
TYPE Original Research
PUBLISHED 09 October 2025
DOI 10.3389/fpsyg.2025.1689676

OPEN ACCESS

EDITED BY

Vittorio Gallese,
University of Parma, Italy

REVIEWED BY

Rui Liu,
Ghent University, Belgium
Tawanda Matende,
University of Zimbabwe Collaborative Clinical
Research Centre, Zimbabwe

*CORRESPONDENCE

Julia Krebs
julia.krebs@plus.ac.at

RECEIVED 20 August 2025
ACCEPTED 22 September 2025
PUBLISHED 09 October 2025

CITATION

Krebs J, Harbour E, Malaia EA, Wilbur RB,
Martetschläger J, Schwameder H and
Roehm D (2025) Sign language encodes event
structure through neuromotor dynamics:
motion, muscle, and meaning.
Front. Psychol. 16:1689676.
doi: 10.3389/fpsyg.2025.1689676

COPYRIGHT

© 2025 Krebs, Harbour, Malaia, Wilbur,
Martetschläger, Schwameder and Roehm.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Sign language encodes event
structure through neuromotor
dynamics: motion, muscle,
and meaning

Julia Krebs1*, Eric Harbour1,2, Evie A. Malaia3, Ronnie B. Wilbur4,
Julia Martetschläger1, Hermann Schwameder2 and
Dietmar Roehm1,5

1Department of Linguistics, University of Salzburg, Salzburg, Austria, 2Department of Kinesiology,
University of Salzburg, Salzburg, Austria, 3Department of Speech, Language and Hearing Sciences,
University of Alabama, Tuscaloosa, AL, United States, 4Department of Linguistics, Purdue University,
West Lafayette, IN, United States, 5Centre for Cognitive Neuroscience (CCNS), University of Salzburg,
Salzburg, Austria

Introduction: This study provides neuromotor evidence for the embodied
kinematic encoding of grammatical event structure in sign language, using time-
locked motion capture and surface electromyography (EMG) recordings from
fluent Deaf ÖGS signers.
Methods: Drawing on the Event Visibility Hypothesis, we examine how Austrian
Sign Language (ÖGS) systematically distinguishes telic and atelic verbs through
both visible kinematic parameters, as well as underlying muscle activation
patterns.
Results: We show that telic signs (those denoting bounded, goal-directed
events) have shorter duration, later deceleration, lower movement variability,
and distinct spectral activation in forearm and upper-arm muscles, as compared
to atelic verb signs. Telic signs showed greater EMG co-contraction but
lower cross-correlation than atelic verb signs, reflecting temporally precise
antagonistic muscle coordination, and suggesting that grammatical contrasts in
sign language are produced based on finely tuned motor control schemas.
Discussion: These results directly address current challenges in embodiment
research by demonstrating replicable, interpretable neuromotor correlates of
linguistic structure in a visual-manual modality. By capturing how grammatical
distinctions are produced by manual articulators, we contribute high-resolution
empirical data and analysis methods toward understanding embodied language
and linguistic motor control. In addition, our results support the linguistic
interpretation that telic verb signs are morphologically marked in a way that atelic
verb signs are not.

KEYWORDS

Austrian Sign Language, verbs, telicity, event visibility, kinematics, muscle activation,
motion capture, electromyography

1 Introduction

Embodied theories of language suggest that grammatical distinctions are grounded
in sensorimotor experience; however, empirical evidence at the neuromuscular level
remains sparse and modality-specific. Sign languages provide a unique empirical
window into embodied cognition precisely because their grammar is realized in
physical movement. In this study, we quantify a specific type of embodiment - event
visibility in sign languages—by demonstrating how grammatical event structure in
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Austrian Sign Language (ÖGS) is encoded via systematic
differences in motor control of verb sign production, quantified
using kinematic and electromyographic (EMG) data. Building on
the Event Visibility Hypothesis (Wilbur, 2003, 2008; Wilbur et al.,
2012), which links event semantics to articulatory dynamics in
sign languages, we show that neuromotor coordination in signers
produces a kinematic pattern that is critical for grammatical
marking of verb event structure, or differentiation between telic
and atelic verbs. Semantically, telic verbs describe actions with
clear endpoints (similar to English verbs “arrive” or “break”), while
atelic verbs describe processes that do not have natural endpoints
(similar to English verbs “run” or “think”). Our data show that
telic and atelic verbs differ both in spatiotemporal patterns of
overt kinematics and in muscle-specific activation patterns and
co-contraction strategies, suggesting deep integration between
linguistic computation and articulator control. By combining
motion capture and EMG in fluent Deaf signers, this study also
addresses methodological gaps in the embodiment literature by
offering a replicable, high-resolution paradigm for examining how
linguistic and motor control systems interact in proficient signers.

For a number of unrelated sign languages it has been reported
that event structure is reflected in the visual and dynamic form
of verb signs, an observation which was formulated as the Event
Visibility Hypothesis (Wilbur, 2003, 2008). Wilbur (2003, 2008)
described that in American Sign Language (ASL) the set of verb
signs denoting telic events, which have a natural endpoint (e.g.
ARRIVE), differ from the set of verb signs denoting atelic events,
which lack a natural endpoint (e.g. RUN) in both phonological form
and syllable structure. Telics are produced with a sharper ending to
a stop resulting from a change of handshape aperture, a change of
handshape orientation, an abrupt stop at a location in space or a
contact with a body part. Atelics which lack endpoint marking are
produced by a straight or curved path movement or do not show
any movement at all (Wilbur, 2003, 2008).

Although such event structure is visible in different sign
languages, cross-linguistic differences can be observed. For
instance, whereas in ASL telics and atelics differ in the phonological
structure of their lexical items, in Croatian Sign Language (HZJ)
an overt morphological process is used to produce an alternation
between two forms of a verb from one stem, where the verb
root is signed with shorter, sharper movement for the telic form
compared to its atelic form (Milković, 2011). These movement-
based distinctions have been confirmed by studies using motion
capture: for ASL a faster deceleration at sign end was observed
for telics compared to atelics (Malaia and Wilbur, 2008, 2012),
whereas for HZJ faster deceleration as well as higher peak velocity
for telics compared to atelics was reported (Malaia et al., 2013).
Interestingly, changes in speed (acceleration and deceleration) have
been shown to be relevant for comprehension and the identification
of event boundaries (start and end of an action) when viewing non-
linguistic visual action (e.g., movement of individual objects, or
activities like cooking or folding clothing) (Zacks et al., 2006).

It has been suggested that it is this non-linguistic ability
that enables hearing non-signers to perceive these movement
distinctions when they are used in telic and atelic signs and
use them to classify telic/atelic verb signs in a two-choice lexical
decision task (Strickland et al., 2015; Malaia and Wilbur, 2012;
Krebs et al., 2023a). Non-signers appear to segment the sign
language signal into visuomotor discrete events as they try to map

the sign to a linguistic concept. This process might indicate the
potential evolutionary pathway of co-optation of perceptual motion
features into the linguistic structure of sign languages (Krebs et al.,
2023a).

As in other sign languages, in ÖGS modulations of movement
and dynamics mark linguistically relevant grammatical distinctions
(Krebs and Fenkart, 2024), and event structure and the telic-atelic
distinction is reflected in the phonological form of verb signs
(Schalber, 2006; Krebs et al., under review1). Previous motion
capture research on ÖGS shows that telic verbs are produced with
higher acceleration and jerk, higher deceleration at the end of
the signs, higher peak velocity and shorter duration than atelic
verbs. In comparison to atelics, telic verbs displayed sign-final holds
(whereby the hands are briefly held in space) that were 2.5 times
longer than atelics (Krebs et al., 2021, 2024, 2023a). A previous
study investigated kinematic and EMG data of one Deaf ÖGS signer
producing 10 telic and 10 atelic verbs. The telic signs, which are
produced with higher acceleration, jerk and deceleration at sign
end, also displayed higher activation in upper arm muscles during
the sign and hold interval as compared to atelics. In contrast, the
repeated arm/hand movement used in the majority of the atelics,
but absent in telics, displayed higher muscle activation in the
forearm as compared to the telics (Krebs et al., 2023a).

This study aims to investigate the motor control that governs
articulatory dynamics in sign language production used to express
differences in meaning and grammar. Therefore, in the present
study the production of telic and atelic signs of Austrian Sign
Language (ÖGS) produced by six Deaf signers is examined using
the motion capture and electromyography (EMG) methodology.

2 Material and methods

2.1 Participants

Six Deaf signers (4 F) were included in the analysis
(M = 55 years, SD = 9; range = 40-64). All participants were
either born Deaf or became Deaf early in life. Each was a fluent
user of ÖGS, used ÖGS as their primary language in daily life,
and identified as members of the Deaf community. All had a
long-standing association with our research. Five participants self-
reported as right-handed; one as left-handed.

2.2 Motion capture procedure

Body kinematics—including torso, head, and arms/hands –
were recorded using a custom-designed marker set (see Figure 1)
and a 12-camera infrared motion capture system (Qualisys AB,
Göteborg, Sweden) operating at a sampling rate of 300 Hz.
Simultaneously, a 2D video of the participant was recorded at
150 Hz and time-synchronized with the motion capture data.
Marker trajectories were low-pass filtered using a second-order,
zero-lag Butterworth filter with a cutoff frequency of 25 Hz.
Segment positions and orientations were calculated using an
inverse kinematics algorithm (V3D; C-Motion, Rockville, MD,

1 Krebs, J., Wilbur, R. B., and Malaia, E. (under review). Testing the Event

Visibility Hypothesis in Austrian Sign Language (ÖGS).
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USA). Joint centers at the wrist, elbow, and shoulder were estimated
as virtual landmarks positioned midway between the lateral and
medial anatomical markers (see Figure 1).

All signers started their hand/arm movement from the same
resting position with the arms at the sides of the body. The start
and end of the sign phase was visually set by a skilled signer
using 2D video recording time-aligned to motion capture data. Sign
onset was defined as the video frame when the target handshape
reached the target location from where the sign movement started
(Wilbur and Malaia, 2008). The sign offset was defined as the video
frame when the handshape or the hand orientation of the sign
changed or when the hand moved away from the final position. The
dominant hand was operationalized as the one used for producing
one-handed signs; in two-handed asymmetric signs, the dominant
hand performs the primary articulation while the non-dominant
hand serves as a passive articulator. For statistical analysis, each sign
was analyzed individually, using dominant hand data per signer
and per sign.

After trimming to sign phase, sign duration was extracted
and then the position data were time-normalized to 100 points
using spline interpolation. First, second, and third derivatives were
calculated using MATLAB function “gradient" to obtain velocity,
acceleration, and jerk, respectively (see Figure 2). Velocity data
were transformed using the Euclidean norm to obtain absolute
speed, from which the median and peak speed (m/s) were labelled.
Resultant acceleration was also calculated, from which peak
deceleration (m/s2) and the time to peak deceleration (0− 100% of
sign) were extracted. Peak jerk and time to peak jerk were similarly
extracted from the absolute jerk vector. Movement entropy was
calculated from the speed vector using the function “SampEn”
with an embedded dimension m=2 and tolerance r = 0.2∗standard
deviation (Lee, 2012). Finally, movement variability was quantified
using spatiotemporal index (STI). STI, which measures how
consistently participants performed the same movement pattern
across repetitions, was calculated for velocity and acceleration by
calculating the standard deviation (SD) at every other time point
(50 SDs) and then summing all SDs into a scalar value (Howell et al.,
2009).

3 Electromyography (EMG) recording
procedure

In biomechanics and kinesiology, surface electromyography
(EMG) is widely employed as a non-invasive method for
monitoring electrical activity at the surface of skeletal muscles. It
is particularly useful for determining the onset and offset of muscle
activation, as well as assessing contraction magnitude and patterns
of intermuscular coordination (Schwameder and Dengg, 2021).

The EMG analysis was performed using EMG sensors
(Ultium(TM) EMG, Noraxon, Scottsdale, AZ, USA) connected
to surface electrodes (Ambu blue, 30 × 22 mm, Ag/AgCl).
Data were collected simultaneously with the kinematic analysis
through the Qualisys Track Manager (Qualisys AB, Goteborg,
Sweden). EMG data were collected at 2000 Hz. EMG signals
were recorded from four arm muscles: m. extensor digitorum,
m. flexor digitorum, m. biceps brachii and m. triceps brachii
of the dominant arm. EMG electrodes were placed on the

participant’s skin, which was prepared beforehand (by shaving
and disinfecting the skin to remove skin scales, hair, and
skin oil to get the best possible EMG signal) at specific
anatomical places (e.g. thickest part of the muscle of interest)
according to the recommendations of SENIAM (http://www.
seniam.org/).

Participants performed maximum voluntary contraction
(MVC) procedures according to best practices (Burden, 2010)
by contracting against a fixed object in standardized positions
(wrist 0, elbow 90 degrees flexion). They were given strong
verbal encouragement to push maximally for three seconds.
MVC estimation was performed as it allows for more accurate
comparison of activation levels between adjacent muscles.

The power spectral density (PSD) estimate was obtained
from the sign phase raw EMG signals using the function
“periodogram”. Then, the mean and median frequency were
extracted and the power in five distinct frequency bands was
dervied for comparison (6–15, 16–25, 26–60, 61–75, and 76–140
Hz). This approach was selected as Roman-Liu and Konarska
(2009) demonstrated its sensitivity and specificity to comparing
different muscle contractions below 30% maximal contraction.
The PSD of frequencies below 6 and above 140 Hz were also
calculated in order to provide a more complete picture of the full
power spectra.

EMG data were post processed using MATLAB according
to best practice recommendations (Muceli and Merletti, 2024).
Raw EMG data were high-pass filtered at 10Hz, low-pass filtered
at 300Hz then notch filtered at 50Hz to remove power line
interference. Next it was rectified and smoothed using root mean
square with a moving window of 100 data points (0.05 s). MVC was
extracted from the highest 1s average in accordance with current
best practices (Burden, 2010). Sign phase EMG was trimmed and
normalized to MVC. The mean, median, and peak (in 0.25 s
windows) activation was extracted for comparison.

A co-contraction index (CCI) was calculated to approximate
the degree of activation between agonist and antagonist muscles in
the dominant hand (e.g., upper arm biceps and triceps) (Li et al.,
2021). The formula of Rudolph et al. (2000) was adapted to consider
that certain sign expressions had alternating agonist muscles within
the sign. Thus, at each sample point the following formula was used:

(emgl/emgh) ∗ (emgl + emgh) (1)

Where emgl is the EMG signal with a lower amplitude and emgh
higher. Mean and peak (0.25 s window) CCI during the sign phase
were retained for comparison.

3.1 Cross-correlation analysis

Cross-correlation analysis provides a quantitative measure of
how well muscle activation patterns align with hand movement
timing. The cross-correlation of each upper arm muscle (biceps
and triceps) with wrist speed was estimated using the MATLAB
function “xcorr” with a maximum lag of 20% sign duration
and normalized output. Peak cross-correlation coefficients were
extracted as the maximum absolute correlation value within the
lag window. Cross-correlation values were Fisher z-transformed
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FIGURE 1

Motion capture marker set.

FIGURE 2

Example kinematic and EMG data for telic verb “zugeben” (confess/admit) and atelic verb “Flugzeug fliegen” (fly by plane) in one participant. Sign time
displayed from manual start and end labels as detailed in the methods section. Relative activation indicates percentage of maximal voluntary
contraction. Co-contraction index units are arbitrary (au). m/s, meters per second.

prior to statistical analysis to ensure normality assumptions
were met, then back-transformed for reporting. Higher cross-
correlation values indicate stronger temporal coupling between
muscle activation and wrist kinematics.

4 Statistical analysis

Unless otherwise noted, all data are reported as
median ± interquartile range. Mixed-effect linear models
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(MATLAB package fitlme) were used to examine the effect of
verb type (telic or atelic) upon all kinematic and EMG variables.
The model included verb type as the fixed effect, with a random
intercept for nested verb type/participant. Thus, the formula was:

variable ∼ verb type + (verb type | participant)
Partial eta squared effect sizes (η2

p) were reported and
interpreted as small = 0.01; medium = 0.06; and large = 0.14.
P-values were adjusted using the Benjamini-Hochberg method
(MATLAB package mafdr) to account for multiple comparisons.

5 Results

A total of 390 signs (34 telic and 31 atelic verbs per
participant) were collected and included in this analysis. Pooled
kinematic data are displayed in Table 1. Linear mixed-effects
models revealed statistically discernible differences in movement
kinematics between telic and atelic verbs. Telic verbs were
characterized by significantly slower average wrist speed (estimate
[Est] = −0.00047 m/s, SE = 0.00013, p < 0.001, η2

p = 0.034),
shorter sign duration (Est = −0.44 s, SE = 0.083, p < 0.001, η2

p =
0.070), and later timing of peak deceleration (Est = 6.32%, SE =
2.32, p = 0.012, η2

p = 0.019) compared to atelic verbs (see Figure 3).
Telic verbs also showed lower sample entropy (Est = −0.12, SE =
0.013, p < 0.001, η2

p = 0.17) and lower spatiotemporal indices for
velocity and acceleration (both p < 0.001, η2

p = 0.035 and 0.070,
respectively), reflecting more regular and less variable movement
patterns. These results are consistent with telic verbs involving
brief, controlled, and well-structured movement profiles.

Wrist extensors showed increased mean activation during telic
verbs (Est = 1.39% MVC, SE = 0.68, p = 0.035, η2

p = 0.011) (see
Table 2). Wrist flexors also had elevated mean activation and peak
activation in telic verbs (mean: Est = 0.92% MVC, SE = 0.39, p =
0.026, η2

p = 0.014; peak: Est = 2.24% MVC, SE = 0.79, p = 0.010, η2
p

= 0.020). The triceps displayed significant increases in mean (Est =
1.14% MVC, SE = 0.40, p = 0.010, η2

p = 0.020), median (Est = 0.64%
MVC, SE = 0.29, p = 0.031, η2

p = 0.012), and peak activation (Est =
2.35% MVC, SE = 0.68, p = 0.002, η2

p = 0.030) for telic verbs.
PSD analyses revealed nuanced spectral differences between

verb types, particularly in the triceps muscle. Telic verbs exhibited
significantly higher spectral power across multiple frequency bands
in the triceps, including 6–15 Hz, 16–26 Hz, 60–75 Hz, and 76–140
Hz frequency ranges (all p < 0.05, η2

p = 0.011–0.012) (see Figure 4).
Wrist flexors had significantly greater power only in the 6–15 Hz
band during telic verbs (p = 0.029, η2

p = 0.013), while the wrist
extensors and biceps did not show significant PSD differences (see
Figure 5).

Analysis of forearm and upper arm muscle co-contraction
indices (CCI) indicated significantly greater mean and peak co-
contraction in telic verbs compared to atelics (forearm mean CCI:
Est = 1.08, SE = 0.43, p = 0.016, η2

p = 0.017; forearm peak CCI:
Est = 2.13, SE = 0.83, p = 0.016, η2

p = 0.017; upper arm mean CCI:
Est = 0.61, SE = 0.29, p = 0.034, η2

p = 0.014). This suggests greater
involvement of antagonist muscle stiffness and joint stabilization
during the production of telic verbs.

Cross-correlation between wrist kinematics and upper arm
muscle activation differed significantly between sign types. Telic
signs showed lower wrist-biceps coupling (r = 0.81 ± 0.14)

compared to atelic signs (r = 0.85 ± 0.08, p < 0.001, η2
p = 0.056).

Similarly, wrist-triceps coupling was lower in telic signs (r = 0.82 ±
0.11) than atelic signs (r = 0.86 ± 0.07, p < 0.001, η2

p = 0.050).

6 Discussion

This study demonstrated that the distinction between telic and
atelic verbs in ÖGS is robustly encoded both kinematically and
electromyographically. Telic signs are produced with lower average
velocity (linked to “hold” phases within the sign), shorter duration,
deceleration starting later in the movement trajectory, and much
lower motion variability–consistent with a more bounded, goal-
oriented motor profile (as exemplified in Figure 2). Alongside
these kinematic differences, EMG analyses revealed muscle-specific
activation patterns: the triceps and forearm muscles have greater
activation during telic movements, in addition to which the
increased low-frequency PSD (6–15 Hz) for wrist flexors and
triceps within the telic verbs indicates greater common neural drive
and motor unit synchronization during goal-directed movements.
These findings are consistent with prior literature on EMG
coherence (Castronovo et al., 2015; McManus et al., 2019).

The presence of event-marking signature patterns in sign
production parallels related neural findings showing differential
activation patterns for perception of telic vs. atelic verbs in sign
languages (Malaia and Wilbur, 2008; Krebs et al., 2023b). That
these perceptual and production findings converge suggests that
the kinematic and muscle activation profiles documented here may
be a part of more general cortical mechanisms for linguistically
representing event boundaries.

If so, it is unsurprising that the kinematic findings for ÖGS are
consistent with findings for other sign languages. Telic signs are
produced with motion profiles to indicate their end-points in space
and time more clearly (as compared to atelic signs), ensuring that
they are distinctly visible, that is, that telicity is linguistically marked
on the sign production. EMG results demonstrate how these
kinematic profiles of linguistic marking of event structure in ÖGS
verbs emerge from distinct muscle activation patterns—especially
in frequency bands associated with low-intensity, coordinated
contractions. At the neuromuscular level, increased antagonist co-
contraction (η2

p = 0.009–0.017) and elevated muscle activations,
particularly in the wrist and triceps, suggest enhanced joint stability
and force control during telic actions. The power spectral density
results further underscore these differences: greater PSD in low
frequency bands (6–15 Hz) aligns with increased common drive
to motor units, reflecting more synchronized corticospinal input
during the precise control of telic movements (Castronovo et al.,
2015). Specifically, the prominence of PSD increases in the triceps
across a wide frequency range (η2

p = 0.009–0.012) suggests a critical
role for this muscle in executing and terminating goal-specific arm
movements. The wrist flexors’ PSD increase limited to the 6–15 Hz
band may indicate modulation of fine control signals rather than
increased force output per se, consistent with their role in postural
stabilization during grasp and manipulation phases (Laine and
Valero-Cuevas, 2017).

The much lower cross-correlation values in the telic verbs
(η2

p = 0.050–0.056) may reflect the overall reduced movement
combined with higher co-contraction compared to atelic signs.
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TABLE 1 Comparison of kinematic measures between telic and atelic signs.

Measure Telics
median ± IQR

Atelics
median ± IQR

LME
estimate

SE p (adjusted) η2
p

Median speed (m/s) 3.8 × 10−4 ± 5.7 × 10−4 9.4 × 10−4 ± 7.7 × 10−4 −4.7 × 10−4 1.3 × 10−4 <0.001 0.034

Peak speed (m/s) 3.3 × 10−3 ± 1.9 × 10−3 2.1 × 10−3 ± 1.2 × 10−3 4.6 × 10−3 3.5 × 10−3 0.100 0.005

Duration (s) 0.90 ± 0.43 1.37 ± 0.60 −0.44 0.083 <0.001 0.070

Sample entropy 0.034 ± 0.040 0.14 ± 0.16 −0.12 0.013 <0.001 0.169

Peak deceleration (m/s2) −9.5×10−5 ±8.9×10−5 −6.5×10−5 ±4.9×10−5 −7.1 × 10−5 5.1 × 10−5 0.097 0.005

Time to peak deceleration (%
sign)

35.85 ± 21.52 23.32 ± 33.92 6.32 2.32 0.012 0.019

Peak jerk (m/s3) 1.4 × 10−5 ± 1.6 × 10−5 1.3 × 10−5 ± 3.3 × 10−5 6.5 × 10−5 8.8 × 10−5 0.190 0.001

Time to peak jerk (% sign) 32.41 ± 26.30 36.09 ± 37.8 −4.71 3.52 0.102 0.038

Spatiotemporal index (speed) 3.0 × 10−4 ± 3.0 × 10−4 4.2 × 10−4 ± 3.5 × 10−4 −1.3 × 10−4 3.4 × 10−5 <0.001 0.035

Spatiotemporal index
(acceleration)

2.0 × 10−5 ± 2.0 × 10−5 3.0 × 10−5 ± 3.0 × 10−5 −1.5 × 10−5 3.4 × 10−6 < 0.001 0.083

FIGURE 3

Gardner-Altman plots with median differences comparing key kinematic variables between verb classes.

Atelic signs likely require more synergistic coordination across
sign repetitions to maintain smooth, continuous movement (see
Figure 6); furthermore, the longer average sign duration for
atelic verbs might contribute to the higher cross-correlation
values observed since extended signing movement demands
coordinated activation, stability, and efficiency. It is also possible
that wrist movement in telic verbs is driven less by elbow
flexion/extension (biceps and triceps actions, respectively) and

more by shoulder external or internal rotation. This would be
visible in more lateral, less vertical hand movements and may
be supported by the greater wrist flexor/extensor activity in
telic forms (η2

p = 0.011-0.021); however, this was not directly
tested within this study. Finally, since several of the telic
verbs utilize two hands to mark the endpoint, there may be
a greater role of muscles in the non-dominant arm affecting
dominant wrist movement. This analysis opens new possibilities for
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TABLE 2 Comparison of EMG measures between telic and atelic signs.

Measure Telics
median ± IQR

Atelics
median ± IQR

LME
estimate

SE p (adjusted) η2
p

Co-contraction

Forearm CCI (mean) 6.12 ± 5.2 5.14 ± 4.46 1.08 0.43 0.016 0.017

Forearm CCI (peak) 9.78 ± 9.23 8.13 ± 7.05 2.13 0.83 0.016 0.017

Upper arm CCI (mean) 4.18 ± 3.66 3.63 ± 3.43 0.61 0.29 0.034 0.014

Upper arm CCI (peak) 5.64 ± 4.62 5.46 ± 4.68 0.79 0.47 0.069 0.009

Wrist extensors

Mean activation (% MVC) 10.17 ± 8.57 8.91 ± 8.04 1.39 0.68 0.035 0.011

Peak activation 14.39 ± 15.30 12.59 ± 10.46 3.07 1.07 0.010 0.021

Wrist flexors

Mean activation 4.73 ± 4.67 4.10 ± 3.36 0.92 0.39 0.026 0.014

Peak activation 7.45 ± 8.90 6.18 ± 5.10 2.24 0.79 0.010 0.020

Biceps

Mean activation 3.63 ± 3.18 4.03 ± 3.58 −0.24 0.45 0.224 0.001

Peak activation 5.54 ± 5.07 6.41 ± 5.19 −0.41 0.65 0.213 0.001

Triceps

Mean activation 3.59 ± 3.92 2.90 ± 3.07 1.14 0.40 0.010 0.020

Peak activation 5.64 ± 6.13 4.25 ± 3.96 2.35 0.68 0.002 0.030

Cross-correlation

Wrist ∝ biceps 0.81 ± 0.14 0.85 ± 0.08 −0.051 0.011 <0.001 0.056

Wrist ∝ triceps 0.82 ± 0.11 0.86 ± 0.07 −0.048 0.011 <0.001 0.050

understanding biomechanical patterns and movement efficiency
during extended signing.

Overall, these results support a hierarchical motor control
framework where telic verbs require increased neuromuscular
precision, synchronization, and stability to achieve defined
motion endpoints. This complements findings on motor unit
synchronization and co-contraction patterns in skilled movement
control (McManus et al., 2019; Dideriksen et al., 2018).

The neuromuscular pattern for event structure marking
contrasts with the encoding of grammatical intensification in
ÖGS adjectives, as documented in previous work (Krebs et al.,
2025). Intensified adjectives showed consistently elevated co-
contraction indices across both forearm and upper arm muscle
groups, with some kinematic differences (such as prolonged time
to peak deceleration in intensified adjectives). Thus, while telic
verbs relied on phasic modulation, or precisely timed bursts of
activation, the production of intensified adjectives appears to rely
on tension, i.e. sustained co-contraction to increase joint stiffness
and motion control without altering spatiotemporal trajectory.
This shows that ÖGS signers employ differentiated neuromotor
strategies to produce distinct grammatical feature markers.
Telicity or event structure encoding was produced via control of
spatiotemporal sign profiles, while adjective intensification used
biomechanical stabilization (articulatory tension). This parallels
functional specificity of motor control in sign language grammar
of ASL and HZJ (Malaia et al., 2013), as ÖGS used both temporal

precision and articulatory tension to encode linguistic contrast in
the visual-manual modality.

6.1 Limitations

It is important to remember that the signs in the telic and atelic
groups do not pair with each other. As an analogy, consider the
English pair “fall” and “drop”, where “drop” can be considered the
causative verb with the meaning “cause to fall”, yet “drop” and
“fall” are not phonologically related to each other. The nature
of this sign data, being both unpaired and collected with very
sensitive measurement methods, is challenging for analysis and
interpretation, requiring the removal of some outliers and the use
of linear-mixed models. which are robust against such irregularities.
Nevertheless, the presence of noise for both 3D motion capture and
EMG likely contributes to the wide variability within these data, and
might obscure meaningful differences that could be elucidated with
a larger sample of participants and signs.

The EMG measurements performed here provide limited
insight into actual neuromuscular control since EMG signals
inherently contain a neural and peripheral component.
Decomposition of these components is possible with intramuscular
or high-density surface EMG, but these are not appropriate for
highly dynamic movements such as those in sign language (Grison
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FIGURE 4

Gardner-Altman plots with median differences comparing key EMG variables between verb classes.

FIGURE 5

Power spectral density (PSD) of selected muscles and frequency bands for telic and atelic verbs between all participants. Significant differences
between verb types at each frequency band are marked with *.
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FIGURE 6

Example cross-correlation analysis for one atelic verb “Rad fahren” (to ride a bike) for one participant.

et al., 2025). Hence, the results presented here can only be used
for speculative conclusions regarding common neural input and
overall activation.

7 Conclusion

Considered together, kinematic and EMG results suggest
that telic grammatical profile emerges not just from increased
muscular effort, but from finely tuned temporal and directional
coordination of muscle co-activation. The distinct kinematic
profiles of telic verbs–marked by later deceleration and reduced
variability—appear to be the downstream consequence of
structured neuromuscular control, particularly antagonistic timing
and targeted tension regulation in upper and lower arm muscles.

From the methods perspective, we provide quantitative
neuromotor evidence that grammatical distinctions (in this case,
telicity) are systematically encoded in the motor control of
sign language verbs, with measurable differences in kinematics,
muscle activation, and co-contraction strategies. Our modality
fusion approach (combining high-resolution motion capture and
EMG) provides empirical grounding for embodied cognition
theory by conceptualizing linguistic embodiment as manifested

in measurable physiological processes, and offering replicable
methods for further work in signed and spoken languages.

In combination, these findings provide an understanding
of the relationship between event boundary visibility, linguistic
marking, and sign production. From a morphophonological
perspective, telic verb signs exhibit consistent neuromotor
marking characterized by: (1) temporally precise deceleration
profiles occurring later in the movement trajectory, (2) reduced
spatiotemporal variability reflecting hierarchical motor control,
(3) increased co-contraction indices indicating enhanced joint
stabilization, and (4) specific spectral power patterns in muscle
activation. This convergent neuromotor signature constitutes a
form of embodied morphological marking that renders telicity
linguistically salient. Similar clear markings are not found on
the atelic verb signs; rather, atelic verbs are characterized by
greater kinematic variability and less coordinated muscle activation
- the characteristics that are consistent with morphological
unmarkedness. This asymmetry parallels canonical patterns in
spoken language morphology, where marked forms exhibit
consistent phonological modifications while unmarked forms show
greater structural diversity. An analogy that may be helpful here
is a comparison to singular and plural nouns in English. Singular
nouns generally have nothing phonologically in common with each
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other. English plural nouns have an added morpheme (typically
/s/ or /ız/). This parallels the way telic signs consistently use
specific kinematic signatures to encode boundedness while atelic
signs exhibit no such systematic motor control patterns (the only
way in which the parallel doesn’t quite work is that verb classes
do not represent morphologically related derivational pairs). This
pattern shows that sign language grammar relies on the principle
of asymmetric marking found in spoken languages, instantiating
it through coordinated neuromotor control of sign kinematics,
parallel to neuromotor control of phonological modification in
speech.
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