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Background: Embodied learning has attracted considerable attention in recent 
years. However, there is no academic consensus on whether embodied learning 
effectively enhances students’ learning performance.
Objectives: This study aims to examine the overall effect of embodied learning on 
students’ learning performance through a meta-analysis. It also seeks to explore 
variations based on moderators such as discipline, educational level, experiment 
period, sample size, region, learning approach, embodied level and type.
Methods: A meta-analysis was conducted on 46 studies (66 effect sizes) 
published between 2010 and 2025. These studies were analyzed to calculate 
the overall effect size (Hedges’ g) and explore potential moderating variables.
Results and Conclusion: The results found that: 1) Embodied learning has a 
moderately positive effect on students’ learning performance (g = 0.406, 95%CI 
[0.264,0.548]), with no significant differences across regions; 2) The effect of 
embodied learning is greater in the humanities compared to other disciplines (e.g., 
math); 3) Compared to other educational levels, embodied learning has the greatest 
impact on high school students’ learning performance; 4) The impact of embodied 
learning is significantly greater during a one-term experiment period than other 
periods; 5) Compared with other sample sizes, the embodied intervention group 
with more than 50 participants has the best effect on their learning performance. 
6) Embodied learning in small groups has a greater effect on students’ learning 
performance than other learning approaches; 7) High-level embodied learning has a 
more significant effect on students’ learning performance than low-level embodied 
learning; and 8) Active embodied learning has a greater effect on students’ learning 
performance than passive embodied learning. These findings provide valuable 
insights for future practice and research on embodied learning.
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1 Introduction

How to improve students’ learning performance has been an enduring topic in education. 
Scholars and educators have consistently sought effective methods to enhance learning 
performance, leading to the emergence of various innovative instructional approaches. The rise 
of embodied cognition theory has brought new perspectives to learning methods, paving the way 
for the development of embodied learning (Shapiro and Stolz, 2019). Unlike traditional cognitive 
theories, such as information processing theory and symbolic cognition, which focus primarily 
on the brain’s processing of abstract information and its symbolic representations, embodied 
cognition theory asserts that cognition is deeply rooted in bodily experiences and physical 
interactions with the environment (Varela et al., 2016). It challenges the notion that cognition is 
solely a mental activity and emphasizes the role of the body in shaping our cognitive processes 
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(Nathan, 2021). In contemporary education, embodied learning has 
significant potential to transform teaching and learning practices 
(Castro-Alonso et al., 2024). By leveraging multimodal experiences, it 
fosters deeper understanding, enhances motivation, and promotes active 
engagement (Zuo and Lin, 2025; Malinverni et  al., 2016). Given its 
increasing prominence, numerous studies have explored its effectiveness 
across various educational contexts (Mierowsky et al., 2020; Zhang et al., 
2024). For example, Lan et  al. (2018) found that different types of 
embodied learning improved primary school students’ listening 
performance in English as a foreign language. However, some studies 
have reached the opposite conclusion (Castro-Alonso et al., 2014; De 
Nooijer et al., 2013; Skulmowski et al., 2016). For example, Shaghaghian 
et al. (2024) found that university students perceived significantly more 
physical load in an augmented reality-based embodied learning 
environment. Therefore, this study aims to comprehensively assess the 
effect of embodied learning on students’ learning performance through 
a meta-analysis. Meta-analysis integrates raw data from numerous 
empirical studies, allowing researchers to quantify the effect size of 
interventions (Borenstein et al., 2021). By using this method, researchers 
can draw stronger and more persuasive conclusions about the effect size 
of interventions (Lipsey and Wilson, 2001).

Currently, while several meta-analyses have explored the impact 
of embodied learning on students’ learning performance, most of 
them seem to focus on the field of educational technology. This 
represents a significant gap, as the effects of embodied learning across 
various academic fields remain underexplored. For instance, Yu and 
Yu (2023) conducted a meta-analysis of 37 studies published between 
2010 and 2022, revealing the positive effects of technology-based 
embodied learning on students learning. Similarly, Zhang et al. (2025) 
synthesized the results of 44 empirical studies published from 2012 to 
2023, demonstrating that technology-based embodied learning is an 
effective method for enhancing learning effectiveness. However, it is 
worth noting that some meta-analyses have a limited scope, involving 
relatively small sample sizes. For example, Lyu and Deng (2024) 
performed a meta-analysis of 17 studies from a cognitive load theory 
perspective, examining the positive impact of embodied learning on 
learning performance. Despite the valuable insights provided by these 
analyses, they overlook a comprehensive range of moderators, such as 
embodied level and type. Furthermore, these analyses treated multiple 
outcomes from the same participants as independent results, which 
may lead to inflated effect sizes (Tharumalingam et al., 2025; Deng 
et  al., 2024; Liu et  al., 2025). In other words, this approach risks 
overestimating the overall effect of embodied learning on students’ 
learning performance. Overall, while existing meta-analysis offer 
evidence regarding the impact of embodied learning on learning 
performance, their limitations—such as narrow disciplinary focus, 
small sample sizes, inflated effect sizes, and insufficient exploration of 
moderators—underscore the need for a more comprehensive 
integration of empirical evidence.

Therefore, this study aims to address these limitations by 
systematically investigating the effect of embodied learning across 
diverse academic fields and thoroughly examining relevant 
moderators. This study also explores potential moderators, including 
discipline, educational level, experiment period, sample size, region, 
learning approach, embodied level, and embodied type. Accordingly, 
the study addresses the following research questions:

RQ1: Is embodied learning effective in enhancing students’ 
learning performance?

RQ2: Does the effect of embodied learning on students’ learning 
performance vary across disciplines, educational levels, 
experimental periods, sample sizes, regions, learning approaches, 
embodied levels and types?

2 Literature review

2.1 Embodied learning

Embodied learning is a method that emphasizes the interaction 
between the environment, the body, and artifacts during the learning 
process (Borghi and Cimatti, 2010). It stems from embodied cognition 
theory, which posits that cognitive processes are deeply rooted in the 
interactions between the body and the environment (Shvarts and 
Abrahamson, 2023). In education, learners often enhance their 
performance by integrating sensory experiences and physical activity into 
the learning process (Kosmas and Zaphiris, 2023; Andolfi et al., 2017). 
Embodied learning caters to various learning styles, particularly benefiting 
students who prefer kinesthetic learning (Post et al., 2013). Furthermore, 
the introduction of emerging technologies, such as virtual reality (VR) and 
augmented reality (AR), has expanded the possibilities for embodied 
learning (Lin et al., 2024). These technologies create immersive learning 
environments that allow students to engage in physical interactions within 
virtual worlds, enhancing immersion and facilitating the understanding 
of abstract concepts (Lui et al., 2020). Similarly, the use of learning tools 
and manipulatives promotes more interactive and participatory learning 
through tactile and kinesthetic methods (Ginns and King, 2021). Overall, 
by leveraging the interconnection between the body, mind, and 
environment, embodied learning not only affects students’ learning 
performance but also fosters a more comprehensive and inclusive learning 
experience (Zhong et al., 2023).

2.2 Learning performance

To comprehensively and scientifically assess the effects of 
embodied learning on students’ learning, this study adopts the term 
learning performance to measure the embodied learning outcomes and 
achievements achieved by students (Lyu and Deng, 2024; Yu and Yu, 
2023). In education, learning performance is a multifaceted and 
dynamic concept that encompasses various aspects of students’ 
performance in academic activities, including academic grades, critical 
thinking, problem-solving skills, and creativity (Wu et al., 2023). In this 
study, learning performance serves as a comprehensive assessment 
criterion to evaluate students’ overall embodied learning outcomes. 
The assessment covers multiple dimensions and is quantified through 
measures such as exam scores, paper performance, class participation, 
project quality, and others (Khan and Ghosh, 2021; Pan et al., 2021).

2.3 The effects of embodied learning on 
students’ learning performance

Studies on embodied learning have shown its positive impact on 
students’ learning performance across various learning areas (Hong et al., 
2024; Hung and Chen, 2018; Macken and Ginns, 2014). For instance, 
Kwon et al. (2025) found that embodied learning activities, implemented 
in both mixed-reality and unplugged contexts, significantly enhanced 
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primary school students’ computational thinking. Chettaoui et al. (2022) 
also revealed that a multimodal embodied learning interface had 
potential educational benefits for primary school students’ learning 
performance. However, some studies have found that embodied learning 
had no significant effect on students’ learning performance (Ginns et al., 
2016). For example, Schmidt et al. (2019) argued that while embodied 
learning was more effective in helping primary school students learn new 
words than the control group, there was no significant difference in the 
level of focused attention between the two groups. Similarly, Chang et al. 
(2025) showed no significant difference in the reflective writing 
performance between the group using a ChatGPT-integrated embodied 
learning method and the control group using traditional reflective 
writing. Therefore, the effect of embodied learning on students’ learning 
performance remains inconclusive. Based on these conflicting findings, 
we hypothesize that:

H1: Embodied learning has a significant positive effect on 
students’ learning performance.

2.4 Disciplines

Disciplines refer to the academic subjects that learner study 
through embodied learning. Based on Zhang et  al. (2025), it can 
be categorized into science, humanities, computing, physical education, 
and others. Science often enhances the embodied experience of 
abstract concepts through experimental operations and tool usage 
(Agostinho et  al., 2015), while the humanities rely on embodied 
simulation and contextual experiences to facilitate text comprehension 
and critical discussion (Chen and Liu, 2025). In physical education, 
students directly experience motor skills, which deepens their 
understanding of the underlying principles (Hsiao and Chen, 2016). In 
the field of computing, students can enhance their understanding of 
data structures through physical interactions with virtual simulations 
(Darejeh et al., 2022). Skulmowski and Xu (2022) found that different 
disciplines may require varying types of cognitive effort, which could 
influence the effectiveness of embodied learning. Lyu and Deng (2024) 
also showed that embodied learning was more effective in physics 
discipline than other disciplines. Therefore, we propose that:

H2: Discipline is a significant moderator in the impact of 
embodied learning on students’ learning performance.

2.5 Educational levels

Educational levels refer to the stages of education where embodied 
learning is applied. These stages can be categorized into pre-school, 
primary school, middle school, high school, and university, as outlined 
in Zhang et al. (2025). Existing literature suggests that the effects of 
embodied intervention may be  influenced by individual cognitive 
development stages (Zou et al., 2025, p.5). For example, Lyu and Deng 
(2024) found that applying embodied learning to primary students 
may have better effectiveness. However, Yu and Yu (2023, p.17) noted 
that the technology-based embodied learning has a large effect on 
secondary school students. Based on these findings, we propose that:

H3: Educational level is a significant moderator in the effect of 
embodied learning on students’ learning performance.

2.6 Experiment periods

Experiment period refers to the period of students’ participation 
in the experiment (Yu and Yu, 2023, p.8). According to Zhang et al. 
(2025), it can be categorized into approximately 1 term, 1 month, 
1 week, or 1 h. Existing research has demonstrated that embodied 
learning significantly impacts students’ learning performance across 
various experimental periods (Smyth et  al., 2021). For instance, 
Cherdieu et al. (2017) found that combining gestures with sufficient 
learning time facilitated better knowledge integration, particularly in 
the consolidation of long-term memory. Similarly, Kosmas et  al. 
(2019) argued that the long-term experiment period should be paid 
to examine the true effectiveness of embodied learning. However, 
Korbach et al. (2020) suggested that gestures, such as pointing and 
tracing, positively impacted student learning in the short term. Hu 
et al. (2015) also demonstrated that tracing elements of geometry 
worked examples with the index finger enhanced learning outcomes 
during the short term. Given the inconsistencies in these findings, 
we hypothesize that:

H4: Experiment period is a significant moderator in the impact of 
embodied learning on students’ learning performance.

2.7 Sample sizes

Sample size refers to the number of learners who participated in 
the embodied intervention group and can be categorized as 0–30, 
31–50, and >50 (Yu and Yu, 2023). Sample size has a significant impact 
on students learning (Breton, 2014). For example, Kuo et al. (2014) 
found that when sample size is beyond manageable, teachers were 
unable to attend to all individual students, thereby reducing the 
effectiveness of physical response learning. Georgiou and Ioannou 
(2021) also reported that when sample size exceeded manageable 
limits, students might feel bored while waiting for their turn in 
technology-enhanced embodied learning. Similar, Huang et al. (2022) 
revealed that a large sample size increased teachers’ physiological and 
psychological stress, which led to less personalized guidance for 
students. Therefore, we propose that:

H5: Sample size is a significant moderator in the effect of 
embodied learning on students’ learning performance.

2.8 Regions

Region refers to the location where embodied learning is 
implemented. According to the study by (Yu and Yu, 2023), it can 
be divided into Africa, Asia, Australia, Europe, and North America. 
Existing research has found that regional differences lead to disparities 
in educational resources and cultural backgrounds, which in turn 
affect the effectiveness of embodied learning (Lyu and Deng, 2024). 
Specifically, differences in educational resources (e.g., educational 
systems, teaching practices) influence students’ receptiveness to 
various teaching methods and their learning experiences (DeCapua, 
2016). In regions with abundant educational resources, where students 
are exposed to diverse teaching approaches (e.g., animations with 
gestures) at an early age, they are more likely to adapt to embodied 
learning (Lajevardi et al., 2017). Furthermore, as embodied learning 
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is influenced by socio-cultural trends, cultural differences significantly 
shape students’ learning styles (Jusslin et al., 2022; Kolb and Kolb, 
2009). Therefore, we hypothesize:

H6: Region is a significant moderator in the impact of embodied 
learning on students’ learning performance.

2.9 Learning approaches

Small group, individual, and mixed learning are the three primary 
approaches in an embodied learning environment (Yu and Yu, 2023). 
Among these approaches, more researchers tend to focus on group 
interactions (Jones et al., 2022; Lemke, 2000). For example, Danish 
et al. (2020) found that collective learning not only shaped individuals’ 
embodied experiences but also yield additional learning benefits. 
Liyanawatta et al. (2022) also found that combining drama-based 
embodied learning activities with collaborative learning in the 
classroom effectively enhanced high school students’ engagement. 
Similarly, Johnson-Glenberg et al. (2014b) reported that collaborative 
embodied learning significantly improved high students’ learning 
performance compared to traditional learning methods. Therefore, 
group learning enhances students’ cognitive development and fosters 
positive attitudes and higher motivation than individual learning 
(O’Donnell and O’Kelly, 1994). We hypothesize that:

H7: Learning approach is a significant moderator in the impact of 
embodied learning on students’ learning performance.

2.10 Embodied levels

Embodied level refers to the degree of physical involvement in 
embodied activities (Johnson-Glenberg and Megowan-Romanowicz, 
2017). According to existing literature (Yu and Yu, 2023), embodied 
learning can be classified into three levels: low (e.g., mouse clicks or 
finger movements), middle (partial body movement, e.g., upper 
body), and high (e.g., whole-body movement). Previous studies have 
suggested that the degree of body movements can influence learning 
outcomes (Georgiou et al., 2019; Johnson-Glenberg et al., 2020). For 
example, some studies found that high-level embodied learning were 
more beneficial for students’ performance than low-level embodied 
learning (Conley et al., 2020; Guo and Goh, 2015). However, Mayer 
and DaPra (2012) argued that compared to low-level embodied 
learning, high-level embodied learning did not significantly affect 
university students’ transfer test performance. Given these conflicting 
findings, we propose that:

H8: Embodied level is a significant moderator in the effect of 
embodied learning on students’ learning performance.

2.11 Embodied types

Embodied type refers to the ways where students engage their 
bodies in the learning process, and it can be categorized into two types 
(Xu and Ke, 2020). One type is passive embodied learning, where a 
learner merely observes a remote instructor (either humans or 

animated figures), or uses the mouse to move someone or something 
on the screen (Xu et al., 2022). The other type is active embodied 
learning, where learners manipulate their own bodily movements 
(Johnson-Glenberg et al., 2014a). Prior research has found that active 
embodied learning outperforms passive embodied learning in terms 
of learning outcomes (Hung et al., 2014). For instance, Lindgren et al. 
(2016) showed that middle school students who used their whole 
bodies to experience physical concepts learned more effectively than 
those using a traditional mouse-based interface. However, some 
studies have suggested that active embodied learning is not always 
superior (Lan et  al., 2018; Xu and Ke, 2023). Given these 
inconsistencies, we hypothesize that:

H9: Embodied type is a significant moderator in the effect of 
embodied learning on students’ learning performance.

3 Method

3.1 Data sources and searching strategy

To ensure comprehensive inclusion of relevant literature, this study 
searched databases such as Web of Science, ProQuest, Wiley Online 
Library, PubMed, APA PsycNet, ScienceDirect, ERIC, and Scopus, with 
Google Scholar used as a supplement for additional sources. A citation 
tracking method was employed for snowball sampling of the collected 
literature, which included influential educational psychology journals 
like the Educational Psychology Review. The literature search was 
conducted on June 24, 2025, and only studies published after 2010 were 
included in this meta-analysis.

Furthermore, the search terms were divided into two groups: the 
first group included terms related to embodied learning, such as 
embodied, body, gesture, hand movement, pedagogical agent, physical 
activity, and embodied cognition; the second group included terms 
related to the research context, such as education, student, and learner. 
The study initially connected terms within each group using the 
Boolean operator “OR” and then linked the two groups with the 
operator “AND.” During the database search, all references were 
imported into the EndNote software to prevent duplicates from 
different databases.

3.2 Inclusion and exclusion criteria

To ensure the rigor of this meta-analysis, the following inclusion 
and exclusion criteria were established. (1) Studies examining the 
impact of embodied learning on students’ learning performance were 
included. Studies focusing on outcomes other than learning 
performance were excluded. (2) Studies comparing embodied learning 
with other learning methods were included. In studies with multiple 
experimental groups, only data from the groups using embodied 
learning interventions exclusively were extracted for analysis. (3) 
Studies providing quantitative data (means, standard deviations, and 
sample sizes) from (quasi-)experimental studies were included. 
Studies with research designs other than (quasi-)experimental, or 
those lacking full texts and data, were excluded. Furthermore, if 
delayed tests were conducted, data were extracted only from the first 
test point. If both subgroup and overall data were reported, the overall 
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data were used. (4) Studies that met the quality assessment standards 
established in this paper were included, while those that did not meet 
the standards were excluded. (5) Studies published in English journals 
and conferences before June 2025 were included, while studies 
published in other languages were excluded.

Figure 1 shows the process of literature collection, screening, and 
inclusion. The initial search yielded 1,972 records from multiple 
databases. After removing 616 duplicate studies, 1,356 studies 
remained for screening. During the abstract and title screening phase, 
896 studies were excluded, leaving 460 studies for full-text assessment. 
Based on the inclusion criteria, 137 studies were deemed eligible. 
Subsequently, 91 studies were excluded according to the exclusion 
criteria, resulting in 46 studies included in the data coding process.

3.3 Coding

Based on the coding scheme proposed by Cooper (2016), this 
study coded the following information from 46 articles: (1) author 
information, (2) publication year, (3) statistical results of learning 
performance (e.g., mean, standard deviation), (4) discipline, (5) 

educational level; (6) experiment period, (7) sample size; (8) 
region, (9) learning approach, (10) embodied level, and (11) 
embodied type. Coding details are provided in the 
Supplementary Appendix.

As shown in Table 1, the selected moderators were categorized 
based on existing studies. In line with the framework established by 
Zhang et  al. (2025), the moderators were classified as follows: 
disciplines (science, humanities, computers, physical education, and 
others), educational levels (university, high school, middle school, 
primary school, and pre-school), and experiment periods 
(approximately 1 term, 1 month, 1 week, or 1 h). Furthermore, 
following the moderator classification criteria proposed by Yu and Yu 
(2023), the moderators were categorized as follows: sample sizes 
(0–30, 31–50, and >50), regions (Africa, Asia, Australia, Europe, and 
North America), learning approaches (small group, individual, and 
mixed learning), and embodied levels (high, middle, and low). 
Finally, according to Xu and Ke (2020), embodied learning can 
be  categorized into active or passive embodiment. Two authors 
independently screened and coded the studies, achieving a 
consistency of 0.896. Any discrepancies were resolved by consulting 
the original articles.

FIGURE 1

Flow diagram.

https://doi.org/10.3389/fpsyg.2025.1658797
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Liu et al.� 10.3389/fpsyg.2025.1658797

Frontiers in Psychology 06 frontiersin.org

3.4 Research quality assessment

According to the Standard Quality Assessment Criteria 
developed by Kmet et al. (2004), the quality of the 46 included studies 
was assessed. This versatile evaluates all sections of empirical studies 
(e.g., study design, methods) and has been widely applied in 
educational research (e.g., Iuga and David, 2024; Fricke et al., 2022). 
Each study was evaluated across 14 dimensions, with each item 
scored as yes (2), partial (1), and no (0). The total score for each study 
was calculated by dividing the sum of its score by 28. According to 
thresholds established by Kmet et al. (2004), scores of <0.50, 0.50–
0.70, 0.71–0.80, and >0.80 indicate low, adequate, good, and high 
quality, respectively. In this meta-analysis, the quality scores of the 46 
studies ranged from 0.72 to 0.94, indicating that all studies met the 
quality standards required for meta-analysis. The first and third 
authors independently evaluated each study’s quality, with an inter-
rater consistency coefficient of 0.86, indicating a high level of 
consistency (McHugh, 2012). Any discrepancies in evaluations were 
resolved by consulting the corresponding author.

3.5 Data analysis

To comprehensively explore the effect of embodied learning on 
students’ learning performance, this study followed the guidelines of 
the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) statement (Page et al., 2021). Comprehensive 
Meta-Analysis (CMA 3.0) software was used to conduct effect size 
calculation, heterogeneity test, moderator analysis, publication bias 
test, and sensitivity analysis on the coded results. The following 
sections describe these processes.

3.5.1 Calculating effect size
Effect size is a crucial metric for assessing the strength of 

correlation between variables or the level of experimental effects 
(Hedges and Vevea, 1998). Given the relatively small sample sizes and 

the different (quasi-)experimental designs of these studies, Hedges’ g 
was chosen for calculating effect sizes due to its ability to correct small 
sample bias and reduce bias in standardized mean differences (Ren 
et al., 2024). Unlike Cohen’s d, which may overestimate the effect size 
in small or unequal samples, Hedges’ g offers a more conservative and 
unbiased estimate, making it suitable for educational studies with 
different designs and sample sizes. According to Thalheimer and 
Cook’s (2002) study, an effect size between 0.15–0.40, 0.40–0.75, and 
>0.75 is interpreted as small, moderate, and large, respectively.

It is important to note that different results from the same 
participants should not be treated as independent outcomes, as this 
may lead to a misestimation of the overall effect (Hedges et al., 2010). 
Various methods have been developed to address this inflation effect. 
One approach involves extracting a single effect size from multiple 
comparisons within a single study, using “the study as the unit of 
analysis” and “subgroups within the study” options in CMA 3.0 to 
calculate the combined effect size (Çalik et  al., 2023, 2024). This 
approach minimizes the number of individual studies to address the 
inflation effect caused by multiple experimental outcomes (Rahman 
and Lewis, 2020).

3.5.2 Heterogeneity test and moderate analysis
To choose between the random-effects and the fixed-effects 

model, the researchers considered how the characteristics of the 
included papers matched the prerequisites of each model. The 
selection of a meta-analysis model depends on assumptions about the 
distribution of true effect sizes across studies and the intended scope 
of inference (Borenstein, 2019). The fixed-effects model assumes that 
all studies share a common true effect size and that observed 
differences among studies are due to sampling error. According to 
Hedges and Vevea (1998), the fixed-effects model allows for inferences 
about the relevant parameters within the analyzed studies and is 
suitable when the studies are functionally identical, estimating the 
effect size for a single population. In contrast, the random-effects 
model assumes that true effect sizes may vary across studies due to 
moderators (e.g., sample size). It is used when studies are functionally 
different and can estimate and generalize the effect size to a 
broader population.

Building on these theoretical foundations, the researchers also 
examined heterogeneity by calculating the Q-value and I2 statistic. The 
heterogeneity criteria established by Higgins et  al. (2003) guided 
model selection. A significant Q-test indicates the presence of 
heterogeneity, where the variability in effect sizes exceeds what would 
be  expected due to sampling errors. The I2 statistic reflects the 
proportion of total variance in effect sizes due to heterogeneity, with 
I2 values of 25, 50, and 75% corresponding to low, medium, and high 
levels, respectively.

Overall, significant heterogeneity suggests that the effect of 
embodied learning on students’ learning performance may 
be  influenced by moderators. Therefore, further Q-tests across 
different moderators are necessary to assess whether significant 
differences in effect sizes exist.

3.5.3 Publication bias and sensitivity analysis
Publication bias refers to the tendency for studies with statistically 

significant results or large effect sizes to be more likely published than 
those with non-significant results or smaller effect sizes (Borenstein 
et al., 2021). To assess publication bias, a funnel plot was used based 

TABLE 1  Moderators and their categories.

Moderators Categories References

Disciplines Science (e.g., science, biology, physics, 

math), humanities (e.g., languages, 

music, geography), computers, 

physical education (sports), and 

others.

Zhang et al. 

(2025)

Educational levels University, high school, middle school, 

primary school, and pre-school.

Experiment 

periods

1 term or so, 1 month or so, 1 week or 

so, and 1 h or so.

Sample sizes 0–30, 31–50, and >50. Yu and Yu (2023)

Regions Africa, Asia, Australia, Europe, and 

North America.

Learning 

approaches

Small group, individual, and mixed.

Embodied levels High, middle, and low.

Embodied types Active or passive. Xu and Ke (2020)
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on the distribution of effect sizes. However, this method relies on 
qualitative visual inspection, which introduces some subjectivity. 
Therefore, to achieve symmetry in the funnel plot, the trim-and-fill 
method was employed to estimate the number of missing studies.

To further quantify the effect of publication bias, Orwin’s fail-safe 
N was applied to evaluate the number of missing studies required to 
reduce the effect size to a negligible level (g < 0.01). Additionally, the 
Classic fail-safe N test was used to assess whether publication bias 
could undermine the overall conclusions (Littell et al., 2008). This 
method estimates the minimum number of missing studies needed to 
nullify the observed effect size. According to Rosenthal’s (1995) 
criterion, the threshold is set at 5n + 10, where n represents the number 
of studies included. A fail-safe N larger than this threshold suggests 
that the effect of unpublished studies on the overall effect is likely 
minimal. Publication bias was also assessed using the Egger’s test, with 
p < 0.05 indicating significant publication bias (Deeks et al., 2005).

Finally, sensitivity analyses were conducted to identify outliers 
influencing the overall effect (Reitsma et al., 2005). A single-study 
removal method was employed to assess the impact of studies with 
extreme negative or positive effects. Studies with small sample sizes 
that caused large heterogeneity were excluded to improve 
result stability.

4 Results

4.1 Descriptive information

Of the 46 articles (66 effect sizes) included in the final analysis, the 
experimental group consisted of 3,594 participants, while the control 
group included 3,827 participants. The range of effect sizes was 
[−0.825, 4.810], with 17 being negative and 49 being positive.

4.2 Heterogeneity test

Table 2 presents the results of the heterogeneity test. The Q-value 
for the overall effect was 536.483 (df = 65, p < 0.001), indicating 
heterogeneity among the samples. The I2 value was 87.884%, which 
is greater than 75%, showing a high degree of heterogeneity. 
Therefore, this study employed the random-effects model to estimate 
effect size and used moderator analysis to explore the sources 
of heterogeneity.

4.3 Overall effectiveness

As shown in the forest plot (Figure 2), under the random-effects 
model, the overall effect size of 46 studies (66 effect sizes) was 0.406, 

indicating a moderately positive effect of embodied learning on 
students’ learning performance. The two-tailed Z test was significant 
[Z = 5.612, 95%CI (0.264, 0.548), p < 0.001], demonstrating that 
embodied learning can significantly enhance students’ 
learning performance.

4.4 Moderator analysis

Table 3 presents the results of the moderator analysis. The study 
used the random-effects model to examine whether the effect size 
across the analyzed studies varied based on moderators, aiming to 
identify sources of heterogeneity.

For the effect size of each discipline, humanities exhibited a 
moderate effect [g = 0.514, 95%CI (0.117, 0.912), p < 0.05], followed 
by a moderate effect of physical education [g = 0.461, 95%CI (0.076, 
0.846), p  < 0.05] and science [g  = 0.433, 95%CI (0.258, 0.608), 
p < 0.001]. However, the small effect of computers [g = 0.026, 95%CI 
(−0.217, 0.268), p > 0.05] did not reach statistical significance. Overall, 
the intergroup effect was significant (QB = 10.163, p < 0.05), indicating 
a significant difference in the effect of embodied learning on students’ 
learning performance across different disciplines.

For the effect size of each educational level, high school showed a 
large effect [g = 0.742, 95%CI (0.422, 1.062), p < 0.001], followed by 
primary school with a moderate effect [g  = 0.531, 95%CI (0.266, 
0.795), p < 0.001], and small effect sizes for pre-school [g = 0.396, 
95%CI (0.146, 0.647), p < 0.01] and university [g  = 0.245, 95%CI 
(0.082, 0.408), p < 0.01]. However, the large effect of middle school 
[g = 1.185, 95%CI (−0.194, 2.563), p > 0.05] did not reach statistical 
significance. Overall, the intergroup effect was significant 
(QB = 10.050, p < 0.05), indicating a significant difference in the 
impact of embodied learning on students’ learning performance 
across different educational levels.

For the effect size of each experiment period, 1 term showed a 
large effect [g = 1.522, 95%CI (0.506, 2.538), p < 0.01], followed by 
1 week with a moderate effect [g  = 0.681, 95%CI (0.189, 1.174), 
p < 0.01], and 1 h with a small effect [g = 0.218, 95%CI (0.124, 0.312), 
p < 0.001]. However, the large effect for 1 month [g = 0.741, 95%CI 
(−1.356, 2.837), p > 0.05] did not reach statistical significance. Overall, 
the intergroup effect was significant (QB = 9.625, p < 0.01), indicating 
a significant difference in the effect of embodied learning on students’ 
learning performance across different experiment periods.

For the effect size of each sample size, >50 participants showed a 
moderate effect [g = 1.088, 95%CI (0.469, 1.707), p < 0.01], followed 
by a small effect of 31–50 [g = 0.374, 95%CI (0.203, 0.545), p < 0.001] 
and 0–30 participants [g = 0.259, 95%CI (0.135, 0.383), p < 0.001]. The 
intergroup effect was significant (QB = 7.221, p < 0.05), indicating that 
the improvement in students’ learning performance differ significantly 
across different sample sizes.

TABLE 2  Overall effect size.

Model Effect size 95%CI Heterogeneity test Tau-squared

Q df p I2 Tau2 Tau SE

Fixed 0.314 [0.267,0.361] 536.483 65 0.000 87.884% 0.288 0.536 0.081

Random 0.406 [0.264,0.548]

CI, confidence interval.
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For the effect size of each region, Asia had a moderate effect 
[g = 0.609, 95%CI (0.276, 0.941), p < 0.001], followed by a small effect 
of Australia [g = 0.269, 95%CI (0.059, 0.479), p < 0.05] and North 
America [g = 0.259, 95%CI (0.147, 0.370), p < 0.001]. However, the 
large effect of Africa [g = 0.772, 95%CI (−0.612, 2.156), p > 0.05] and 
the moderate effect of Europe [g  = 0.487, 95%CI (−0.032, 1.007), 
p  > 0.05] did not reach statistical significance. Furthermore, the 
intergroup effect was not significant (QB = 4.870, p > 0.05), indicating 
that the impact of embodied learning on students’ learning 
performance did not vary significantly across different regions.

For the effect size of each learning approach, small group learning 
had a moderate effect [g = 0.477, 95%CI (0.323, 0.631), p < 0.001], 
followed by a moderate effect of individual learning [g = 0.411, 95%CI 
(0.241, 0.580), p < 0.001]. However, the small effect of mixed learning 

[g = −0.275, 95%CI (−0.752, 0.201), p > 0.05] did not reach statistical 
significance. Overall, the intergroup effect was significant (QB = 8.680, 
p < 0.05), indicating a significant difference in the effect of embodied 
learning on students’ learning performance across different 
learning approaches.

For the effect size of each embodied level, the moderate effect of 
high embodiment [g = 0.647, 95%CI (0.360, 0.934), p < 0.001] was 
greater than the small effect of low embodiment [g = 0.219, 95%CI 
(0.071, 0.367), p  < 0.01]. The small effect of middle embodiment 
[g = 0.225, 95%CI (−0.003, 0.453), p > 0.05] did not reach statistical 
significance. However, the intergroup effect was significant 
(QB = 7.141, p < 0.05), showing that there was a significant difference 
in the effects of different embodied levels on students’ 
learning performance.

FIGURE 2

Forest plot.
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For the effect size of each embodied type, the moderate effect of 
active embodiment [g = 0.445, 95%CI (0.281, 0.610), p < 0.001] was 
greater than the small effect of passive embodiment [g = 0.112, 95%CI 
(−0.115, 0.340), p > 0.05]. Overall, the results of the intergroup test 
(QB = 5.401, p < 0.05) showed significant differences in the effect of 
different embodied types on students’ learning performance.

4.5 Publication bias and sensitivity analysis

The funnel plot (Figure 3) indicated that the effect sizes from 
most studies were symmetrically distributed around the mean effect 
size. The trim-and-fill method also suggested that four additional 
studies would be  added to the right side of this funnel plot to 

TABLE 3  Moderator analysis.

Moderators k Effect size z 95%CI QB

Disciplines 10.163*

 � Science 39 0.433 4.849*** [0.258, 0.608]

 � Humanities 17 0.514 2.535* [0.117, 0.912]

 � Computer 4 0.026 0.207 [−0.217, 0.268]

 � Physical education 1 0.461 2.347* [0.076, 0.846]

 � Others 5 0.131 0.861 [−0.167, 0.428]

Educational levels 10.050*

 � University 37 0.245 2.950** [0.082, 0.408]

 � High school 3 0.742 4.546*** [0.422, 1.062]

 � Middle school 3 1.185 1.684 [−0.194, 2.563]

 � Primary school 21 0.531 3.928*** [0.266, 0.795]

 � Pre-school 2 0.396 3.102** [0.146, 0.647]

Experiment periods 9.625*

 � 1 h 46 0.218 4.564*** [0.124, 0.312]

 � 1 week 7 0.681 2.712** [0.189, 1.174]

 � 1 month 3 0.741 0.692 [−1.356, 2.837]

 � 1 term 6 1.522 2.936** [0.506, 2.538]

Sample sizes 7.221*

 � 0–30 46 0.259 4.089*** [0.135, 0.383]

 � 31–50 10 0.374 4.286*** [0.203, 0.545]

 �  > 50 10 1.088 3.442** [0.469, 1.707]

Regions 4.870

 � Africa 2 0.772 1.093 [−0.612, 2.156]

 � Asia 19 0.609 3.588*** [0.276, 0.941]

 � Australia 15 0.269 2.507* [0.059, 0.479]

 � Europe 11 0.487 1.837 [−0.032, 1.007]

 � North America 19 0.259 4.553*** [0.147, 0.370]

Learning approaches 8.680*

 � Small group 11 0.477 6.078*** [0.323, 0.631]

 � Individual 53 0.411 4.746*** [0.241, 0.580]

 � Mixed 2 −0.275 −1.133 [−0.752, 0.201]

Embodied levels 7.141*

 � High 29 0.647 4.419*** [0.360, 0.934]

 � Middle 14 0.225 1.936 [−0.003, 0.453]

 � Low 23 0.219 2.892** [0.071, 0.367]

Embodied types 5.401*

 � Active 58 0.445 5.315*** [0.281, 0.610]

 � Passive 8 0.112 0.968 [−0.115, 0.340]

k, number of effect size; QB, intergroup homogeneity; CI, confidence interval.
*p < 0.05; **p < 0.01; ***p < 0.001.
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achieve symmetry. These findings suggest a low likelihood of 
publication bias.

Moreover, Orwin’s fail-safe N test (Table 4) indicated that, at the 
0.01 significance level, 2,007 unpublished studies would be needed to 
alter the total effect size. The classic fail-safe N test (Table 5) also 
indicated that 3,357 unpublished studies would be required to reduce 
the overall effect size, far exceeding the threshold of 240 studies. 
Additionally, Egger’s test (p = 0.052 > 0.05) did not reach statistical 
significance. Based on these findings, no evidence of publication bias 
was found, suggesting that the validity of the data included in this 
meta-analysis is high.

Finally, the results of sensitivity analysis showed that excluding 
any study did not affect the meta-analysis outcomes, with all point 

estimates falling within the range of 95%CI [0.264, 0.548], indicating 
that the model was robust.

5 Discussion

This study employs meta-analysis to examine 46 studies (66 effect 
sizes) published between 2010 and 2025, exploring the effect of 
embodied learning on students’ learning performance. Furthermore, 
it examines the differential effects of moderators, including discipline, 
educational level, experiment period, sample size, region, learning 
approach, embodied level, and embodied type.

5.1 Embodied learning enhances students’ 
learning performance

The present study found that embodied learning has a moderate 
positive effect on students’ learning performance, with an overall effect 
size of 0.406. This finding aligns with the studies by Kwon et al. (2025) 
and Chettaoui et al. (2022). Specifically, embodied learning activates 
learners’ physical experiences, facilitating a seamless connection 
between real-world information and acquired knowledge (Hong et al., 
2024). By externalizing their internal perceptions and thoughts, 
learners enhance the practical application of their skills. Furthermore, 
embodied learning integrates knowledge with learners’ perceptions 
and cognition, transforming abstract concepts into concrete or 
observable forms, thereby optimizing cognitive load (Macken and 
Ginns, 2014). This finding is further supported by embodied cognition 
theory, which highlights the importance of sensory experience and 
physical presence in the learning process (Wilson, 2002). Embodied 
learning emphasizes the importance of sensory experiences and 
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Funnel plot.

TABLE 4  Results of Orwin’s fail-safe N.

Hedges’ g in observed studies (random effect) 0.31

The criterion for a ‘trivial’ Hedges’ g 0.01

Mean Hedges’ g in missing studies 0.00

Number missing studies needed to bring Hedge’s g under 0.01 2007.00

TABLE 5  Results of classic fail-safe N.

z-value for observed studies 14.11

p-value for observed studies 0.00

Alpha 0.05

Tails 2.00

z for alpha 1.96

Number of observed studies 66.00

Number of missing studies that would bring p-value to > alpha 3357.00
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physical participation in understanding and retaining knowledge. 
Through sensory experiences and physical movements, learners can 
intuitively grasp abstract concepts, thereby reducing the cognitive 
effort required for learning tasks (Hung and Chen, 2018).

5.2 The moderator analysis

This study investigates eight moderators to identify factors that 
may explain differences in effect sizes among studies. The results 
found that, in addition to region, differences in discipline, educational 
level, experiment period, sample size, learning approach, embodied 
level, and embodied type were key factors influencing the effect of 
embodied learning on students’ learning performance.

From a disciplinary perspective, embodied learning has a greater 
impact on students’ learning performance in the humanities than 
physical education or science, with no significant effect observed in 
computer science. This finding contradicts the results of Zhang et al. 
(2025). Embodied cognition theory suggests that embodied learning 
enhances memory and comprehension through physical engagement 
and sensory experiences. This effect is especially pronounced in the 
humanities, which rely heavily on situational memory and the 
understanding of human experiences. For example, VR technology 
has been shown to improve language skills by simulating real-world 
scenarios (Chen and Liu, 2025). Research in cognitive science has also 
indicated that learning in humanities subjects, such as language 
acquisition, activates the sensorimotor cortex (Willems and Casasanto, 
2011). This suggests that language processing involves not only 
traditional language centers in the brain but also bodily actions and 
sensory experiences. In contrast, the knowledge base in the sciences 
is characterized by experimentation, objectivity, and systematicity. 
Embodied learning can facilitate the sciences through virtual 
simulations, offering more opportunities for hands-on practice 
(Agostinho et  al., 2015). However, the disciplinary focus on 
experimentation and systematic methods may limit the role of 
embodied learning in science education compared to fields where 
experiential and sensory learning is more integral. For instance, in 
science, while virtual simulations provide valuable hands-on practice, 
they might not engage students’ sensorimotor experiences as 
effectively as the more intuitive and human-centered learning in the 
humanities. These findings basically align with the results of existing 
meta-analysis (Lyu and Deng, 2024). On the other hand, computer 
science centers on logical thinking and symbolic expression, which 
requires extensive training in mathematical and scientific reasoning. 
This emphasis on abstract thought and problem-solving may reduce 
the impact of embodied learning in this field. As a result, the impact 
of embodied learning in this field is less evident, and its effect on 
learning performance is not as pronounced as in other disciplines 
(Darejeh et al., 2022).

From the perspective of educational levels, the effect of embodied 
learning on students’ performance varies across educational levels, 
with the largest impact observed in high school, followed by primary 
school, and smaller effects seen in pre-school and university. This 
finding is essentially consistent with existing research (Yu and Yu, 
2023). High school students, who often face significant academic 
pressure, can benefit from embodied learning (e.g., using VR), as it 
makes learning more engaging and enjoyable, thereby effectively 
reducing their academic stress. According to Piaget’s theory of 

cognitive developmental stages, younger students (e.g., pre-school 
students and primary school students), whose abstract reasoning 
ability has not yet fully developed, may rely more on multimodal input 
for information processing (Lefa, 2014). Embodied learning offers 
concrete visual representations, which not only enhance motivation 
and attention but also serve as cognitive scaffolding for learning. In 
contrast, university students, who have developed advanced memory 
strategies and verbal reasoning skills, may find bodily movements and 
verbal perception less important for learning tasks (Park et al., 2023). 
This is because cognitive and abstract thinking typically develop with 
age (Zou et al., 2025), allowing university students to engage in higher-
order cognitive activities such as symbolic thinking and logical 
reasoning. Therefore, they may be more inclined to rely on abstract 
thinking for learning rather than physical actions, as confirmed by 
Zhang et al. (2025). Moreover, Lyu & Deng (2024, p.2) argued that 
younger students (e.g., pre-school students and primary school 
students) may struggle with the cognitive load induced by poorly 
designed embodied learning strategies, leading to increased cognitive 
stress. This may be because simpler embodied interventions (e.g., 
pointing, tracing) reduce cognitive load, while highly interactive 
embodied interventions (e.g., VR, AR technologies) may increase 
cognitive load, potentially leading to lower learning performance 
among younger students (e.g., pre-school students and primary school 
students) with limited cognitive capacity. Therefore, future research 
should explore the optimal level of embodied interaction across 
different educational levels, balancing cognitive load and 
learning performance.

From the perspective of experiment periods, the period of 
students’ participation in the experiment significantly affects their 
learning performance, with longer periods yielding better results. This 
aligns with previous research (Kosmas et  al., 2019). Embodied 
learning, which emphasizes physical engagement, perception, and 
experience, is based on the idea that learners acquire knowledge 
through hands-on practice. The longer the period of students’ 
participation in the experiment, the greater its positive influence on 
various aspects of learning (e.g., memory consolidation, skill 
formation; Lai, 2024). However, according to cognitive load theory, if 
the experiment period is too long, especially when the amount of 
information exceeds the capacity of working memory, cognitive load 
increases, thereby reducing learning efficiency (Zou et al., 2025). As 
demonstrated by Yeo and Tzeng (2020), younger learners, such as 
those in pre-school and primary school, typically have weaker self-
regulation skills than university students. Consequently, longer 
periods of students’ participation in embodied experiments may lead 
to greater distractions, increasing external cognitive load, and 
ultimately reducing learning outcomes. Overall, while extended 
embodied learning can offer significant benefits for skill development, 
its period should be  carefully adjusted to the learner’s age and 
cognitive abilities. Striking a balance between period and cognitive 
load is critical to ensuring that embodied learning becomes an 
effective tool for advancing education.

From the perspective of sample sizes, the number of participants 
in the embodied intervention group exceeding 50 has the greatest 
impact on students’ learning performance, compared to groups with 
0–30 and 31–50 participants, with significant intergroup differences. 
This finding contradicts prior studies (Huang et al., 2022; Kuo et al., 
2014). One possible explanation for this discrepancy is the use of AR 
and VR. These immersive tools allow students participating in 
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embodied interventions to interact with 3D simulations, with task 
complexity adjusted according to individual progress (Rabattu et al., 
2023). Such customization ensures that students who participated in 
embodied activities, regardless of their prior knowledge, can engage 
with the material at an appropriate level. By providing personalized, 
immersive learning experiences, these technologies bridge the gap 
caused by learner diversity and enhance engagement in larger 
embodied groups. Furthermore, AR and VR enable educators to 
effectively manage larger embodied groups by automating the tracking 
of students’ progress and providing real-time feedback (Hsiao et al., 
2018). By reducing teachers’ cognitive load, these tools allow them to 
focus on higher-level instructional tasks while providing 
individualized support for each student, thereby improving the overall 
learning experience. Another reason for the divergence may lie in 
differences in study design. In earlier research, embodied interventions 
with larger sample sizes often relied on traditional lecture-based 
methods, where the benefits of bodily interaction were limited due to 
low levels of student engagement or insufficient instructional 
adaptation. In contrast, recent studies have implemented more 
collaborative and interactive designs in larger-sample contexts 
(Liyanawatta et al., 2022). For instance, peer-assisted learning, group-
based problem-solving, or project-based embodied activities, which 
may amplify the effects of embodiment by encouraging students to 
exchange ideas, negotiate meaning, and co-construct knowledge 
through physical and social interaction. These designs align with the 
core tenets of embodied cognition, emphasizing not only bodily 
involvement but also contextual and social embeddedness. Therefore, 
large-group interventions, when supported by appropriate 
instructional design, can indeed yield strong learning performance.

From a regional perspective, the impact of embodied learning on 
students’ learning performance is moderate in Asia, small in Australia 
and North America, and shows no significant effect in Africa and 
Europe. Notably, no significant intergroup differences are observed 
across regions. These findings contrast with previous studies (Lyu and 
Deng, 2024), which suggested that in regions with abundant 
educational resources, students are often exposed to diverse embodied 
activities from an early age. This early familiarity with sensory-based 
and physically engaging learning may facilitate quicker adaptation, but 
it could also diminish the novelty effect commonly observed in 
educational settings with fewer resources. From a cultural context 
perspective, this divergence in findings may be  explained by 
differences in how education is structured and how embodied learning 
is integrated into cultural practices. In Australia and North America, 
students may already be accustomed to a variety of learning tools, 
including digital and embodied methods. As a result, these students 
might experience a ceiling effect, where the benefits of new learning 
methods like embodied learning are less pronounced because they are 
already familiar with similar techniques (Lajevardi et al., 2017). In 
contrast, in collectivist cultures (e.g., many parts of Asia), where 
group-based learning and social interaction are emphasized, 
embodied learning methods may have a stronger impact, as they align 
with existing cultural practices of learning through interaction and 
engagement. Furthermore, in underdeveloped regions such as Africa, 
where traditional, lecture-based teaching methods are more common, 
the introduction of embodied learning holds more promise. The 
novelty effect of embodied learning in these contexts, where such 
methods are less familiar, tends to have a greater impact (Rahnert 
et al., 2024). In these regions, the introduction of new, engaging, and 

sensory-based learning techniques could lead to substantial 
improvements in students’ learning performance, especially as it 
breaks from traditional, passive forms of education. These findings 
underscore the importance of considering both cultural context and 
regional exposure to embodied learning tools. The varying levels of 
exposure across different regions and cultural contexts likely play a 
significant role in shaping how students respond to embodied 
learning interventions.

From the perspective of learning approaches, collective embodied 
learning is more effective than individual embodied learning, with 
significant intergroup differences. These findings support Danish et al. 
(2020), who suggested that the effectiveness of embodied learning 
depended on the interaction between individuals and their 
environment, as well as collaboration within groups. Drawing from 
activity theory, embodied learning is not only an individual cognitive 
process but also influenced by group interactions (Engeström, 2014). 
These interactions collectively create a dynamic activity system, in 
which learners acquire new cognitive perspectives from others while 
continuously refining their understanding. In other words, embodied 
activities serve not only as vehicles for individual cognition but also 
as valuable resources for collaborative learning (Liyanawatta et al., 
2022). In contrast, individual embodied learning may have limitations 
in terms of cognitive diversity, conflicting perspectives, and the lack 
of group feedback. Therefore, future research should integrate more 
dynamic interaction into individual embodied learning to address 
these limitations. Further work should also explore the impact of 
different cultural backgrounds and social structures on collective 
embodied learning, aiming to develop more adaptable 
instructional designs.

From the perspective of embodied levels, high-level embodied 
learning has a greater impact on students’ learning performance than 
low-level embodied learning, which is consistent with the findings of 
Guo and Goh (2015). According to dual coding theory (Clark and 
Paivio, 1991), information is stored and retrieved more efficiently 
when it is encoded simultaneously through both verbal and 
non-verbal channels (e.g., bodily movements). High-level embodied 
learning allows learners to engage in full-body participatory 
simulation within a given scenario (Conley et al., 2020). Through large 
physical movements and immersive activities, learners embody 
elements of the scene and interact more deeply with the content. In 
contrast, low-level embodied learning involves visual input and 
minimal physical activity, offering a more limited sensory experience 
(Mayer and DaPra, 2012). This reduced sensory input may hinder 
deeper information processing. However, previous research suggested 
that high-level embodied learning may sometimes exceed learners’ 
working memory capacity, leading to challenges in allocating cognitive 
resources (Georgiou et al., 2019). One possible reason for this is that 
learners have varying abilities to manage their cognitive resources. 
Therefore, when designing embodied learning activities, individual 
differences should be  considered to provide personalized support 
(Johnson-Glenberg et  al., 2020). Students should also effectively 
allocate their cognitive resources to reduce additional cognitive load.

From the perspective of embodied types, this study found that 
active embodied learning is more effective in enhancing students’ 
learning performance than passive embodied learning, which aligns 
with previous studies (Hung et al., 2014; Xu and Ke, 2020). Active 
embodied learning (e.g., interacting within a mixed reality simulation) 
involves not only perceiving information visually or audibly, but also 
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physically engaging with it (Lindgren et  al., 2016). This physical 
interaction facilitates multisensory connections in the brain, creating 
a richer learning experience. By using their bodies to enact or 
manipulate concepts, students can integrate information more 
comprehensively than by passive observation alone. Furthermore, 
information processing theory explains why active engagement can 
enhance learning. According to this theory, working memory has a 
limited capacity, and information that is not adequately rehearsed or 
processed is prone to being forgotten (Baddeley et al., 2021). In this 
context, active embodied learning serves as an effective tool for 
reinforcing the material. Through repetitive bodily movements that 
simulate the content, students engage with the material in a way that 
strengthens retention. This dynamic process facilitates the transfer of 
information from working memory to long-term memory, making the 
learning experience more lasting and meaningful. However, some 
previous studies have suggested that active embodied learning (e.g., 
interacting with Kinect) may have a negative effect on immediate 
knowledge acquisition (Xu and Ke, 2023). This may be due to the 
specific design aspects of embodied learning. If active embodied 
learning involves fixed bodily movements and lacks interactive 
feedback, its effectiveness may not exceed that of passive 
embodied learning.

6 Implications

The present study has important theoretical and practical 
implications for education. Theoretically, this meta-analysis expands 
the existing body of research on embodied learning and learning 
performance by offering quantitative evidence that embodied learning 
is an effective method for enhancing students’ learning performance. 
This study also offers a more comprehensive examination of eight 
moderators, investigating the impact of embodied learning on 
students’ learning performance. This expands the scope compared to 
previous meta-analyses (Lyu and Deng, 2024; Yu and Yu, 2023; Zhang 
et al., 2025). Furthermore, this study provides a theoretical foundation 
for the future development of educational policies and the 
incorporation of embodied learning by educators. Practically, the 
results of the moderator analysis highlight that embodied learning is 
not suitable for all learning environments and should not be used 
arbitrarily. Future work should focus on the following eight points:

	(1)	 In humanities courses, role-playing or simulating scenes allows 
students to experience specific knowledge, thereby deepening 
their understanding of learning contexts. In sciences courses, 
VR technology can facilitate students’ intuitive understanding 
of abstract concepts, such as vectors, mechanics, and geometry. 
Through interactive actions like touching and dragging, 
students can explore the dynamic changes in mathematical 
functions. In physical education, teachers can integrate physical 
interaction and sensory experiences into the curriculum. For 
computer science courses, educators should incorporate 
embodied programming tasks to help students develop their 
logical thinking and symbolic expression skills through 
consistent practice.

	(2)	 Embodied learning should be tailored to students’ cognitive 
development levels. For pre-school and primary school 
students, simple and intuitive embodied interventions (e.g., 

gestures and finger tracking) should be  used to enhance 
learning while reducing cognitive load. For high school and 
university students, advanced technologies (e.g., VR, motion-
sensing technology) should be  integrated to increase their 
engagement in embodied activities.

	(3)	 The duration of students’ participation in the experiment 
should be  adjusted according to their age and cognitive 
abilities. Teachers should balance the duration of students’ 
participation in the experiment with their cognitive abilities to 
optimize learning outcomes. Additionally, incorporating 
breaks and varying activities can help maintain engagement 
and reduce fatigue, and ensure that embodied learning remains 
effective across all age groups.

	(4)	 Educators should consider integrating AR and VR technologies 
into their teaching to enhance personalized learning, especially 
in larger embodied intervention groups. These tools can 
manage students who participated in embodied activities by 
offering tailored learning experiences and reducing cognitive 
load for teachers, thereby realizing more effective instruction 
and individualized support.

	(5)	 It is important to consider the educational traditions and 
learning styles across different regions. In regions with limited 
educational resources, the focus should be on experimental 
and inquiry-based learning. In resource-rich regions, 
embodied activities should focus on engaging students through 
advanced interactive modes, interdisciplinary integration, and 
gamified learning to capture their attention.

	(6)	 Teachers should effectively integrate individual practice with 
collaborative activities, enabling students to engage in 
independent thinking while expanding their knowledge 
through group interactions. More embodied activities based on 
group collaboration should be  designed into the learning 
process, such as open classrooms and interactive laboratories.

	(7)	 Teachers should consider the cognitive load and adjust the 
balance between high and low embodied learning based on 
the nature of the learning tasks. By carefully matching the 
type of embodied learning with different stages of the 
learning process, educators can help students effectively 
manage their cognitive resources. Additionally, 
personalized support should be  provided based on 
individual differences, ensuring that students are not 
overwhelmed and can focus on learning in a way that aligns 
with their cognitive abilities.

	(8)	 The combination of active and passive embodied learning can 
create a dynamic learning environment that accommodates 
diverse learning preferences. By integrating real-time feedback 
into active embodied activities and incorporating meaningful 
observational tasks into passive embodied learning, teachers can 
offer a comprehensive approach that fosters deeper understanding.

7 Limitations and future direction

This study has several limitations. First, some moderators have 
small sample sizes, which restricts the study of interactions between 
moderators. Future work should expand sample sizes to further 
investigate the interactions effect of moderators, such as those 
between educational level and experiment period. Second, due to 
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the researchers’ language limitations, non-English studies were 
excluded from this meta-analysis. While this decision was made to 
ensure accurate data extraction and interpretation, it inevitably 
introduces a potential language bias. Excluding non-English studies 
may limit the generalizability of the findings, particularly in 
non-English-speaking contexts where cultural and educational 
practices related to embodied learning might differ significantly. 
This bias may also lead to an underrepresentation of regional 
perspectives and outcomes. Future research should aim to include 
studies published in other languages to provide a more 
comprehensive understanding of how embodied learning affects 
learners across diverse linguistic and cultural backgrounds. Finally, 
this study included only (quasi-)experimental studies with available 
data for meta-analysis, excluding relevant qualitative research. 
Future work should combine qualitative analysis with meta-analysis 
to conduct a more comprehensive analysis.

8 Conclusion

This study employs a meta-analysis to examine the effect of 
embodied learning on students’ learning performance. By analyzing 
46 studies and calculating 66 effect sizes, the results reveal a 
moderately positive impact of embodied learning on students’ 
learning performance. Further analysis of eight moderators indicates 
that embodied learning has no significant effect on students’ learning 
performance across different regions, but significant differences are 
observed in different disciplines, educational levels, experiment 
periods, sample sizes, learning approaches, embodied levels, and 
embodied types. In conclusion, the findings suggest that the positive 
effect of embodied learning on students’ learning performance and its 
effect varies under different learning contexts and application 
conditions. Based on these findings, educators can incorporate 
embodied activities into their teaching and encourage students to 
apply embodied learning appropriately.
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