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This article concerns construction of confidence intervals for the prevalence of a rare dis-
ease using Dorfman’s pooled testing procedure when the disease status is classified with
an imperfect biomarker. Such an interval can be derived by converting a confidence inter-
val for the probability that a group is tested positive. Wald confidence intervals based on a
normal approximation are shown to be inefficient in terms of coverage probability, even for
relatively large number of pools. A few alternatives are proposed and their performance is
investigated in terms of coverage probability and length of intervals.
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1. INTRODUCTION
Screening for subjects infected with a disease can be costly and
time-consuming, especially when the disease prevalence is low. In
an effort to overcome these barriers, Dorfman (1) proposed the
pooling of blood samples to test for syphilis antigen. According to
his procedure, blood samples from subjects under screening are
pooled prior to testing. If a pool of blood samples is tested neg-
ative, then all subjects in the pool are declared free of infection.
Otherwise, a positive test result on a pool indicates that at least
one subject is infected and retesting of all individuals in that pool
is then conducted to find the infected subjects.

Since its appearance, Dorfman’s (1) pooled testing (also known
as group testing) approach has drawn considerable attention.
The approach has been applied to other areas of screening (than
syphilis), such as human immunodeficiency virus (HIV) testing
[e.g., Westreich et al. (2)]. A number of variations have been devel-
oped, and the scope has been expanded to include estimation of
the prevalence of a disease (without necessarily identifying the
diseased individuals) (3–24). However, there is relatively little dis-
cussion on the possibility of misclassification (i.e., that the disease
status of an individual or a pool of individuals can be assessed
incorrectly because the biomarker may be imperfect).

The existing literature on estimating the prevalence of a disease
using the pooled testing approach is focused on point estima-
tion (3, 5–7, 13–15, 17, 20, 22, 23). Construction of confidence
intervals for the prevalence of a disease has been discussed by Hep-
worth (10–12) and Tebbs and Bilder (21). These authors assumed
that the disease status of a subject can be accurately determined,
which may be unrealistic in practice. For example, Weiss et al. (25)

reported 97.7% sensitivity and 92.6% specificity for detecting HIV
infection with an enzyme-linked immunosorbent assay, and Deitz
et al. (26) reported 94% sensitivity for determining the status of
N -acetyltransferase 2 with a commonly used 3-single nucleotide
polymorphism genotyping assay.

This article focuses on construction of efficient confidence
intervals for the prevalence of a rare disease using Dorfman’s
pooled testing procedure when the disease status is determined
by an imperfect biomarker subject to misclassification. We inves-
tigate the unified approach of Tu et al. (27), which produces a
confidence interval for the disease prevalence by converting a con-
fidence interval for the probability of a pool being tested positive.
We then demonstrate that Wald confidence intervals based on a
normal approximation are inefficient in that they have a repetitive
up-and-down behavior in the coverage probability, similar to that
of the classical normal approximation binomial confidence inter-
val discovered by Brown et al. (28). In the present context, this
up-and-down behavior persists even when the number of pools
is relatively large. We derive alternative confidence intervals by
extending the methods of Wilson (29), Clopper and Pearson (30),
Agresti and Coull (31), and Blaker (32). Simulation studies are
conducted to compare the performance of the proposed methods
in terms of coverage probability and mean length. The methods
are applied to a real example concerning the seroprevalence of HIV
among newborns.

2. INTERVAL ESTIMATION UNDER POOLED TESTING
Suppose one wants to estimate the prevalence of a disease in a
population, p= P(D= 1), where D denotes the disease status of a
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subject in the population, with D= 1 if the subject is infected with
the disease. We assume that the disease status is determined using
an imperfect biomarker M, taking values 0 and 1, and a subject
is classified as infected if M = 1. The accuracy of the biomarker
is measured by its specificity π0= P(M = 0|D= 0) and sensitivity
π1= P(M = 1|D= 1). For the biomarker to be of practical use we
assume that 1/2<π0, π1≤ 1; otherwise a random assignment of
the disease status would perform better than the biomarker.

Supposed a random sample of size nk,where n and k are positive
integers, is available from the target population. The conventional
approach to estimating p is based on individually observed val-
ues of M, say M 1, . . ., Mnk. Dorfman’s procedure for estimating
p is carried out by randomly assigning the nk individuals into n
pools with k individuals in each pool and testing for positivity
of the biomarker for each pool. Inference on p is then based on
the number of pools that are tested positive. For this purpose,
further testing for biomarker positivity for each individual in the
pool is not necessary. Thus, instead of observing M 1, . . ., Mnk,
the biomarker values of the k individuals in a pool, we observe
M̃ = max { M1, · · · , Mk } . If M̃ = 0 , then Mi= 0 for each
i= 1, . . ., k. If M̃ = 1 , then Mi= 1 for at least one i in the pool.
Throughout we assume that pooling will not affect the misclassi-
fication of the disease status by the biomarker. Let δ = P(M̃ = 1)
be the probability that a pool is tested positive. Then it follows
from Tu et al. (23) that

δ = π1 − r(1− p)k , (r = π0 + π1 − 1). (1)

Consequently,

p = 1−

(
π1 − δ

r

)1/k

.

For fixed k,π0, andπ1, the value of δ as a function of p increases
as p increases. Because 0≤ p≤ 1, we have

1− π0 ≤ δ ≤ π1. (2)

Using the relationship given by equation (1) along with the con-
straint equation (2), a unified (and straightforward) approach (27)
to constructing a confidence interval for p is as follows. Suppose
[δL , δU ] is a confidence interval for δ with level 1−α. Define

pL = 1−

(
π1 − δL

r

)1/k

, pU = 1−

(
π1 − δU

r

)1/k

. (3)

Then [pL , pU ] is a confidence interval for p with level 1−α.

3. CONSTRUCTING CONFIDENCE INTERVALS FOR δ

In this section we propose a few methods to construct a confidence
interval for δ. Once derived, the interval can then be converted into
a confidence interval for p, as indicated in the previous section.
Let M̃i , i= 1, . . ., n, be the test result for the ith pool. The M̃i are
independent and identically distributed Bernoulli variables with
P(M̃i = 1) = δ ∈ [1 − π0,π1] . Thus a confidence interval for δ
can be constructed using methods developed for a binomial prob-
ability. However the constraint equation (2) must be taken into

account. In what follows we extend several popular methods for
binomial confidence intervals to construct confidence intervals for
δ, taking the constraint equation (2) into consideration.

3.1. THE WALD CONFIDENCE INTERVAL
The Wald confidence interval is based on the fact that the estimator
of δ, δ̂ = S/n, is asymptotically normally distributed with mean
δ and variance δ(1− δ)/n, where S =

∑n
i=1 M̃i is the number of

pools that are tested positive. Without the constraint equation (2),
the Wald confidence interval is given by

Ĩ = δ̂ ± Z1−α/2

{
δ̂(1− δ̂)

}1/2
/n1/2,

where Z 1−α/2 is the 100(1−α/2)th percentile of the standard
normal distribution. With the constraint, we define the Wald
confidence interval for δ as

I = Ĩ
⋂
[1− π0,π1], (4)

where

[a1, b1]
⋂
[a2, b2] ≡ [max(a1, a2), min(b1, b2)].

3.2. THE WILSON CONFIDENCE INTERVAL
Without any constraints on the binomial probability, the Wilson
confidence interval (29) is

ĨW =
S + Z 2

1−α/2/2

n + Z 2
1−α/2

±
Z1−α/2n1/2

n + Z 2
1−α/2

{
δ̂(1− δ̂)+ Z 2

1−α/2/(4n)
}1/2

.

Accounting for the constraint equation (2), the modified Wilson
confidence interval for δ is given by

IW = ĨW

⋂
[1− π0,π1]. (5)

3.3. THE CLOPPER–PEARSON CONFIDENCE INTERVAL
The Clopper–Pearson confidence interval is often referred to as the
exact confidence interval due to its derivation based on the bino-
mial distribution rather than the normal approximation. Note that
S follows a binomial distribution with size n and probability δ. Let s
be the observed value of S. If there are no constraints on δ, then the
lower bound δL and the upper bound δU of the Clopper–Pearson
interval can be derived by solving the equations:

PδL (S ≥ s) = 1− B(s − 1; n, δL) = α/2, and

PδU (S ≤ s) = B(s; n, δU ) = α/2,

respectively, where b(s; n, δ)= Pδ(S= s) is the binomial den-
sity function with size n and probability δ, and B(s; n, δ) =∑s

i=1 b(s; n, δ) = Pδ(S ≤ s) is the corresponding binomial distri-
bution function. Tu et al. (27) suggested using this interval without
any modification for δ. The modified Clopper–Pearson confidence
interval that accounts for the constraint equation (2) is given by

ICP = [δL , δU ]
⋂
[1− π0,π1]. (6)
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3.4. THE AGRESTI–COULL CONFIDENCE INTERVAL
The Agresti–Coull confidence interval is a modification of the
Wald confidence interval with δ̂ replaced by

δ̃ =
S + Z 2

1−α/2/2

n + Z 2
1−α/2

.

Thus, when δ is not constrained, the Agresti–Coull confidence
interval is given by

ĨAC = δ̃ ± Z1−α/2

{
δ̃(1− δ̃)

}1/2
/n1/2.

With the constraint equation (2), the Agresti–Coull confidence
interval becomes

IAC = ĨAC

⋂
[1− π0,π1]. (7)

3.5. THE BLAKER CONFIDENCE INTERVAL
The confidence intervals of Wilson, Clopper–Pearson, and
Agresti–Coull are highly recommended by Brown et al. (28). Blaker
(32) proposed a method to improve the standard “exact” confi-
dence intervals for discrete distributions, and called the resulting
confidence intervals acceptability intervals. For the binomial case,
the author showed that the acceptability interval is shorter than
the Wald, Wilson, and Agresti–Coull intervals. Define

γ (δ, s) = min {1− B(s − 1; n, δ), B(s; n, δ)}

and

α(δ; s) =
∑

{i: γ (δ,i)≤γ (δ,s)}

b(s; n, δ) .

Then for the binomial probability δ with no constraints, by refor-
mulating the notation of Blaker (32), the Blaker interval is given by
ĨB = {δ : α(δ; s) > α} . Blaker (32) showed that ĨB is indeed an
interval and has coverage probability 1−α. When δ is constrained
by equation (2), the Blaker confidence interval can be defined as

IB = ĨB

⋂
[1− π0,π1]. (8)

4. SIMULATIONS
There has been a large amount of research on the performance of
various binomial confidence intervals for the disease prevalence
p under the usual setting where independent and identically dis-
tributed Bernoulli observations of the disease status are available.
However, not much research has been conducted under Dorfman’s
pooled testing setting, especially in the presence of misclassifi-
cation. In this section we conduct simulations to compare the
coverage probability and mean length of the confidence intervals
for p, and to investigate the effect of the pool size k and the misclas-
sification rates (i.e., 1−π0 and 1−π1) on the precision (coverage
and length) of the intervals. It is worth noting that when a confi-
dence interval [δL , δU ] for δ is converted into a confidence interval
[pL , pU ,] for p via equation (3), the coverage probability remains
unchanged because of the monotonicity of p as a function of δ.

4.1. THE OSCILLATION BEHAVIOR OF WALD CONFIDENCE INTERVALS
Brown et al. (28) investigated the performance of a number of
confidence intervals for a binomial probability in the usual setting,
where the individual disease status is observed without error, cor-
responding to k = 1 and π0=π1= 1 in our setting. The authors
showed a remarkable oscillation up-and-down behavior of the
widely used Wald confidence intervals based on a normal approx-
imation; the coverage probability of the interval increases from far
below the nominal level of 1−α to the nominal level and then
decreases, and the pattern repeats until the sample size becomes
rather large. We demonstrate here that Wald confidence inter-
vals have the same oscillation up-and-down phenomenon under
pooled testing with misclassification.

Fixing specificity π0= 0.85 and sensitivity π1= 0.90, we com-
puted via simulation the coverage probability of the Wald con-
fidence interval for p, in a variety of scenarios with k = 2, 5,
10≤ n≤ 150, and p= 0.01, 0.10. For each configuration of (k,
n, p), 10,000 simulations were conducted. For each simulation, we
generated a random observation from the binomial distribution
with probability δ=π1− r(1− p)k and size n, and constructed
the 95% Wald confidence interval for δ according to equation (4).
This confidence interval for δ was then converted into a confidence
interval for p using equation (3). The average coverage probability
of the confidence interval is the proportion of the 10,000 intervals
that contain the true value of p.

Figure 1 presents the simulation results. It is clear that, for
each configuration, the coverage probability as a function of n
starts with very low coverage, usually below 85%, and then grad-
ually increases as n gets larger to a value near the nominal level of
95%. Then it quickly decreases to a low coverage probability. The
trend then repeats until n is large enough to stabilize the coverage
probability. Therefore, unless n is sufficiently large, the Wald con-
fidence interval does not provide the desired coverage and should
not be recommended. This unfortunate observation is consistent
with that of Brown et al. (28) for the classical binomial confidence
intervals.

4.2. COMPARISON OF CONFIDENCE INTERVALS
Using simulations again we compared the precision of the four
alternative confidence intervals, the Wilson, Clopper–Pearson,
Agresti–Coull, and Blaker intervals, along with the Wald interval,
in terms of mean length and coverage probability. To set up the
simulation we considered various representative configurations of
(p, n, k, π0, π1) with p= 0.001, 0.1, 0.3, n= 10, 20, 50, k = 2, 5,
10, and (π0,π1)= (0.85, 0.95). A total of 10,000 simulations were
conducted, and the coverage probability of each interval was esti-
mated the same way as for the Wald interval. The mean length of
each interval was estimated by averaging over the 10,000 simulated
intervals.

Table 1 shows the estimated overage probability and aver-
age length of each confidence interval in various scenarios with
p= 0.001 (the results for p= 0.1 and p= 0.3 are similar and
therefore not shown). In almost all cases considered, the four
alternative confidence intervals (i.e., the Wilson, Clopper–Pearson,
Agresti–Coull, and Blaker intervals) provide satisfactory coverage
probability around the 95% nominal level of confidence. The Wald
intervals are quite unstable, with poor precision when n is small.
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FIGURE 1 |The oscillation up-and-down behavior of the Wald confidence interval under pooled testing with misclassification.

The Clopper–Pearson and Agresti–Coull intervals tend to be more
conservative, producing higher coverage probability, followed by
the Blaker interval and then the Wilson interval. However, conser-
vatism usually comes with the price of longer intervals, as shown
in Table 1.

The effect of misclassification on the Wald interval does not
seem to be clear due to its oscillation up-and-down behavior.
For the other intervals, it appears that the coverage probabil-
ity increases as the sensitivity π1 increases or as the specificity
decreases. For fixed misclassification rates (π0, π1), including
more samples in a pool seems to improve the coverage probability,
up to certain pool size. This latter observation seems to agree with
that of Tu et al. (23) and Liu et al. (33), who found that in presence
of misclassification the efficiency of estimation increases with the
pool size up to a certain point.

5. EXAMPLE
We now illustrate the methods by applying them to a real exam-
ple concerning the seroprevalence of HIV among newborns in the
State of New York (34). The data were obtained by testing blood
specimens from all infants born in this state during a 28-month
period (from November 30, 1987 through March 31, 1990). The
test was targeted at serum antibodies produced by the immune
system in response to HIV infection. A positive test result indi-
cates HIV infection in the mother but not necessarily in the child.
To illustrate the methods, we focus on the Manhattan area, where
50,364 newborns were tested with 799 positive results.

Because the study did not involve pooled testing, we create
pools in a post hoc manner by grouping subjects randomly into
pools of a given size (k = 5 or 10). With k = 10, for instance, we
obtain 5,036 pools of size 10, ignoring the four additional sub-
jects. The test result for each pool is taken to be the maximum
of all individual test results in the pool; that is, a pool is declared
positive if and only if it contains one or more infants with positive

test results. To account for possible misclassification, estimation
of HIV seroprevalence requires knowledge of the sensitivity and
specificity of the test. Because the true values of these performance
measures are not known precisely, we perform a sensitivity analy-
sis that covers a range of plausible values for the sensitivity and
the specificity of the test. The reasoning of Tu et al. (27) and the
numerical results in their Table 1 suggest that the specificity of
the HIV test in this study is at least 99%. Accordingly, our sen-
sitivity analysis includes the values 99, 99.5, and 99.9% for the
specificity. The appears to be less information about the sensitiv-
ity of the HIV test in this study, and we therefore consider a wider
range (95, 97.5, 99, and 99.9%) for the sensitivity. For each pair
of sensitivity and specificity values and each value of k, we apply
the five methods described earlier to the pooled dataset to obtain
five 95% confidence intervals for the individual-level HIV sero-
prevalence rate, in addition to a point estimate (common to all
five methods).

Table 2 presents the results of our sensitivity analysis (with dif-
ferent combinations of sensitivity and specificity values) for each
value of k (5 or 10). It appears that the results are more sensitive
to the specificity of the HIV test than to the sensitivity of the test.
The point estimate and the confidence limits (for all five methods)
tend to decrease with the sensitivity of the test and increase with the
specificity of the test, as predicted by theory. Intuitively, increased
sensitivity means fewer false negatives, and increased specificity
means fewer false positives, and these are reflected in the estimates
in Table 2. Between the different pool sizes (5 and 10), which lead
to different datasets, there are some numerical differences, espe-
cially at lower values of the sensitivity and the specificity. However,
when the sensitivity and the specificity are both high (say, 99.9%),
there is remarkable agreement between the estimates based on
k = 5 and those based on k = 10. In any case, the five confidence
intervals are generally similar to each other, perhaps as a result of
the large sample size.
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Table 1 | Empirical comparison of confidence intervals in terms of coverage probability and average length (see Section 4.2 for details).

k π0 π1 Empirical coverage Average length

Wald Wilson C-P A-C Blaker Wald Wilson C-P A-C Blaker

n=10

2 0.85 0.85 0.796 0.951 0.989 0.989 0.951 0.162 0.252 0.297 0.285 0.270

2 0.85 0.95 0.791 0.951 0.989 0.989 0.951 0.136 0.214 0.250 0.240 0.229

2 0.95 0.85 0.407 0.911 0.987 0.987 0.987 0.061 0.204 0.233 0.221 0.230

2 0.95 0.95 0.412 0.908 0.987 0.987 0.987 0.054 0.179 0.204 0.194 0.201

5 0.85 0.85 0.804 0.946 0.990 0.990 0.946 0.077 0.115 0.139 0.132 0.123

5 0.85 0.95 0.802 0.948 0.990 0.990 0.948 0.063 0.095 0.113 0.108 0.102

5 0.95 0.85 0.424 0.901 0.986 0.986 0.986 0.029 0.089 0.104 0.098 0.101

5 0.95 0.95 0.425 0.903 0.986 0.986 0.986 0.025 0.077 0.089 0.084 0.087

10 0.85 0.85 0.808 0.939 0.989 0.989 0.939 0.044 0.061 0.076 0.072 0.065

10 0.85 0.95 0.809 0.940 0.989 0.989 0.940 0.034 0.050 0.060 0.057 0.053

10 0.95 0.85 0.449 0.980 0.980 0.980 0.980 0.017 0.047 0.055 0.052 0.053

10 0.95 0.95 0.452 0.982 0.982 0.982 0.982 0.014 0.040 0.047 0.045 0.046

n=20

2 0.85 0.85 0.825 0.978 0.978 0.978 0.978 0.118 0.164 0.181 0.172 0.172

2 0.85 0.95 0.820 0.978 0.978 0.978 0.978 0.101 0.141 0.154 0.147 0.148

2 0.95 0.85 0.651 0.918 0.980 0.980 0.980 0.051 0.123 0.132 0.127 0.137

2 0.95 0.95 0.652 0.922 0.983 0.983 0.983 0.046 0.109 0.117 0.112 0.121

5 0.85 0.85 0.826 0.974 0.974 0.974 0.974 0.052 0.071 0.079 0.075 0.075

5 0.85 0.95 0.836 0.974 0.993 0.974 0.974 0.045 0.061 0.067 0.064 0.064

5 0.95 0.85 0.655 0.981 0.981 0.981 0.981 0.022 0.052 0.056 0.054 0.058

5 0.95 0.95 0.671 0.979 0.979 0.979 0.979 0.021 0.047 0.050 0.048 0.052

10 0.85 0.85 0.835 0.974 0.993 0.974 0.974 0.027 0.037 0.041 0.039 0.039

10 0.85 0.95 0.846 0.972 0.993 0.972 0.972 0.024 0.032 0.035 0.033 0.033

10 0.95 0.85 0.698 0.972 0.994 0.972 0.972 0.013 0.028 0.030 0.029 0.031

10 0.95 0.95 0.700 0.973 0.995 0.973 0.973 0.011 0.024 0.026 0.025 0.027

n=50

2 0.85 0.85 0.943 0.957 0.974 0.957 0.957 0.074 0.093 0.098 0.095 0.096

2 0.85 0.95 0.942 0.953 0.972 0.953 0.953 0.065 0.081 0.085 0.082 0.083

2 0.95 0.85 0.925 0.955 0.986 0.955 0.955 0.038 0.064 0.066 0.063 0.069

2 0.95 0.95 0.927 0.956 0.986 0.956 0.956 0.034 0.057 0.059 0.056 0.061

5 0.85 0.85 0.937 0.945 0.968 0.945 0.945 0.032 0.040 0.042 0.040 0.041

5 0.85 0.95 0.946 0.949 0.971 0.949 0.949 0.028 0.035 0.036 0.035 0.035

5 0.95 0.85 0.933 0.949 0.983 0.983 0.983 0.017 0.027 0.028 0.027 0.029

5 0.95 0.95 0.933 0.948 0.983 0.983 0.983 0.015 0.024 0.025 0.024 0.026

10 0.85 0.85 0.901 0.947 0.967 0.967 0.947 0.017 0.021 0.022 0.021 0.021

10 0.85 0.95 0.901 0.947 0.971 0.971 0.971 0.015 0.018 0.019 0.018 0.018

10 0.95 0.85 0.941 0.974 0.974 0.974 0.974 0.009 0.014 0.015 0.014 0.015

10 0.95 0.95 0.803 0.974 0.993 0.974 0.974 0.008 0.013 0.013 0.013 0.014

6. DISCUSSION
In this article we proposed a few approaches to constructing a
confidence interval for the disease prevalence under pooled testing
with misclassification. These approaches share a common feature
in that they are all obtained by converting a valid confidence inter-
val for the probability of a pool being tested positive. Our investiga-
tion of the coverage probability and mean length of the confidence
intervals indicates that caution needs to be taken in using the Wald
interval when the sample size is not large enough. From our overall
evaluation it appears that the Clopper–Pearson and Agresti–Coull
intervals, though somewhat conservative, tend to be more valid

than the Wilson and Blaker intervals, especially when the disease
probability and the sample size are relatively small.

Misclassification of the disease status clearly impacts the preci-
sion of the confidence intervals, as demonstrated by the simulation
results in Figure 1 and Table 1. In this article, the misclassification
is assumed to be independent of the pool size, which seems to be
a reasonable assumption in some situations. However, as noted by
Cahoon-Young (35), this assumption may be violated when the
pool size gets larger. It remains to be seen how the performance
of a confidence interval might be affected by pool-size-dependent
misclassification.
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Table 2 | Analysis of HIV seroprevalence data (see Section 5 for details).

Specificity Sensitivity Pt. est. 95% Confidence interval for p (%)

π0 (%) π1 (%) p̂ (%) Wald Wilson Clopper–Pearson Agresti–Coull Blaker

k =5

99 95 1.48 1.36 1.60 1.36 1.60 1.36 1.60 1.36 1.60 1.36 1.60

99 97.5 1.44 1.32 1.55 1.33 1.56 1.33 1.56 1.32 1.55 1.33 1.56

99 99 1.42 1.30 1.53 1.31 1.53 1.30 1.53 1.30 1.53 1.31 1.53

99 99.9 1.40 1.29 1.51 1.29 1.52 1.29 1.52 1.29 1.51 1.29 1.52

99.5 95 1.58 1.46 1.70 1.47 1.70 1.47 1.70 1.46 1.70 1.47 1.70

99.5 97.5 1.54 1.43 1.66 1.43 1.66 1.43 1.66 1.43 1.66 1.43 1.66

99.5 99 1.52 1.40 1.63 1.41 1.63 1.41 1.63 1.40 1.63 1.41 1.63

99.5 99.9 1.50 1.39 1.61 1.39 1.62 1.39 1.62 1.39 1.61 1.39 1.62

99.9 95 1.67 1.55 1.78 1.55 1.79 1.55 1.79 1.55 1.78 1.55 1.79

99.9 97.5 1.62 1.51 1.74 1.51 1.74 1.51 1.74 1.51 1.74 1.51 1.74

99.9 99 1.60 1.48 1.71 1.49 1.71 1.49 1.71 1.48 1.71 1.49 1.71

99.9 99.9 1.58 1.47 1.69 1.47 1.70 1.47 1.70 1.47 1.69 1.47 1.70

k =10

99 95 1.59 1.47 1.71 1.47 1.72 1.47 1.72 1.47 1.71 1.47 1.72

99 97.5 1.55 1.43 1.67 1.43 1.67 1.43 1.67 1.43 1.67 1.43 1.67

99 99 1.52 1.41 1.64 1.41 1.64 1.41 1.64 1.41 1.64 1.41 1.64

99 99.9 1.51 1.39 1.62 1.40 1.62 1.39 1.63 1.39 1.62 1.40 1.62

99.5 95 1.64 1.52 1.77 1.53 1.77 1.52 1.77 1.52 1.77 1.53 1.77

99.5 97.5 1.60 1.48 1.72 1.48 1.72 1.48 1.72 1.48 1.72 1.48 1.72

99.5 99 1.57 1.46 1.69 1.46 1.69 1.46 1.69 1.46 1.69 1.46 1.69

99.5 99.9 1.56 1.44 1.67 1.45 1.67 1.44 1.67 1.44 1.67 1.44 1.67

99.9 95 1.69 1.56 1.81 1.57 1.81 1.57 1.81 1.56 1.81 1.57 1.81

99.9 97.5 1.64 1.52 1.76 1.53 1.76 1.52 1.76 1.52 1.76 1.52 1.76

99.9 99 1.61 1.50 1.73 1.50 1.73 1.50 1.73 1.50 1.73 1.50 1.73

99.9 99.9 1.60 1.48 1.71 1.49 1.71 1.48 1.71 1.48 1.71 1.48 1.71
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