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RewP (reward positivity) and P300 are feedback-related ERP components, while 
delta and theta are oscillatory responses evoked during feedback processing. 
While the perceptual difficulty of feedback modulates ERP components, its impact 
on feedback-related oscillatory activities remains unexplored. In this study, the 
perceptual load of feedback stimuli was manipulated to investigate its influence 
on the valence effect of both ERP and oscillatory components. Further, the 
contribution of the oscillations’ valence effect (e.g., the difference wave between 
positive and negative feedback) to the valence effect of ERP components was 
analyzed, alongside the moderation of perceptual load on these contributions. 
The results indicated that, for both the RewP and P300, the amplitudes evoked 
by positive feedback were greater than those evoked by negative feedback. For 
theta oscillation, however, the activity evoked by negative feedback was stronger 
than that evoked by positive feedback. These valence effects were unaffected by 
perceptual load. However, for delta oscillation, its valence effect was modulated 
by perceptual load, only under low-load conditions did positive feedback elicit 
greater delta activity than negative feedback. The correlation analysis for the 
difference wave between positive and negative feedback showed that the RewP 
was significantly correlated with the P300, while delta and theta activities were not 
significantly correlated. The regression analysis of the difference wave revealed 
that delta significantly predicted the RewP under low-load conditions, while 
theta significantly predicted the P300 under high-load conditions. These results 
suggest that delta and theta oscillations reflect the processing of positive and 
negative feedback, respectively. Perceptual load modulates only positive feedback 
processing; the lower the load, the easier the processing. Perceptual load also 
modulates the contribution of delta oscillation to the RewP, but not to the P300.
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1 Introduction

Feedback processing allows individuals to determine whether 
their behavior is appropriate, facilitating the maintenance of 
appropriate behavior, the adjustment of inappropriate behavior, and 
better adaptation to the environment (Thorndike, 1911; Holroyd and 
Coles, 2002; Walsh and Anderson, 2012; Luft, 2014). Feedback 
processing and learning constitute an ongoing daily process of 
perception and adaptation. Recent electrophysiological studies have 
identified key components related to feedback processing, including 
the ERP components of RewP (reward positivity) and P300 (Yeung 
and Sanfey, 2004; Leng and Zhou, 2010; Glazer et al., 2018; Zhang 
et al., 2023; Bauer et al., 2024), as well as oscillations in the delta and 
theta bands (Bernat et al., 2011, 2015; Foti et al., 2015; Szenczy et al., 
2025). The identification of these components has significantly 
advanced neurophysiological research on feedback processing and 
learning (Holroyd and Coles, 2002; Frank et al., 2005; Luft, 2014; 
Holroyd and Umemoto, 2016; Walsh and Anderson, 2012).

The perceptual difficulty of feedback stimuli affects feedback 
perception, and consequently, it alters the neurophysiological signals 
associated with feedback processing. Researchers have manipulated 
various aspects of feedback stimuli, such as their perceptual properties 
(Liu and Gehring, 2009; Liu et al., 2014; Pfabigan et al., 2015) and the 
amount of information they convey (Mars et al., 2004; Cockburn and 
Holroyd, 2018), to examine the influence of perceptual difficulty on 
feedback-related ERP components, which will be  introduced in 
the following.

1.1 The feedback processing related 
electrophysiological components

The electrophysiological components associated with feedback 
processing include the ERP components RewP and P300 (Proudfit, 
2015; Glazer et al., 2018), as well as oscillations in the delta (1–3 Hz) 
and theta (4–7 Hz) frequency bands (Bernat et al., 2008, 2011, 2015; 
Foti et  al., 2015; Bowers et  al., 2018). The following section will 
describe each of these components in detail.

RewP typically appears 250–350 ms after feedback onset and is 
distributed across the middle and frontal scalp regions. Positive 
feedback (such as monetary gain or correct behavior) induces a more 
positive component than negative feedback (monetary loss or 
incorrect behavior) (Walsh and Anderson, 2012; Sambrook and 
Goslin, 2016; Proudfit, 2015). Source localization and neuroimaging 
studies suggest that RewP originates from the anterior cingulate cortex 
(ACC) and/or the striatum (Miltner et  al., 1997; Gehring and 
Willoughby, 2002; Hauser et al., 2014; Becker et al., 2014; Glazer et al., 
2018). Initially, this component was thought to reflect negative 
feedback processing and was referred to as the FRN (Feedback-related 
negativity, Nieuwenhuis, 2004). Recent studies have revealed that the 
difference wave between positive and negative feedback is associated 
with a positive component induced by positive feedback. As a result, 
the FRN was renamed RewP and is now considered an indicator of 
reward sensitivity in psychopathology research (Proudfit, 2015; Paul 
et al., 2025).

P300 is another crucial ERP component elicited by feedback, 
appearing immediately after RewP and distributed across the middle 
and posterior scalp regions. Studies have shown that P300 reflects the 

integration of background information and the updating of working 
memory. Its amplitude is related to cognitive resource allocation, 
serving as an indicator of resource input (Polich, 2007; Nieuwenhuis 
et al., 2005; Paul et al., 2025). Some studies suggest that P300 is sensitive 
to feedback magnitude but not to feedback valence (Yeung and Sanfey, 
2004; Sato et al., 2005). Other studies have found that positive feedback 
elicits a greater P300 response than negative feedback and that “action” 
enhances the valence effect of P300 (Zhou et al., 2010). Another study 
manipulated interpersonal relationship closeness and found that self-
feedback and feedback from friends elicited a greater P300 valence 
effect compared to feedback from strangers (Leng and Zhou, 2010). 
One study found that feedback interval can affect the P300 valence 
effect, with a reduction in the valence effect during longer intervals 
(Wang et  al., 2014). Therefore, the valence effect of P300 remains 
inconsistent across existing studies. Compared to RewP, P300 is more 
sensitive to complex feedback information.

The introduction of RewP reflects a change in the understanding 
of its function. Initially, it was believed to be a negative component, 
reflecting error or loss detection, but it was later recognized as a 
positive component associated with reward processing. Neither 
perspective fully accounts for the evaluation of both positive and 
negative feedback simultaneously. Through time-frequency analysis, 
researchers have identified two oscillations, delta and theta (Bernat 
et al., 2005, 2011). Delta oscillation ranges from 1 to 3 Hz and shows 
increased activity following monetary gain, with peak activity 
observed at the middle and posterior scalp regions. Theta oscillation 
ranges from 4 to 7 Hz and increases following monetary loss, with 
peak activity observed at the middle and frontal scalp regions. Foti 
et al. (2015) also found that theta and delta oscillations are sensitive to 
monetary loss and gain, respectively, with theta reflecting ACC 
activity and delta reflecting basal ganglia activity. Foti et al. (2015) 
suggest that RewP integrates positive and negative feedback-related 
oscillations. Therefore, time-frequency analysis can complement 
ERP findings.

The relationship between ERP components and oscillations has 
also been examined. Watts et al. (2017) found significant correlations 
between RewP and P300, as well as between delta and theta. However, 
further analysis using the difference wave between positive and 
negative feedback (valence effect) revealed that RewP was significantly 
correlated with P300, whereas delta and theta were not significantly 
correlated (Bernat et al., 2011, 2015). This suggests that RewP and 
P300 share some common activity, while delta and theta are more 
independent and reflect distinct cognitive processes. Regression 
analysis revealed that both delta and theta independently contribute 
to RewP, but in opposite directions. The valence effects of delta and 
theta contribute to the valence effect of RewP in an additive manner, 
suggesting that RewP is sensitive to both negative and positive 
feedback evaluations. Moreover, both delta and theta can 
independently contribute to P300 (Watts et al., 2017; Bernat et al., 
2011, 2015). However, the valence effects of delta and theta offset each 
other in contributing to the valence effect of P300, resulting in an 
unstable valence effect of P300 across previous studies.

Moreover, an increasing number of studies have proposed that the 
RewP is not a standalone ERP component but rather reflects the 
integration of distinct oscillatory activities. Time-frequency analyses 
have revealed that delta (1–3 Hz) activity is predominantly associated 
with positive feedback, whereas theta (4–7 Hz) activity is linked to 
negative feedback (Bernat et al., 2011; Foti et al., 2015). These findings 
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suggest that the RewP may arise from the superposition or interaction 
of underlying delta and theta oscillations. Thus, understanding how 
perceptual load affects these oscillations can clarify whether changes 
in RewP are driven by modulations in specific frequency bands. This 
perspective provides a theoretical rationale for linking ERP and time-
frequency analyses in the present study.

1.2 Perceptual difficulty affects the 
feedback-related electrophysiological 
responses

Previous studies have revealed that perceptual difficulty influences 
the RewP through various means, which can be grouped into three 
main categories: perceptual features of stimuli (e.g., color, size, feature 
complexity); the amount of information or cognitive calculation 
required; and presentation formats such as blocked versus randomized 
feedback. These studies consistently indicate that higher perceptual 
load tends to reduce or eliminate the RewP effect.

Several studies have demonstrated that the physical characteristics 
of feedback stimuli significantly affect feedback processing. For 
instance, Liu and Gehring (2009) compared single-feature (e.g., color 
only) versus combined-feature (e.g., color and shape) feedback in a 
gambling task and found that single-feature feedback elicited a 
stronger RewP effect. Extending this line of inquiry, Liu et al. (2014) 
manipulated feature similarity and congruency between feedback and 
flankers. RewP was more pronounced when feedback stimuli were 
dissimilar (e.g., S vs. T) and congruent (e.g., EEEEE), suggesting easier 
perceptual discrimination enhances reward-related neural responses. 
Pfabigan et al. (2015) further confirmed this by showing that larger-
sized feedback stimuli evoked a stronger RewP. Collectively, these 
findings indicate that perceptually salient and easily discriminable 
feedback enhances neural sensitivity to feedback valence.

Other research has focused on how the amount and complexity of 
information embedded in the feedback modulate RewP. Mars et  al. 
(2004) systematically increased the amount of evaluative content in 
feedback (e.g., correctness, direction, magnitude) and observed a 
progressive attenuation of the RewP as information load increased. 
Cockburn and Holroyd (2018) replicated this result, concluding that 
excessive informational content reduces evaluative efficiency, weakening 
reward-related ERP components. Similarly, Gehring and Willoughby 
(2002) and Nieuwenhuis (2004) found that feedback requiring 
computation (e.g., calculating which number was “better”) failed to elicit 
a RewP, while color-coded gain/loss feedback did. Krigolson et al. (2012) 
also showed that when feedback interpretation required mental 
arithmetic (e.g., summing integers), the RewP effect disappeared. These 
studies underscore that cognitive load during feedback evaluation 
dampens reward-related electrophysiological responses.

Finally, some studies have examined how the format in which 
feedback is presented affects RewP. Gibbons et  al. (2016) used a 
pseudo-learning task with word-pair feedback presented either in 
fixed blocks or randomly trial-by-trial. Stronger RewP effects were 
found in the blocked condition, likely due to increased processing 
fluency. Pfabigan et  al. (2014) found similar results using facial 
expressions and symbols as feedback stimuli: block-fixed presentation 
elicited stronger RewP than randomized presentation. The authors 
suggest that randomized formats hinder the automaticity of feedback 
processing, increasing perceptual difficulty and thus diminishing 

reward-related neural responses. Together, these studies highlight the 
influence of stimulus consistency and expectation on 
feedback evaluation.

1.3 The current study: the effect of 
perceptual load on the feedback-related 
electrophysiological components

Feedback processing and learning involve multiple cognitive 
stages, including the perceptual stage as well as the learning and 
memory stages (Luft, 2014), during which, cognitive control and 
attention factors are required for behavioral adjustments (Holroyd and 
Umemoto, 2016). Focusing studies on specific cognitive stages or 
factors one at a time can help reveal the internal mechanisms of 
feedback processing and learning progressively. This study focuses on 
the perceptual stage.

In Section 1.2, we reviewed studies that have manipulated the 
perceptual stage of feedback processing, which generally found that as 
perceptual difficulty increases, the RewP effect diminishes or even 
disappears. However, the effects of perceptual difficulty on oscillatory 
components remain unexplored. This study manipulates perceptual 
load to investigate its impact on feedback perception, specifically 
focusing on both ERP and oscillatory components.

A simple gambling task with a cross-manipulation feedback 
design was used in this study. High and low perceptual load conditions 
were achieved through this cross-manipulation of feedback. 
Specifically, feedback was presented as a horizontal line and a vertical 
line in a cross manner. The two lines could be distinguished along two 
dimensions: color and relative length. The color judgment was easy, 
indicating low perceptual load, while the relative length judgment was 
more difficult, indicating high perceptual load (Lavie, 2006; 
Cartwright-Finch and Lavie, 2007). In this study, feedback was 
conveyed by the line length in the high-load condition and the line 
color in the low-load condition. Previous studies have shown that this 
cross-manipulation affects perceptual load specifically, without 
altering the working memory load in the two conditions (Cartwright-
Finch and Lavie, 2007; Brockhoff et al., 2022), making it an ideal 
method for the current study.

Compared to ERP components like RewP and P300, delta and 
theta oscillations are more independent and can better distinguish 
between feedback processes (Bernat et al., 2015; Watts et al., 2017). 
Analyzing both ERP and oscillatory components together provides 
complementary insights into a single cognitive stage. Therefore, this 
study analyzes both ERP and oscillatory components. Moreover, to 
further clarify the functions of ERP and oscillatory components and 
interpret the results, correlation analyses between RewP and P300, 
delta and theta, as well as regression analyses using oscillatory 
components to predict ERP components, were conducted.

Based on prior findings, we  formulated the following 
directional hypotheses:

RewP: We expected a stronger RewP amplitude in response to 
positive compared to negative feedback, with the valence effect 
enhanced under low perceptual load. P300: We predicted larger P300 
amplitudes for positive than negative feedback, and overall greater 
P300 under low load. However, we did not expect a strong modulation 
of the valence effect by load, as P300 is associated with post-
perceptual processes.
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Delta oscillation: We expected greater delta power for positive 
compared to negative feedback, and that this valence effect would 
be more pronounced under low perceptual load. Theta oscillation: 
We predicted greater theta power for negative than positive feedback, 
with no strong expectation for interaction with perceptual load, due 
to prior inconsistencies.

In correlational analyses, we anticipated that the valence effects of 
RewP and P300 would be positively correlated, while delta and theta 
would not be significantly correlated (Watts et al., 2017). In regression 
analyses, we expected delta and theta to independently predict RewP, 
and potentially P300 (Bernat et  al., 2015). We  explored whether 
perceptual load would moderate these regression relationships, but 
made no strong a priori predictions on this aspect.

2 Methods

2.1 Participants

Twenty-five participants (14 females), aged 18 to 25 years 
(M = 21 ± 3.2), were recruited for this study. All participants were 
right-handed, had normal or corrected-to-normal vision, and had 
normal color vision. They had no history of mental illness, head 
trauma, or recent use of psychoactive substances. The sample size was 
calculated using PANGE (https://jakewestfall.shinyapps.io/pangea). 
To achieve a large effect size (Cohen’s d = 0.80) with a statistical power 
of 85%, the required sample size was determined to be 17 participants. 
Thus, 25 participants met the sample size requirement. This study was 
approved by the Ethics Committee of Shandong Normal University.

2.2 Experimental task

This study employed a 2 × 2 design, with feedback valence (positive, 
negative) and perceptual load (high, low) as two within-participant 
factors. In a simple gambling task, feedback was presented using a cross-
manipulation method to achieve high and low perceptual load 
conditions. Specifically, the experiment followed the cross-paradigm of 
Cartwright-Finch and Lavie (2007) to present the feedback. As shown 
in Figure 1, the feedback consisted of two lines crossing each other, with 
the lines differing in two dimensions: color and relative length. The color 
dimension provided a clear contrast, with one line green (RGB: 0, 234, 
41) and the other blue (RGB: 0, 191, 255). The length dimension, while 

less contrasting, could still be  discriminated, with one line being 
relatively long (visual angle: 3.89°) and the other relatively short (visual 
angle: 3.45°). The point where the two lines crossed was marked by a 
black dot (Cartwright-Finch and Lavie, 2007). Feedback valence was 
represented by the vertical line. In the low-load condition, the color of 
the vertical line indicated gain or loss, with the meanings of blue and 
green counterbalanced across participants. In the high-load condition, 
the relative length of the vertical line indicated gain or loss, with the 
meanings of the line lengths also counterbalanced. Positive and negative 
feedback were presented randomly.

During the experiment, participants sat in a soundproof, well-lit 
room. Each trial began with a 500 ms fixation, followed by the 
presentation of two cards. Participants were instructed to choose one 
card to gamble on, with the “F” key used to select the left card and the 
“J” key to select the right card. They were required to make a choice 
within 3 s. After the choice, a blank screen appeared for a random 
duration between 600 and 1,000 ms, followed by 1,000 ms of feedback. 
The inter-trial interval was 800 ms.

The experiment consisted of 4 blocks, each containing 80 trials. At 
the beginning of the task, participants practiced with at least 20 trials to 
familiarize themselves with the cross-feedback design. They were 
informed that there were certain rules linking their responses to the 
feedback and encouraged to explore these rules to improve their 
performance. In reality, no such rule existed, and feedback (both positive 
and negative) was presented randomly. At the end of the experiment, the 
purpose of the study and the pseudo-random design were explained to 
the participants, and they were compensated for their participation.

2.3 Data recording and analysis

The experiment was conducted using E-Prime 2.0 (Psychology 
Software Tools, Inc., Sharpsburg, PA) and was presented on a high-
performance monitor (Zhang et al., 2018). EEG data were recorded from 
64 electrodes mounted in an elastic cap according to the 10–20 system, 
and amplified using a Brain Products system (Brain Products GmbH, 
Munich, Germany). The vertical electrooculogram (VEOG) was 
recorded from an electrode placed 1.5 cm below the right eye’s orbit, and 
the horizontal electrooculogram (HEOG) was recorded from an 
electrode 1.5 cm outside the left eye’s orbit. The signals were amplified 
with a band-pass filter of 0.016–70 Hz and digitized at a sampling rate of 
1,000 Hz. All electrodes were referenced to FCz with AFz serving as the 
ground electrode, and electrode impedances were kept below 5 kΩ.

FIGURE 1

Illustration of one trial. In this trial, the vertical line is short and green. In the low-load condition, participants evaluate the feedback based on the color 
of the vertical line; in the high-load condition, participants evaluate the feedback based on the length of the vertical line.
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Offline analysis was performed using EEGLAB (Delorme and 
Makeig, 2004) in MATLAB R2021a. The sampling rate was reduced 
to 500 Hz, and EEG data were corrected for horizontal and vertical 
EOG artifacts using independent component analysis (ICA). The data 
were then re-referenced to the average of all electrodes, followed by a 
band-pass filter of 0.5–30 Hz. Artifacts with amplitudes greater than 
±100 μV were rejected. EEG signals were segmented from 200 ms 
before to 1,000 ms after feedback onset, with the 200 ms pre-feedback 
interval used as the baseline.

The RewP and P300 amplitudes were measured based on the 
grand average waveforms, following the procedures outlined in 
previous literature (Glazer et al., 2018). The mean amplitude of the 
RewP was calculated from 270 ms to 330 ms at the Fz, FCz, and Cz 
electrodes, and the average across these three electrodes was used to 
represent the RewP amplitude. The mean amplitude of the P300 was 
measured from 330 ms to 410 ms at the Cz and CPz electrodes, with 
the average of these two electrodes serving as the P300 amplitude.

For time-frequency analysis, we  used continuous wavelet 
transform (CWT) in Letswave, following the approach outlined by 
Webb et  al. (2017). To minimize edge effects, EEG data were 
segmented from 1,000 ms before to 1,500 ms after feedback onset, and 
the complex Morlet wavelet transform was applied to this segment. 
The center frequency (ω) and limit (σ) parameters were set to 1.5 and 
1, respectively. The frequency range from 0.5–30 Hz was decomposed 
into 100 linearly spaced bins, providing sufficient resolution to isolate 
activity in delta (<3 Hz) and theta (4–7 Hz) bands while ensuring 
computational efficiency. To quantify power modulation, we computed 
event-related spectral perturbation (ERSP), defined as the log ratio 
between signal power at each time-frequency point and the mean 
baseline power from −500 to −300 ms before feedback onset. This 
normalization method eliminates inter-subject baseline variability and 
reduces the influence of edge artifacts. The data were then averaged 
across different conditions, and the time window of 200 ms before and 
800 ms after feedback onset was defined as the analysis window.

Next, ERSP was calculated for each frequency band using 
the formula:

	

−
= ,

, % t f f
t f

f

A R
ER

R

Where { },t fA  represents the signal energy at a specific time t and 
frequency band f, and Rf represents the average baseline energy for the 
frequency band f (Pfurtscheller and Da Silva, 1999). To minimize the 
impact of edge artifacts during wavelet transformation (Cohen and 
Cavanagh, 2011), the baseline for ERSP calculation was taken from 
300 ms to 500 ms before feedback onset. Delta activity was measured 
from 250 ms to 450 ms after feedback onset at the Cz electrode, while 
theta activity was measured from 250 ms to 450 ms after feedback 
onset at the FCz electrode.

For the analysis of ERP components, a 2 (perceptual load: low, 
high) × 2 (valence: positive, negative) two-factor repeated measures 
ANOVA was conducted on both RewP and P300. Additionally, the 
RewP for the negative condition was subtracted from that for the 
positive condition to obtain the RewP difference wave. A t-test was 
then conducted to compare the difference waves between high and 
low perceptual load conditions. The analysis of the time-frequency 
data followed the same procedure as the ERP analysis, with the same 

two-factor repeated measures ANOVA conducted on both delta and 
theta oscillations.

3 Results

3.1 ERP results

As shown in Figure 2, for the RewP, the main effect of valence 
was significant, F(1, 24) = 25.27, p < 0.001, η2 p = 0.51, with the 
RewP in the positive feedback condition (2.63 ± 0.28 μV) being 
more positive than that in the negative feedback condition 
(1.51 ± 0.27 μV). The main effect of perceptual load was also 
significant, F(1, 24) = 5.45, p = 0.028, η2 p = 0.19. The RewP in low 
perceptual load condition (2.34 ± 0.29 μV) was more positive than 
that in high perceptual load condition (1.79 ± 0.26 μV). The 
interaction between perceptual load and valence was not significant 
(p = 0.775). For the RewP difference wave, the t-test revealed no 
significant difference between the high and low perceptual load 
conditions, t (24) = 1.52, p = 0.142.

As shown in Figure 3, for the P300, the main effect of valence was 
significant, F(1, 24) = 11.47, p = 0.002, η2 p = 0.32, the P300 after 
positive feedback (3.54 ± 0.37 μV) was more positive than that after 
negative feedback (2.90 ± 0.27 μV). The main effect of perceptual load 
was significant, F(1, 24) = 8.88, p = 0.007, η2 p = 0.27. The P300 under 
low perceptual load condition (3.46 ± 0.33 μV) was more positive than 
that under high perceptual load condition (2.90 ± 0.27 μV). The 
interaction between perceptual load and valence was not significant 
(p = 0.689).

3.2 Time-frequency analysis results

As shown in Figure 4, for delta, the main effect of valence was 
significant, F(1, 24) = 8.54, p = 0.007, η2 p = 0.26, with delta activity 
after positive feedback (0.93 ± 0.16 μV2) being stronger than that after 
negative feedback (0.52 ± 0.14 μV2). The main effect of perceptual load 
was significant, F(1, 24) = 5.55, p = 0.027, η2 p = 0.19, with delta 
activity being stronger in the low perceptual load condition 
(0.97 ± 0.19 μV2) than in the high perceptual load condition 
(0.48 ± 0.14 μV2). The interaction between perceptual load and valence 
was significant, F(1, 24) = 6.32, p = 0.019, η2 p = 0.21, the simple effect 
analysis showed that only under the low load condition, there was a 
significant difference between positive feedback (1.35 ± 0.22 μV2) and 
negative feedback (0.58 ± 0.24 μV2) (p = 0.005) conditions.

As shown in Figure 5, for theta, the main effect of valence was 
significant, F(1, 24) = 9.79, p = 0.005, η2 p = 0.29, Theta activity after 
negative feedback (2.09 ± 0.28  μV2) was stronger than that after 
positive feedback (1.29 ± 0.25 μV2). The main effect of perceptual 
load was significant, F(1, 24) = 12.33, p = 0.002, η2 p = 0.34, Theta 
activity was stronger in the low perceptual load condition 
(2.01 ± 0.27  μV2) than in the high perceptual load condition 
(1.37 ± 0.23 μV2). The interaction between valence and load showed 
a marginal trend, F(1, 24) = 3.32, p = 0.081, η2 p = 0.12. Simple effect 
analysis showed that only under the condition of low perceptual load 
condition, there was significant difference between positive feedback 
(1.45 ± 0.27 μV2) and negative feedback (2.57 ± 0.36 μV2) (p = 0.003), 
while no significant difference was observed under high load.
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4 Further data analysis

The results of the above ANOVA indicated that perceptual load 
could modulate only the valence effect of delta, but not those of the 
RewP, P300 components, or theta oscillation. To explain these results, 
the psychological functions of these ERP components and oscillations 
must first be disentangled. To reveal the psychological functions of the 
four electrophysiological responses, we further analyzed the correlations 

between RewP and P300, as well as between theta and delta. Additionally, 
regressions of delta and theta to RewP and P300 were conducted.

4.1 Correlation analysis

Since the main effect of valence on both RewP and P300 were 
significant in the ANOVAs, the difference waves for the valence effect 

FIGURE 2

The grand average waveforms and difference waves of RewP at FCz, Cz, and Fz electrodes, and RewP topographies under different conditions, high 
and low were the topographies (A) the difference waves (B). HN, high perceptual load negative feedback; HP, high perceptual load positive feedback; 
LN, low perceptual load negative feedback; LP, low perceptual load positive feedback.
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(positive feedback minus negative feedback) were used as indices to 
analyze the correlations for the valence.

The results are presented in Table  1. For RewP and P300, 
significant correlations were found for the valence effect. However, 
no significant correlations were found for delta and theta with respect 
to valence effect. Delta and RewP were significantly correlated for the 
valence effect under the low load condition. Theta and P300 were 
significantly correlated for the valence effect only under the high 
load condition.

4.2 Regression analysis

The regressions were also only carried out on difference waves, to 
analyze the contributions of valence effect from oscillations to ERPs.

Table 2 presents the contributions of delta to RewP and theta to 
P300. The contribution of delta to RewP for the valence effect was 
significant only under low load conditions. The contribution of theta 
to P300 for the valence effect was significant only under the high 
load condition.

This study specifically investigates the valence effect. The 
contribution of delta to RewP for the valence effect was significant 
only under the low load condition, while the contribution of theta to 
P300 for the valence effect was significant only under the high 
load condition.

5 Discussion

This study manipulated perceptual load to examine its effect on 
electrophysiological components associated with feedback processing. 
Both RewP and P300 amplitudes were more positive under low load 
conditions compared to high load conditions, consistent with previous 
studies (Krigolson et al., 2012; Liu and Gehring, 2009; Liu et al., 2014; 
Gehring and Willoughby, 2002; Nieuwenhuis, 2004; Pfabigan et al., 
2015; Harmon-Jones et al., 2024). Additionally, the main effect of 
perceptual load was observed in oscillations, with delta and theta 
being stronger under low load conditions compared to high load 
conditions. A straightforward explanation is that more perceptual 
resources are allocated in low load conditions, which facilitates 

FIGURE 3

The P300 waveforms at Cz and CPz electrodes and P300 topographies under different conditions.
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feedback perception, as evidenced by the enhanced 
electrophysiological responses. This suggests that all four brain 
responses are involved in the perception stage of feedback processing, 
and also indicates that the manipulation of perceptual load is valid in 
this study.

More importantly, the study found that perceptual load modulated 
the valence effect of delta, with positive feedback inducing greater 
delta activity than negative feedback only under low load conditions. 

For the other components, although the main effect of valence was 
replicated, no moderating effect of perceptual load on the valence 
effect was observed. Recent studies have proposed that the RewP 
reflects reward processing (Holroyd et  al., 2008; Foti et  al., 2011; 
Proudfit, 2015), while delta is also considered to reflect positive 
feedback processing. However, this study found that perceptual load 
only modulated the valence effect of delta, suggesting that the 
functions of delta and RewP need to be more precisely distinguished. 

FIGURE 4

The activities of delta (< 3 Hz) under each condition (Cz).
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The studies have analyzed the relationships between oscillations and 
ERP components (Foti et al., 2015; Bernat et al., 2015; Watts et al., 
2017), suggesting that the RewP is a combination of delta and theta 
activities, reflecting both positive and negative feedback processing, 
while delta specifically reflects positive feedback processing. This may 
explain the differential moderating effects of perceptual load on the 
valence effects of delta and RewP.

To verify the validity of this interpretation, the relationships 
between oscillations and ERP components were further analyzed. The 
following first discuss the psychological functions of RewP, P300, 
delta, and theta, based on the analysis of the relationships between 
oscillations and ERP components. Subsequently, the effects of 
perceptual load on these components are explained in light of their 
psychological functions.

FIGURE 5

Theta activities (4-7 Hz) under each condition (FCz).
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5.1 Psychological functions of 
electrophysiological components related 
to feedback processing

Initially, researchers considered the RewP to reflect negative 
feedback processing and characterized it as a negative-going 
component (Miltner et al., 1997; Gehring and Willoughby, 2002; 
Nieuwenhuis, 2004; Holroyd and Coles, 2002). However, more 
recent studies have revised this view, proposing that RewP reflects 
reward-related neural activity and serves as a marker of reward 
sensitivity (Holroyd et al., 2008; Foti et al., 2011; Proudfit, 2015; 
Holroyd and Umemoto, 2016). To reconcile these perspectives, 
researchers have turned to time-frequency analysis, which reveals 
that RewP may reflect the summation of distinct 
oscillatory processes.

Specifically, Bernat et al. (2008, 2011, 2015) demonstrated that 
delta oscillations are primarily sensitive to positive feedback, while 
theta oscillations are more responsive to negative feedback. Foti et al. 
(2015) further localized these oscillations, showing that delta activity 
originates in the striatum and theta activity in the anterior cingulate 
cortex (ACC). Based on these findings, it has been proposed that 
RewP represents a composite signal arising from the integration of 
delta and theta activity.

In the present study, we replicated these patterns: delta activity 
increased in response to positive feedback, while theta activity 
increased following negative feedback. Importantly, the valence effects 
of delta and theta were not significantly correlated, suggesting that 
these oscillatory responses reflect functionally distinct processes. 
Regression analyses further indicated that delta, but not theta, 
significantly predicted the valence effect of RewP, supporting the 

interpretation that RewP in this study predominantly reflects positive 
feedback processing.

Turning to the P300, it has traditionally been associated with the 
allocation of attentional resources, context updating, and working 
memory processes (Polich, 2007). In feedback learning paradigms, the 
P300 has also been linked to the motivational significance of outcomes 
(Nieuwenhuis et al., 2005). While many studies, including ours, have 
reported a valence effect on P300 (i.e., greater amplitude for positive 
compared to negative feedback; Zhou et al., 2010; Leng and Zhou, 
2010), this does not necessarily imply that P300 exclusively reflects 
positive feedback processing.

Notably, our regression analysis revealed that theta activity—
typically associated with negative feedback, conflict monitoring, and 
cognitive control—significantly predicted P300 amplitude under high 
perceptual load. This suggests that, particularly in cognitively 
demanding situations, P300 may integrate signals from loss-related 
processing to support adaptive attention or behavioral adjustment.

Therefore, we interpret the P300 not as a unidimensional marker 
of feedback valence, but rather as a dynamic integration signal, 
sensitive to the task context, cognitive load, and motivational 
relevance of outcomes. This interpretation aligns with the valence-
agnostic perspective proposed by Polich (2007) and provides a more 
comprehensive framework for understanding the flexible role of 
P300 in feedback processing.

5.2 Effects of perceptual load on feedback 
processing

The primary goal of feedback processing is to determine whether 
behavior is correct and to adopt appropriate strategies for maintaining 
or adjusting behavior. Accordingly, this study focused on the valence 
effect, with particular emphasis on the moderating role of perceptual 
load in modulating feedback-related neural responses.

Our findings indicate that perceptual load modulates multiple 
stages of feedback processing, through distinct mechanisms. 
Specifically, perceptual load selectively influenced the valence effect 
of delta oscillations, which are sensitive to positive feedback 
processing. Under low-load conditions, delta activity increased in 
response to positive feedback, facilitating its discrimination and 
encoding. However, under high-load conditions, delta activity was 
suppressed, likely reflecting a diminished ability to process positive 
feedback, which may in turn impair learning from 
rewarding outcomes.

Although RewP is also known to reflect reward sensitivity, 
perceptual load did not directly modulate the valence effect of RewP in 

TABLE 1  Correlations of valence effect and load effect between the four 
components, under four conditions.

HP - HN LP - LN

Delta and RewP 0.38^ 0.61**

Theta and RewP 0.24 −0.27

Delta and P300 0.32 0.35

Theta and P300 0.41* −0.08

Delta and theta 0.004 −0.17

RewP and P300 0.93** 0.79**

HP is the high-load positive feedback condition, HN is the high-load negative feedback condition, 
LP is the low-load positive feedback condition and LN is the low-load negative feedback condition. 
RewP and delta were marginally significant in the HP - HN condition, r = 0.38, p = 0.064.
^p < 0.1; *p < 0.05; **p < 0.01;***p < 0.001.
Bold values indicate statistical significance.

TABLE 2  Contribution of the delta and theta to RewP and P300 under four conditions.

Delta Theta Total

Beta t Beta t F R2

RewP HP-HN 0.37 1.96^ 0.24 1.24 2.71 0.19

LP-LN 0.57 3.39** −0.18 −1.06 7.11** 0.39

P300 HP-HN 0.32 1.76 0.41 2.22* 4.04* 0.27

LP-LN 0.35 1.72 −0.02 −0.12 1.57 0.13

Under HP-HN conditions t = 1.96, p = 0.063, marginally significant.
^p < 0.1; *p < 0.05; **p < 0.01;***p < 0.001.
Bold values indicate statistical significance.
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our data. One possible explanation is that RewP reflects a mixture of 
neural signals associated with both positive reward and omission of 
expected reward (Foti et al., 2015; Bauer et al., 2024), whereas perceptual 
load may influence only the purely positive feedback component (i.e., 
delta), not the omission-related component (i.e., theta). As a result, the 
modulation effect of perceptual load on RewP may be  diluted or 
masked at the averaged ERP level. This interpretation is consistent with 
prior studies showing that the valence effect of RewP decreases under 
perceptually challenging conditions (Cockburn and Holroyd, 2018; 
Gibbons et al., 2016; Krigolson et al., 2012; Liu and Gehring, 2009; Mars 
et al., 2004; Pfabigan et al., 2014, 2015). These studies, along with our 
findings, suggest that RewP amplitude attenuation under high load may 
be primarily driven by a reduction in delta activity.

Further evidence supporting this interpretation comes from our 
regression analyses. We  found that the valence effect of delta 
significantly predicted RewP, but only under low-load conditions, 
suggesting that delta-driven RewP effects are contingent on available 
perceptual resources. In contrast, theta activity, typically linked to 
negative feedback and conflict monitoring, significantly predicted 
P300 amplitude under high-load conditions, but not under low load. 
This suggests that P300 integrates loss-related signals to support 
behavioral regulation, particularly when perceptual demands 
are high.

Moreover, although both delta and theta contributed to ERP 
components associated with feedback processing, perceptual load only 
moderated the delta-to-RewP relationship, but not the delta-to-P300 
or theta-to-P300 associations. This dissociation suggests that RewP is 
more directly tied to the perceptual stage of processing, which is 
susceptible to load-induced constraints. By contrast, P300 appears to 
reflect a later stage of feedback evaluation, involving cognitive control 
and adaptive response selection, which may be  more resilient to 
perceptual interference.

Together, these findings highlight the differential roles of delta and 
theta oscillations in shaping feedback-related ERP components and 
underscore the stage-specific influence of perceptual load: it disrupts 
early valence-specific encoding (RewP) by taxing perceptual resources, 
but has less impact on later cognitive integration processes (P300), 
which engage compensatory mechanisms such as attentional control.

5.3 Study limitations

Although the present study employed a simple gambling task in 
which feedback was randomized and carried no actionable value, our 
findings offer meaningful insights into the early neural mechanisms 
of feedback processing that are relevant for learning. Due to the lack 
of learning contingencies, higher-order behavioral adjustments were 
not required, and the task did not engage goal-directed adaptation. 
Nevertheless, the modulation of RewP and delta activity by perceptual 
load suggests that these components may serve as early indicators of 
reward salience and perceptual accessibility—both of which are 
foundational for effective learning.

Beyond the framework of reward sensitivity and the PRO (prediction 
of response-outcome models) theory, these findings align with principles 
from reinforcement learning (RL) models, which propose that prediction 
error signals—reflecting the discrepancy between expected and actual 
outcomes—drive learning. The RewP has been widely interpreted as an 
ERP correlate of reward prediction error (Holroyd and Coles, 2002), and 

our results suggest that delta oscillations may represent an early-stage, 
bottom-up component of this signal, particularly when perceptual 
demands are low and feedback is more easily processed.

Moreover, in the context of perceptual resource theory (Lavie, 
2006), the enhanced delta and RewP responses under low-load 
conditions support the view that attentional capacity influences the 
efficiency of feedback processing. When perceptual complexity is 
reduced, more cognitive resources are available to encode reward-
related signals, leading to more robust neural differentiation between 
feedback valence conditions. This underscores the role of perceptual 
gating as a modulator of early reward evaluation processes.

In addition, theta oscillations, although not strongly modulated 
by load in this study, may reflect a positive feedback omission–
adjustment process, consistent with the PRO theory (Alexander and 
Brown, 2010, 2011), which emphasizes the role of medial frontal theta 
in signaling expectation violations that can guide future behavior.

To further evaluate these interpretations and build a more 
comprehensive account of feedback-guided learning, future studies 
should employ paradigms that integrate true learning demands, such 
as reinforcement learning or probabilistic choice tasks, and 
systematically vary perceptual load. Such designs would clarify how 
perceptual complexity shapes the neural dynamics of feedback 
processing and behavioral adaptation over time, and reveal how early-
stage ERP and oscillatory markers contribute to learning-related 
decision updating.
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