 
peak force in the MVICs, the submaximal force (25, 50, and 75%) was 
calculated, and participants performed three submaximal voluntary 
contractions at each force level in both the proximal and distal conditions.

Apparatus

To ensure isolated unilateral contractions, a custom-made chair 
and apparatus were developed. Straps and bands were applied to 
minimize postural instability and restrict movement to a single degree 
of freedom, allowing targeted muscle activation (Figures 1A,B). For 
index finger extension, a steel platform combined with straps limited 
motion exclusively to the intended joint (Figure 1B). During shoulder 
flexion tasks, additional straps around the waist and chest maintained 
joint isolation by restricting extraneous movement (Figure 1A).

Measurements

Surface electromyography
To measure surface electromyography (sEMG) activity on both the 

dominant and non-dominant arm of the participants, recordings were 
taken from the flexor carpi radialis (FCR) for the distal condition and 
the anterior deltoid for the proximal condition. To ensure accurate 

muscle signal acquisition, sEMG electrodes were positioned following 
SENIAM’s standardized guidelines (Hermens et  al., 2000). Before 
applying the self-adhesive electrodes (Dri-Stick Silver circular sEMG 
Electrodes AE-131, NeuroDyne Medical, MA, USA), which have an 
11 mm contact diameter and a 20 mm center-to-center distance, the 
participants’ skin was prepared to minimize impedance (Konrad, 2005; 
Nazmi et al., 2016). To further reduce noise, conductive gel (Signa Gel, 
Parker Laboratories Inc., Fairfield, NJ, USA) was applied to the electrodes.

The sEMG signals were captured using MuscleLab software 
(MuscleLab version 10.200.90.5095, Ergotest Technology A/S, 
Stathelle, Norway), which was also employed for processing the raw 
sEMG data. Signals underwent amplification and filtering through a 
preamplifier positioned near the detection site, followed by bandpass 
filtering (high-pass at 20 Hz, low-pass at 500 Hz). Subsequently, the 
signals were converted to root mean square (RMS) using a hardware 
circuit network (frequency response of 450 kHz, averaging constant 
of 12 ms; total error ± 0.5%) with a common mode rejection ratio of 
106 dB. The mean RMS was computed for each muscle during the 
isometric contractions. To normalize the sEMG signal during index 
finger and shoulder flexion, participants performed three 6-s isometric 
contractions (MVIC) targeting the relevant muscles on the dominant 
and non-dominant arm. The peak sEMG amplitude from these 
contractions, performed using the same movements as the tasks of 
interest, was used for normalization (Besomi et al., 2020).

Force
Force (in Newtons) was measured with an S-type push-pull load 

cell transducer (Ergotest Technology A/S), connected to the index 
finger and elbow via static wires. Data was sampled at 200 Hz during 
the voluntary contractions. The transducers were aligned with the 
direction of force exerted, indicated by black arrows in Figure 1. A 
MuscleLab 6,000 data synchronization unit (DSU) captured the force 
data, which was then processed using a five-point differential filter in 
MuscleLab software (version 10.200.90.5095, Ergotest Technology A/S).

FIGURE 1

To restrict participant movement and eliminate mechanical, postural, or synergistic muscle involvement, straps and bands were applied. The 
positioning of these restraints was standardized: for the distal condition (A), a strap was secured 2 cm below the metacarpophalangeal joint of the 
index finger, while for the proximal condition (B), it was placed on the lower part of the humerus, 5 cm above the elbow joint. sEMG electrodes were 
affixed to the flexor carpi radialis (FCR) in the distal condition and to the anterior deltoid in the proximal condition. The trunk and upper arm (humerus) 
were maintained at a 45° angle, with the index finger positioned horizontally. Force transducers were aligned with the direction of the applied force in 
each condition, as indicated by black arrows.
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Procedure

Prior to testing, preparation of participants’ skin involving 
shaving, cleaning with alcohol, and lightly abrading the skin to 
minimize impedance was done before electrode placement. 
Participants performed unilateral voluntary contractions using 
proximal effectors (elbow flexion) and distal effectors (finger flexion) 
with the dominant and non-dominant arm, with the starting condition 
counterbalanced among participants During the trials participants 
were instructed to keep their non-target arm relaxed at their side.

Each experimental condition started with a brief instruction of the 
task, followed by MVICs and three submaximal contractions at 25, 50, 
and 75% of MVIC for both proximal and distal muscles in the 
dominant and non-dominant arm, totaling 48 voluntary contractions. 
A one-minute rest interval was provided between trials to minimize 
fatigue. MVIC trials were performed for 6 s, whereas submaximal 
trials lasted 12 s. These durations were selected to ensure reliable 
contralateral sEMG recordings. During the contractions, participants 
received visual feedback on a screen positioned 2.5 m away in front, 
displaying the target force they needed to achieve at various relative 
force levels.

Data analysis

In all experimental conditions, muscle contractions were 
performed unilaterally, while sEMG amplitudes (converted to RMS) 
were recorded from the homologous muscles on the side not engaged 
in the voluntary contractions. Specifically, sEMG amplitudes from the 
muscles on the non-active arm  – whether dominant or 
non-dominant – were used to identify any CME and served as the 
basis for further analysis. For MVICs, which lasted 6 s, only the sEMG 
amplitudes from the 2–5 s time frame were included in the analysis to 
capture steady-state amplitudes. For submaximal contractions, steady- 
state amplitudes in the time frame of 2–10 s were analyzed, with the 
initial and final 2 s of each trial excluded from further analysis to 
account for potential unwanted influences during the test period’s 
beginning and end. For example, amplitudes in the first 2 s might 
reflect adjustments to the task, whereas the last seconds could 
be affected by muscle fatigue, loss of concentration, or increased effort 
at the end (Lorås et al., 2012; Moe-Nilssen and Helbostad, 2005; Repp 
and Penel, 2004).

Statistical analysis

To compare the submaximal force levels across muscles and arms, 
one-way repeated ANOVAs were run for each force level, with all 
combinations of muscles and arms as factors. To determine the 
presence and degree of asymmetry in CME between the dominant 
and non-dominant arm in proximal and distal muscles across force 
levels, two-way repeated ANOVAs were run separately for the 
proximal and distal muscles, with arm and force level as factors and a 
two-way interaction. Differences in arm or force level were assessed 
through post hoc tests with a Bonferroni correction for multiple 
comparisons. No values were considered outliers, determined as 3 SD 
outside the group mean (combination of muscle, arm, and force level).

A sensitivity power analysis for repeated measures ANOVA was 
performed a posteriori to determine the minimum detectable effect size 
for each main effect comparison (arm, force level) using G*Power 3.1.9.7 
(Faul et al., 2007), given α = 0.05, β = 0.80, groups = 1, measurements = 2 
or 4, n = 13, and effect size specification “as in SPSS,” indicating the 
ability to detect large effects. Effect size was reported as Hedges’ g, 
derived from the differences in estimated marginal means and standard 
errors, and interpreted according to Cohen (2013) as trivial <0.2, small 
≥0.2, moderate ≥0.5, and large ≥0.8. Statistical analysis of the potential 
difference between the proximal and distal muscles was only deemed 
necessary if both muscles showed significant asymmetry.

Normality of residuals (Cheng et al., 2010) was assessed visually 
with histograms and normal-probability plots, as well as through 
kurtosis and skewness values. For the three one-way ANOVA models, 
absolute z-scores of both kurtosis (|0.12–0.91|) and skewness (|0.22–
0.81|) were <|1.96|. For both two-way ANOVA models, absolute 
z-scores of kurtosis (|0.92–1.11|) were <|1.96|, whereas z-scores of 
skewness (|2.57–4.35|) were >|1.96|. The residuals for both models 
showed a slight right-skew (≤1.03). However, this was not deemed 
severe enough to preclude interpretation, considering the robustness 
of repeated measures ANOVA against non-normality with skewness 
≤2.31 (Blanca-Mena et  al., 2022). Sphericity was assessed with 
Mauchly’s test, using the Greenhouse–Geisser correction if ε < 0.75.

All statistical analyses were performed in SPSS version 29.0.1.1 
(IBM Corporation, Armonk, NY, USA). The level of statistical 
significance was set at α = 0.05.

Results

The actual relative force produced at each submaximal force level 
in the proximal condition was measured to be  24.3 ± 1.0%, 
48.7 ± 1.5%, and 72.4 ± 2.1% in the dominant arm, and 23.8 ± 0.9%, 
48.0 ± 2.0%, and 71 ± 3.3% in the non-dominant arm. In the distal 
condition, the relative force produced was 23.4 ± 2.2%, 47.4 ± 2.7%, 
and 73.2 ± 2.8% in the dominant arm, and 23.1 ± 2.3%, 48.7 ± 3.0%, 
and 73.3 ± 3.8% in the non-dominant arm. There were no significant 
differences in relative force between any combination of muscle and 
arm at force level 25% (F2.114,25.365 = 1.446, p = 0.255), 50% 
(F1.722,20.660 = 0.779, p = 0.454), or 75% (F1.980,23.760 = 1.335, p = 0.282).

For CME in the proximal muscle, there was no significant 
interaction between arm and force level (F1.566,18.797 = 1.772, p = 0.200; 
Figure  2A), and no significant difference in CME between the 
dominant and non-dominant arm (F1,12 = 1.977, p = 0.185, g = 0.37). 
There was an overall effect of force level (F3,36 = 70.830, p < 0.001), 
with post hoc tests showing significant increases in CME between all 
increasing force levels (25–50% p = 0.042, g = 0.87; 50–75% p < 0.001, 
g = 1.41; 75–100% p < 0.001, g = 1.49; Figure 2A).

Similarly, for the distal muscle, there was no significant interaction 
between arm and force level (F1.765,21.182 = 0.218, p = 0.779). However, 
there was a significant difference in CME between the dominant and 
non-dominant arm (F1,12 = 13.624, p = 0.003, g = 0.99; Figure 2B), with 
higher CME in the dominant arm. Further, there was an overall effect 
of force level (F3,36 = 19.557, p < 0.001), with post hoc tests showing 
significant increases in CME between 25 and 100% (p < 0.001, 
g = 1.53), 50–100% (p = 0.004, g = 1.20), and 75–100% (p = 0.024, 
g = 0.95), as well as between 25 and 75% (p < 001, g = 1.64).
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Discussion

The present study investigated potential asymmetries in 
contralateral excitation between the non-active dominant and 
non-dominant arms, specifically in proximal (anterior deltoid) and 
distal (flexor carpi radialis) muscles. Participants performed unilateral 
isometric contractions with the dominant and non-dominant arm at 
various force levels, determined by each participant’s individual 
maximal voluntary contraction. By analyzing the amplitude of surface 
EMG (sEMG) signals from the proximal and distal muscles of interest 
on the arm not engaged in the voluntary contractions, the study aimed 
to identify potential differences in CME between the dominant and 
non-dominant arm. The main finding was a significant asymmetry in 
the distal condition, specifically CME was greater in the dominant 
arm’s distal muscle when the non-dominant arm exerted the force, 

compared to the reverse. This suggests a functional advantage of the 
dominant side, potentially linked to enhanced control due to habitual 
use and more refined neural pathways (Abreu et al., 2015; Cernacek, 
1961; Cincotta et al., 2003; Cincotta and Ziemann, 2008; Zijdewind 
et al., 2006; Zijdewind et al., 1998). Repeated use of the dominant arm 
likely strengthens reentrant neural circuits in the dominant 
hemisphere, supporting more precise and isolated activation and 
potentially suppressing unintended excitation in contralateral muscles 
(Aune et al., 2016; de Boer et al., 2013; de Poel et al., 2007; Gueugneau 
and Papaxanthis, 2010; Huber, 1999; Peters and Durding, 1979; Porac 
and Coren, 1981; Smoll and Schutz, 1978; Todor and Kyprie, 1980; 
Todor et  al., 1982; Truman and Hammond, 1990). This neural 
specialization supports precise and isolated muscle excitation, which 
may explain the increased CME observed during non-dominant arm 
contractions in the distal condition. Functional asymmetry thus 

FIGURE 2

Box plots of normalized sEMG amplitude (%) in proximal and distal muscles on the dominant (dark grey) and non-dominant (light grey) arm across 
relative force levels (n = 13). The horizontal line represents the median and X represents the mean. Quartiles were calculated inclusive the median, and 
whiskers represent 1.5 x interquartile range outside the first and third quartile. For proximal muscles (A), no significant difference in contralateral muscle 
excitation was found between the dominant and non-dominant arm. For distal muscles (B), a significant difference in contralateral muscle excitation 
was found, with the flexor carpi radialis showing higher sEMG amplitude on the dominant arm compared to the non-dominant arm (p < 0.05). 
Note that the y-axis scaling differs between panel (A,B).
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contributes to this effect, as the dominant hemisphere’s robust 
pathways can facilitate focused excitation and suppress unintended 
excitation in contralateral homologous muscles (Bruttini et al., 2016; 
Changeux and Edelman, 2017; Hammond, 2002; Michel, 2021).

In contrast, no significant CME asymmetry was observed between 
proximal muscles on the dominant and non-dominant side. Given 
proximal muscles frequent involvement in everyday bilateral activities 
(e.g., lifting, walking, running), these muscles may benefit from more 
balanced and integrated neural control across hemispheres (Aune 
et  al., 2016; Cratty, 1962). As a result of this consistent bilateral 
engagement, the neural circuits connecting proximal muscles are 
often more refined, which could enhance their responsiveness to 
contralateral excitation and help explain the observed symmetry in 
CME. As such, a direct comparison of asymmetry between proximal 
and distal muscles was not warranted based on the current findings. 
Additionally, the study found that CME increased with higher levels 
of voluntary force generated (25, 50, 75, and 100%) in both muscle 
groups, with the effect being more pronounced in proximal muscles. 
This provides further support for the notion that unilateral motor 
activity can elicit contralateral neural responses (Abreu et al., 2015; 
Cernacek, 1961; Cincotta et al., 2003; Cincotta and Ziemann, 2008; 
Heming et al., 2019; Zijdewind et al., 2006; Zijdewind et al., 1998).

Structural differences in interhemispheric and spinal connectivity 
further help in explaining the present findings. A key structural 
distinction is the greater number of commissural fibers in the corpus 
callosum and interneurons in the spinal cord that connect proximal 
compared to distal muscles (Matsumoto et al., 2021; Uehara et al., 2014; 
Vercauteren et al., 2008), enabling stronger bilateral communication and 
likely contributing to the absence of CME asymmetry in proximal 
muscles. This aligns with Aune et al. (2017), who reported that training 
proximal effectors yields greater bilateral transfer of motor learning to 
homologous effectors compared to training distal effectors, an effect 
linked to this higher level of bilateral communication. In contrast, distal 
muscles, with fewer commissural connections, appear to rely more on 
unilateral cortical control, which may underlie the CME asymmetry 
observed between dominant and non-dominant limbs.

Neurophysiological research complements this interpretation. 
Lecce et al. (2025a) showed that, although baseline synaptic noise is 
similar between limbs, training the non-dominant limb reduces 
synaptic noise more than training the dominant limb, leading to 
greater gains in force accuracy. This suggests that less-refined neural 
circuits have greater adaptive capacity, which may parallel the 
weaker connectivity of distal muscles and their greater CME 
asymmetry. In contrast, the robust bilateral circuits of proximal 
muscles may provide a stable platform for symmetrical activation 
across motor tasks. Additionally, Lecce et al. (2025a,b) demonstrated 
that the dominant limb exhibits higher maximal force and EMG 
amplitude than the non-dominant limb, associated with a greater 
proportion of coherent synaptic input to motoneurons. Furthermore, 
our findings of CME asymmetry in distal but not proximal muscles 
parallels evidence from the lower limb. Petrovic et  al. (2023) 
reported no asymmetry in motor unit behavior during dorsiflexion, 
whereas Sahinis et al. (2024) found that asymmetries emerged only 
at the motor unit level during the less habitual task of ankle 
adduction, where the non-dominant limb showing greater discharge 
rate and variability. The fact that these asymmetries were restricted 
to distal control at the motor unit level corresponds closely to our 
observation of CME asymmetry in distal muscles, reinforcing the 

view that distal effectors are more susceptible to lateralized 
differences than proximal muscles.

Although the present study did not directly measure motoneuronal 
coherence, such asymmetries in neural drive, together with functional 
and structural connectivity differences, likely contribute to the stronger 
CME observed in the dominant distal muscle when the non-dominant 
muscle is active. Complementing this, studies by Farmer et al. (1993) and 
Johnson et al. (2017) emphasize that a key determinant of motor neuron 
excitatory threshold is the distribution and coherence of synaptic inputs. 
Specifically, Differences between dominant and non-dominant limbs in 
this organization could therefore contribute to CME asymmetries: more 
coordinated or preferentially distributed inputs in the dominant limb may 
support stronger and more efficient contralateral recruitment, whereas 
the non-dominant side, with less refined organization, could have a 
greater predisposition to crosstalk and variability. This perspective 
highlights that excitation asymmetries are shaped not only by cortical 
specialization but also by spinal-level determinants of motoneuron 
excitability, with the dominant limb benefiting from both more coherent 
inputs and more favorable thresholds.

Practical implications

The present findings contribute to a deeper understanding of how 
muscle group and limb dominance shape contralateral muscle 
excitation. Taken together, the results indicate that habitual patterns 
and underlying neurophysiological distinctions jointly influence the 
organization of motor control, thereby providing new perspectives on 
the neural mechanisms underlying asymmetry. For distal muscles the 
observed CME asymmetry highlights the role of functional 
asymmetry in neuromuscular activation, emphasizing the need to 
consider these differences in interventions aimed at improving fine 
motor control and dexterity (Green and Gabriel, 2018; Šarabon et al., 
2020). In contrast, the limit or absence of CME asymmetry in 
proximal muscles reflect more balanced bilateral communication 
patterns, which indicate that these muscles probably respond more 
uniformly to unilateral training. This supports the idea that proximal 
muscles are particularly receptive to interlimb transfer effects, where 
training one limb facilitates functional improvements in the 
contralateral limb (Aune et al., 2017; Swift, 1903). Such interlimb 
transfer effects hold relevance for rehabilitation protocols, including 
for example post-stroke therapy, where enhancing bilateral 
coordination is essential for recovery. The present findings also inform 
what could be likely expectations with regard to progress in training 
and rehabilitation. For proximal muscles, which are characterized by 
strong bilateral communication, relatively greater interlimb transfer 
may be expected, since training of one limb is likely to facilitate gains 
in the opposite limb as well (Aune et al., 2017). In contrast, distal 
muscles demonstrate clearer dominance-related asymmetry and 
weaker transfer, suggesting that progress in the non-dominant side 
may be slower and require more specific and sustained practice.

Conclusion

The most prominent finding in the present study is a clear CME 
asymmetry in distal muscles, where the dominant arm exhibits 
greater excitation during non-dominant arm activation. This 
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asymmetry likely reflects the dominant limbs more refined and 
coherent neural circuits, shaped through habitual and frequent use 
supported by cortical specialization as well as structural differences 
in neural connectivity. In contrast, the absence of significant CME 
asymmetry in proximal muscles reflects enhanced bilateral 
communication mediated by denser interhemispheric and spinal 
commissural pathways and is in accordance with the habitual and 
frequent use of bimanual coordination of proximal muscles in 
everyday movements. Additionally, the study found that CME 
increased with higher levels of voluntary force output in both muscle 
groups, with a more pronounced effect observed in proximal muscles. 
These findings underline the importance of considering muscle 
group and limb dominance in both training and rehabilitation 
protocols. By acknowledging habitual and neurophysiological 
distinctions, future interventions can be better designed to optimize 
motor training in general, and for rehabilitation and recovery training 
in particular.
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