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Nosocomial pneumonia (NP) is the third most common hospital-acquired infection and the
leading cause of death due to hospital-acquired infection in the US. During pneumonia and
non-pneumonia severe illness, respiratory tract secretions become enriched with the serine
protease neutrophil elastase (NE). Several NE activities promote onset and severity of NP.
NE in the airways causes proteolytic tissue damage, augments inflammation, may promote
invasion of respiratory epithelium by bacteria, and disrupts respiratory epithelial barrier
function. These NE activities culminate in enhanced bacterial replication, impaired gas
exchange, fluid intrusion into the airways, and loss of bacterial containment that can result
in bacteremia.Therefore, neutralizing NE activity may reduce the frequency and severity of
NP. We evaluated human alpha-1 antitrypsin (AAT), the prototype endogenous NE inhibitor,
as a suppressor of bacterial pneumonia and pneumonia-related pathogenesis. In AAT+/+

transgenic mice that express human AAT in lungs, mortality due to Pseudomonas aerug-
inosa (P.aer ) pneumonia was reduced 90% compared to non-transgenic control animals.
Exogenous human AAT given to non-transgenic mice also significantly reduced P.aer pneu-
monia mortality. P.aer -infected AAT+/+ mice demonstrated reduced lung tissue damage,
decreased bacterial concentrations in lungs and blood, and diminished circulating cytokine
concentrations compared to infected non-transgenic mice. In vitro, AAT suppressed P.aer
internalization into respiratory epithelial cells and inhibited NE or P.aer -induced disruption
of epithelial cell barrier function.The beneficial effects of human AAT in murine P.aer pneu-
monia raise the possibility of AAT use as a prophylactic treatment for NP in humans, and
suggest a role for AAT as an innate immune mediator.
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INTRODUCTION
Pneumonia is often categorized by location of acquisition.
Community-acquired pneumonia (CAP) is contracted in the non-
health care setting, and nosocomial pneumonia (NP) is acquired
in the hospital. NP is of special interest due to a high prevalence
in hospitalized patients, a poor prognosis, and a large expendi-
ture of resources. NP is the third most common hospital-acquired
infection in the US (1–3), with about 250,000 cases of NP in 2002
(3). NP is the leading cause of death due to hospital-acquired
infection (2, 3), and in 2002 there were nearly 36,000 NP-related
deaths in the US (crude mortality of about 15%) (3). NP is caused
predominantly by Gram-negative rods (nearly 42% of isolates),
with Pseudomonas aeruginosa (P.aer) accounting for about 20%
of isolates (2, 4, 5).

Alarmingly, mortality due to lower respiratory tract infec-
tion was not diminished over 25 years of observation in the US
(6). Attributable mortality is especially high for P.aer NP that is
acquired while receiving mechanical ventilation, reported at 43%
(1). Bacteria that cause NP have demonstrated escalating resistance

to antibiotics over time (5). Unfortunately, the current antibiotic
pipeline has slowed and emergence of more potent antimicrobial
drugs is unlikely to address NP-related therapeutic challenges (7).
NP carries substantial resource burdens that include annual total
treatment costs in the US nearing $5.4 billion (3, 8). These con-
siderations indicate that NP is a substantial clinical problem, and
recent treatments and preventative (prophylactic) measures have
shown little clinical impact (9).

The pathogenesis of pneumonia usually involves bacterial col-
onization of the upper airways followed by aspiration of these
bacteria into the lower respiratory tract (4, 10, 11). Pneumonia
develops when bacteria and secretions aspirated into the lower
airways is sufficient to overcome lower respiratory tract host
defenses. Lower levels of aspirated bacteria may cause pneumonia
during illness that weakens host defenses. Bacterial components
induce inflammation by stimulating alveolar macrophages and
respiratory epithelial cells to produce pro-inflammatory cytokines
such as interleukin (IL)-1, tumor necrosis factor (TNF)α, and the
chemokine IL-8 (12, 13). IL-8 recruits and activates neutrophils,
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which secrete neutrophil elastase (NE) into the respiratory tract.
Clinical studies have demonstrated substantial NE levels in
bronchoalveolar lavage fluid (BALF) in patients with P.aer NP
(14, 15).

Neutrophil elastase activities in the airways promote pneu-
monia severity (12). Since NE is an omnivorous protease, NE
can directly damage lung epithelial cells and supporting tissues.
This results in reduced capacity to eliminate bacteria, defective gas
exchange, and exudation of fluid into lung airspaces (12, 16, 17).
NE induces production of pro-inflammatory cytokines in the
lungs that augment inflammation (16, 18, 19), and NE inactivates
several extracellular immune mediators such as immunoglobulins,
complement components, and cathelicidin (16, 20, 21). NE also
induces expression of MUC1 (a cell-surface mucin) that can serve
as a receptor for P.aer and perhaps other bacteria (22, 23). Since
bacteria can spontaneously invade respiratory epithelium (22, 24–
26), NE-enhanced binding of bacteria to respiratory epithelial
cells likely initiates invasion. Translocation of bacteria into the
cell interior permits evasion from extracellular antimicrobial sub-
stances such as antibodies, complement, lysozyme, lactoferrin,
cathelicidin-related molecules, and defensins (13, 27). Intracel-
lular translocation also sequesters bacteria from the antibacterial
activities of macrophages and neutrophils. Since NE can also
increase vascular permeability, NE may enhance translocation
of bacteria across the endothelial cell barrier and initiate bac-
teremia (12). During established pneumonia, these NE activities
in the lower respiratory tract amplify lung inflammation and tis-
sue damage (12). NE may also promote bacterial proliferation and
bacteremia during pneumonia. Elevated lower respiratory tract
NE has also been demonstrated during non-pneumonia systemic
illness. This may result in NE-induced defects in host defense that
link underlying systemic disease to increased NP risk (28–30).

Since excessive NE activity in the respiratory tract participates
in pneumonia pathogenesis, NE inhibition is a target for thera-
peutic intervention. Alpha-1 antitrypsin (AAT) is the prototype
endogenous inhibitor of serine proteases such as NE. AAT is a
394 amino acid, 52 kDa glycoprotein produced primarily by the
liver and secreted into the circulation. AAT is the most abun-
dant endogenous serine protease inhibitor in the circulation, with
serum concentrations reported as 1.0–2.7 mg/mL in healthy adults
(31). AAT is an acute phase protein (32),and circulating concentra-
tions can increase two to fourfold during systemic inflammation
(33, 34). AAT concentrations in lung tissues are substantially less
than concentrations in the circulation, with extracellular lung fluid
levels of about 10% serum concentrations (35). The function of
AAT is classically described as neutralization of NE in the lung in
order to limit NE-induced tissue damage (36). There are over
100 AAT variants in humans, and clinical interest in AAT has
focused on genetic AAT deficiency caused by inheritance of two
copies of the abnormal Z-type AAT gene. Z-type AAT is charac-
terized by defective export from the liver into the circulation, and
serum AAT levels are reduced to 10–15% of normal (37). The
best-described clinical consequences of AAT deficiency include
pulmonary emphysema and liver disease (37). Pulmonary emphy-
sema is thought to originate from an imbalance between protease
(NE) and antiprotease (AAT) that favors protease destruction of
lung tissue (37). The only specific treatment for AAT deficiency is

replacement therapy with intravenous AAT purified from healthy
donor plasma.

In a prior report, AAT was used as a treatment for chronic bac-
terial pneumonia in rats (38). In that report, 7 days of aerosolized
AAT was administered as a post-infection treatment in rats with
Pseudomonas lung infection. AAT-treated rats demonstrated a
delayed reduction in bacterial levels in lungs and reduced lung
inflammation. We assessed a different approach to AAT use in
pneumonia. In our studies, we tested the hypothesis that human
AAT would provide preventative (prophylactic) protection against
acute pneumonia, since AAT clinical use is likely optimal as a pre-
ventative treatment. Since human AAT neutralizes murine NE,
human AAT can be used to examine NE suppression in mouse
models (39). Therefore, we conducted mouse studies to exam-
ine the protective effect of AAT present before bacterial infec-
tion. Mortality, lung histopathology, bacterial quantification in
the lungs and peripheral blood, and serum cytokine levels were
determined. We also assessed mechanisms of AAT protection
in vitro. AAT was examined for direct antibacterial activity, for
effect on P.aer cell-surface binding and internalization into A549
human lung epithelial cells, and for effect on NE- or P.aer-induced
disruption of A549 monolayer barrier integrity.

MATERIALS AND METHODS
CELLS AND REAGENTS
The gentamicin-sensitive PA01 P.aer bacterium was obtained from
the American Type Culture Collection (ATCC, Manassas, VA,
USA) and cultured in Luria–Bertani broth (LB, Fisher Scientific,
Fair Lawn, NJ, USA) as suspension cultures or on LB-agar plates
at 37°C. A549, a human lung alveolar epithelial cell line, was also
obtained from the ATCC. A549 culture medium comprised RPMI
1640 medium supplemented with 10% heat-inactivated fetal
bovine serum (Sigma-Aldrich, St. Louis, MO, USA), and 2 mM
l-glutamine without or with 100 U/mL penicillin and 100 µg/mL
streptomycin (all from Mediatech, Inc., Herndon, VA, USA). All
A549 cell culture incubations were conducted in a 37°C and 5%
CO2 atmosphere incubator. Clinical-grade AAT was obtained from
Baxter (Aralast NP, Westlake Village, CA, USA). Human NE was
obtained from Innovative Research (Novi, MI, USA). All cultures
were analyzed for toxicity using a lactate dehydrogenase (LDH)
release assay (Promega, Madison, WI, USA).

MOUSE STUDIES
All procedures and care complied with the Institutional Animal
Care and Use Committee at the Denver Veterans Affairs Medical
Center. Female C57Bl/6 mice were purchased from The Jackson
Laboratory (Bar Harbor, ME, USA). A transgenic AAT+/+ mouse
strain containing a human AAT gene under control of the lung Sur-
factant Protein C promoter (40), was backcrossed onto a C57Bl/6
background and obtained from Eli Lewis, University of Colorado
Denver (41).

MOUSE INFECTION WITH P.AER
For all mouse infection experiments, 8- to 12-week-old female
AAT+/+ transgenic mice or non-transgenic C57Bl/6 control mice
were anesthetized with isoflurane (Vedco, Inc., St. Joseph, MO,
USA) and infected by nasal aspiration of a 50 µL suspension con-
taining 1× 106 colony forming units (cfu) of viable P.aer. Body
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weights were measured twice daily, and moribund mice (body
weight loss >20%) were euthanized. In experiments examining
the effect of exogenous AAT on P.aer pneumonia, C57Bl/6 non-
transgenic mice received three 30 min treatments of aerosolized
AAT or sterile saline (control) using a nebulizer (nebulizer
obtained from Mabis Healthcare, Waukegan, IL, USA) at 48, 24,
and 2 h before P.aer nasal aspiration. The nebulization rate was
0.2 mL/min and the total AAT dose was 120 mg per treatment.
In addition, mice were given three intraperitoneal (ip) injections
with either 200 µL (2 mg) AAT or 200 µL saline (control) at 48,
24, and 2 h before infection with P.aer.

HISTOPATHOLOGICAL ASSESSMENT OF LUNG INVOLVEMENT IN MICE
INFECTED WITH P.AER
Alpha-1 antitrypsin+/+ transgenic mice and C57Bl/6 non-
transgenic control mice were infected by nasal inhalation of
1× 106 cfu of viable P.aer. Twenty-four hours after infection,
mice were anesthetized with Nembutal (Oak Pharmaceuticals,
Lake Forest, IL, USA) and the lungs were inflated in situ with
4% paraformaldehyde in phosphate buffered saline (PBS) (pH
7.4) to fix the tissues. The lungs were excised and stored at 4°C
overnight in 4% paraformaldehyde. After 24 h, the lungs were
washed in 5.0 mL PBS, embedded in paraffin, and sectioned.
Hematoxylin and eosin (H&E) staining was performed at National
Jewish Health Core Laboratory (Denver, CO, USA). Whole mount
sections of both lungs from each mouse were evaluated by a
single examiner (DTM) blinded to experimental condition. Pneu-
monia was classified as lobar pneumonia or bronchopneumonia
in each lung lobe according to the extent of inflammation in
each of the five lobes. If the large majority of a lobe (>80%)
showed evidence of inflammation, involvement was defined as
lobar. Bronchopneumonia in a lobe was defined by the presence
of distinct peri-bronchial inflammation that involved <80% of
the lung tissue. All lung sections were also examined for alveo-
lar hemorrhage and the number of lobes with hemorrhage was
counted for each mouse (usually five lung lobes per mouse). In a
second analysis, the percent of each lobe occupied by inflammatory
infiltrate was estimated. An overall percent of lung inflammation
for each mouse was calculated as the mean percent involve-
ment in all lobes in the two lungs. The presence and severity of
necrosis was also examined and subjectively reported as early or
advanced.

QUANTIFICATION OF P.AER IN MOUSE LUNGS AND PERIPHERAL BLOOD
C57Bl/6 control and AAT+/+ mice were infected by nasal inhala-
tion of 1× 106 cfu of P.aer. Twenty-four hours after infection,
mice were euthanized and both lungs excised and weighed. Lungs
were then homogenized in 1.0 mL PBS using a Tissue Tearor
homogenizer (BioSpec Products, Bartlesville, OK, USA). Lung
homogenates were diluted 1:100 into 1.0 mL LB medium, 200 µL
aliquots of this dilution spread onto duplicate LB-agar plates, and
the plates incubated at 37°C for 18 h. After counting the num-
ber of colonies, the number of bacteria per gram of lung tissue
was calculated by multiplying the average number of colonies
per agar plate by 500 and then dividing this value by the total
lung weight to obtain the number of colonies per gram lung
tissue.

For quantification of P.aer in blood, peripheral blood was
obtained via heart puncture under sterile conditions from the
same mice used for lung bacterial cultures. One milliliter of car-
diac blood was transferred into a sterile tube containing 1.0 mL
of BacT/ALERT SA blood culture medium (bioMérieux, Inc.,
Durham, NC, USA). Two hundred microliter aliquots of this dilu-
tion were spread onto duplicate LB-agar plates, and the plates were
incubated at 37°C for 18 h. The bacterial colonies on the plates
were counted, and the average number of colonies per plate was
multiplied by 10 to obtain the number of P.aer bacteria in 1.0 mL
blood.

CYTOKINE MEASUREMENTS IN MOUSE SERUM
Alpha-1 antitrypsin+/+ transgenic mice and C57Bl/6 non-
transgenic control mice were infected by nasal inhalation of
1× 106 cfu of P.aer. Twenty-four hours after infection, the mice
were euthanized and peripheral blood obtained via heart punc-
ture. The blood was collected in BD Microtainer tubes containing
lithium heparin (BD), and centrifuged at 2000× g for 3 min. The
supernatant plasma was transferred to a fresh tube and stored at
−70°C until cytokine quantification. Mouse IL-1α, IL-1β, IL-2,
IL-3, IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, MCP-1, IFNγ, TNFα,
MIP-1α, GMCSF, and RANTES were measured using a multiplex
array chemiluminescence device (Quansys Biosciences, Logan, UT,
USA).

P.AER BACTERIAL GROWTH IN LIQUID SUSPENSION CULTURES
Separate 2.0 mL aliquots of LB broth were inoculated with 2× 106

cfu of P.aer, one without and one with 5 mg/mL AAT, and the cul-
tures were placed in a shaking incubator at 37°C. Culture aliquots
were obtained during each hour of incubation for 8 h. The cul-
ture optical density (OD) at 600 nm was obtained as a measure of
bacterial content (38).

P.AER ADHERENCE AND INTERNALIZATION INTO A549 CELLS
For bacterial adherence experiments, 1× 106 A549 cells were
added into wells in a 24-well polystyrene tissue culture plate
and incubated for 24 h in antibiotic-free culture medium. After
24 h, A549 cells adhered to culture well bottom surfaces and the
culture medium was replaced with 1.0 mL fresh antibiotic-free
culture medium without or with 5 mg/mL AAT. For cells exposed
to human NE, human NE (2.0 µg/mL final concentration) was
added to wells 1 h after AAT addition. Following an additional
1 h incubation, 0.2× 106 cfu (0.2 multiplicity of infection, MOI)
of viable log-phase P.aer were added to all wells. Following addi-
tion of P.aer, the cultures were incubated for 1 h at 37°C and 5%
CO2. The supernatants were aspirated and the cells washed three
times with PBS to remove bacteria that were not cell-associated.
The cells were lysed by removing PBS and adding 0.5 mL of 0.25%
Triton X-100 into each well for 10 min. The lysates were diluted
1:1000 with LB broth, 200 µL aliquots were spread onto duplicate
LB-agar plates using a spinner disk, and the plates incubated at
37°C for 18 h to facilitate bacterial growth. After counting all bac-
terial colonies on the agar plates, the total number of colonies in
culture wells was calculated by multiplying the average number of
colonies per plate by 2500.

For bacterial internalization experiments, 1× 106 A549 cells
were added into five wells in 24-well polystyrene tissue culture
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plates and incubated for 24 h in antibiotic-free culture medium.
After 24 h, the A549 cells adhered to culture well bottom sur-
faces and the culture medium was replaced with 1.0 mL fresh
antibiotic-free culture medium without or with 5 mg/mL AAT.
For cultured cells exposed to human NE, human NE (2.0 µg/mL
final concentration) was added to wells 1 h after AAT addition.
Following an additional 1 h incubation, 0.2× 106 cfu (0.2 MOI)
of viable log-phase P.aer were added to all wells. The cultures
were incubated for 2 h at 37°C and 5% CO2, and the super-
natants aspirated and the cells washed three times with PBS to
remove bacteria that were not cell-associated. The PBS was aspi-
rated, 1.0 mL of antibiotic-free culture medium supplemented
with 200 µg/mL Gentamicin (Sigma-Aldrich) was added to the
wells, and the cells incubated for an additional 2 h to kill non-
internalized bacteria. Cells were then washed three times with PBS
and lysed by removing the PBS and adding 0.5 mL of 0.25% Tri-
ton X-100 into each well for 10 min. The lysates were diluted 1:100
with LB broth, 200 µL aliquots were spread onto duplicate LB-
agar plates using a spinner disk, and the plates incubated at 37°C
for 18 h to facilitate bacterial growth. After counting all colonies
on the agar plates, the total number of colonies in culture wells
was calculated by multiplying the average number of colonies per
plate by 250.

TRANSEPITHELIAL ELECTRICAL RESISTANCE (TEER) ASSAY
Transepithelial electrical resistance (TEER) is used as a measure
of barrier integrity of cell monolayers in culture, where electrical
resistance across a cell monolayer is directly proportional to bar-
rier integrity (42). TEER assay experiments were conducted using
six-well polystyrene tissue culture plates, with each well containing
a cell culture insert with bottom-surface 0.4 µm pores (Fisher Sci-
entific). One million A549 cells were added to the pore-containing
inserts (upper chambers) along with 2.5 mL antibiotic-free cul-
ture medium. Three milliliters of antibiotic-free culture medium
was added to wells in the six-well plates (lower chambers) and the
cultures incubated for 24 h. This produced confluent A549 mono-
layers that formed a barrier between the upper and lower cham-
bers. The medium was aspirated from upper and lower chambers
and replaced with fresh antibiotic-free culture medium without
(medium control) or with 5 mg/mL AAT. For cells exposed to
human NE, 2.0 µg/mL final concentration human NE was added
to upper chambers 1 h after AAT addition. A 5.0 MOI (5× 106

cfu) of viable log-phase P.aer bacteria were added to the upper
(insert) chambers of all culture wells except for medium-alone
control wells. For TEER experiments conducted in the absence
of P.aer, TEER measurements were performed at 1, 3, and 6 h
following addition of NE, and for experiments conducted in the
presence of P.aer, TEER measurements were performed at 24, 30,
and 48 h using an EVOM resistance meter as instructed by the
manufacturer (World Precision Instruments, Sarasota, FL, USA).
Electrical resistance was also measured in an insert containing
well in the absence of A549 cells (defined as electrical resis-
tance= 0). This value for resistance was subtracted from all other
measurements. For each experimental condition, a time 0 mea-
surement (TEER measured just prior to addition of P.aer) was
set to 100% and subsequent measurements were calculated as a
portion of 100%.

STATISTICAL ANALYSIS
For mouse mortality experiments, results were calculated
as percent survival and Kaplan–Meir mortality curves were
generated. Statistical significance was assessed by the log-rank test
(Prism by GraphPad, La Jolla, CA, USA). For bacterial quantifica-
tion comparisons, the Mann–Whitney U -test was performed. For
TEER assay studies and experiments comparing serum cytokine
levels, differences between experimental conditions were evaluated
using ANOVA repeated measures with Bonferroni’s comparison
test. p < 0.05 was defined as statistically significant for all analyses.

RESULTS
P.AER PNEUMONIA MORTALITY IS REDUCED IN AAT+/+ MICE AND IN
MICE GIVEN EXOGENOUS HUMAN AAT
Mortality was quantified following P.aer infection in transgenic
mice that express human AAT (AAT+/+) and in C57Bl/6 (control)
mice. As shown in Figure 1A, 10 AAT+/+ mice demonstrated sig-
nificantly less pneumonia-related death (p < 0.0001) compared to
9 control mice, with 90% of the AAT+/+ mice surviving infec-
tion and 0% of control mice surviving infection. For the first 48 h,
weight loss was comparable between the two groups (data not
shown). After 48 h, surviving mice began to recover lost weight. In
Figure 1B, exogenous human AAT was administered to 16 C57Bl/6
mice by both aerosol delivery using a nebulizer and ip injec-
tion. Seventeen control animals received PBS using the same two
routes of administration. Forty-four percent of AAT-treated mice
compared to 12% of control mice survived infection (p= 0.021).

AAT+/+ MICE DEMONSTRATE REDUCED LUNG DAMAGE FOLLOWING
P.AER PNEUMONIA
Six AAT+/+ mice and five C57Bl/6 non-transgenic (control) mice
were infected with inhaled P.aer. Twenty-four hours after infection,
lungs were fixed, sectioned, stained, and analyzed for pathological
effects. One control animal had only four identifiable lung lobes.
Table 1 displays blinded histological assessments of the number of
lung lobes demonstrating lobar pneumonia, bronchopneumonia,
or alveolar hemorrhage. The percent total lung involvement analy-
sis describes the estimated percent of total lung tissue involved with
pneumonia.

Reduced severity of pneumonia-associated inflammation was
observed in AAT+/+ mice. A lobar pneumonia pattern was
observed in 27% of AAT+/+ mouse lobes and in 58% of con-
trol mouse lobes. A bronchopneumonia pattern was observed in
73% of AAT+/+ lung lobes and in 42% of control lung lobes.
These observations indicate reduced involvement in AAT+/+mice,
since bronchopneumonia is defined as less severe disease involve-
ment than lobar pneumonia (see Materials and Methods). Alveolar
hemorrhage was described in 10% of AAT+/+ mice and in 50%
of control animals. The summary percent of total lung involved
with inflammation showed less involvement in AAT+/+ mice
(51%) compared to control animals (74%). Comparison of per-
cent of total lung involvement in these two groups approached (but
did not achieve) statistical significance (p= 0.052). Necrosis was
observed in two of six AAT+/+ mice, with early stages of necrosis
present in both. In contrast, necrosis was observed in five of five
non-transgenic control animals, and in every case the necrosis was
in advanced stages.
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FIGURE 1 | Reduced mortality following P.aer pneumonia in AAT
transgenic mice and in mice given exogenous AAT. In (A) 10
transgenic mice that express human AAT in lung tissue (AAT+/+) and 9
C57Bl/6 (Control) mice were infected with inhaled P.aer. Kaplan–Meier
survival curves are shown for 120 h following infection. Reduced
mortality in AAT+/+ mice was statistically significant (p < 0.0001). In (B)

C57Bl/6 mice were treated with exogenous AAT (16 mice, +AAT) or
with saline (17 mice, Control). AAT was administered by nebulizer and
intraperitoneal injection prior to infection with inhaled P.aer.
Kaplan–Meier survival curves are shown for 120 h following infection.
Reduced mortality in +AAT mice was statistically significant
(p=0.021).

Table 1 | Lung histopathology in six AAT+/+ and five C57Bl/6 control mice infected with P.aer.

Mouse Lobar

pneumonia*

Broncho

pneumonia*

Alveolar

hemorrhage*

% total lung involved

with inflammation

Necrosis

AAT+/+ 0/5 5/5 0/5 35 No

AAT+/+ 3/5 2/5 0/5 65 Yes-early

AAT+/+ 2/5 3/5 0/5 55 Yes-early

AAT+/+ 0/5 5/5 1/5 35 No

AAT+/+ 0/5 5/5 0/5 45 No

AAT+/+ 3/5 2/5 2/5 70 No

Total involvement 8/30 (27)
‡

22/30 (73)
‡

3/30 (10)
‡

51§ NA

C57Bl/6 3/5 2/5 0/5 70 Yes-adv

C57Bl/6 3/5 2/5 3/5 85 Yes-adv

C57Bl/6 1/5 4/5 0/5 45 Yes-adv

C57Bl/6 2/4
†

2/4
†

4/4
†

70 Yes-adv

C57Bl/6 5/5 0/5 5/5 100 Yes-adv

Total involvement 14/24 (58)
‡

10/24 (42)
‡

12/24 (50)
‡

74§ NA

NA, not applicable; Adv, advanced.

*Fractions represent number of lung lobes with pathology compared to number of lung lobes examined.
†Only four lobes out of five were identified.
‡ Results shown as total number of lung lobes involved/total number of lung lobes examined (percent total involvement).
§Mean percent total lung involvement for all animals in each group. p= 0.052 comparing these two groups.

Infected lung sections from representative control and AAT+/+

mice are presented in Figure 2. There is less pneumonia-associated
inflammation in the AAT+/+ mouse lung compared to the control
mouse lung, and decreased alveolar fluid extravasation and inflam-
matory cell infiltration in AAT+/+ lung (compare control lung
tissue in Figures 2A,B to AAT+/+ lung tissue in Figures 2C,D).

REDUCED P.AER BACTERIAL CONCENTRATIONS IN LUNGS AND BLOOD
IN AAT+/+ MICE
Six AAT+/+ mice and six non-transgenic control mice were
infected with inhaled P.aer. Twenty-four hours following infec-
tion, lungs were removed and homogenized and peripheral
blood was obtained via heart puncture. Compared to controls,

AAT+/+ mice demonstrated significantly reduced bacterial levels
in lungs (Figure 3A, approximate 77% mean reduction, p= 0.015)
and in blood (Figure 3B, approximate 99% mean reduction,
p= 0.030).

PERIPHERAL BLOOD CYTOKINE CONCENTRATIONS ARE REDUCED IN
P.AER -INFECTED AAT+/+ MICE
Excessive inflammation following bacterial infection may con-
tribute to lung tissue damage and death (15, 43–46), and AAT
possesses anti-inflammatory properties (47–53). Therefore, an
AAT inhibitory effect on systemic inflammation (indicated by cir-
culating cytokine production) may participate in the decreased
mortality in AAT+/+ mice. We examined serum cytokine levels
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in six AAT+/+ mice and in four non-transgenic C57Bl/6 (con-
trol) mice 24 h after inhalation of P.aer. As depicted in Table 2
(shown under the line indicating mice infected with P.aer), infected
AAT+/+ mice produced substantially lower blood cytokine levels
than infected control animals. Cytokine reduction was numerically
substantial for all tested cytokines except for IL 4, and reduc-
tions were statistically significant for 9 of the 16 cytokines tested
(p < 0.05). In separate experiments conducted in the absence
of P.aer infection, serum cytokine concentrations were mea-
sured in five AAT+/+ transgenic mice and five C57Bl/6 non-
transgenic mice. The results are shown in Table 2 under the
line indicating uninfected mice. Serum cytokine concentrations
were uniformly low in uninfected AAT+/+ transgenic and C57Bl/6
non-transgenic mice.

FIGURE 2 | Less inflammation in lungs of AAT transgenic mice infected
with P.aer . Six transgenic (AAT+/+) mice and five C57Bl/6 non-transgenic
control (Control) mice were infected with inhaled P.aer. Twenty-four hours
after infection the mice were euthanized and lungs excised, fixed,
sectioned, and stained with H&E. Representative photomicrographs of lung
tissues are shown, with control lung sections in (A,B), and AAT+/+ lung
sections in (C,D). Inset regions (B,D) are magnified views of the areas
indicated in black rectangles in (A,C), respectively. (B,D) show perivascular
cuffing with predominant mononuclear infiltration that is common in
bacterial pneumonia. Magnification is 20× for (A,C) and 200× for (B,D).

AAT DOES NOT INHIBIT P.AER BACTERIAL GROWTH
It is possible that AAT protective activity resulted from a
direct antibacterial effect. To test this possibility, P.aer was
grown in LB broth cultures in the absence or presence of
5 mg/mL AAT. Bacterial concentrations (OD600) were measured
hourly to determine bacterial growth. As shown in Figure 4,
AAT had no effect on bacterial growth compared to control
cultures.

AAT INHIBITS P.AER INTERNALIZATION INTO A549 LUNG EPITHELIAL
CELLS, BUT DOES NOT INHIBIT BACTERIAL ADHERENCE
Prior studies showed that P.aer invades primary respiratory epithe-
lial cells and the A549 epithelial cell line (25, 26). A549 cells were
exposed to P.aer for 2 h, a period of time that allowed intracel-
lular invasion of bacteria. As shown in Figure 5A, compared to
P.aer alone (closed column), AAT significantly inhibited bacter-
ial internalization (second column from left, mean 48% inhibi-
tion, p= 0.02). The effect of human NE on P.aer internalization
into A549 lung epithelial cells was also assessed. A549 cell cul-
tures exposed to human NE increased P.aer internalization by
a mean 19% compared to P.aer alone (compare closed column
and third column from left). The presence of AAT (far right col-
umn) reduced internalization levels by a mean 58% compared
to NE-exposed cells (p= 0.01). All cultures were tested for cyto-
toxicity using an LDH release assay, and none was detected (not
presented).

To determine if AAT inhibited bacterial association with A549
cell surfaces, A549 cells were exposed to P.aer in the absence or
presence of AAT. Incubation for 1 h following addition of P.aer
permitted binding of bacteria to the cell surface while minimiz-
ing intracellular invasion. As shown in Figure 5B (two bars on
left), AAT did not significantly alter P.aer binding to the surface
of A549 cells compared to cells exposed to P.aer alone (closed
bar). We also assessed the effect of AAT on P.aer adherence in the
presence of human NE. Figure 5B shows (third and fourth bars
from left) that AAT did not reduce bacterial association with A549
cells. In fact, AAT enhanced P.aer association with cells incubated
with human NE (p= 0.03). All cultures were analyzed for toxicity
using an LDH release assay, and no cytotoxicity was detected (not
shown).

FIGURE 3 | Reduced bacterial concentrations in lungs and blood in
AAT transgenic mice following P.aer pneumonia. Six transgenic
(AAT+/+) mice and six C57Bl/6 non-transgenic control (Control) mice were
infected with inhaled P.aer. After 24 h, mice were euthanized and lung

tissues and blood samples collected and processed as described in
Section “Materials and Methods.” Bacterial concentrations were
quantified in lungs (A) and in blood (B). Graphs depict means+SEM and
p-values are indicated in the graphs.
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Table 2 | Serum cytokine levels in AAT+/+ and C57Bl/6 control mice*.

Infected with P.aer Uninfected

Cytokine AAT+/+ (N = 6) C57Bl/6 (N = 4) Percent reduction in

infected AAT+/+ mice§

AAT+/+ (N = 5) C57Bl/6 (N = 5)

IL-1α 11±6.4 782±668 98.6
†

17±10 65±25

IL-1β 509±177 4797±2214 89.4
†

0±0 251±138

IL-2 117±50 586±105 80.0
‡

3.4±3.4 10±6.6

IL-3 149±11 1226±813 87.8
‡

110±13 92±32

IL-4 88±9.6 101±27 12.9 110±13 92±32

IL-5 140±89 2556±344 94.5
†

0±0 0±0

IL-6 2391±733 12378±2324 80.7
†

11±7.3 2.2±1.7

IL-10 163±46 529±120 69.2
‡

16±7.8 11±8.0

IL-12 171±32 261±110 34.5 17±17 54±28

IL-17 75±11 1177±607 93.6 14±8.0 23±13

MCP-1 464±110 6920±2655 93.3
†

0±0 0±0

IFNγ 71±7.7 1175±583 94.0 30±6.6 29±6.2

TNFα 33±6.2 400±244 91.7 18±6.5 18±6.0

MIP-1α 157±86 4812±3088 96.7 17±17 25±13

GMCSF 115±11 1321±585 91.3
†

41±22 47±32

RANTES 356±81 3319±1375 89.3 48±6.4 61±13

*Data expressed as means±SEM pg/mL.
§Percent reduction in AAT+/+ mice compared to C57Bl/6 control mice 24 h following infection.
† p=0.01, ‡ p=0.02.

FIGURE 4 | AAT effect on P.aer replication in suspension cultures. P.aer
bacteria were inoculated into LB broth cultures in the absence (Control,
closed circles with solid line) or presence of 5 mg/mL AAT (+AAT, open
circles with dashed line) and incubated in a shaking incubator for 8 h at
37°C. The optical density (OD600) of the cultures was measured hourly. The
means±SEM OD values are shown from three separate experiments.

AAT INHIBITS NE- OR P.AER -INDUCED DISRUPTION OF A549 CELL
MONOLAYERS
The pathogenesis of severe pneumonia includes defects in the bar-
rier function of respiratory epithelium. We examined the effect
of human NE or viable P.aer on A549 cell monolayer integrity
using the TEER assay, which measures the barrier integrity of
cell monolayers (42). Figure 6A shows that compared to medium

alone, addition of human NE to A549 cells reduced monolayer
integrity by a maximum of 20% at 6 h (p < 0.001). Addition of
5 mg/mL AAT almost completely reversed the NE effect (p < 0.001,
p < 0.05, or p < 0.01 comparing NE to NE+AAT at 1, 3, or 6 h,
respectively).

In Figure 6B, we quantified the effect of viable P.aer alone or
P.aer with human NE on A549 monolayer integrity. Cells exposed
only to P.aer (P.aer) demonstrated decreased electrical resistance
by a maximum 55% at 48 h compared to medium (p < 0.001). The
presence of AAT significantly inhibited P.aer-induced monolayer
disruption (p < 0.05, p < 0.01, or p < 0.001 comparing P.aer to
P.aer +AAT at 24, 32, or 48 h, respectively). We also tested AAT
effect in the presence of both P.aer and human NE. As shown in
Figure 6B, the combination of P.aer and human NE (P.aer +NE)
decreased monolayer resistance by 72% compared to medium at
48 h. AAT significantly reduced monolayer disruption induced by
combined P.aer and human NE (p < 0.05, p < 0.05, or p < 0.01
comparing P.aer +NE to P.aer +NE+AAT at 24, 32, or 48 h,
respectively). All cultures were analyzed for toxicity using an LDH
release assay, and no cytotoxicity was detected (not shown).

DISCUSSION
New approaches are needed to reduce the clinical and economic
burdens of NP. More effective NP prophylaxis would be especially
welcomed, since prevention of disease or reduced disease severity
can produce substantial clinical and economic benefits. Therefore,
we focused on preventative (prophylactic) models of AAT use in
pneumonia therapy. P.aer was used in our experiments since this
bacterium causes up to 20% of NP cases and carries an attributable
mortality of nearly 43% (2, 4, 5).
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FIGURE 5 | Effect of AAT on P.aer internalization and adhesion in A549
cells. In four separate experiments, A549 cells were exposed to P.aer
alone (closed bars) or to P.aer in the presence of 5 mg/mL AAT, 2 µg/mL
NE, or NE with AAT. In bacterial internalization experiments (A) and

surface adhesion experiments (B), A549 cells were lysed and
concentrations of released bacteria calculated after culture on LB-agar
plates. p-Values are indicated in the graphs. Data are depicted as
means+SEM of bacterial colonies.

FIGURE 6 | Effect of AAT on human NE- or P.aer -induced disruption of
A549 cell monolayers. In (A) A549 cell monolayers were incubated with
medium alone (medium, closed circles with solid line), human NE alone (NE,
closed diamonds with dashed line), or with human NE in the presence of
5 mg/mL AAT (NE+AAT, open triangles with dashed line). Data are expressed
as percent of TEER determined just prior to addition of NE (defined as T =0
and set to 100%). The means±SEM are shown for four separate
experiments. *For T = 1 h, significant differences were noted for NE
compared to medium (p < 0.001) and for NE compared to NE+AAT
(p < 0.001). **For T =3 h, significant differences were noted for NE compared
to medium (p < 0.05) and for NE compared to NE+AAT (p < 0.05). ***For
T =6 h, significant differences were noted for NE compared to medium
(p < 0.001) and for NE compared to NE+AAT (p < 0.001). In (B) A549 cell
monolayers were exposed to medium alone (medium, black closed circles
with solid line), P.aer alone (P.aer, red closed squares with solid line), P.aer

with AAT (P.aer +AAT, red open squares with dashed line), P.aer and human
NE (P.aer +NE, blue closed diamonds with solid line), or with P.aer and
human NE with AAT (P.aer +NE+AAT, blue open diamonds with dashed line).
Data are expressed as percent of TEER measurements in each condition just
prior to addition of P.aer (defined as T =0 and set to 100%). The
means±SEM are shown for three separate experiments. *For T =24 h,
significant differences were noted for medium compared to P.aer (p < 0.01),
medium compared to P.aer +NE (p < 0.001), and for P.aer compared to
P.aer +AAT (p < 0.05). **For T =30 h, significant differences were noted for
medium compared to P.aer (p < 0.001), medium compared to P.aer +NE
(p < 0.001), P.aer compared to P.aer +AAT (p < 0.01), and for P.aer +NE
compared to P.aer +NE+AAT (p < 0.05). ***For T =48 h, significant
differences were noted for medium compared to P.aer (p < 0.001), medium
compared to P.aer +NE (p < 0.001), P.aer compared to P.aer +AAT
(p < 0.001), and for P.aer +NE compared to P.aer +NE+AAT (p < 0.01).

Alpha-1 antitrypsin+/+ mice infected with inhaled P.aer
demonstrated nearly 100% reduced mortality compared to non-
transgenic control mice (Figure 1A). This result was especially
striking since the mortality in control animals was 100% and
AAT+/+ animals did not receive antimicrobial treatment. The sur-
vival benefit in AAT+/+ mice was likely due to increased AAT
in lungs, since human AAT transgene expression in these ani-
mals is restricted to lung tissues (40). Since transgenic AAT+/+

mice express human AAT constitutively, this is a model of AAT
pneumonia prophylaxis.

Exogenous human AAT was tested in non-transgenic C57Bl/6
mice. AAT delivered by aerosol alone in preliminary experiments
did not significantly protect mice subjected to P.aer pneumo-
nia (not shown). The nebulizer we used to deliver aerosolized
AAT into the airways produces 5–10 µm particles, and aerosolized
droplets of 1–3 µm are required for optimal AAT distribution
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into peripheral airspaces (54). Therefore, we believe insufficient
AAT in the peripheral airways accounted for the absence of mor-
tality effect. We also tested AAT administration by ip injection
alone in preliminary studies with the goal of increasing serum
concentrations to approximately 5 mg/mL. This AAT concentra-
tion suppressed P.aer internalization into respiratory epithelial
cells in vitro (Figure 5), and reduced P.aer-induced epithelial bar-
rier disruption in TEER experiments (Figure 6). We determined
that two ip AAT doses of 2 mg administered 24 h apart followed
by a third ip AAT injection 2 h before infection increased AAT
serum levels to approximately 5.0 mg/mL (not shown). How-
ever, ip-alone AAT did not improve survival in mice compared
to untreated controls (not shown). Since only about 10% of the
AAT concentration in the circulation is detected in extracellu-
lar lung fluid (35), the increase in lung tissue AAT following ip
injection alone was insufficient to protect mice. In contrast, exoge-
nous AAT administration using combined aerosol delivery and ip
injection resulted in significant protection from P.aer pneumonia
(Figure 1B). However, combined aerosol and ip AAT administra-
tion did not achieve the same level of protection (44% survival,
Figure 1B) as observed in AAT+/+ transgenic mice (90% survival,
Figure 1A). In future studies, we will assess P.aer pneumonia in
non-transgenic mice using aerosol AAT delivered using a nebu-
lizer that produces 1–3 µm droplets. We believe optimized AAT
delivery to peripheral airways will enable mortality benefit using
aerosol AAT monotherapy.

Histopathologic assessments of infected mouse lungs showed
reduced inflammation and damage in AAT+/+ mice compared to
non-transgenic controls (Figure 2; Table 1). Table 1 documents
reduced lung pathology in AAT+/+ mice for all measures tested,
except for increased prevalence of bronchopneumonia in AAT+/+

mice. Since bronchopneumonia indicates less severe lung involve-
ment than lobar pneumonia (see Materials and Methods), this
observation reflected lower pneumonia severity in AAT+/+ mice.
Reduced percent total lung involvement was observed in AAT+/+

mice that approached but did not achieve statistical significance
(p= 0.052 compared to non-transgenic controls), probably due
to insufficient sample size. Reduced lung damage in AAT+/+ mice
may represent one mechanism of improved survival in AAT+/+

mice.
Striking reduction in bacterial proliferation in lungs was

observed in AAT+/+ mice (Figure 3A). AAT did not directly
affect bacterial replication (Figure 4), indicating AAT antibacter-
ial effect was indirect. Since AAT is best described as an inhibitor
of the serine protease NE, AAT inhibition of NE likely partici-
pated in AAT bacterial suppression. This implies a role for NE in
enhancing bacterial proliferation. NE effects that likely assist bac-
terial survival include proteolytic destruction of respiratory tissues
and inactivation of extracellular soluble anti-pathogen substances
such as immunoglobulins, complement components, defensins,
lysozyme, lactoferrin, and cathelicidins (12, 13, 16, 20, 21, 39).
By quenching NE proteolytic activity, AAT can promote clearance
of extracellular bacteria by maintaining the structural integrity
of the airways and preserving cilia-mediated bacterial evacua-
tion. AAT-induced NE blockade can also protect the function
of soluble anti-pathogen substances. A separate NE activity that
can interfere with bacterial clearance is increased expression of

cell-surface bacterial binding sites (MUC1) that promotes bac-
terial invasion into epithelial cells. Internalization shields bacteria
from extracellular immune effectors such as soluble anti-pathogen
substances and phagocytic cells. It is therefore noteworthy that
AAT suppressed P.aer internalization into respiratory epithelial
cells in vitro (Figure 5). This AAT effect may assist bacterial
killing by prolonging exposure of bacteria to soluble extracel-
lular anti-pathogen mediators and phagocytic cells (13). Taken
together, we surmise enhanced P.aer clearance in lungs in AAT+/+

mice (Figure 3A) involved counteracting NE-induced airways tis-
sue destruction, reversing NE-inactivation of soluble antibacterial
substances, and blocking P.aer access to the interior of respiratory
epithelial cells.

As shown in Figure 3B, significant reduction in the magnitude
of bacteremia was also observed in AAT+/+ mice (99% reduc-
tion compared to non-transgenic control mice). These results
suggest unrestrained NE promoted bacteremia. NE-induced pro-
teolytic lung damage can disrupt epithelial and endothelial barrier
integrity and allow translocation of bacteria from lungs into blood.
NE can also disrupt epithelial barrier integrity in the absence of
tissue destruction or cytolysis (Figure 6, see text below). For these
reasons, AAT suppression of NE effects on tissue barrier integrity
is a possible mechanism by which AAT reduced bacteremia.

Although our results implicate NE as an enhancer of bacter-
ial survival, prior studies showed NE possesses direct antibacterial
activity (55). Therefore, the inhibitory effect of AAT on bacterial
proliferation (Figure 3) must be reconciled with this NE antibac-
terial effect. Since the reported NE antibacterial activities occur
intracellularly and apply to bacteria phagocytosed by neutrophils,
a detrimental AAT effect on NE-induced bacterial killing would
have to occur intracellularly. However, AAT has not been shown
to inhibit intracellular proteases, and AAT likely does not interfere
with beneficial intracellular NE-mediated antimicrobial effects.

Systemic inflammation was profoundly reduced in infected
AAT+/+ mice. Serum concentrations of all 16 cytokines tested in
AAT+/+ mice were lower compared to control animals (Table 2).
We believe lower circulating cytokine levels in AAT+/+ mice
reflected attenuated severity of pneumonia in AAT+/+ ani-
mals. The reduced systemic inflammatory response in AAT+/+

transgenic animals may have contributed to improved survival
following P.aer pneumonia.

In vitro studies explored mechanisms by which AAT may inter-
rupt pneumonia pathogenesis. AAT was not directly bactericidal
for P.aer (Figure 4), and this has been reported previously (38).
Pseudomonas and other pneumonia-causing bacteria can invade
lung epithelial cells, which may be a mechanism of immune eva-
sion (24, 26, 56–59). Therefore, we assessed AAT for effect on
bacterial invasion of respiratory epithelial cells. In our studies,
AAT significantly reduced P.aer internalization into A549 cells
(Figure 5A). Unexpectedly, we did not observe an AAT effect
on P.aer adherence to A549 cells (Figure 5B). This suggests AAT
suppression of P.aer internalization occurred at a post-binding
step during the process of invasion. The small but statistically
significant increase in P.aer binding to cells exposed to com-
bined AAT and human NE (compared to infected cultures with
human NE alone) is of uncertain significance (Figure 5B). Results
shown in Figure 5 suggest AAT assists clearance of bacteria by
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blocking intracellular invasion and exposing bacteria to extracel-
lular soluble anti-pathogen mediators and phagocytic cells. We
previously reported that AAT inhibited spontaneous internaliza-
tion of Mycobacterium abscessus into human monocyte-derived
macrophages (60). These parallel results raise the possibility that
an unappreciated AAT function is to deny access of pathogens
to the intracellular compartment. It is also noteworthy that AAT
reduced spontaneous (absence of human NE) P.aer invasion of
A549 cells (second bar from left in Figure 5A), indicating that AAT
can block invasion using a mechanism unrelated to NE inhibition.
Other reports also suggest AAT possesses activities independent of
serine protease inhibition. These include suppression of cytokine
production in whole blood or in monocytes, and inhibition of
HIV replication (50, 61–66).

Respiratory epithelial barrier dysfunction is a pivotal compo-
nent of severe pneumonia that can result in impaired gas exchange,
seepage of fluid into the respiratory tract, and decreased bacterial
containment with ensuing bacteremia (46). In TEER experiments
in A549 cell monolayers, human NE, P.aer, or combined NE and
P.aer significantly reduced monolayer barrier integrity (Figure 6).
AAT reduced monolayer disruption induced by human NE, P.aer,
or combined human NE and P.aer (Figures 6A,B). Therefore, one
mechanism of AAT protection against pneumonia-related pathol-
ogy is suppressed disruption of the pulmonary epithelium bar-
rier. No cytotoxicity was observed in the TEER experiments (not
shown), suggesting monolayer alterations involved changes in the
integrity of intercellular junctions. Prior reports showed P.aer or
LPS disrupted respiratory cell barrier function, and altered inter-
cellular junction integrity accompanied these effects (67, 68). We
speculate that AAT prevents epithelial barrier disruption in vivo by
blocking alterations in intercellular tight junctions induced during
inflammation and infection.

Our studies suggest that AAT is an endogenous molecule with
pneumonia-suppressive function, which implies that AAT deficit
weakens host defense against pneumonia. In a study of deaths
in persons with genetic AAT deficiency, Tomashefski et al. (69)
noted that mortality due to pneumonia approached 37%, the high-
est immediate cause of death in these patients. In comparison,
pneumonia (including influenza) was the cause of death in 2.2%
of the US population in 2009 (70). The extraordinary mortality
caused by pneumonia in AAT deficient persons suggests predispo-
sition to severe pneumonia due to AAT deficit. Similarly, studies
in patients without known AAT deficiency suggest association
between a deficit in AAT function in lung tissues and pneumonia.
Braun et al. (71) measured BALF AAT levels in patients with acute
pneumonia. Although BALF AAT concentrations were higher in
pneumonia patients than in healthy controls, the serine protease
inhibitor function of AAT was reduced in pneumonia patients.
The authors surmised that proteases and reactive oxygen species
(produced by neutrophils and lung epithelia) degraded AAT ser-
ine protease inhibitor function in the airways. Taken together,
these reports document association between reduced AAT levels or
reduced AAT function and pneumonia, and suggest a pneumonia-
suppressive role for AAT. A pneumonia-suppressive role for AAT
implies AAT augmentation should reduce frequency or severity of
pneumonia. In fact, two reports suggest this is the case. Lieberman
examined the self-reported incidence of lung infections in patients

with genetic AAT deficiency, and noted three to five lung infections
per year in AAT deficient patients not receiving AAT replacement
therapy (72). In contrast, only zero to one infections per year
were described in AAT deficient patients receiving intravenous
AAT replacement therapy. In a rat model of chronic P.aer lung
infection, aerosol delivery of AAT decreased lung inflammation
and accelerated bacterial clearance (38).

CONCLUSION
Several limitations apply to our studies. We examined AAT effects
as pneumonia prophylaxis (AAT present before onset of pneu-
monia), and we did not evaluate AAT administration as a treat-
ment after infection. Although we believe AAT administration
will be beneficial after onset of pneumonia, AAT effect as a non-
preventative therapy cannot be confidently inferred from our
results. Also, the generalizability of the AAT anti-pneumonia effect
to bacteria other than P.aer is uncertain. Technical limitations
likely prevented us from obtaining mortality reduction in mice
treated with exogenous AAT equivalent to mortality reduction in
AAT+/+ mice (Figure 1). Optimal AAT deposition in peripheral
lung tissues requires aerosol droplets of 1–3 µm, and the nebulizer
used in our studies produced particle sizes of 5–10 µm. Addition-
ally, our in vitro pathogenesis studies were conducted in the A549
respiratory epithelial cell line, and cell lines do not necessarily
reflect characteristics of primary cells in vivo. The AAT concentra-
tion used in our in vitro studies (5 mg/mL) is consistent with serum
levels attained during acute disease. However, AAT concentrations
in the lung microenvironment that enable AAT antibacterial effects
are unknown. This introduces some uncertainty regarding the rel-
evance of our in vitro mechanistic studies to our in vivo results.
On the other hand, since augmented AAT levels in the respiratory
tract enhanced survival (Figure 1), increasing AAT biologic activ-
ity sufficient to confer benefit in vivo is possible. Finally, although
animal pneumonia models are useful, projecting our results to
efficacy in humans entails risk.

In this report, we show protective AAT effects in mice with
experimentally induced acute P.aer pneumonia. AAT expression in
the lungs of AAT+/+mice was associated with reduced pneumonia
mortality, lower severity of lung inflammation, decreased bacterial
proliferation in lungs, prevention of bacteremia, and suppressed
systemic inflammatory response. In vitro studies demonstrated
AAT blockade of P.aer internalization into lung epithelial cells and
AAT suppression of NE- or P.aer-induced epithelial cell barrier
disruption. AAT did not demonstrate direct antibacterial activ-
ity, and AAT protection likely involved both NE neutralization
and effects independent of NE neutralization. We believe AAT
protection in mouse pneumonia (Figure 1) was due to inhibi-
tion of NE-induced proteolytic lung damage, reduction of NE
lysis of extracellular anti-pathogen immune mediators, blockade
of P.aer invasion of respiratory epithelial cells, and suppression of
epithelial barrier dysfunction. Our studies are different from those
reported by Cantin and Woods (38). Although our results and
those in the Cantin and Woods report show AAT reduced bacterial
density in lungs, Cantin and Woods studied chronic Pseudomonas
lung infection in rats. Also, aerosol AAT was administered daily for
7 days after infection. The outcomes in Cantin and Woods included
reduced lung bacteria and lung inflammation 7 days post-AAT
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initiation, and reduced airway NE activity 6 h after onset of AAT
administration.

Alpha-1 antitrypsin appears to possess broad-spectrum anti-
pathogen function, since AAT at physiological concentrations
demonstrated inhibitory effects in vitro against Mycobacterium
abscessus and HIV (64, 73–75). In fact, an AAT-derived synthetic
molecule suppressed HIV replication following intravenous infu-
sion into infected patients (66). Given these observations, we
speculate that AAT is an innate immune mediator. It appears
that AAT blocks activity of host molecules required for pathogen
replication (such as NE) and AAT counteracts pathogen evasion
of host immune defenses. Since extracellular lung fluid levels of
AAT are only about 10% of serum concentrations (35), the lung
may represent an “Achilles heel” of AAT immune protection. This

observation provides rationale for using inhaled AAT for prophy-
laxis or treatment of respiratory tract infections. Results in this
report suggest that clinical application may include AAT use as an
inhaled drug for NP prophylaxis. Combination treatment using
inhaled and intravenous AAT delivery may provide additional
protection. Since AAT does not target pathogen-specific mole-
cules, AAT antimicrobial effects may be impervious to genetic
mutations that alter pathogen components. Furthermore, since
AAT has been available for clinical use since 1988 and AAT has an
impressive record of safe use in humans, application of AAT for
this indication can proceed rapidly to the bedside (37, 76, 77).
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